What can we do to enter a new era in antimalarial research? A promising story from genetics to genomics.

Plasmodium falciparum is a unicellular organism known as one of the deadliest parasites in humans. This parasite is transmitted through bites of female Anopheles mosquitoes and causes the most dangerous form of malaria, falciparum malaria. Each year, over 200 million cases of malaria result in hundreds of millions of deaths. Moreover, P. falciparum has also been involved in the development of blood cancer. Therefore, study of malaria-causing Plasmodium species and the development of anti-malarial treatment constitute a high-impact domain of biological research.

Antimalarial drugs have been the pillar of malaria control and prophylaxis. Treatments combine rapid compounds to reduce parasite biomass with longer-lasting drugs that eliminate surviving parasites. These strategies have led to significant reductions in malaria-associated deaths. However, Plasmodium is constantly developing resistance to existing treatments. The situation is further complicated by the spread of mosquitoes resistant to insecticides. Additionally, asymptomatic chronic infections serve as parasite reservoirs and the single candidate vaccine has limited efficacy. Thus, the fight against malaria requires sustained efforts. A detailed understanding of P. falciparum biology is still crucial to identify and develop novel and efficient therapeutic targets.

Recent progress in genomics and molecular genetics empowered novel approaches to study the parasite gene functions. Application of genome-based analyses, genome editing, and genetic systems that allow for temporal regulation of gene and protein expression have proven to be crucial in identifying P. falciparum genes involved in antimalarial resistance. In their recent review, Columbia postdoc John Okombo and colleagues summarize the contributions and limitations  of some of these approaches in advancing our understanding of Plasmodium biology and in characterizing regions of its genome associated with antimalarial drug responses.

P. falciparum requires two hosts for its development and transmission: humans and Anopheles mosquito species. The parasite life cycle involves numerous developmental stages. In humans take place stages of Plasmodium’s development that are part of its “so-called” asexual development. On the other hand, mosquitos harbour other stages of the parasite development, associated with its sexual reproduction (Figure 1). Humans are infected by a stage called “sporozoites” upon the bite of an infected mosquito. Sporozoites enter the bloodstream and migrate through to the liver where they invade the liver cells (hepatocytes), multiply and form “hepatic schizonts”. Then, the schizonts rupture and release in the circulation the stage of “merozoites” which invade red blood cells (RBCs).  The clinical symptoms of malaria such as fever, anemia, and neurological disorder are produced during the blood stage. In RBCs are formed “trophozoites”, that have two alternative paths of development. They can either form “blood-stage schizonts” that produce more RBC-infecting merozoites or can alternatively differentiate to sexual forms, male and female “gametocytes”. Finally, gametocytes get ingested by new mosquitoes during blood meal where they undergo sexual reproduction forming a “zygote”. The zygotes then pass through several additional stages until maturation to a new generation of sporozoites, closing the parasite life cycle (Figure 1).

Figure 1: Life cycle of Plasmodium falciparum. Image created with BioRender.com

This complexity of the Plasmodium life cycle presents opportunities to generate drugs acting on various stages of its development. The review of Okombo and colleagues underlines how new genomic data have enabled the identification of genes contributing to various parasite traits, particularly those of antimalarial drug responses. The authors recap genetic- and genomic-based approaches that have set the stage for current investigations into antimalarial drug resistance and Plasmodium biology and have thus led to expanding and improving the available antimalarial arsenal.

For instance, in “genome-wide association studies” (GWAS), parasites isolated from infected patients are profiled for resistance against antimalarial drugs of interest, and their genomes are studied in order to identify genetic variants associated with resistance. In “genetic crosses and linkage analyses”, gametocytes from genetically distinct parental parasites are fed to mosquitoes in which they undergo sexual reproduction. The resulting progeny are inoculated into humanized human liver-chimeric mice-models that support P. falciparum infections and development. The progeny is later analyzed to identify the DNA changes associated with resistance and drug response variation. In “in vitro evolution and whole-genome analysis” antiplasmodial compounds are used to pressure P. falciparum progeny to undergo evolution to drug-resistant parasites. Their genome is then analyzed to identify the genetic determinants that may underlie the resistance. “Phenotype-driven functional Plasmodium mutant screens” are based on random genome-wide mutation generation and selection of mutants that either are resistant to drugs or have affected development, pathogenicity, or virulence. Such an approach has also led to the discovery of novel important genes. In addition, the review covers a number of cutting-edge methods for genome editing used to study antimalarial resistance and mode of action. Experiments using genetically engineered parasites constitute a critical step in uncovering the functional role of the identified genes. Finally, the reader can also find an overview of Plasmodium “regulatable expression strategies”. These approaches are particularly valuable in the study of non-dispensable (essential) genes. Additional information on other intriguing and powerful techniques are further described in the original paper.

