
ar
X

iv
:1

70
4.

01
86

9v
3

 [
m

at
h.

O
C

]
 1

3
Se

p
20

17

Randomized Linear Programming Solves the Discounted Markov

Decision Problem In Nearly-Linear (Sometimes Sublinear) Run

Time

Mengdi Wang

Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ

email: mengdiw@princeton.edu

September 1, 2017

Abstract

We propose a novel randomized linear programming algorithm for approximating the optimal policy

of the discounted Markov decision problem. By leveraging the value-policy duality and binary-tree

data structures, the algorithm adaptively samples state-action-state transitions and makes exponentiated

primal-dual updates. We show that it finds an ǫ-optimal policy using nearly-linear run time in the worst

case. When the Markov decision process is ergodic and specified in some special data formats, the

algorithm finds an ǫ-optimal policy using run time linear in the total number of state-action pairs, which

is sublinear in the input size. These results provide a new venue and complexity benchmarks for solving

stochastic dynamic programs.

Keywords: Markov decision process, randomized algorithm, linear programming, duality, primal-dual
method, run-time complexity, stochastic approximation

1 Introduction

Markov decision process (MDP) is a fundamental model for sequential decision-making problems in dynamic
and random environments. It models a stochastic control process in which a planner aims to make a
sequence of decisions as the state of the process evolves. MDP serves as the basic mathematical framework
for dynamic programming, stochastic control and reinforcement learning. It is widely applied in engineering
systems, artificial intelligence, e-commerce and finance.

We focus on the Discounted Markov Decision Problem (DMDP) in which one aims to make an infinite
sequence of decisions and optimize some cumulative sum of discounted rewards. An instance of the DMDP
can be described by a tupleM = (S,A,P , r, γ), where S is a finite state space of size |S|, A is a finite action
space of size |A|, γ ∈ (0, 1) is a discount factor, P is the collection of state-to-state transition probabilities
P = {pij(a) | i, j ∈ S, a ∈ A}, r is the collection of state transitional rewards r = {rij(a) | i, j ∈ S, a ∈ A}
where rij(a) ∈ [0, 1]. We also denote by ra ∈ ℜ|S| the vector of expected state-transition reward under action
a, where ra,i =

∑

j∈S pij(a)rij(a). Suppose that the decision process is in state i, if action a is selected, the
process moves to a next state j with probability pij(a) and generates a reward rij(a). The input size of the
DMDP tupleM is O(|S|2|A|).

Our goal is to find the best sequence of actions to choose at all possible states in order to maximize
the expected cumulative reward. More precisely, we want to find a (stationary) policy that specifies which
action to choose at each state. A stationary and randomized policy can be represented by a collection of
probability distributions π = {πi}i∈S , where πi : A 7→ [0, 1] is a vector of probability distribution over
actions at state i. We denote by P π the transition probability matrix of the DMDP under a fixed policy π,
where P π

ij =
∑

a∈A πi(a)pij(a) for all i, j ∈ S. The objective of the DMDP is to find an optimal policy π∗

such that the infinite-horizon sum of discounted rewards is maximized regardless of the initial state i0:

max
π

Eπ

[∞
∑

t=1

γtritit+1(at) | i0
]

,

1

http://arxiv.org/abs/1704.01869v3

where {i0, a0, i1, a1, . . . , it, at, . . .} are state-action transitions generated by the Markov decision process under
the fixed policy π, and the expectation Eπ [·] is taken over the entire trajectory. In total there are |A||S|

distinct deterministic policies.
Despite its strong power of modeling, MDP is generally considered as a difficult problem due to the curse

of dimensionality, especially for problems with large state and action spaces. There have been tremendous
efforts in analyzing the complexity of MDP and its solution methods. Most existing studies focus on deter-
ministic methods that find the exact optimal policy. Due to the curse of dimensionality, finding the exact
optimal policy is often prohibitively difficult, especially in large-scale applications such as computer games
and robotics. We ask the following question:

Is there a way to trade the precision of the exact optimal policy for a better time complexity?

Motivated by this question, we are interested in developing randomized algorithms that can approximate the
optimal policy efficiently. In particular, we are interested in reducing the complexity’s dependence on |S|
and |A| - sizes of the state and action spaces. Throughout this paper, we measure the run-time complexity
of an algorithm in terms of the total number of arithmetic operations, which include query to a specific entry
of the input, addition, subtraction, multiplication, division and exponentiation. We use O(1) to denote some

absolute constant number, and we use Õ(1) to hide polylog
(

|S|, |A|, 1
ǫ ,

1
1−γ

)

factors.

1.1 Our Approach and Technical Novelties

In this paper, we develop a randomized linear programming method for solving the DMDP. It can be viewed
as a special stochastic primal-dual method that takes advantages of three features: (1) adaptive action
sampling according to the current randomized policy; (2) multiplicative policy updates using information
projection onto a specifically constructed constraint set; and (3) using binary-tree data structures to simulate
state transitions and make policy updates in nearly constant time. Let us we outline the development of our
method and its analysis.

1. Our starting point is to formulate the nonlinear Bellman equation for the DMDP into a stochastic
saddle point problem (see Section 3). The primal and dual variables correspond to the value and the
policy, respectively. Our saddle point formulation involves specially chosen constraints and a weight
vector, which are crafted to incorporate structural information and prior knowledge (if any) about
the DMDP, such as the discount factor, magnitudes of reward, and range of ergodic distributions. In
particular, the dual constraint can be viewed as an information set that contains all possible randomized
policies and facilitates Õ(1)-time projection with respect to the some variant of the relative entropy.

