
Finite-Sample Convergence Rates for 
Q-Learning and Indirect Algorithms 

Michael Kearns and Satinder Singh 
AT&T Labs 

180 Park Avenue 
Florham Park, NJ 07932 

{mkearns,baveja }@research.att.com 

Abstract 

In this paper, we address two issues of long-standing interest in the re­
inforcement learning literature. First, what kinds of performance guar­
antees can be made for Q-learning after only a finite number of actions? 
Second, what quantitative comparisons can be made between Q-learning 
and model-based (indirect) approaches, which use experience to estimate 
next-state distributions for off-line value iteration? 
We first show that both Q-learning and the indirect approach enjoy 
rather rapid convergence to the optimal policy as a function of the num­
ber of state transitions observed. In particular, on the order of only 
(Nlog(1/c)/c2 )(log(N) + loglog(l/c)) transitions are sufficient for both 
algorithms to come within c of the optimal policy, in an idealized model 
that assumes the observed transitions are "well-mixed" throughout an 
N-state MDP. Thus, the two approaches have roughly the same sample 
complexity. Perhaps surprisingly, this sample complexity is far less than 
what is required for the model-based approach to actually construct a good 
approximation to the next-state distribution. The result also shows that 
the amount of memory required by the model-based approach is closer to 
N than to N 2 • 

For either approach, to remove the assumption that the observed tran­
sitions are well-mixed, we consider a model in which the transitions are 
determined by a fixed, arbitrary exploration policy. Bounds on the number 
of transitions required in order to achieve a desired level of performance 
are then related to the stationary distribution and mixing time of this 
policy. 

1 Introduction 

There are at least two different approaches to learning in Markov decision processes: 
indirect approaches, which use control experience (observed transitions and payoffs) 
to estimate a model, and then apply dynamic programming to compute policies from 
the estimated model; and direct approaches such as Q-Iearning [2], which use control 
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experience to directly learn policies (through value functions) without ever explicitly 
estimating a model. Both are known to converge asymptotically to the optimal pol­
icy [1, 3] . However, little is known about the performance of these two approaches 
after only a finite amount of experience. 

A common argument offered by proponents of direct methods is that it may require 
much more experience to learn an accurate model than to simply learn a good policy. 
This argument is predicated on the seemingly reasonable assumption that an indirect 
method must first learn an accurate model in order to compute a good policy. On 
the other hand, proponents of indirect methods argue that such methods can do 
unlimited off-line computation on the estimated model, which may give an advantage 
over direct methods, at least if the model is accurate. Learning a good model may 
also be useful across tasks, permitting the computation of good policies for multiple 
reward functions [4]. To date, these arguments have lacked a formal framework for 
analysis and verification. 

In this paper, we provide such a framework, and use it to derive the first finite-time 
convergence rates (sample size bounds) for both Q-learning and the standard indirect 
algorithm. An important aspect of our analysis is that we separate the quality of the 
policy generating experience from the quality of the two learning algorithms. In 
addition to demonstrating that both methods enjoy rather rapid convergence to the 
optimal policy as a function of the amount of control experience, the convergence rates 
have a number of specific and perhaps surprising implications for the hypothetical 
differences between the two approaches outlined above. Some of these implications, 
as well as the rates of convergence we derive, were briefly mentioned in the abstract; 
in the interests of brevity, we will not repeat them here, but instead proceed directly 
into the technical material. 

2 MDP Basics 

Let M be an unknown N-state MDP with A actions . We use PM(ij) to denote the 
probability of going to state j, given that we are in state i and execute action a; 
and RM(i) to denote the reward received for executing a from i (which we assume is 
fixed and bounded between 0 and 1 without loss of generality). A policy 1r assigns 
an action to each state. The value of state i under policy 1r, VM(i), is the expected 
discounted sum of rewards received upon starting in state i and executing 1r forever : 
VM(i) = E7r[rl + ,r2 + ,2r3 + ... ], where rt is the reward received at time step t 
under a random walk governed by 1r from start state i, and 0 ~ , < 1 is the discount 
factor . It is also convenient to define values for state-action pairs (i, a): QM (i, a) = 
RM (i) +, Lj PM (ij) VM (j) . The goal of learning is to approximate the optimal policy 
1r* that maximizes the value at every state; the optimal value function is denoted QM. 
Given QM' we can compute the optimal policy as 1r*(i) = argmaxa{QM(i,a)}. 

