
Operations Research Letters 9 (1990) 287-297 September 1990
North-Holland

SOLVING H-HORIZON, S T A T I O N A R Y M A R K O V D E C I S I O N P R O B L E M S I N T I M E

P R O P O R T I O N A L T O L O G (H)

Paul T S E N G

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received July 1988
Revised October 1989

We consider the H-horizon, stationary Markov decision problem. For the discounted case, we give an e-approximation
algorithm whose time is proportional to log(I /e) , log(H) and 1/(1 - a), where a is the discount factor. Under an additional
stability assumption, we give an exact algorithm whose time is proportional to log(H) and 1/(1 - a). For problems where a is
bounded away from 1, we obtain, respectively, a fully polynomial approximation scheme and a polynomial-time algorithm.
For the undiscounted case, by refining a weighted maximum norm contraction result of Hoffman, we derive analogous results
under the assumption that all stationary policies are proper.

computational complexity * dynamic programming * Markov decision process

1. Introduction

Complexity analysis [6,14] has been widely applied in the areas of theoretical science and combina-
tor ia l / in teger optimization to measure the inherent difficulty of problems. In dynamic programming, such
analysis has been less common [12,13,15]. In this article, we make some progress towards filling this gap.
In particular, we consider the H-horizon, stationary Markov decision problem [1,4,8], which is not known
to be polynomial-time solvable, and show that an e-optimal solution is computable in time that is
proportional to log(l / e) and log(H). Under an additional stability assumption, we show that an exact
solution is computable in time that is proportional to log(H). For the special case of discounted problems
where the discount factor is bounded away from 1, we obtain, respectively, a fully polynomial approxima-
tion scheme and a polynomial-time algorithm. Our result in a sense brings us closer to a complete
complexity theory for Markov decision problems, for which it is known that the infinite horizon, stationary
case is P-complete, and the finite horizon, nonstat ionary case is in NC [15] (complexity for the infinite
horizon, nonstationary case is undefined). (See Appendix A for a brief explanation of the complexity terms
used throughout this article.)

We describe the stationary Markov decision problem below. We are given a time horizon H > 0
(possibly H = + oo), a finite set of states S = (1 n} and, for each state i, a finite set D i = (1 mi}
of controls. At each time t (t = 0, 1 H - 1), we are in exactly one of the n states (the state at time 0 is
given) and, if we are in state i, we choose a control from D i. If we choose control k ~ D i, we incur a cost
g~ and, with probabili ty p~, we arrive in state j at time t + 1. If we terminate in state i at time H, we
incur a cost Q. Let ui(t) denote the control chosen when we are in state i at time t and let
/~(t) = (ut (t) u, (t)) . Then the Markov decision problem is to choose a policy (/1(0), /~(1) # (H - 1))
to minimize the expected total cost

H - I

E Olt E gUAt)P(i, t; Ix(O) # (H - 1)) + a n Y'. t i p (i , H; p,(O) # (H - 1)),
t=0 i ~ S i~S

0167-6377/90/$3.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland) 287

Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

where a ~ (0, 1] is the discount factor and p(i , t; I~(O) , t t (H - 1)) denotes the probability of being in
state i at time t under the policy (/~(0), /~(1),..., ~ (H - 1)). Such a policy will be called an optimal policy.
Also a policy (/~(0), /~(1) / ~ (H - 1)) satisfying #(0) =/x(1) / ~ (H - 1) will be called stationary
and will be written as /x(0). The Markov decision problem is discounted (undiscounted) if a < 1 (a = 1)
and has finite (infinite) horizon if H < + oo (H = + oo). In what follows, II • II will denote the L~-norm
and log(-) will denote the logarithm in base 2. For any # = (u I un) ~ D 1 × • • • × Dn, we will denote
P~ = [Pi~] and g~ = (g{" g~'). We will also denote c = (c I c~).

We make the following standing assumption:

Assumption A. a and the k, p~j S are rational numbers. The g~'s and c~ s are integers.

