New Technology allowing gene switch to study multiple sclerosis

Our genetic blueprint consists of thousands of genes (more than 30,000) with new genes being discovered and added to the growing list. Our genes provide DNA instructions to the protein-making machinery in our bodies. These instructions can influence our health and dictate if we will get debilitating diseases. Have you ever wondered how scientists unlock which genes are responsible for what? For example, does gene A control our hair colour or gene B dictates if we will develop an autoimmune disease such as multiple sclerosis? The answer lies in DNA recombination technology which allows scientists to delete, invert or replace DNA instructions. The technology called Cre-lox recombination relies on the use of an enzyme called Cre recombinase which can bind, cut and recombine DNA at specific sites that are inserted in pairs in the DNA. The Cre-binding site in DNA is called the LoxP sequence that consists of 34 nucleotides DNA sequence made up of two inverted repeats separated by a spacer.  Cre enzymes can recognize these LoxP sequences and edit the stretch of DNA resulting in gene deletion or inversion.

In a recent research article, Dr. Olaya Fernandez Gayol and colleagues use an advanced version of Cre-lox technology called DIO (Double Floxed Inverted Open reading frame) to understand the role of the Interleukin-6 (IL-6) gene in multiple sclerosis (MS). MS is a chronic disease of the brain and spinal cord in which our immune system eats away the myelin sheath around nerves disrupting the communication between the brain and the body. IL-6 is a proinflammatory cytokine known to promote MS. Gayol et al use an experimental mouse model of MS which acutely develops brain inflammation called encephalitis (Encephalo- “the brain” + itis “inflammation”) within 3 weeks of disease induction. This mouse is referred to as EAE (Experimental Acute Encephalomyelitis) which closely mimics human MS disease.  

Scientists have conventionally studied the role of IL6 in EAE mice by irreversibly deleting the IL6 gene in one cell type. However, the results were confounding due to the compensatory expression of IL6 from other cell types. Gayol et al circumvent this problem by wiping out IL6 from all the cells and then recover IL-6 expression specifically in the microglial cells. It is akin to entering a dark room and turning ON a light switch at one corner of the room to clearly see what’s lying there. 

Figure 1.  Cartoon depicting the genetic strategy used by Goyal et al to recover IL6 gene expression exclusively in microglial cells in the mouse brain. Created with Biorender.com.

Olaya and the team use the cutting edge DIO method to wipe out IL6 and introduce the inverted form of the IL6 gene which makes this gene non-functional (Figure 1A). This inverted form of the IL6 gene does not produce IL-6 protein and mice carrying the inverted IL-6 gene (referred to as IL6-DIO-KO) are healthy (Figure 1A). As shown in figure 1B, Cre mediated recombination flips the IL6 gene in the correct orientation to make it active. The IL6 gene flipping occurs exclusively in the microglial cells and only upon treatment of mice with tamoxifen (TAM) drug. Mice in which IL-6 expression is active (referred to as IL6-DIO-ON) develop EAE disease (Figure 1B).

The team carefully optimized the duration of tamoxifen treatment in mice. Just 5 days of TAM did not flip the IL6 gene, so they extended the drug treatment to 11 days and found the IL6 gene turned on in all IL6-DIO-ON mice. Olaya says it is important to validate when creating new mouse models. “We used EAE to validate the mouse because it was a model readily available in our lab and IL6KO [deficient] mice happen to be completely resistant to the disease.” Their interesting finding that IL6-DIO-ON with IL6 gene active exclusively in microglia indicate that IL6 made in the brain promotes disease in the EAE mouse model. 

As compared to more traditional methods of generating gene mutation which requires extensive mice breedings or continuous drug treatment, the strategy presented by Olaya and colleagues is labour and cost-effective. Their findings showed that in the absence of IL-6, EAE disease does not develop in mice. On the other hand, turning on the IL-6 gene (like a gene-switch) using DIO technology, mice develop the disease.  Overall, this technology is highly customizable to understand the role of different genes in specific cell types in the disease context. It paves the way to gain a deeper insight and more thorough analysis of different molecular blocks involved in disease.

 

Dr. Olaya Fernandez Gayol is a postdoctoral research scientist in the Department of Pediatrics and co-president of Columbia University Postdoc Society(CUPS).  She also manages the CUPS Press office that provides postdocs with a platform to publicize their science while improving their science communication skills. 