If M is given , value iteration can be used to compute a good approximation to the 
optimal value function. Setting our initial guess as Qo(i, a) = 0 for all (i, a), we 
iterate as follows: 

RM(i) +, 2)PM(ij)Ve(j)] 
j 

(1) 

where we define \Il(j) = maxv{Qe(j, b)}. It can be shown that after I! iterations, 
max(i,aj{IQe(i, a) - QM(i , a)1} ~ ,e. Given any approximation Q to QM we can com­
pute the greedy approximation 1r to the optimal policy 1r* as 1r(i) = argmaxa{Q(i, a)}. 
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3 The Parallel Sampling Model 

In reinforcement learning, the transition probabilities PM(ij) are not given, and a 
good policy must be learned on the basis of observed experience (transitions) in M . 
Classical convergence results for algorithms such as Q-Iearning [1] implicitly assume 
that the observed experience is generated by an arbitrary "exploration policy" 7r, and 
then proceed to prove convergence to the optimal policy if 7r meets certain mini­
mal conditions - namely, 7r must try every state-action pair infinitely often, with 
probability 1. This approach conflates two distinct issues: the quality of the explo­
ration policy 7r, and the quality ofreinforcement learning algorithms using experience 
generated by 7r. In contrast, we choose to separate these issues. If the exploration 
policy never or only very rarely visits some state-action pair, we would like to have 
this reflected as a factor in our bounds that depends only on 7r; a separate factor 
depending only on the learning algorithm will in turn reflect how efficiently a partic­
ular learning algorithm uses the experience generated by 7r . Thus, for a fixed 7r, all 
learning algorithms are placed on equal footing, and can be directly compared. 

There are probably various ways in which this separation can be accomplished; we 
now introduce one that is particularly clean and simple. We would like a model of 
the ideal exploration policy - one that produces experiences that are "well-mixed", 
in the sense that every state-action pair is tried with equal frequency. Thus, let us 
define a parallel sampling subroutine PS(M) that behaves as follows: a single call to 
PS( M) returns, for every state-action pair (i, a), a random next state j distributed 
according to PM (ij). Thus, every state-action pair is executed simultaneously, and 
the resulting N x A next states are reported. A single call to PS(M) is therefore really 
simulating N x A transitions in M, and we must be careful to multiply the number 
of calls to PS(M) by this factor if we wish to count the total number of transitions 
witnessed. 

What is PS(M) modeling? It is modeling the idealized exploration policy that man­
ages to visit every state-action pair in succession, without duplication, and without 
fail. It should be intuitively obvious that such an exploration policy would be optimal, 
from the viewpoint of gathering experience everywhere as rapidly as possible. 

We shall first provide an analysis, in Section 5, of both direct and indirect reinforce­
ment learning algorithms, in a setting in which the observed experience is generated 
by calls to PS(M). Of course, in any given MDP M , there may not be any exploration 
policy that meets the ideal captured by PS(M) - for instance, there may simply be 
some states that are very difficult for any policy to reach, and thus the experience 
generated by any policy will certainly not be equally mixed around the entire MDP. 
(Indeed, a call to PS(M) will typically return a set of transitions that does not even 
correspond to a trajectory in M.) Furthermore, even if PS(M) could be simulated 
by some exploration policy, we would like to provide more general results that ex­
press the amount of experience required for reinforcement learning algorithms under 
any exploration policy (where the amount of experience will , of course, depend on 
properties of the exploration policy). 