Let 8 be the smallest positive integer for which 8a and the 8p~js are all integers and I g~ I ~ & I c,I ~ 8
for all i and k, and let ~ be the number of nonzero p~'s. (8 represents the accuracy in the problem data.)
Then, the input size for the oo-horizon problem (i.e. the number of binary bits needed to write down a, n,
the pkjs, the g~'s, the m;s and the c,'s) is at most some constant times

L = ~ log(8) ,

and the input size for the H-horizon problem (H < + o0) is at most some constant times L + log(H)
(since H requires log(H) binary bits to write down). We will also denote, for each i ~ S,

~ , = maxk ~ D, (number of positive elements of k Pn P~,}-

Notice that ~ takes on value between Eimi and nEim~ and each ~ takes on value between 1 and n.
To motivate our results, consider the special case of the Markov decision problem where H < + oo. If

we use dynamic programming to solve this problem, the time is O (~ H) arithmetic operations. If we use
linear programming, then since the linear program formulation of the problem can be seen to contain
HE~m~ constraints with an input size of O(HL) , the theoretically fastest linear programming algorithm
[9,11] would take a time of O(Ha(E, m g L) arithmetic operations. Since the input size of the problem is at
most some constant times L + log(H), neither of these solution times is a polynomial in the input size. In
fact, for this finite horizon case, the Markov decision problem is only known to be P-hard (i.e. as hard as
any problem that is polynomial-time solvable) [15], but is not known to be polynomial-time solvable. (It is
not even known to be in NP, although it can be seen to be in the larger class PSPACE.) Hence, as a first
step towards achieving polynomial-time solvability, we would like to find algorithms whose time is a
polynomial in log(H). We propose a number of such algorithms, both exact and inexact. These algorithms
can be viewed as truncated dynamic programming methods whereby truncation occurs at the moment that
an optimal stationary policy for the oo-horizon problem is identified. For the discounted case, we give an
e-approximation algorithm that has a complexity of O ((~ l o g 0 / e) + n L ') / (1 - a) + min(n 3 log(H),
H ~ . , ~ }) arithmetic operations, where L ' = L + ~ log(n), and, under an additional stability assumption,
an exact algorithm that has a complexity of O(nL ' / (1 - a) + min(n 3 log(H), H E i ~ }) arithmetic oper-
ations. Analogous algorithms are derived for the undiscounted case under the assumption that all
stationary policies are proper.

The main difference between the time complexity of our algorithms and that of algorithms using the
l inear /dynamic programming approach is that the former depends on a and H through a polynomial of
1/(1 - a) and log(H) while the latter depends on a and H through a polynomial of log(l / (1 - a)) (by
way of L) and H. Hence, our algorithms are interesting primarily when the horizon length H is large and
the discount factor a is not very near 1.

This article proceeds as follows: in Section 2 we show that, for the oo-horizon, discounted problem, an
optimal stationary policy can be identified by the Jacobi successive approximation method in time that is a
polynomial in L and (1 - a) - l ; in Section 3 we use the preceding fact to derive exact and approximation
algorithms for the finite horizon, discounted problem; in Section 4 and 5 we perform an analogous
analysis for the undiscounted problem; in Section 6 we present our conclusion and discuss extensions.

288

Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

2. Infinite horizon, discounted case

In this case H = + oo and a ~ (0, 1). Let T: R n --+ R n be the funct ion whose i-th component is given by

T , (x) = mink ~ D T,k(x) , Vx ~ R" , (1)

where R" is the n-dimensional Euclidean space and, for each k ~ Di, we define

Tie(x) = a E p ~ x y + g/k. (2)
J

Also, for each ~ = (u~ u ,) ~ D~ × • • • x D,, let TU: R" ~ R" denote the funct ion whose i-th compo-
nent is ~ ' . It is easily shown using (1)-(2) that T is a contraction mapping of modulus a with respect to
the Lo~-norm. Hence T has a unique fixed point, which we denote by x * = (xl* x*) (i.e. x * = T(x *)).
Furthermore, there exists at least one optimal policy that is s tat ionary and each stat ionary policy ~ is
opt imal if and only if x* = T"(x *) (see [1, Section 5.3]).

Consider the Jacobi successive approximation i terations [1, Section 5.2] for solving this discounted
problem:

x (t + l) = T (x (t)) , t = 0 , 1 (3a)

x (0) = c. (3b)

Since T is a contract ion mapping of modulus a with respect to the L~-norm, we have from (3a) that

I I x (t + l) - x * l l ~ a [I x (t) - x * l l , t = 0 , a ; (4)

hence the iterates x (t) converge to x* at a geometric rate. Fur thermore , it is known that an optimal
s tat ionary policy is identified after a finite number of i terations [1, p. 236; 4]. Below we refine this result
by giving an explicit bound on the number of iterations. This bound will be used in subsequent analysis to
derive our main results.

Lemma 1. Let t* be the smallest positive integer such that, for all t >1 t* , x (t + 1) = T"(x(t)) implies
x* = T~(x*). Then t* <~ ~, where

t '= [l°g(282~+2n"(Ilcll + maxi,k Ig~ I / (1 - - a))) / l o g (1 / a)] .