2. To aid the algorithm design, we develop two programming techniques: (1) We show that by processing
the input transition probabilities into binary trees (using Õ(|S|2|A|) time), one can sample a single
state transition of the Markov decision process using Õ(1) arithmetic operations; (2) We show that
a randomized policy can be represented using tree data structures, such that each coordinate update
can be made in Õ(1) time and each random action can be sampled in Õ(1) time. These two sam-
pling techniques enable us to develop randomized algorithms that simulate state transitions and make
appropriate dual update in Õ(1) time.

3. Our randomized algorithm has two main components. First, it uses adaptive importance sampling of
state-action-state triplets. In other words, it simulates the Markov decision process using the current
dual variable as the control policy to balance the exploration-exploitation tradeoff in estimating the
optimal policy. Second, our method iteratively makes exponentiated and re-weighted updates in the
dual variable and projects it onto an information set with respect to a specific divergence function.
Here the update rule and the divergence are designed jointly in a way such that each iteration takes
Õ(1) arithmetic operations.

4. Analyzing the convergence is complicated by the use of adaptive action sampling and weighted expo-
nentiated updates, which leads to substantial noises with unbounded second moments. As a result,
the classical primal-dual analysis by [24, 17] no longer works. To tackle this difficulty, we develop
an independent convergence proof by analyzing the stochastic improvement of a particular relative

2

entropy. We obtain a finite-time duality gap bound that characterizes how much the complementarity
condition of the Bellman linear program is violated by the output dual variable.

5. Another critical piece of our analysis is to study the relation between the duality gap of the iterate
and the efficiency loss of the output randomized policy. We show that when the Markov decision
process is sufficiently ergodic, the duality gap provides a sharp estimate for the value loss of the output
approximate policy.

6. Finally, we provide a meta algorithm that performs multiple independent trials of the randomized
primal-dual iteration to get a good policy with high probability. To achieve this goal, we develop a
subroutine for policy evaluation and show that it computes an ǫ-accurate value in Õ(1

ǫ2(1−γ)2) run

time. We prove that the meta algorithm is able to select the best policy out of many candidates with
probability arbitrarily close to 1.

1.2 Main Results

We analyze the run-time complexity of the proposed randomized algorithm for obtaining an ǫ-optimal policy,
i.e., a policy that achieves ǫ-optimal cumulative reward (to be specified in more details later). The run-time
complexity of an algorithm is measured by the number of arithmetic operations. Our main results are
summarized as follows:

1. We show that the proposed algorithm finds an ǫ-optimal policy π̂ with probability at least 1− δ in run
time

Õ
(|S|3|A|
(1 − γ)6ǫ2

log

(

1

δ

))

.

We recall that the input size of the DMDP is O(|S|2|A|). This result establishes a nearly-linear run
time. This is the first computational complexity result for using randomized linear programming to
solve DMDP.

2. Here comes the more interesting result: In the case where the decision process is ergodic under any
stationary policy, we show that the algorithm finds an ǫ-optimal policy with probability at least 1− δ
in run time

Õ
(

|S|2|A|+ |S||A|
(1 − γ)4ǫ2

log

(

1

δ

))

.

The first term Õ
(

|S|2|A|
)

is due to an initialization step that preprocesses the input data (consisting
mainly of arrays of transition probabilities) into a tree-based sampler. This run time is linear with
respect to the input size. Although requiring an additional ergodicity assumption, it has better depen-
dence on |S|, |A| than the best known simplex method (also the policy iteration method) [32],[27] and
the value iteration method [22].

3. In addition, the preprocessing step can be omitted or expedited if the input data are given in a suitable
data structure that can be directly used as a sampler (e.g., binary trees or arrays of cumulative sums).
In these cases, the complexity upper bound reduces to

Õ
(|S||A|
(1− γ)4ǫ2

log

(

1

δ

))

≪ |S|2|A|,

where the inequality holds when |S| is sufficiently large. This is a surprising sublinear run-time com-
plexity. In other words, it is possible to compute a near-optimal policy without even reading all entries
of the input data. To the author’s best knowledge, this is the first sublinear run-time result for DMDP.

We compare the above complexity upper bounds with recent results on the computational complexity
lower bound of DMDP [9]. It shows that any algorithm needs at least Ω(|S|2|A|) run time to get an ǫ-

approximate policy with high probability in general. It also shows that the lower bound reduces to Ω(|S||A|
ǫ)

when the input data are in the format of binary trees or cumulative sums (for which the preprocessing step
can be skipped), making sublinear-time algorithms possible. Comparing our main results with the lower
bounds, we observe a counter-intuitive phenomenon: The computational complexity of DMDP depends on
the input data structure.

3

Notations All vectors are considered as column vectors. For a vector x ∈ ℜn, we denote by xi or x(i) its

i-th component, denote by x⊤ its transpose, and denote by ‖x‖ =
√
x⊤x its Euclidean norm. We denote

by e = (1, . . . , 1)⊤ the vector with all entries equaling 1, and we denote by ei the vector with its i-th entry
equaling 1 and other entries equaling 0. For a positive number x, we denote by log x the natural logarithm of
x. For two probability distributions p, q over a finite set X , we denote by DKL(p||q) their Kullback-Leibler

divergence, i.e., DKL(p||q) =
∑

x∈X p(x) log p(x)
q(x) .

2 Related Literatures

Three major approaches for solving MDP are the value iteration method, the policy iteration method, and
linear programming methods. See the textbooks [3, 5, 26, 4] and references therein for more detailed surveys
on MDP and its solution methods.