Thus, in Section 6, we sketch how one can bound the amount of experience required 
under any 7r in order to simulate calls to PS(M) . (More detail will be provided in a 
longer version of this paper.) The bound depends on natural properties of 7r, such as 
its stationary distribution and mixing time. Combined with the results of Section 5, 
we get the desired two-factor bounds discussed above: for both the direct and indirect 
approaches, a bound on the total number of transitions required, consisting of one 
factor that depends only on the algorithm, and another factor that depends only on 
the exploration policy. 
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4 The Learning Algorithms 

We now explicitly state the two reinforcement learning algorithms we shall analyze 
and compare. In keeping with the separation between algorithms and exploration 
policies already discussed, we will phrase these algorithms in the parallel sampling 
framework, and Section 6 indicates how they generalize to the case of arbitrary ex­
ploration policies. We begin with the direct approach. 

Rather than directly studying standard Q-Iearning, we will here instead examine a 
variant that is slightly easier to analyze, and is called phased Q-Iearning. However, we 
emphasize that all of our resuits can be generalized to apply to standard Q-learning 
(with learning rate a(i, a) = t(i~a)' where t(i, a) is the number oftrials of (i, a) so far) . 
Basically, rather than updating the value function with every observed transition from 
(i , a), phased Q-Iearning estimates the expected value of the next state from (i, a) 
on the basis of many transitions, and only then makes an update. The memory 
requirements for phased Q-learning are essentially the same as those for standard 
Q-Iearning. 

Direct Algorithm - Phased Q-Learning: As suggested by the name, the algo­
rithm operates in phases . In each phase, the algorithm will make mD calls to PS(M) 
(where mD will be determined by the analysis), thus gathering mD trials of every 
state-action pair (i, a) . At the fth phase, the algorithm updates the estimated value 
function as follows: for every (i , a), 

Ql+d i , a) = RM(i) + ,_1_ ~ Oeu£) 
mD k=l 

(2) 

where jf, ... , j~ are the m D next states observed from (i, a) on the m D calls to 
PS(M) during t~e fth phase. The policy computed by the algorithm is then the 
greedy policy determined by the final value function. Note that phased Q-learning 
is quite like standard Q-Iearning, except that we gather statistics (the summation in 
Equation (2)) before making an update. 

We now proceed to describe the standard indirect approach . 

Indirect Algorithm: The algorithm first makes m[ calls to PS(M) to obtain m[ 
next state samples for each (i, a) . It then builds an empirical model of the transition 
probabilities as follows: PM(ij) = #(~aj) , where #(i -+a j) is the number of times 
state j was reached on the m[ trials of (i, a). The algorithm then does value iteration 
(as described in Section 2) on the fixed model PM(ij) for f[ phases. Again , the policy 
computed by the algorithm is the greedy policy dictated by the final value function . 

Thus , in phased Q-Iearning, the algorithm runs for some number fD phases, and each 
phase requires mD calls to PS(M), for a total number of transitions fD x mD x N x A . 
The direct algorithm first makes mj calls to PS(M) , and then runs f[ phases of 
value iteration (which requires no additional data) , for a total number of transitions 
m[ x N x A. The question we now address is: how large must mD, m[, fD' f[ be 
so that, with probability at least 1 - 6, the resulting policies have expected return 
within f. of the optimal policy in M? The answers we give yield perhaps surprisingly 
similar bounds on the total number of transitions required for the two approaches in 
the parallel sampling model. 