Transcription factors and cellular fixer-uppers

Self-renewing stem cells are capable of developing into certain specialized cell types thus making them ideal candidates to study human development and as potential treatment modalities for a range of diseases. There are three types of stem cells: embryonic stem cells, adult stem cells and induced pluripotent stem cells. As the name suggests, embryonic stem cells are found in the embryo at very early stages of development. Adult stem cells are found in specific tissues post development. However, using human embryonic stem cells in research is quite restricted due to ethical, religious, and political reasons. This limitation has resulted in the identification of cell reprogramming techniques to convert differentiated cells, such as skin cells, back to an embryonic stem cell state through a process called induced pluripotency. The resulting induced pluripotent stem cells (iPSCs) are equivalent to the natural human embryonic stem cells and can be differentiated to any desired cell type using a mixture of biological molecules.

Cell reprogramming techniques can be likened to fixer-uppers. Imagine trying to remodel a building for a different purpose – converting an office building into a residential one for instance. Though the building material can be reused, with the aid of experts, there would be some structural changes and remodeling necessary to make it a home. Similarly, cellular reprogramming is the technique by which one cell type can be converted to another cell type in the lab with the help of certain gene expression regulators called transcription factors (Fig. 1). The process of inducing pluripotency has been studied extensively and the overexpression of four transcription factors – OCT4, SOX2, KLF4, cMYC (collectively referred to as “OSKM”) – has been shown to induce pluripotency in mouse skin cells.

Many studies have tried to identify other transcription factors with the potential to induce pluripotency or to replace OSKM in an effort to enhance the efficiency of iPSC generation. Of these four transcription factors, SOX2, KLF4 and cMYC have been successfully replaced by members of their protein family to induce pluripotency. However, replacing OCT4 with structurally similar and evolutionarily related factors failed to show similar reprogramming capabilities. This could indicate the presence of special molecular features on OCT4 that give it the ability to reprogram cells. However, these special features and the molecular mechanisms that enable OCT4 to induce pluripotency remain to be identified.

Fig.1. Depiction of pluripotency induction in differentiated cells. Transcription factors regulate the process of converting a mature cell into an induced pluripotent stem cell which can then be directed to differentiate into any desired cell type. Illustration created with BioRender.com

In the current study, Dr. Malik and colleagues hypothesized that the ability of a transcription factor to reconfigure chromatin (the complex of macromolecules composed of DNA, RNA, and protein, which is found inside the nucleus of eukaryotic cells), is one of the features that distinguishes a reprogramming competent transcription factor from a non-competent one (Fig. 2). To test this hypothesis, they studied the well-established OCT4-SOX2 relationship from initiation to maintenance of pluripotency. They performed their study by comparing DNA-accessibility, DNA-binding,  and transcriptional control by OCT4, OCT6 and an OCT4 mutant that does not interact with SOX2 (OCT4defSOX2) during early, mid and late phases of cell reprogramming. What makes this study particularly interesting is the fact that a previous study by the same group has shown that OCT4 naturally interacts with SOX2 to induce pluripotency, whereas OCT6 can only induce pluripotency when OCT6 was mutated to enhance its interaction with SOX2. Dr. Malik’s current study focuses on the mechanisms by which the above-mentioned transcription factors interact with chromatin and in turn bind to the transcription factor binding sites on the genes that are involved in processes from the initiation to maintenance of induced pluripotency.

Fig. 2. Depiction of chromatin remodeling by competent vs non-competent transcription factors. Opening up the chromatin by competent transcription factors and making transcription factor binding sites accessible is required to induce pluripotency. Failure to do so by non-competent transcription factors results in a failure to induce pluripotency. Illustration created with BioRender.com.

From this study, the researchers found that OCT4, OCT6 and OCT4defSOX2 have unique transcription factor binding sites on the pluripotency-related genes which could explain why substituting OCT4 with related transcription factors does not activate these genes. The results from this study challenge previously established roles for OCT4 in driving pluripotency. Dr. Malik and colleagues have identified distinct modes of chromatin interaction and roles for SOX2 and OCT4 during initiation, progression and maintenance of pluripotency. They found SOX2 to be a better facilitator of chromatin opening and initiator of pluripotency compared to OCT4. Once the cells have been initiated towards pluripotency, OCT4-SOX2 binding is required to see the process through and once the cells are pluripotent OCT4-SOX2 binding becomes less essential. The most important role of OCT4, they found, was to maintain the cells in a pluripotent state as opposed to its previously investigated role as an initiator of pluripotency. 