Article reviewed by: Trang Nguyen, Samantha Rossano, Maaike Schilperoort

CRISPR versus acute lymphoblastic leukemia

Acute lymphoblastic leukemia (ALL) is an aggressive form of cancer arising from malignant transformation of immature cells that were otherwise fated to become white blood cells, or lymphocytes. ALL occasionally affects adults but is more commonly a pediatric cancer: children under the age of 5 have the highest risk of being affected. Upon diagnosis, it is possible to treat ALL with an aggressive regimen of multiple chemotherapy drugs that is successful for over 80% of patients. Unfortunately, when tumors reappear after initial treatment, in relapse, the cases become extremely difficult to treat. Additionally, the cellular landscape of ALL in relapse has a high degree of genetic heterogeneity and variability between different patients. Oncologists and cancer biologists suspect it is this genetic complexity that makes ALL in relapse especially hard to fight in the clinic. 

In a study published in Nature Cancer last year, Dr. Jessie Brown and colleagues set out to improve outcomes for patients with ALL by clarifying how mutational complexity in relapsed tumors interacts with chemotherapy drugs to resist treatment. To this end, the team first employed extensive genetic sequencing on ALL samples collected upon diagnosis, remission, and relapse in order to identify the mutational landscape that distinguishes relapse tumors from the others. Samples were collected from 175 patients in total – 149 from pediatric cases and 26 from adults. Next, in order to functionally characterize the mutations they identified, the authors used a genome-wide genetic screening strategy to identify drug–gene interactions and determine why the relapse-specific mutational landscape is less responsive to chemotherapy. The screen was carried out in a representative model ALL cell line using CRISPR, a genetic editing tool used to specifically activate or inhibit the expression of single genes. 

Fig 1. Schematic of experimental design for CRISPR-based screen in ALL model cell line. A library of targeting molecules called guide RNAs (gRNAs) was used to activate or inhibit genes identified to have mutations associated with ALL in relapse. Figure adapted from Oshima, Zhao, Durán, Brown, et al. 2020.

Between these two approaches, the team succeeded in characterizing relapse-specific mutations that arise during the administration of chemotherapy itself, a process known as clonal evolution. Additionally, the number of mutations they identified increased with patient age at diagnosis, a finding that allowed the researchers to establish that the most recent commonality between the mutant cells present at diagnosis versus later at relapse often develops early, years before the leukemia is officially diagnosed. Importantly, this finding is consistent with the hypothesized fetal origin of many pediatric ALLs, which postulates that chromosomal abnormalities leading to cancer are already present at birth. It is also consistent with the higher rate of relapse previously observed in adult patients.

When the mutations uniquely acquired during relapse were further investigated using CRISPR screening in an ALL model cell line, a strong positive selection was revealed for those that conferred chemotherapy resistance. By using CRISPR to manipulate the expression of genes affected by each mutation of interest and assessing how the ALL model cells fared in each experiment, the researchers were able to analyze the relationships between the effect of the mutation and application of each drug. Of the drugs investigated, functional overlaps in the cellular mechanisms mediating the activity of each were identified between several groups of them. The significance of this finding is two-fold. First, it helps researchers and medical providers understand why the presently used multi-drug regimen might be effective for ALL in the first place. Second, it suggests that other drugs acting via similar mechanisms of action could be effective treatments in the future. Moving forward, ALL in relapse might be treated not just with combinatorial chemotherapy, but with specific combinations, doses, and schedules of drugs that meet the personalized genetic vulnerabilities of specific ALL cases. 

One inhibitor tested in the study’s cell-based CRISPR screen, an inhibitor called ABT-199, also known as Venetoclax, is already being tested for inclusion as a new therapeutic. If approved, it could become part of the arsenal of drugs used to compose personalized chemotherapeutic cocktails for patients with ALL in relapse. According to co-first author Dr. Brown, “it is currently in Phase I/II clinical trials for relapsed ALL and other malignancies and we hope that this work and our follow-up studies can further underscore the mechanisms of action of this inhibitor in combination with commonly used chemotherapies.” 

Altogether, this study identified a number of mutations that make relapsed ALL distinct from ALL before treatment with chemotherapy and functionally characterized the interactions of these mutations with multiple chemotherapy drugs. While ALL is not a common cancer – it accounts for less than 0.05% of all incidences of cancer in the United States – those affected must be treated with aggressive chemotherapy that can negatively affect the lives and health of patients in many ways. Because of this, understanding how to better target ALL at diagnosis and treatment-resistant ALL in relapse is a high priority for researchers. The findings of this work help to identify targets for reversing chemotherapy resistance and improving treatment outcomes for pediatric and adult patients alike. 

Dr. Jessie Brown is a postdoctoral research fellow in the Ferrando Lab at Columbia University Irving Medical Center studying therapeutic resistance in relapsed acute lymphoblastic leukemia.  

Follow this blog

Get every new post delivered right to your inbox.