Deep Reinforcement Learning

for Walking Robots


$conda create –name tensorflow python=3.6

$conda activate tensorflow

Installing packages using pip and virtualenv



Computer Science Geeks for Geeks for Heap Sort. Visualization for Heap Sort. Animation for Heap Sort. Data Structures Visualization for Sorting, Graph Algorithms, Data Structrues and Algorithms.

C++ SystmeC

Columbia Library

Machine Learning

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you’ll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you’ll learn about some of Silicon Valley’s best practices in innovation as it pertains to machine learning and AI. This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you’ll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.


Java Platform Standard Edition 8 Documentation


Workflow on an HPC typically involves submitting jobs to a batch workload manager, which then wait until sufficient compute resources are available to execute the job.  Scheduling, resource management, and accounting of usage on ARCC resources such as Stokes and Newton are handled by the Simple Linux Utility for Research Management (SLURM).  In order to use our computing facilities, you will have to learn some of the basics of job and account management in SLURM.

Material Safety Data Sheet (MSDS, SDS)

Username: …lab

Password: msdsonline