The results from this study contribute new insights to a rapidly progressing field. Identifying the roles of key factors during the stages of reprogramming would add vital pieces of information to the big puzzle of cellular reprogramming. These pieces of information would considerably enhance the use of stem cells as potential therapeutic candidates for a number of diseases .

Dr. Vikas Malik is a Postdoctoral Research Fellow in Dr. Jianlong Wang’s lab in the Department of Medicine at Columbia University Medical Center and is a member of CUPS and the Outreach and Communications Committee.

 

 

No more lazybones

Contrary to what many people think, bone is a highly dynamic tissue that is constantly being broken down and reformed in order to maintain a healthy and strong skeleton. This process of bone remodeling is enabled by specialized bone cells called osteoclasts and osteoblasts. Osteoclasts produce enzymes to degrade old and damaged bone, which is replaced with new bone by osteoblasts. However, these cells do more than simply breaking down and rebuilding your bones. Recent advances in bone biology have shown that bone cells also have an important endocrine function, meaning that they release hormones into the circulation to affect other tissues and organs in the body. As such, the bone-derived hormone osteocalcin was shown to promote muscle function in a mouse model. Dr. Subrata Chowdhury from the Karsenty lab of the Department of Genetics and Development at CUMC followed up on this remarkable finding, and investigated the regulation of osteocalcin in animal models as well as humans, as recently published in the Journal of Clinical Investigation.

Dr. Chowdhury and colleagues found that circulating osteocalcin levels are increased after a 12-week exercise program in humans, and that this effect requires the signaling molecule, or “cytokine”, interleukin-6 (IL-6). The latter was shown by inhibiting IL-6, which completely blocked the induction of osteocalcin by exercise. They continued by using a mouse model to show that IL-6 is actually derived from the muscle itself, and that its production is necessary for maximal exercise capacity. In other words, mice that could not produce IL-6 in their muscles were not able to run as far on a treadmill as compared to mice that were able to produce IL-6.

They further investigated the interplay between IL-6 and osteocalcin in mice, and found that IL-6 stimulates osteoblasts in the bone tissue to produce RANKL, a protein that is necessary for osteoclast differentiation. As a result, more active osteoclasts are formed within the tissue. These osteoclasts produce high amounts of osteocalcin, which signal back to the muscle to promote the uptake and breakdown of glucose and fatty acids by muscle cells. In addition, osteocalcin stimulates the muscle to produce more IL-6, thereby generating a positive feedback loop between muscle and bone (see Figure below). The end result of this loop is a muscle tissue which can utilize more nutrients from the circulation, and is therefore more functional during exercise.

Exercise capacity, also referred to as fitness, is a strong predictor of chronic disease and mortality. The research by Dr. Chowdhury and colleagues has shown that exercise capacity can be improved by stimulating the IL-6-osteocalcin axis. Although their findings are very convincing, according to Dr. Chowdhury the scientific community initially reacted with disbelief. IL-6 is classically known as an inflammatory cytokine, and is one of the components of the detrimental “cytokine storm” that occurs during, for example, a COVID-19 infection. However, while the high levels of IL-6 under pro-inflammatory conditions are damaging for the body, low sustained levels of IL-6 may actually be beneficial. Follow-up studies are now being performed with low doses of long-acting IL-6 analogues, to study their potential to safely and effectively promote exercise capacity and improve health.

Dr. Chowdhury showed us the importance of not being led by scientific biases, but by our observations. And who would guess that our skeleton does not weigh us down, but actually makes us run faster?

Figure adapted from Chowdhury, JCI 2020, and created with BioRender.com.

Cracking early construction steps of the blood brain barrier

Figure 1. Early demonstration of blood-brain barrier phenomenon in developing brain.