Bellman [1] developed the value iteration as a successive approximation method to solve the nonlinear
fixed-point Bellman equation. Its convergence and complexity have been thoroughly analyzed; see e.g.

[28, 22]. The best known complexity result for value iteration is O(|S|2|A|L log(1/(1−γ))
1−γ), where L is the

number of bits to represent the input (L ≥ |S|2|A|). Value iteration can be also used to find an approximate

solution in O(|S|2|A| log(1/ǫ(1−γ))
1−γ). Later it was shown by [15] that the value iteration method is not strongly

polynomial for DMDP. Policy iteration was developed by Howard [16], and its complexity has also been
analyzed extensively; see e.g. [23, 32, 27]. Ye [32] showed that policy iteration (which is a variant of the

general simplex method for linear programming) is strongly polynomial and terminates in O(S2A
1−γ log(|S|

1−γ))

number of iterations. Later [27] improved the result by removing the log |S| factor. Not long after the
development of value and policy iterations, [14] and [13] discovered that the Bellman equation can be
formulated into an equivalent linear program. It followed that one can apply linear programming method
such as the simplex method by Dantzig [11] to solve MDP exactly. Later [31] designed a combinatorial
interior-point algorithm (CIPA) that solves the DMDP in strongly polynomial time. Recent developments
[20, 21] showed that linear programs can be solved in Õ(

√

rank(A)) number of linear system solves, which,

applied to DMDP, leads to a run time of Õ(|S|2.5|A|L). We also note that there have been many methods
for approximate linear programming. However, they do not apply to DMDP directly because an ǫ error in
the linear programming formation of the DMDP might lead to arbitrarily large policy error.

Value Iteration |S|2|A|L log(1/(1−γ))
1−γ

and |S|2|A| log(1/(1−γ)ǫ)
1−γ

[28, 22]

Policy Iteration (Block Simplex)
|S|4|A|2

1−γ
log(1

1−γ
) [32],[27]

LP Algorithm Õ(|S|2.5|A|L) [20]

Combinatorial Interior Point Algorithm |S|4|A|4 log
|S|
1−γ

[31]

Phased Q-Learning Õ(|S|2|A|+ |S|2|A|+
|S||A|

(1−γ)6ǫ2
) [18] and This Work

Randomized Primal-Dual Method Õ(
|S|3|A|

(1−γ)6ǫ2
) Main Result 1

Randomized Primal-Dual Method Õ(|S|2|A|+ |S||A|
(1−γ)4ǫ2

) under ergodicity assumption Main Result 2

Randomized Primal-Dual Method Õ(
|S||A|

(1−γ)4ǫ2
) under ergodicity assumption and special input format Main Result 3

Lower Bound Ω(|S|2|A|) [9]

Lower Bound Ω
(

|S||A|
ǫ

)

under special input format [9]

Table 1: Run-Time Complexity for solving DMDP, where |S| is the number of states, |A| is the number of
actions per state, γ ∈ (0, 1) is the discount factor, and L is the total bit size to present the DMDP input.

A most popular method in reinforcement learning is the Q-learning method. It refers to a class of
sampling-based variants of the value iteration. The work [18] proposed the phased Q-learning mehod and

proved that it takes Õ(|S||A|
ǫ2) sample transitions to compute an ǫ-optimal policy, where the dependence on

γ is left unspecified. If we carry out a more careful analysis (which is not available in [18]), we can see that

the sample complexity of phased Q-learning is actually Õ(|S||A|
(1−γ)6ǫ2). No run-time analysis is given explicitly

for phased Q-learning in [18]. Using the techniques developed in this work, we can apply the binary-tree

4

sampling techniques described in Section 4.1 and apply Prop. 1 to the phased Q-learning. Then we can
implement the method using appropriate preprocessing and Õ(1) run time per sample/update, leading to

a total run time Õ(|S|2|A| + |S||A|
(1−γ)6ǫ2). Such run-time analysis is not available in any existing literature.

Unlike Q-learning, most reinforcement learning algorithms need far more than Õ(1) arithmetic operations
to process a single sample transition, so they are not efficient solvers for DMDP.

Table 1 summarizes the best-known run-time complexity, in terms of the total number of arithmetic
operations, of solution methods for DMDP. Our second result is the sharpest among existing methods,
which however requires an additional assumption on the ergodicity of the Markov chains (which we believe

to be mild). The upper bound result Õ(|S|2|A| + |S||A|
(1−γ)4ǫ2) nearly matches the lower bound Ω(|S|2|A|) by

[9], except for the extra ergodicity assumption. Our third main result reveals a surprising phenomenon: In
the case where the input data are given in preprocessed data format that enables sampling, the complexity

reduces to Õ(|S||A|
(1−γ)4ǫ2), which is a sublinear run-time result and nearly match the lower bound Ω(|S||A|

ǫ) for

the same case by [9].
Our new method and analysis is motivated by the line of developments on stochastic first-order optimiza-

tion methods. They originate from the stochastic approximation method for the root finding problem; see
[19, 2, 6]. They find wide applications in stochastic convex optimization, especially problems arising from
machine learning applications. Several studies have been conducted to analyze the sample complexity of
stochastic first-order methods, started by the seminal work [24] and followed by many others. In particular,
our proposed method is closely related to stochastic first-order method for saddle point problems. The earli-
est work of this type is by [25], which studied a stochastic approximation method for convex-concave saddle
point problem and gives explicit convergent rate estimates. Later the work [17] studied a class of stochastic
mirror-prox methods and their rate of convergence for solving stochastic monotone variational inequalities,
which contains the convex-concave saddle point as a special case. Another related work is by [10], which
developed a class of sublinear algorithms for minimax problems from machine learning. It showed that it is
possible to find a pair of primal-dual solutions achieving ǫ duality gap in run time Õ