Proof. By (3b) and (4), after t = [log(e/] I c - x* [I) / log(a)] iterations, the error II x (t) - x* II is less than e
for any e > 0. We show below that, for e ~< 1/(282"+2n"), the corresponding policy is optimal. This would
then imply that an optimal s tat ionary policy can be identified after [log(282"+2n" II c - x* I[)/log(1/a)]
iterations. To obtain a usable bound, notice f rom (1)-(2) that x * satisfies

(I - a P ") x * = g" (5)

for s o m e # ~ D 1× - - . XD, .
Hence

I I x * II = I1(1+ (ae ~) + (ap~)2+ . . .)g~[i

II g~ 11 + II (~ P ~) g " 11 + II (a P ~) 2 g ~ H + " ' "

I I g ~ l l / (1 - ~)

max I g~ I / (1 - ~) ,
i,k

so that II c - x* II is upper bounded by the computable quant i ty II c II + maxi.k I g~ I / (1 -- a). By plugging
the latter quant i ty into the above bound, we obtain the desired ?.

It only remains to show that if II x(t) - x * II < 1/(282n+2n~), then the corresponding policy is optimal.
Since 82(1 - aP ~) and 82g ~ are both integers (and the entries of 82(1 - aP ~) do not exceed 82), it follows
f rom (5), Cramer 's rule, and the Hadamard determinant inequali ty [7] that x * = w/(82"n~), for some

289

Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

integer vector w = (w 1 w.). Consider any i and any k ~ D~ such that x* ¢ T~k(x*). Since (cf. (2))

kx, ~ (x *) = a L p ~ j j +g~
J

and the numerator is an integer, it must be that x* and T,k(x *) differ by at l eas t 1/(82n+2nn). Hence if
I[x(t) - x * I[< 1/(282"+2n"), then

i r ~ (~ (t)) - x r l = aEjub(x,(t)-x;)+ r ? (x*) - x,.*

>~ IT~k(x*) - x* I - a E p b (x j (t) - x; ')
J

>1 1/(82"+2n ") - al lx(t) - x* II

> 1/(282"+2n ")

>lix(t)-x*ll .
Since II T (x (t)) - x* II < II x (t) - x* II (cf. (3a), (4)), this implies that T,k(x(t))4= Ti(x(t)). []

(A slightly different value for ~ is obtained if we use the alternative bound l i e - T (c) I I / (1 - a) on
l i e - x * II-)

Since log(-) is a concave function and its slope at 1 is 1, we have

log(a) = log(1 - (1 - a))

.< - (l - a)
This, together with the facts (cf. Assumption A) [1 c l[~< 8, maxi,k [g/k I / (1 - a) ~< 82, implies that

~= O(n log(nS) / (1 - a)) , (6)

which is a polynomial in L and 1/(1 - a).
The a priori estimate ~ on t* is sometimes too loose to be practical. A tighter estimate of t* can be

obtained by using a more accurate bound on the quantity II x* - x (t) l b . For example, in [1, p. 190] is
described techniques for generating a more accurate bound on l[x* -x (t)11 using the value of x(t) and
x (t - 1). Then, we can estimate t* by t whenever this bound is less than 1/(282" + 2nn). Alternatively, we
can improve our estimate of t* by using such a bound to eliminate inactive controls. This approach is
based on the following lemma:

Lemma 2. Fix any positive integer -t and let Zl be any upper bound on I1 x * - x(?) I[- Then, for any i and any
k ~ Oi, if Tf(x(?)) > T/(x(?)) + 4aA, then Ti(x(t)) -¢ Tik(x(t)) for all t >1 -t.

Proof. Suppose that for some t >/? we have Ti(x(t))= Tf (x (t)) . Since I[x* - x (t) I I < A, by (4) we also
have II x* - x(t)II < A, so that LI x(t) - x(-t)II < 2A. This, together with (1)-(2), implies

r?(~(t)) .<. r,~(x(t))
= a E p ~ j x j (t) + g ~

J

< aEp~.j(xj(-t)+ 2a) + g['
J

= Tik(x(i)) + 2aA

= T,(x(?)) + 2 a a ,

290

Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

where lc is any element of D i satisfying T]'(x(~)) = T,(x(t)) . Similarly, we have

T~k(x (t)) >1 T~k(x(-t)) -- 2aA .