5 Bounds on the Number of Transitions 

We now state our main result. 
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Theorem 1 For any MDP M: 

• For an appropriate choice of the parameters mJ and and fJ, the total number 
of calls to PS(M) required by the indirect algorithm in order to ensure that, 
with probability at least 1 - 6, the expected return of the resulting policy will 
be within f of the optimal policy, is 

O((I/f2)(log(N/6) + loglog(l/f)). (3) 

• For an appropriate choice of the parameters mD and fD, the total number of 
calls to PS(M) required by phased Q-learning in order to ensure that, with 
probability at least 1 - 6, the expected return of the resulting policy will be 
within f of the optimal policy, is 

O((log(1/f)/f2)(log(N/6) + log log(l/f)). (4) 

The bound for phased Q-learning is thus only O(log(l/f)) larger than that for the 
indirect algorithm. Bounds on the total number of transitions witnessed in either 
case are obtained by multiplying the given bounds by N x A . 

Before sketching some of the ideas behind the proof of this result, we first discuss 
some of its implications for the debate on direct versus indirect approaches. First of 
all, for both approaches, convergence is rather fast: with a total number of transitions 
only on the order of N log(N) (fixing f and 6 for simplicity), near-optimal policies 
are obtained. This represents a considerable advance over the classical asymptotic 
results: instead of saying that an infinite number of visits to every state-action pair 
are required to converge to the optimal policy, we are claiming that a rather small 
number of visits are required to get close to the optimal policy. Second, by our 
analysis, the two approaches have similar complexities, with the number of transitions 
required differing by only a log(l/f) factor in favor of the indirect algorithm. Third 
- and perhaps surprisingly - note that since only O(log(N)) calls are being made 
to PS(M) (again fixing f and 6), and since the number of trials per state-action pair 
is exactly the number of calls to PS(M), the total number of non-zero entries in the 
model PM (ij) built by the indirect approach is in fact only O(log( N)). In other 
words , PM (ij) will be extremely sparse - and thus, a terrible approximation to the 
true transition probabilities - yet still good enough to derive a near-optimal policy! 
Clever representation of PM(ij) will thus result in total memory requirements that 
are only O(N log(N)) rather than O(N2). Fourth, although we do not have space 
to provide any details, if instead of a single reward function, we are provided with L 
reward functions (where the L reward functions are given in aqvance of observing any 
experience), then for both algorithms, the number of transitions required to compute 
near-optimal policies for all L reward functions simultaneously is only a factor of 
O(log(L)) greater than the bounds given above. 

Our own view of the result and its implications is: 

• Both algorithms enjoy rapid convergence to the optimal policy as a function 
of the amount of experience. 

• In general, neither approach enjoys a significant advantage in convergence 
rate, memory requirements, or handling multiple reward functions. Both are 
quite efficient on all counts. 

We do not have space to provide a detailed proof of Theorem 1, but instead provide 
some highlights of the main ideas. The proofs for both the indirect algorithm and 
phased Q-Iearning are actually quite similar, and have at their heart two slightly 
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different uniform convergence lemmas. For phased Q-Iearning, it is possible to show 
that, for any bound fD on the number of phases to be executed, and for any T > 0, 
we can choose mD so that 

mD 

(l/mD)LVtU£)- LPijVtU) < T (5) 
k=l j 

will hold simultaneously for every (i, a) and for every phase f = 1, . . . , fD. In other 
words, at the end of every phase, the empirical estimate of the expected next-state 
value for every (i, a) will be close to the true expectation, where here the expectation 
is with respect to the current estimated value function Vt. 
For the indirect algorithm, a slightly more subtle uniform convergence argument is 
required. Here we show that it is possible to choose, for~any bound fI on the number 
of iterations of value iteration to be executed on the PM(ij), and for any T > 0, a 
value mI such that 

(6) 
j j 

for every (i,a) and every phase f = 1, . . . ,fI, where the VtU) are the value functions 
resulting from performing true value iteration (that is, on the PM (ij)). Equation (6) 
essentially says that expectations of the true value functions are quite similar under 
either the true or estimated model, even though the indirect algorithm never has 
access to the true value functions . 