(

1
ǫ2

)

.
Unfortunately, none of existing results on the general stochastic saddle point problem directly applies

to the DMDP. There are several gaps to be filled. The first gap lies in the saddle point formulation of the
Bellman equation. Prior to this work, it was not clear how to appropriately formulate the DMDP into a
saddle point problem with appropriate constraints in order to maintain complexity guarantee and enable
constant-time projection at the same time. The second gap lies in the implementation and run-time efficiency
of algorithms. Earlier works on stochastic mirror-prox methods mainly focused on the iteration/sample
complexity. In this work, we care about the overall run-time complexity for solving DMDP. To achieve the
best run-time efficiency, we will provide an integrated algorithmic design that combines the mathematics
together with programming techniques. The third gap lies in the proof of convergence. Our algorithm uses
importance adaptive sampling of actions, which creates unbounded noises and disables the analysis used in
[25, 17]. As a result, we have to come up with an independent primal-dual convergence analysis. The fourth
gap lies between the duality gap and the performance of the output policy. A small duality gap does not
necessarily imply a small policy error. In this work, we aim to close all these gaps and develop efficient
randomized algorithms with run-time guarantees.

Let us also mention that there are two prior attempts (by the author of this paper) to use primal-dual
iteration for online policy estimation of MDP. The work [29] and its journal version [8] considered a basic
stochastic primal-dual iteration that uses Euclidean projection and uniform sampling of state-action pairs
to solve DMDP and established a sample complexity upper bound O(|S|4.5|A|ǫ−2). No run-time complexity
analysis is available.

3 Bellman Equation, Linear Programs, and Stochastic Saddle Point

Problem

Consider a DMDP tupleM = (S,A,P , r, γ). For a fixed policy π, the value vector vπ ∈ ℜ|S| is defined as

vπi = Eπ

[∞
∑

t=1

γtritit+1(at)
∣

∣

∣ i1 = i

]

, ∀ i ∈ S,

5

where Eπ [·] is taken over the state-action trajectory {i1, a1, i2, a2, . . .} generated by the Markov decision
process under policy π. The optimal value vector v∗ ∈ ℜ|S| is defined as

v∗i = max
π

Eπ

[∞
∑

t=1

γtritit+1(at)
∣

∣

∣ i1 = i

]

= Eπ∗

[∞
∑

t=1

γtritit+1(at)
∣

∣

∣ i1 = i

]

, ∀ i ∈ S.

According to the theory of dynamic programming [26, 3], a vector v∗ is the optimal value function to the
DMDP if and only if it satisfies the following |S| × |S| system of equations, known as the Bellman equation,
given by

v∗i = max
a∈A

{

γ
∑

j∈S
pij(a)v

∗
j +

∑

j∈S
pij(a)rij(a)

}

, ∀ i ∈ S,

When γ ∈ (0, 1), the Bellman equation has a unique fixed point solution v∗, and it equals to the optimal
value vector of the DMDP. Moreover, a policy π∗ is an optimal policy of the DMDP if and only if it attains
the elementwise maximization in the Bellman equation. For finite-state DMDP, there always exists at least
one optimal policy π∗. If the optimal policy is unique, it is also a deterministic policy. If there are multiple
optimal policies, there exist infinitely many optimal randomized policies.

The nonlinear Bellman equation is equivalent to the following |S|× (|S||A|) linear programming problem
(see [26] Section 6.9 and the paper [12]):

minimize (1− γ)q⊤v

subject to (I − γPa)v − ra ≥ 0, ∀ a ∈ A, (1)

where q ∈ ℜ|S| is an arbitrary vector of probability distribution satisfying e⊤q = 1 and q > 0, Pa ∈ ℜ|S|×|S|

is matrix whose (i, j)-th entry equals to pij(a), I is the identity matrix with dimension |S|×|S| and ra ∈ ℜ|S|

is the expected state-transition reward vector under action a, i.e., ra(i) =
∑

j∈S pij(a)rij(a) for all i ∈ S.
The dual linear program of (1) is

maximize
∑

a∈A
µ⊤
a ra

subject to
∑

a∈A

(

I − γP⊤
a

)

µa = (1 − γ)q, µa ≥ 0, ∀ a ∈ A.
(2)

It is well known that each deterministic policy corresponds to a basic feasible solution to the dual linear
program (2). A randomized policy is a mixture of deterministic policies, so it corresponds to a feasible
solution of program (2). We denote by µ∗ = (µ∗

a)a∈A the optimal solution to the dual linear program (2).
If there is a unique dual solution, it must be a basic feasible solution. In this case, it is well known that the
basis of µ∗ corresponds to an optimal deterministic policy.

We formulate the linear programs (1)-(2) into an equivalent minimax problem, given by

min
v∈V

max
µ∈Uθ,q

(1− γ)q⊤v +
∑

a∈A
µ⊤
a ((γPa − I)v + ra) . (3)

We construct V and Uθ,q to be the search spaces for the value and the policy, respectively, given by

V =

{

‖v‖∞ ≤
1

1− γ
,v ≥ 0

}

, Uθ,q =

{

e⊤µ = 1, µ ≥ 0,
∑

a∈A
µa ≥ θq

}

,

where θ is a small value to be specificied. Let us verify that v∗ ∈ V and µ∗ ∈ Uθ,q. Since all rewards rij(a)
belong to [0, 1], we can easily verify that 0 ≤ v∗i ≤ 1

1−γ for all i, therefore v∗ ∈ V . By multiplying both sides

of the dual constraint
∑

a∈A
(

I − γP⊤
a

)

µ∗
a = (1− γ)q with e⊤, we also verify that e⊤µ∗ = 1 because q is a

probability distribution. In subsequent analysis, we will specify choices of θ,q so that
∑

a∈A µ∗
a ≥ θq and

µ∗ ∈ Uθ,q. As long as v∗ ∈ V and µ∗ ∈ Uθ,q, we will be able to tackle the DMDP by approximately solving
the saddle point problem (3).