By combining the above two inequalities, we obtain T,k(x(-t)) <~ T/(x(t)) + 4aA. []

Lemma 2 provides a test for eliminating controls that are inactive in all future iterations. (Similar tests
for eliminating non-optimal controls are given in [1, p. 198; 18].) When only those stationary policies that
are optimal for the o0-horizon problem (which can be determined a priori) are left, then the current
iteration count is an estimate of t*. We have emphasized the accurate estimation of t* because, as we
shall see in Section 3, t* plays a key role in our solution of finite horizon, discounted problems; the more
accurately we estimate t*, the better our solution times will be. (We remark that analogous estimates can
be derived for the Gauss-Seidel iteration xi(t q- 1) = Ti (x l (t + 1) Xi_l(t + 1), xi(t) x, (t)) , but, as
we shall see, only the estimates associated with the Jacobi iteration (3a)-(3b) are useful for our subsequent
analysis.)

3. Finite horizon, discounted case

In this case, H < + oo and a ~ (0, 1). Consider the following dynamic programming iterations:

x (t) = T (x (t + l)) , t = H - 1 1,0 , (7a)

x (H) = c , (7b)

where T is given by (1)-(2) and x (t) denotes the cost-to-go vector at time t. A policy (t~(0), /L(1) # (H
- 1)) can be seen to be optimal for the H-horizon discounted problem if and only if x (t) = T" (t) (x (t + 1))
for all t = H - 1 1, 0. The problem is then to compute x(0), which is the optimal expected cost (and
perhaps to determine the optimal policy as well).

Since the iteration (7a)-(7b) is identical to (3a)-(3b), except for the reversal in time, Lemma 1
motivates an algorithm for computing x(0) whereby T in the iteration (7a) is switched to T ", with tz being
some optimal stationary policy for the oo-horizon problem, the moment that such a policy is identified. We
state this algorithm below:

Truncated DP (Dynamic Programming) Algorithm
Phase O. Choose a positive integer ?~< H - 1. Let £ (H) = c.
Phase 1. Run the recursion £ (t) = T(Y,(t + 1)) until t = H - 7 - 1.
Phase 2. Let /2 be any stationary policy satisfying £ (H - ? - 1) = TF' (Y(H - ?)). Then compute

= + [/ + + . . . +

We have the following complexity and accuracy results:

Proposition 1. The following hold for the Truncated D P Algorithm:
(a) I t has a complexity of O (~ ? + min(n 3 log(H - ?), (H - ?)~ i~ i)) arithmetic operations.
(b) For ?= min(f , H - 1}, we have II E(0) - x(0)]1 ~< 4an~j2.
(C) I f the oo-horizon problem has a unique optimal stationary policy, then, for ? = min(?, H - 1 }, we have

~ (0) = x (0) .

Proof. (a) It is easily seen that Phases 0 and 1 require O(~?) arithmetic operations. Since A k and
I + A + • • • + A k can be computed using binary powering and factoring (see Appendix B) in O(n 3 log(k))
arithmetic operations for any n × n matrix A and k >~ 1, we can perform Phase 2 i n O (n 3 l o g (H - 7))
arithmetic operations. Alternatively, we can perform Phase 2 by multiplying g~ by a P ~ a total of
H - ~'- 1 times and summing all the vectors thus obtained. Since Pa has at most Y'.i~, nonzero entries,
this takes O ((H - 7)Ei~i) arithmetic operations.

291

Volume 9, Number 5 OPERATIONS RESEARCH LEqTERS September 1990

(b) If ~>~ H - 1, then ?= H - 1 so that Y(0) = x(0). If ~ < H - 1, then ?= ~ and from (7a)-(7b) and the
fact that T is an Loo-norm contraction mapping of modulus a, we have

I I x (0) - x * II <anllc--x*ll, l l ~ 7 (n - ?) - x * II < a Z l l c - x * II • (8)

Also, by Lemma 1, /~ is an optimal stationary policy for the oo-horizon problem, so that x* = T;'(x*).
This, together with the observation that ~(0) equals H - 7 ~ successive applications of T ~ to ~ (H - ?),
implies II ~(0) - x* II ~ aH-Zll ~7(H - ?) - x* II. By combining this with (8), we obtain

I I ~ (0) - x (0) II ~< I I ~ (0) - x * II + I I x * - x (0) I I ~ 2 ~ " l l c - x * II.