In either case, the uniform convergence results allow us to argue that the corre­
sponding algorithms still achieve successive contractions, as in the classical proof 
of value iteration. For instance, in the case of phased Q-Iearning, if we define 
b..l = max(i ,a){IQe(i, a) - Ql(i , a)l}, we can derive a recurrence relation for b..l+ 1 

as follows : 

m 

,(l/m) L VtU£) -, L Pij VtU) (7) 
k=l 

< 7 "E'I',~x,} { 

< ,T + ,b..l . 

j 

( y P;j v,(j) +" ) - y P;j V, (j) }S) 
(9) 

~ 

Here we have made use of Equation (5). Since b..o = 0 (Qo = Qo) , this recurrence 
gives b..l :::; Tb/(l--,)) for any f. From this it is not hard to show that for any (i,a) 

IQdi , a) - Q*(i, a)1 :::; Tb/(l -,)) + ,l . (10) 

From this it can be shown that the regret in expected return suffered by the policy 
computed by phased Q-Learning after f phases is at most (T, /(1-,) +,l )(2/(1-,)). 
The proof proceeds by setting this regret smaller than the desired f, solving for f and 
T, and obtaining the resulting bound on m D. The derivation of bounds for the indirect 
algorithm is similar. 

6 Handling General Exploration Policies 

As promised, we conclude our technical results by briefly sketching how we can trans­
late the bounds obtained in Section 5 under the idealized parallel sampling model into 
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bounds applicable when any fixed policy 1r is guiding the exploration. Such bounds 
must, of course, depend on properties of 1r. Due to space limitations, we can only 
outline the main ideas; the formal statements and proofs are deferred to a longer 
version of the paper. 

Let us assume for simplicity that 1r (which may be a stochastic policy) defines an 
ergodic Markov process in the MDP M. Thus, 1r induces a unique stationary distri­
bution PM,1[(i, a) over state-action pairs - intuitively, PM,1[(i, a) is the frequency of 
executing action a from state i during an infinite random walk in M according to 
1r. Furthermore, we can introduce the standard notion of the mixing time of 1r to 
its stationary distribution - informally, this is the number T1[ of steps required such 
that the distribution induced on state-action pairs by T1[-step walks according to 1r 

will be "very close" to PM,1[ 1. Finally, let us define P1[ = min(i,a){PM,1[(i, an. 
Armed with these notions, it is not difficult to show that the number of steps we must 
take under 1r in order to simulate, with high probability, a call to the oracle PS(M) , 
is polynomial in the quantity T1[ / P1[. The intuition is straightforward: at most every 
T1[ steps, we obtain an "almost independent" draw from PM,1[(i, a); and with each 
independent draw, we have at least probability p of drawing any particular (i, a) 
pair. Once we have sampled every (i, a) pair, we have simulated a call to PS(M). 
The formalization of these intuitions leads to a version of Theorem 1 applicable to 
any 1r, in which the bound is multiplied by a factor polynomial in T1[ / P1[, as desired. 

However, a better result is possible . In cases where P1[ may be small or even 0 (which 
would occur when 1r simply does not ever execute some action from some state), the 
factor T1[ / P1[ is large or infinite and our bounds become weak or vacuous. In such 
cases, it is better to define the sub-MDP M1[(O'), which is obtained from M by simply 
deleting any (i, a) for which PM,1[(i, a) < a, where a> 0 is a parameter of our choos­
ing. In M1[ (a), P1[ > a by construction, and we may now obtain convergence rates 
to the optimal policy in M1[ (a) for both Q-Iearning and the indirect approach like 
those given in Theorem 1, multiplied by a factor polynomial in T1[/O'. (Technically, 
we must slightly alter the algorithms to have an initial phase that detects and elim­
inates small-probability state-action pairs, but this is a minor detail.) By allowing 
a to become smaller as the amount of experience we receive from 1r grows, we can 
obtain an "anytime" result, since the sub-MDP M1[(O') approaches the full MDP M 
as 0'-+0. 
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1 Formally, the degree of closeness is measured by the distance between the transient and 
stationary distributions. For brevity here we will simply assume this parameter is set to a 
very small, constant value. 


