Dr. Rafa Yuste

Cortical Circuits & Dendritic Spines

The goal of our laboratory is to understand the function of the cortical microcircuit. The cortex constitutes the larger part of the brain in mammals. In humans it is the primary site of mental functions like perception, memory, control of voluntary movements, imagination, language and music. No accepted unitary theory of cortical function exists yet; nevertheless, the basic cortical microcircuitry develops in stereotyped fashion, is similar in different cortical areas and in different species, and has apparently not changed much in evolution since its appearance. At the same time, the cortex participates in apparently widely different computational tasks, resembling a “Turing machine”. Because of this, it is conceivable that a “canonical” cortical microcircuit may exist and implement a relatively simple, and flexible, computation.

We pursue the reverse-engineering of the cortical microcircuit using the mouse neocortex in vitro and in vivo as our experimental preparations. The techniques applied are electrophysiology, anatomy, and a variety of optical methods, including infrared-DIC, voltage- and ion-sensitive dye imaging with confocal, two-photon and second harmonic microscopy. We also use laser uncaging, biolistics, electroporation, electron microscopy and numerical simulations, and make extensive use of genetically modified mouse strains.