Since II c - x* II ~ II c II + II x* It ~< 282, this proves (b).
(c) If ~ >/H - 1, then ~7(0) = x(0) trivially. If ~ < H - 1, then ? = ~ and, by Lemma 1, every stationary

policy/t satisfying x (H - ? - 1) = T ~ (x (H - ?)) is optimal for the oo-horizon problem. Since the oo-hori-
zon problem by assumption has a unique optimal stationary policy, it follows that x(t) = Tr'(x(t + 1)) for
all t = H - ? - 1 1, 0. This, together with the observations that ~ (H - ?) = x (H - ?) and ~(0) equals
H - ? successive applications of T ~ to $ (H - ?), implies ~(0) = x(0). []

Parts (a) and (c) of Proposition 1 imply that if the oo-horizon problem has a unique optimal stationary
policy, then x(0) (and the corresponding optimal policy) can be computed exactly in O (~ +
rain(n 3 log(H), HEnr i)) arithmetic operations, which by (6) is at most

O (~ n l o g (n S) / (1 - a) + min{n 3 log(H) , H ~ i }) (9)

arithmetic operations. If a is bounded away from one, then this time is a polynomial in the input size. (The
term HE ,~ , , which is not a polynomial in the input size, has been included to reduce the solution time on
sparse problems where Ei~ , is much smaller than n3.) To verify in polynomial time the uniqueness
assumption, we can first compute x*, the fixed point of T. (This can be done either by using recursion
(7a)-(7b) to identify an optimal stationary policy/~ in time ~" (cf. Lemma 1) and then solving (5), or by
solving the linear programming formulation of the oo-horizon problem [1, p. 206].) Then we check to see if,
for some i, there exist two distinct k and k ' in D i satisfying x* = T,k(x*) = Tik'(x*). This requires
additional O(~) arithmetic operations.

If the oo-horizon problem does not have a unique optimal stationary pohcy, then the optimal policy
may oscillate with time (see Appendix C for an example; also see [4, p. 30]). In this case, it is not even
known if the optimal policy has a polynomial-sized description. Nonetheless, we have the following
e-approximation algorithm for solving this problem:

e-Approximation Algorithm (e > 0). If H 4 (log0/e) + 2 log 8 + 2)/log(1/a), then run the Truncated DP
Algorithm with 7= H - 1; otherwise run the Truncated DP Algorithm with ?= min(~', H - 1).

The complexity of this e-approximation algorithm is given below:

Proposition 2. For any e > 0, the e-Approximation Algorithm computes an ~(0) satisfying II ~(0) - x(0) II ~ e
in O(~(log(1/e) + n log(nS))/(1 - a) + min(n 3 log(H), H~,i~ i }) arithmetic operations.

Proof. If H ~ (log(I/e) + 2 log 8 + 2) / log(I /a) , then clearly the algorithm computes x(0) and the time
complexity is O(~H), which is at most O(~(log(1/e) + log 8) / (1 - a)). Otherwise we have from part (b)
of Proposition 1 that the algorithm computes an ~7(0) satisfying II ~ (0) - x(0)II ~ 4a~82<~ e, where the
second inequality follows from the hypothesis on H. The time complexity then follows from part (a) of
Proposition 1 and expression (9). []

Notice that if a is bounded away from one, then the e-approximation algorithm is, in the terminology
of [6], a fully polynomial approximation scheme. In this special case, the H-horizon, discounted Markov
decision problem remains P-hard [15], but is not known to be in NP.

292

Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

4. I n f i n i t e h o r i z o n , u n d i s e o u n t e d c a s e

In this case H = + oo and a = 1. This problem is of interest primarily when there is a cost-free state, say
state 1, which is absorbing. The objective then is to reach this state at minimum expected cost (see [2,
section 4.3.2]). More precisely, we say that a stationary policy ~t is proper if every entry in the first column
of (p~)t ~ 1 as t ---, + vo. We make the following assumption in addition to Assumption A:

Assumption B. P~1 = 1 and gl k = 0 for all k ~ D 1. Furthermore, all stationary policies are proper.

Assumption B essentially requires that all states other than state 1 be transient and that state 1 incurs
zero cost. Under Assumption B, it can be shown (see Proposition 3.3 in [2, Section 4.3.2]) that an optimal
stationary policy for this problem exists. Moreover, a stationary policy /~ is optimal if and only if
x* = T~(x*), where T is given by (1)-(2) with a = 1 and x* is the unique fixed point of T restricted to
the subspace X = (x ~ R " l x 1 = 0}.

An important fact is that T restricted to X is a contraction with respect to some weighted L~-norm,
which then allows us to apply an argument similar to that used in Section 2. This fact, attributed to
Hoffman, is discussed in [2, Section 4.3] (see Example 3.3 therein) and, in a more general context, in [17,
Lemma 3]. We give a short proof of this fact below. The proof differs from previous ones in that it gives an
explicit expression for the weights and the modulus of contraction.