6

There are many ways to formulate the minimax problem (3) into a stochastic saddle point problem. A key
observation is that the probability transition matrix Pa and the reward vector ra are naturally expectations
of some random variables. For example, we can rewrite (3) as follows

min
v∈V

max
µ∈Uθ,q

(1 − γ)q⊤v +
∑

a∈A
µ⊤
a

((

γ
∑

i∈S
Ej|i,a

[

eie
⊤
j

]

− I

)

v +
∑

i∈S
Ej|i,a [rij(a)ei]

)

,

where the expectation Ej|i,a [·] is taken over j ∼ pij(a) where i and a are fixed. The preceding formulation
suggests that one can simulate transitions j | i, a of the Markov decision process in order to draw samples of
the Langrangian function and its partial derivatives. In addition, we will show later that simulation of the
Markov decision process is almost free in the sense that each transition can be simulated in Õ(1) arithmetic
operations. This motivates the use of a stochastic primal-dual iteration for solving the DMDP.

4 Algorithms

We develop our main algorithms in this section. We first develop a few programming techniques that may be
useful to all simulation-based methods for DMDP. Then we propose the randomized primal-dual algorithms
and analyze their run-time complexity per iteration.

4.1 Programming Techniques for Markov Decision Processes

Randomized algorithms for DMDP inevitably involve simulating the Markov decision process and making
policy updates. Our first step is to develop implmentation techniques for the two operations so that they
take as little as Õ(1) run time.

Proposition 1. Suppose that we are given arrays of transition probabilities P = (Pa)a∈A and a randomized
policy π = {πi,a}i∈S,a∈A. We are also given a stream of updates to the weight vectors, each update taking
the form πi,a ← π̃i,a, πi ← πi/‖πi‖1 for some i ∈ S, a ∈ A. There exists an algorithm that preprocesses P in

Õ(|S|2|A|) time, makes each update in O(log |A|) time, and, for any initial state and at any time, generates
a single state transition of the Markov decision process under the current policy in O(log |A|) + O(log |S|)
time.

Proof. Let us apply the binary-tree scheme [30] to the computation of Markov decision process. We are
given the transition probabilities (Pa)a∈A as arrays. For each state-action pair (i, a), we preprocess each
row vector of transition probabilities Pa(i, ·) into a binary tree, where each leaf stores the value Pa(i, j) for
some j and each node stores the sum of its two children. We need to construct |S||A| trees for all transition
probabilities, and the preprocessing time is Õ(|S|2|A|). Then for a given state-action pair (i, a), it is possible
to generate a random coordinate j with probability pij(a) by drawing a random variable uniformly from [0, 1]
and search for the leaf that corresponds to an interval that contains the random variable. This procedure
takes O(log |S|) arithmetic operations.

We represent a randomized policy π using a collection of |S|-dimensional vectors of nonnegative weights
{wi}i∈S such that πi,a =

wi,a∑
a∈A

wi,a
. Similar to Pa(i, ·)’s, the weight vectors {wi}i∈S can be represented as

|S| binary trees, one for each i ∈ S. For any given i ∈ S, one can generate a random coordinate a with
probability πi,a =

wi,a

‖wi‖1
using O(log |S|) arithmetic operations. Now suppose that we want to make the

policy update πi,a ← π̃i,a, πi ← πi/‖πi‖1. Then we update the corresponding leave from wi,a to ‖wi‖1 · π̃i,a,
where ‖wi‖1 is simply the value of the root. We also need to update the values of all nodes on the path
from the root to the leaf wi,a, so that each node remains the sum of its two children. This update takes
O(log |A|) operations.

Finally, suppose that we want to simulate the decision process and generate a state transition according
to the current policy. For a given state i ∈ S, we first sample an action a according to the policy and then
sample a coordinate j according to Pa(i, ·), which takes O(log |A|)+O(log |S|) = Õ(1) arithmetic operations
in total. �

7

Proposition 1 implies that simulation-based methods for DMDP can be potentially very efficient, because
the sampling and updating operations are computationally cheap. This result suggests an intriguing con-
nection between the sample complexity for estimating the optimal policy and the run-time complexity for
approximating the optimal policy.

Algorithm 1 Randomized Primal-Dual Method for DMDPs

1: Input: DMDP tupleM = (S,A,P , r, γ), q = 1
S e, θ = (1 − γ), T .