In physiology, we often associate the terms “central” and “periphery” to refer to the brain vs the rest of the organism. This is not an anodyne dichotomy, as early 19th century injections of a dye in mice bloodstream highlighted its spreading everywhere within the organism, except in the brain (Fig. 1). In fact, a structure conveniently named the blood-brain-barrier surrounds the brain, and has two functions: protect from peripheral pathogens or toxins present in the blood, and allow nutrients to cross over to provide energy to neurons and glial cells (Fig.2).

 

Neurodegenerative diseases, ischemic strokes or other diseases such as multiple sclerosis often occur with a disruption of the blood-brain-barrier. Understanding its formation is important to investigate a cure for these disorders. In their current paper, Cottarelli and colleagues focused on the genetic determinants involved in the maturation and function of the blood-brain-barrier.

Figure 2. Blood brain barrier anatomy. From Anatomy and Physiology of the Blood–Brain Barriers, J. Abbott

The formation of a complex multicellular structure from stem cells requires the regulation of cells proliferation, migration and differentiation. These processes rely on a few key molecular signaling pathways (Fgf, hedgehog, wnt, TGFbeta, Notch). Wnt/β-catenin is one of the highly evolutionarily conserved molecular pathways that allows a cell to send information from its nucleus to cell surface receptors. Mutations in this pathway lead to abnormal development or cancer. While we know that this signaling pathway is involved in the establishment of the blood-brain-barrier, the detailed molecular mechanisms were still to elucidate. Dr Cottarelli’s work identifies a new partner of Wnt/β-catenin pathway necessary for the blood-brain-barrier development: the protein Fgfbp1 secreted by the endothelial cells of the brain and released in the basement membrane during the first weeks of age in mice. Collagen is a well known- component of conjunctive tissues. Using fluorescent microscopy techniques, Dr Cottarelli nicely highlighted a complex molecular pathway where the blood-brain-barrier maturation is enabled through collagen deposition in the vascular basement membrane. She shows that removal of Fgfbp1 gene in the blood vessels leads to a decreased signaling in the Wnt/β-catenin pathway, abnormal vascularization, delays in the establishment of the blood-brain-barrier, and abnormal cell interactions at the level of the neurovascular units. The paper also identifies a molecular mechanism linking Fgfbp1 and collagen IV in the basement membrane through the regulation of the gene Plvap (Fig 3).

 

Figure 3. Proposed model for the role of Fgfbp1 in BBB maturation.

Future studies will investigate how Fgfbp1 is involved in complex neurovascular diseases.

Azzurra Cottarelli is a postdoc in Dr Agalliu’s lab in the department of neurology. Her new paper in Development highlights her expertise in the formation of the blood-brain-barrier.

 

Mating induces transgenerational silencing in worms

Just imagine if apart from the looks one could also inherit their parents’ skills, memories, knowledge, and ideas. Sounds amazing right? However, passing down such characteristics would require transgenerational epigenetic inheritance.  The literal meaning of epigenetics is “above” or “on top of genetics”, i.e., the external modifications of the cell without any change in its DNA sequence that could turn a gene on or off and the transmission of the epigenetic marks from parents to the child is called transgenerational epigenetic inheritance.  One’s lifestyle factors, for example, diet, smoking, physical activity, alcohol consumption or even night shift work could be major contributors to the epigenetic modifications. Although the occurrence of epigenetic inheritance in humans is still a controversial debate, but it has been observed in plants, worms, mice and flies. The recent preprint by Dr. Sindhuja Devanapally and colleagues focuses on transgenerational epigenetic inheritance (TEI) and silencing in worms by reporting features that provide barrier against TEI.

Caenorhabditis elegans (C. elegans) is a transparent, small (1 mm) worm that lives in temperate soil environments with a rapid life cycle (3 days) and can be easily grown in a petri-dish while munching on bacteria as their food source. Most of these worms are hermaphrodite (with both male and female sex organs) while a few are males. These worms may look alike to the naked eyes but they differ from each other in developmental timing, lifespan and, also behavior which could be epigenetically inherited as opposed to being hard-wired in their genomes. For instance, some Pseudomonas bacteria strains are toxic food for the worms. Yet, mom-worm unlucky enough to eat the poisonous bacteria can “teach” their new born kids not to make the same mistake, thus epigenetically transferring the pathogen avoidance experience to the progeny.