Under Assumption B, (2 n } can be parti t ioned into nonempty subsets S 1 S r such that

m a x { p k l j ~ f l } u S , u . . . u S ~ _ l } > O , V k ~ D i, Vi~S~, V s = l r

(see [2, p. 325]). Roughly speaking, this says that from any state in &, there is a positive probabili ty of
entering a state in (1} O S 1 O . . . O S,_~ in one transition, regardless of the control used. Define weights
o02 o0, as follows:

o 0 i = 1 - - 1 " / 2 s , V i e S , , V s = l r , (10)

where

7 = min{pkijli, j, k such that p~ > 0}.

We have the following lemma:

Lemma 3. ~,j.lP~o0j/o0i <~ Y and all i ~ 1, where
~/= (1 - - ~2r--1) / (1-- T~2r). (11)

Proof. Since 71 ~ (0, 1), we have from (10) that

0 <o0i< 1, V i ~ I . (12)

Fix any s >~ 1, i ~ Ss, and k ~ D i. Let j ' be an element of (1} O S 1 o - - • o S~_ 1 such that p~j, > 0. If
j ' =~ 1, then we have from (10) and (12) that

(j~lPkijo0j)/o0i <~ (J*J'~ pkij +P~'O0j')/o0i

= (1 + p~,(o0j, - 1))/o0i

~ (l +~(o0j'-l))/o0i

~< (1 - n2s- ') /o0,

= (1 - r / 2 s - ') / (1 - ~ 2 s) ,

293

Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

where the second inequality follows from p~j, > 77, ~0j, - 1 < 0 and the third inequality follows from the
fact (cf. (10)) %, ~ 1 - ~2,-2. If j ' = 1, then we have by a similar argument that

(Epk~j)/OOi~ (j~lPk)/°~i~(l--~l)/°ai=(l--'O)/(l--rl2s)"
Lemma 3 implies that (cf. (1)-(2)) for any i ~ 1, any x = (x I xn) ~ X and y = (Yl Y,) ~ X,

Ti(x) - Ti(y) <~ ~_,p~ij(xj- yj)
J

= E (p ~ j %) (x j - y j) / % j~l
<-'/% max { (x j - yj)/~oj },

J
where k is an element of D i for which T,(y) = T,k(y). Similarly we have

T , (y) - T , (x) ~< 3,o~, max {(yj - x j) / % } .
J

Dividing both inequalities by o~ i then yields

I [Z(x) -T(y) l l~ '<~ ' t l l x -y l [°~, V x ~ X , r y e S , (13)

where I1" II ~ denotes the L~-norm scaled by (1, o~ 2 ton), i.e. II x II ~ = [[(Xl, x2 /% x,/~on) II.
Since ~/= z/8 for some integer z and r ~< n - 1, it can be seen from (10)-(11) that each log(~0i) and

log(v) is a polynomial in L and that 1 - ,/>/,/2r. Also, since gl k = 0 for all k ~ D 1, T(X) c_ X. Then by a
contraction argument analogous to that used in the proof of Lemma 1, we obtain that an optimal
stationary policy can be identified after a number of successive approximation iterations (i.e. eq. (3a)) that
is bounded by a polynomial in ,/-2r and L. Notice that we do not need to know the Ss'S in order to
compute this bound; it suffices to know ,/ and an upper bound on r. On the other hand, if a tight upper
bound on r is not available, then we can compute the Ss's by using, say, a labeling algorithm similar to
Dijkstra's shortest path algorithm, whereby at the s-th iteration all i ~ Ss are labeled. The time complexity
of this labeling algorithm can be shown to be O(r]Eimi + ~) (see Appendix D). In the special case where
m~ = 1 for all i, the time for computing the S~'s can be further reduced to O (~) (see Fox [5]).

We remark that, by refining the analysis given in Example 3.3 of [2, Section 4.3], we can obtain a set of
weights, different from those given by (10), whose corresponding modulus of contraction is 1 - , (+ l , an
improvement of that given by (11). However, the analysis of this is rather intricate and, for brevity, is
omitted.

Alternatively, it can be seen that T restricted to X is an r-stage contraction with respect to the ordinary
Loo-norm, and that the modulus of contraction estimated by 1 - m i n i ~ l , ~ , ~,[P~' " ' " PV']a- This
estimate is difficult to compute in general, but it can be upper bounded by 1 - ,f. To see this, note from
the definition of the S~'s that from any state i ~ S~, there is a positive probabil i ty (which is lower bounded
by ~/) of entering a state j ~ {1) td S 1 td • • • td S~_1 in one transition, regardless of the control used. By
applying the same argument to j and so forth, we find that the probabili ty of reaching state 1 from state i
within s transitions is at least ~/s, regardless of the control used at each transition. Hence [PV' • • • P~T]gl is
lower bounded by ~/~ for any i and any sequence of controls/~1 /~-