2: Set v = 0 ∈ ℜ|S|

3: Set ξ = 1
|S|e ∈ ℜ|S|, πi =

1
|A|e ∈ ℜ|A| for all i ∈ S

4: Set β = (1− γ)
√

log(|S||A|+1)
2|S||A|T , α = |S|

2(1−γ)2β,M = 1
1−γ

5: Preprocess the input probabilities P = {pij(a)} for sampling (Complexity Õ(S2A))
6: for t = 1, 2, . . . , T do
7: Sample i with probability ((1 − θ)ξi + θqi) (Complexity Õ(1))
8: Sample a with probability πi,a (Complexity Õ(1))
9: Conditioned on (i, a), sample j with probability pij(a) (Complexity Õ(1))

10: Update the iterates by (Complexity Õ(1))

∆← β · γvj − vi + rij(a)−M

((1− θ)ξi + θqi)πi,a

vi ← max

{

min

{

vi − α

(

(1− γ)qi
(1 − θ)ξi + θqi

− 1

)

,
1

1− γ

}

, 0

}

vj ← max

{

min

{

vj − αγ,
1

1− γ

}

, 0

}

11: Update the iterates by (Complexity Õ(1))

ξi ← ξi + ξiπi,a (exp {∆} − 1) , ξ ← ξ/‖ξ‖1
πi,a ← πi,a · exp {∆} , πi ← πi/‖πi‖1

12: end for
13: Ouput: Averaged policy iterate π̂i =

1
T

∑T
k=1 π

t
i for all i ∈ S

4.2 The Randomized Primal-Dual Algorithm

Motivated by the saddle point formulation of Bellman’s equation, we develop a randomized linear program-
ming method to compute an approximately optimal policy. The method is given in Algorithm 1. It is
essentially a randomized primal-dual iteration that makes updates to an explicit primal variable and an
implicit dual variable. More specifically, it makes iterative coordinate updates to three variables: π, v and
ξ. Here π ∈ ℜ|S||A| represents a randomized policy and is guaranteed to satisfy e⊤πi = 1 and πi ≥ 0 for
all i ∈ S throughout the iterations. The vector v ∈ ℜS is the primal variable (also the value vector) and is
guaranteed to satisfy 0 ≤ v ≤ 1

1−γ e throughout. The vector ξ ∈ ℜS represents some distribution over the

state space and satisfies e⊤ξ = 1, ξ ≥ 0 throughout. The policy π and the distribution ξ jointly give the dual
variable µ according to

µi,a = ((1− θ)ξi + θqi) πi,a, ∀ i ∈ S, a ∈ A.
The dual variable µ does not appear in the iteration of Algorithm 1. It is updated implicitly through updates
on π and ξ. We can verify that the implicit dual variable µ satisfies µ ∈ Uθ,q throughout the iteration.

Also note that Algorithm 1 uses adaptive importance sampling of state-to-state transitions according to
the current policy. In particular, it samples a state-action pair (i, a) with probability ((1 − θ)ξi + θqi)πi,a

(Steps 7-8). The sampling distribution varies as the algorithm proceeds. Some state-action pairs will be
sampled with higher and higher probability, meaning that the action becomes more favorable than other

8

actions for the corresponding state. In the mean time, some state-action pairs will be sampled less and
less frequently, while the corresponding probability πi,a reduces to 0 eventually. This can be viewed as
a form of “reinforcement learning”, because the algorithm tend to sample more often the actions that
empirically worked well. To account for the nonuniform sampling probability, each sample ∆ is re-weighted
by 1

((1−θ)ξi+θqi)πi,a
.

Now we analyze the run-time complexity for each step of Algorithm 1. Step 5 preprocesses the input
probabilities P = {pij(a)} into |S||A| tree samplers, one for each state-action pair. Each of the sampler
corresponds to a probability vector of |S| dimension. The preprocessing time for each m-dimensional vector
is Õ(m). Therefore the total processing time is Õ(|S|2|A|). According to Proposition 1, Steps 7-9 take
Õ(1) arithmetic operations each, provided that one updates and sample from ξ, π using the binary-tree
data structures. Step 10 updates two entries of the value vector v and uses run time Õ(1). According to
Proposition 1, Step 11 can also be implemented using Õ(1) arithmetic operations. Step 13 requires taking
average of past iterates {πt}Tt=1. This can be achieved by maintaining an additional variable to record
the running multiplicative weights and running average (e.g., using a special binary tree structure). The
additional storage overhead is O(|S||A|), and the additional computation overhead is Õ(1) per iteration.

To sum up, the total run-time complexity of Algorithm 1 consists of two parts: complexity of preprocessing
and complexity per iteration. Preprocessing takes Õ(S2A) run time, which can be skipped if the input data
are given in some data structure that enables immediate sampling (e.g., sorted arrays [7] or binary trees
[30]). Each iteration of Algorithm 1 takes Õ(1) arithmetic operations.

4.3 The Meta Algorithm

Finally, we are ready to develop a meta algorithm that computes an approximately optimal policy with
probability arbitrarily close to 1. The idea is to run Algorithm 1 for a number of independent trials, perform
approximate value evaluation to the output policies, and select the best out of the candidates.

Algorithm 2 Meta Algorithm

1: Input: DMDP tupleM = (S,A,P , r, γ), q = 1
S e, θ = (1 − γ), T .

2: Run Algorithm 1 for K = Ω(log 1
δ) independent trials with precision parameter ǫ

2 and obtain output

policies π(1), . . . , π(K).
3: For each output policy π(k) and initial distribution q, conduct approximate value evaluation and obtain

an approximate evaluation Ȳ (k) with precision level ǫ
2 and fail probability δ

2K .

4: Output π̂ = π(k∗) such that k∗ = argmaxk=1,...,K Ȳ (k).

5: Ouput: Averaged dual iterate π̂i =
1
T

∑T
k=1 π

t
i for all i ∈ S

In Algorithm 2, Step 3 approximately computes the cumulative discounted rewards for all candidate
policies and a fixed initial state distribution q. The aim is to find an ǫ-approximation to each cumulative
reward with probability at least 1− δ

2K . Its implementation and complexity will be discussed and analyzed
in Section 5.3.