RNA interference (RNAi) by double-stranded RNA (dsRNA) is a technique where RNA molecules inhibit gene expression or translation by neutralizing targeted mRNA molecules and has been shown to contribute to transgenerational epigenetic inheritance. The Jose lab has previously shown that dsRNA expressed within neurons of worms could enter the germline and cause transgenerational silencing. However, some worm descendants maintain the epigenetic gene silencing inherited from their ancestors for the long-term, while others lose silencing quickly. Therefore, the mechanism that can perpetuate silencing versus that can reverse it are both not clear.

RNAi

Figure 1: Transgenerational silencing of a gene is observed in descendants (no green GFP expression) for up to several generations when parents (green GFP expression) but not the kids were fed with RNAi (RNA interference, where RNA molecules inhibit gene expression or translation, by neutralizing targeted mRNA molecules). Illustration created with BioRender.comIn this preprint, the authors fed the parent worms with double-stranded RNA (dsRNA) targeting a green fluorescent protein (GFP)-encoding gene expressed in the worm germline and monitored the maintenance of gene silencing in their unfed descendants  (Fig. 1). While this GFP expression was turned off in initial generations, it almost always came back in the later generations except in one peculiar case. The authors  discovered that RNAi against GFP when expressed as part of a rare recombinant two gene operon, named T (containing GFP and mCherry fluorescent proteins), showed permanent RNA-based silencing. They reported that such silencing can also be triggered without using dsRNA and simply by mating dad-worms expressing T with mom-worms (hermaphrodites) lacking T expression. Because this kind of inducible permanent silencing was never reported previously, the authors introduced this phenomenon as mating-induced silencing. Mating induced silencing of T could be maintained for more than 300 generations without selection beyond second generation, thus making it the first ever study to report persistent silencing without external triggers. As the authors report, this contrasts dramatically with the genes expressed in the germline that can be silenced for a few generations by RNAi or trans effects of mating-induced silencing. Follow up experiments confirmed that maternal T can provide a protective signal that prevents paternal T silencing, suggesting that the germline has evolved to prevent permanent silencing potentially to prevent negative responses to temporary change in the environment.

According to the germline immortality concept, unlike somatic cells, the germline cells are well protected from the environment and can be passed on indefinitely across generations. However, Devanapally and colleagues in the current study reported that the expression of genes (not all but rare examples like T) within the germline can potentially be changed for hundreds of generations without any external triggers. This highlights how worms have adopted fascinating epigenetic mechanisms to accelerate evolution yet keeping the DNA sequence unchanged. Yet, the sheer infrequency at which permanent changes occur shows how impenetrable the germline is to permanent changes and the germline’s capacity to revert back to ancestral gene expression states. Thus, this study points to an organism’s ability to preserve persistence of gene expression, resulting in the preservation of the species.

Whether such rare examples of transgenerational epigenetic inheritance also occur in mammals, especially humans, is still up for debate. Epigenetic modifications have to occur in sperm or egg cells in order to pass to the next generation. Yet, most of these modifications in sperm and eggs get erased upon fertilization, resetting it to default and thus the next generation starts from scratch and makes its own epigenetic modifications. However, it is believed that some of these epigenetic modifications can escape this erasure and are passed on to the progeny. A study published in Nature Journal in 2013 reported that the mice-parents exposed to smell-fear conditioning (smell followed by electric shock) could pass their trauma to the next generation. Although rare, this opens up the possibility that indeed parents could pass on their experience, skills or even fear to the next generation. It will be fascinating to identify the mechanisms by which environmental information is transgenerationally inherited in humans.

Dr. Sindhuja Devanapally is a Postdoctoral Research Scientist in the Department of Biochemistry and Molecular Biophysics, and co-chair of the Networking and Community Building committee of CUPS.

 

 

Plasticity inception in a nutshell

Have you ever realized that you remember experiences associated with strong emotions more vividly? For example, you probably remember what you ate at your (or a close friend’s) wedding, but not last Tuesday. However, these persistent memories are not always pleasant. People exposed to actual or threatened death, serious injury, or sexual violence can develop Post-Traumatic Stress Disorder (PTSD), which involves recurring memories or dreams of the traumatic event, bodily reactions to reminders and active avoidance of those reminders. Treatment for PTSD combines psychotherapy and medication, and it aims at enabling the person to understand their trauma and detach the triggers from the responses.