5. Finite horizon, undiscounted case

In this case H < + oo and a = 1. Under Assumption B (in addition to Assumption A) and by
combining the arguments in Section 4 with arguments analogous to those made in Sections 2 and 3, we can
find an e-approximate solution problem in time that is a polynomial in log(l /e) , 1/~f, L and log(H),
when ,/ and r are defined as in Lemma 3. If the oo-horizon problem has a unique optimal stationary

294

Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

policy, then we can find an exact solution in time that is a polynomial in l / t / r , L and log(H). These times
are unfortunately very slow even for moderately large values of r and 1/7 . In a recent work [5], Fox has
suggested s i m u l a t i o n as an effective approach for solving the special case where m, = 1 for all i. Such an
approach perhaps can be extended to solve the general case (or at least to solve problems with small
control sets).

6. Conclusion and extensions

In this article we have shown that an c-approximate solution of the H-horizon Markov decision problem
with H < + oo is computable in time proportional to log(l /e) and log(H) and, under an additional
stability assumption, an exact solution is computable in time proportional to log(H). For the discounted
case where the discount factor is bounded away from 1, we obtain respectively, a fully polynomial
approximation scheme and a polynomial-time algorithm. However, in view of the stability assumptions
needed to obtain an exact solution and the absence of negative results, we are still far from a complete
complexity theory for this problem. If the stability assumptions are removed, the example in Appendix C
shows that we must consider policies that have a certain p e r i o d i c property. Optimal policies having such a
periodic property remain poorly understood.

Appendix A

We briefly explain below the complexity terms PSPACE, NP, P, P-hard, P-complete and NC. (see [15]
for a more detailed explanation. Also see [3,6,10,14,16] for comprehensive discussions.)

PSPACE is the class of problems that can be solved using polynomial space.
NP is the class of problems that can be solved n o n d e t e r m i n i s t i c a l l y in polynomial time (e.g. independent

set, Hamilton circuit problem, integer program).
P is the class of problems that can be solved in polynomial time (e.g. linear program).
A problem is P-hard if any problem in P is reducible to it using logarithmic space.
A problem is P-complete if it is both P-hard and in P.
NC is the class of problems that can be solved in parallel using a polynomial number of processors in

time that is a polynomial in the logarithm of the input size.
The following hierarchy (in order of increasing difficulty) for the above problem classes are known to

hold: NC c P c NP _c PSPACE and P-complete _ P. Notice that if any P-hard problem is shown to be in
NC, then P = NC.

Appendix B

Let A be any n × n matrix. We show below that, for any integer k >~ 1, we can compute A k and
I + A + • • • +A k in O(log(k)) matrix multiplications. First suppose that k is a power,of 2. Then, by using
the recursive equations

A* = (A k / 2) (A * / 2) ,

I + A + . . . +A k = (I + A + . . . + A k / 2) + A ~ / 2 (I + A + . . . + A k / 2) ,

we see that if A ~/2 and I + A + . . . + A k / e are computable in 3 log(½k) matrix multiplications, then A k
and I + A • - - +A k are computable in 3 log(½k) + 3 = 3 log(k) matrix multiplications. Hence, by induc-
tion, we can compute A a and I + A + • • • + A a for a / / d = 2 °, 21, 22 k in 3 log(k) matrix multiplica-
tions. Now suppose that k is not a power of 2. Let us first compute and store the matrices A a a n d

I + A + . . • + A d - 1 + A a, for all d = 2 °, 21, 22 2 h, where h = [log(k)[. (This takes 3h matrix multiplica-

295

Volume 9, Number 5 OPERATIONS RESEARCH LETrERS September 1990

tions as we argued above.) We claim that, given the above matrices, A ~ and I + A + . . . + A ~ are
computable in 3 [log(i)] matrix multiplications for any positive integer i ~< k. This claim clearly holds for
i = 1. Suppose that it holds for all i up to (but not including) some r ~ (2, 3 k}. Then by first
computing A r-d and I + A + • • • + W -d, where d is the largest power of 2 less than r, and then using the
identities

mr= (A d) (A r - d) ,

I + A + . . . +A ~= (I + A + . . . + A a) + A a (I + A + " " + A r - d) ,

we can compute A ~ and I + A + --- +A ~ in 3 [log(r - d)] + 3 matrix multiplications. Since r - d ~< d, this
bound is less than 3 l o g (d) + 3 = 3 log(2d). Since d is the largest power of 2 less than r, we have
d < r ~< 2d so that [log(r)] = log(2d). This then completes the induction.