5 Complexity Analysis

We develop our main results in a number of steps. We first study the convergence of some duality gap of the
randomized primal-dual iteration given by Algorithm 1. Then we study how to quantify the quality of the
output randomized policy from the duality gap upper bound. Third we show how to approximately evaluate
a randomized policy in a small run time. Finally we connect all the dots and establish the overall run-time
complexity of Algorithms 1 and 2.

9

5.1 Duality Gap Analysis

In this section, we study the convergence of Algorithm 1. We observe that each iteration of Algorithm 1
essentially performs a primal-dual update. To see this, we define the auxiliary dual iterate µt

i,a as

µt
i,a =

(

(1 − θ)ξti + θqi
)

πt
i,a, ∀ i ∈ S, a ∈ A.

Informally speaking, we see that the t-th iteration of Algorithm 1 takes the form

vt+1 = argmin
v∈V

{

(∂vL(v, µ
t) + εt+1)⊤(v − vt) +

1

2β
‖v − vt‖2

}

,

µt+1 = argminµ∈Uθ,q

{

(∂µL(v
t, µ) + ωt+1)⊤(µ− µt) +

1

2α
Φ(µ;µt)

}

,

(4)

where εt+1 and ωt+1 are zero-mean random noises due to the sampling step, Φ is a Bregman divergence
function given by

Φ(µ; µ̂) = (1− θ)DKL(λ||λ̂) + θ
∑

i∈S
qiDKL(πi||π̂i),

where (λ, π) is determined by µ and (λ̂, π̂) is determined by µ̂. The dual feasible region Uθ,q plays the
role of an “information set,” in which we search for the optimal policy. The information set Uθ,q shall be
constructed to characterize properties and additional prior knowledge (if there is any) regarding the DMDP.
Clearly, the set Uθ,q and the divergence function Φ are determined by the input parameters θ,q. We will
specify values of the parameters θ,q in subsequent analysis.

One might attempt to analyze iteration (4) using the general analysis for stochastic mirror-prox iterations
by [25, 17]. Unfortunately, this would not work. The general primal-dual convergence analysis given by
[25, 17] requires E

[

‖∂µL(vt, µ) + ωt+1‖2∗ | Ft

]

< σ2 for some appropriate norm ‖ · ‖∗ and a finite constant
σ, where Ft denotes the collection of random variables up to the t-th iteration. Our Algorithm 1 cannot
be treated in this way, because it samples the partial gradients using adaptive weights (Steps 7,8) and re-
weighted samples (Step 10). In particular, for a given state i, the action a is sampled with probability πt

i,a

and the corresponding partial gradient ∆ = β · γvj−vi+rij(a)−M
((1−θ)ξi+θqi)πi,a

has been re-weighted with 1/πt
i,a to maintain

unbiasedness, leading to large variances on the order of πt
i,a(1/π

t
i,a)

2 = 1/πt
i,a. Therefore, each iteration

Algorithm 1 suffers from unbounded noises in the following sense

E
[

∥

∥∂µL(v
t, µt) + ωt

∥

∥

2

∗ | Ft

]

≥ Θ

(

min
i∈S,a∈A

πt
i,a(

1

πt
i,a

)2

)

→∞, as t→∞.

The lefthand side can take arbitrarily large values and eventually go to infinity. This is because many πt
i,a’s

become increasingly close to zero, which is inevitable as the randomized policy πt converges to the optimal
deterministic policy π∗. Due to this reason, the results and analyses given in [25, 17] do not apply.

To tackle this analytical difficulty, we develop an independent proof tailored to Algorithm 1. It involves
analyzing the improvement of the relative entropy directly and constructing appropriate martingales. We
obtain an finite-iteration upper bound on some expected “duality gap”.

Proposition 2 (Duality Gap Bound). LetM = (S,A,P , r, γ) be an arbitrary DMDP tuple, let q ∈ ℜ|S|

be an arbitrary probability vector and let θ ≥ 1− γ. Assume that the solution of the dual linear program (2)
satisfies µ∗ ∈ Uθ,q. Let Algorithm 1 iterate with the input (M,q, θ), then the sequence of iterates {(ξt, πt)}Tt=1

satisfies

E

∑

a∈A,i∈S
µ̂a,i

v∗i − γ
∑

j∈S
pij(a)v

∗
j −

∑

j∈S
pij(a)rij(a)

 ≤
√

2|S|(|A| + 1) (log(|S||A|) + 1)

(1− γ)
√
T

,

where µ̂i,a = 1
T

∑T
t=1((1 − θ)ξti + θqi)π

t
i,a.

10

Proposition 2 establishes an expected upper bound on a nonnegative quantity that involves only the
averaged dual variable µ̂ but not the primal variable v. It can be essentially viewed as a weighted sum of
errors, which characterizes how much the following linear complementarity condition

µa,i

v∗i − γ
∑

j∈S
pij(a)v

∗
j −

∑

j∈S
pij(a)rij(a)

 = 0, ∀a ∈ A, i ∈ S,

is violated for the linear programs (1)-(2). Although we refer to this error quantity intuitively as a duality
gap, it is actually not the typical minimax duality gap for saddle point problems (which was analyzed in
[25, 17]). We defer the detailed proof of Proposition 2 to Section 7.

5.2 From Dual Variable To Approximate Policy

In the following, we show that the duality gap of µ̂ gives an upper bound on the efficiency loss of the
randomized policy π̂.