The area in your brain responsible for the formation of such emotional memories is called the amygdala (from the Greek word for almond, due to its shape, Fig. 1). It can modify the way it will respond to similar stimuli in the future, and it can also affect how other brain areas, like the medial prefrontal cortex or the hippocampus, do as well. This ability to change and adapt is called plasticity, and it can start with something as “simple” as a synaptic connection becoming stronger or weaker. There are higher levels of plasticity, though. If changes alter the potential response of a region to a future challenge, this plasticity of plasticity is called metaplasticity.

Human and rodent brain with highlighted amygdala, medial prefrontal cortex and hippocampus.
Fig. 1. Depiction of a human and a rodent brain. Highlighted areas are responsible for establishing emotional memories, fear conditioning and extinction. Modified from Sokolowski and Corbin 2012.

In the recent review “Intra-Amygdala Metaplasticity Modulation of Fear Extinction Learning”, CUIMC postdoc Dr. Rinki Saha and colleagues provide a comprehensive account of recent literature on metaplasticity in the amygdala in the context of fear conditioning, and how it may lead to plasticity in other connected brain regions.

Fear conditioning is a classic rodent model in neuroscience research that allows scientists to study the mechanisms that lead to associations between neutral stimuli and unpleasant stimuli. The general experimental layout is as follows: first, a neutral stimulus (a light or a tone, for example) is consistently paired to precede an aversive stimulus (like an electric foot shock). After this exposure, animals learn that the neutral stimulus (called conditioned stimulus) predicts the aversive one (called unconditioned stimulus) and they develop a fear response which they perform right after the neutral stimulus (life freezing in place). The experiment can continue to study how they learn to dissociate them once the stimuli stop being paired. For this second part, called fear extinction learning, the neutral stimulus is presented by itself (without pairing it to the aversive one), and researchers measure the time it takes the animal to stop performing the fear response.

In order to study the amygdala’s role in fear extinction, scientists can inject different drugs into it with very fine syringes (in a procedure called stereotaxic surgery, Fig. 2). By either activating or inhibiting different signaling pathways, they can elucidate what roles those molecules play in the fear extinction process. In addition, experiences like stress and trauma can interfere with this extinction learning, as evidenced in people who suffer from PTSD and in rodent models exposed to different stressful situations, both acute and chronic.

Depiction of a stereotaxic surgery in a rodent. Detail of injection in the amygdala.
Fig. 2. Depiction of a stereotaxic surgery in a rodent. The anesthetized animal is fixed on the frame of the stereotaxic instrument, which has very accurate rulers for the three dimensions. A very fine syringe is introduced through the skull into the brain to administer the drug or virus in a very precise way.
Made with BioRender.

This paradigm has been used by many to study metaplasticity, where the change that occurs is not a modification of the baseline response but rather of the response to a subsequent plasticity-inducing stimulation. For example, Dr. Saha herself showed that it is possible to alter fear extinction learning by injecting a virus into a subregion of the amygdala that disrupts inhibitory synapses. Importantly, this happened without modifying the initial fear conditioning or the anxiety level of the animals. In addition, they also showed that those alterations in inhibitory synapses in the amygdala led to independent changes in the medial prefrontal cortex, hindering its intrinsic plasticity. The same intervention caused increased resilience to acute trauma and improved the performance of a task dependent on another brain region, the hippocampus. Hence, a very targeted intervention in the amygdala can cause an array of effects across multiple brain areas.

This body of research has tremendous implications in our understanding of the brain and how to treat its diseases. On a very pragmatic sense, it should serve as a cautionary tale for researchers to take into account and consider the potential for “undesired” plasticity in more than one place as a response to certain interventions. But more importantly, it opens up potential therapeutic strategies for trauma-related disorders like PTSD, stress or fear. Changes in one small region can lead to widespread effects through its connections to other brain areas. Hopefully, we are a little bit closer to tricking the brain into equating those traumatic memories with what you ate last Tuesday.

 

Dr. Rinki Saha is a Postdoctoral Research Fellow in the Department of Psychiatry researching  stress, and one of CUPS’ social media managers.

Follow this blog

Get every new post delivered right to your inbox.