Appendix C

Consider the following H-horizon, discounted Markov decision problem:

=0 .5 , g ~ = (0 , 0), g 2 = (0 , 0), H < +oo ,

0.5

Then

+)
r (x) = 0 . 5 m i n { x 1 , 0 . 5 (x l + x 2) } ,

and Tl(X) < T2(x) if x 1 > x 2 while Tl(x) > T2(x) if x I < x 2. Therefore if x l (H) ~X E(H), then the
optimal control at time t would alternate between (1, 2) and (2, 1), depending on whether t is odd or even.
If x a (H) = x2(H), then any sequence of controls is optimal. Note that, for this example, any of the four
stationary policies is optimal for the oo-horizon version of the problem.

Appendix D

Below we describe an O(r~,im i + ~t) time labeling algorithm for computing the partition $1 S~
discussed in Section 4. The algorithm proceeds as follows:

Labeling Algorithm
Iteration O. Set So ~ (1} and ~r~ k ~ p ~ for all k ~ D~ and all i v~ 1.
Iteration s. We are given S O Ss_ 1 and ~ri k = Ej~zr_lp~ for all k ~ D~ and all i ~ Ts_ 1, where

T~_ 1 = SoU . . . U S~_I. If T~_ 1 = S, then we stop. Otherwise, for each i ~ T~_ 1, if mink~D~ri k > 0, then
add i to S~, and for all j ~ T~_a and all k ~ Dj such that p~ > 0, update ~rf ~ ~rf + p~.

The above algorithm terminates after r + 1 iterations and, at the s-th iteration (1 ~<s ~< r), takes
O(Ei~rs_lrni) time to check if mink~D~r/k > 0 for every i ~ T~_ 1 and an additional O(Z,i~sfhi) time to
update the ~rf's, where rh~ = number of positive pfi's. Hence, the total time for the algorithm is
O(~=lY' . i , rs_lmi + E r = l E i ~ s f h ,) which is at most O(r]Eimi+ ~) . (To be precise, one would need to
specify the data structure used, but this is not difficult.)

Acknowledgement

We gratefully acknowledge the many helpful comments made by Professors B.L. Fox and J.N.
Tsitsiklis.

296

Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

This research is partially supported by the U.S. Army Research Office, contract DAAL-3-86-K-0171
(Center for Intelligent Control Systems), and by the National Science Foundation under grant NSF-ECS-
8519058.

References

[1] D.P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall, Englewood Cliffs, N J, 1987.
[2] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs,

N J, 1989.
[3] S.A. Cook, "Towards a complexity theory of synchronous parallel computation", Enseign. Math.. 2/27, 99-124 (1981).
[4] A. Federgruen and P.J. Schweitzer, "Discounted and undiscounted value-iteration in Markov decision problems: A survey", in:

M.L. Puterman (ed.), Dynamic Programming and lts Applications, Academic Press, New York, 1978, 23-52.
[5] B.U Fox, "Computing the gradient of expected reward up to absorption: Deterministic versus simulation methods", Technical

Report, University of Colorado, Denver, CO, July, 1989.
[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San

Francisco, CA, 1979.
[7] A.S. Householder, The Theory of Matrices in Numerical Analysis, Dover Publications, New York, 1964.
[8] R.A. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA, 1960.
[9] N. Karmarkar, "A new polynomial-time algorithm for linear programming", Combinatorica 4, 373-395 (1984).

[10] H.R. Lewis and C.H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, NJ, 1981.
[11] N. Megiddo (ed.), Progress in Mathematicalprogramming: Interior-Point and Related Methods, Springer-Verlag, New York, 1989.
[12] J. Orlin, "The complexity of dynamic languages and dynamic optimization problems", Proc. 13th STOC, 218-227 (1981).
[13] C.H. Papadimitriou, "Games against nature", J. Comput. System Sci. 31, 288-301 (1985).
[14] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Englewood Cfiffs,

N J, 1982.
[15] C.H. Papadimitriou and J.N. Tsitsiklis, "The complexity of Markov decision processes", Math. Oper. Res. 12, 441-450 (1987).
[16] I. Parberry, Parallel Complexity Theory, Pitman, London, 1987.
[17] A.F. Veinott, Jr., "Discrete dynamic programming with sensitive discount optimality criterion", Ann. Math. Stat. 40, 1635-1660

(1969).
[18] D.J. White, "Elimination of nonoptimal actions in Markov decision processes", in: M.L. Puterman (ed.), Dynamic Programming

and Its Applications, Academic Press, New York, 1978, 131-160.

297