Proposition 3. Let M = (S,A,P , r, γ) be an arbitrary DMDP tuple, and let q = 1
|S|e, θ = (1 − γ). For

any vector µ̂ ∈ Uθ,q =
{

e⊤µ = 1, µ ≥ 0,
∑

a∈A µa ≥ θq
}

, we let π̂ be the corresponding randomized policy

satisfying π̂i,a =
µ̂i,a∑

a∈A
µ̂i,a

for all i ∈ S, a ∈ A. Then

‖v∗ − vπ̂‖∞ ≤
|S|

(1− γ)2

∑

a∈A,i∈S
µ̂a,i

v∗i − γ
∑

j∈S
pij(a)v

∗
j −

∑

j∈S
pij(a)rij(a)

 .

Proof. We denote for short that Gap =
∑

a∈A,i∈S µ̂a,i

(

v∗i − γ
∑

j∈S pij(a)v
∗
j −

∑

j∈S pij(a)rij(a)
)

. Using

the fact µ̂ ∈ Uθ,q, we have
∑

a∈A µ̂i,a ≥ θq = (1− γ)q. Then we have

Gap =
∑

a∈A,i∈S
µ̂i,a(v

∗ − γPav
∗ − ra)i

≥ (1− γ)
∑

i∈S
qi
∑

a∈A
π̂a,i(v

∗ − γPav
∗ − ra)i

= (1− γ)
∑

i∈S
qi(v

∗ − γP π̂v∗ − rπ̂)i,

where rπ̂ denotes the vector with rπ̂i =
∑

a∈A π̂i(a)
∑

j∈S pij(a)rij(a). We note that the Bellman equation

for a fixed policy π̂ is given by vπ̂ = γP π̂vπ̂ + rπ̂. Because v∗ is the optimal value vector of the DMDP, we
have (v∗ − γPav

∗ − ra)i ≥ 0 for all i ∈ S. It follows that (v∗ − γP π̂v∗ − rπ̂)i ≥ 0 for i ∈ S, therefore
0 ≤ v∗ − γP π̂v∗ − rπ̂ = v∗ − γP π̂v∗ − (vπ̂ − γP π̂vπ̂) = (I − γP π̂)(v∗ − vπ̂).

Using the fact q = 1
|S|e, we further have Gap = (1 − γ)(q)⊤(I − γP π̂)(v∗ − vπ̂) ≥ 1−γ

|S| ‖(I − γP π̂)(v∗ −
vπ̂)‖∞. We use the triangle inequality and the matrix norm inequality ‖Ax‖∞ ≤ ‖A‖∞‖x‖∞ to obtain
‖(I − γP π̂)(v∗ − vπ̂)‖∞ ≥ ‖v∗ − vπ̂‖∞ − ‖γP π̂(v∗ − vπ̂)‖∞ ≥ ‖v∗ − vπ̂‖∞ − ‖γP π̂‖∞‖(v∗ − vπ̂)‖∞ =

(1− γ)‖v∗ − vπ̂‖∞. It follows that Gap ≥ (1−γ)2

|S| ‖v∗ − vπ̂‖∞. �

Next we will see that, the duality gap provides a sharper upper bound for the policy error when the
associated Markov process is “better” behaved. For an arbitrary policy π, we define νπ to be the stationary
distribution under policy π, i.e., νπ = (P π)⊤νπ.

Proposition 4. Suppose that the Markov decision process specified byM = (S,A,P , r, γ) is ergodic in the
sense that c1q ≤ νπ ≤ c2q for some distribution vector q and any policy π. Let µ̂ ∈ Uθ,q where θ = 1−γ+γ c1

c2
,

and let π̂i,a =
µ̂i,a∑

a∈A
µ̂i,a

. Then

q⊤v∗ − q⊤vπ̂ ≤ c22
(1− γ)c21

∑

a∈A,i∈S
µ̂a,i

v∗i − γ
∑

j∈S
pij(a)v

∗
j −

∑

j∈S
pij(a)rij(a)

 .

11

Proof. We have

∑

a∈A,i∈S
µ̂a,i(v

∗ − γPav
∗ − ra)i ≥

(

1− γ + γ
c1
c2

)

∑

i∈S
qi
∑

a∈A
π̂i,a(v

∗ − γPav
∗ − ra)i

=

(

1− γ + γ
c1
c2

)

∑

i∈S
qi(v

∗ − γP π̂v∗ − rπ̂)i

≥
(

1− γ + γ
c1
c2

)

∑

i∈S

1

c2
νπ̂i (v

∗ − γP π̂v∗ − rπ̂)i

=

(

1− γ + γ
c1
c2

)

1

c2

(

νπ̂
)⊤

(I − γP π̂)(v∗ − vπ̂)

=

(

1− γ + γ
c1
c2

)

1

c2
(1− γ)

(

νπ̂
)⊤

(v∗ − vπ̂)

≥ c21
c22
(1− γ)q⊤(v∗ − vπ̂),

where the first inequality uses µ̂ ∈ Uθ,q, the second and third inequalities use νπ̂ ∈ Uθ,q. �

Prop. 4 suggests that, when all ergodic distributions of the Markov decision process under stationary
policies belong to a certain range, we get a sharper bound for the cumulative value of the output policy from
the duality gap bound.

5.3 Approximate Policy Evaluation

In Algorithm 2, we run Algorithm 1 for multiple independent trials and identify the most successful one, in
order to boost the probability of finding a good policy to be arbitrarily close to 1. Before we can do that,
we need to be able to evaluate multiple candidate policies and select the best one out of many with high
probability (Step 3 of Algorithm 2). In fact, we show that it is possible to approximately evaluate any policy
π within ǫ precision in run time Õ(1

ǫ2(1−γ)2) for a pre-specified initial distribution.

Proposition 5 (Approximate Policy Evaluation). Suppose we are given a DMDP tupleM = (S,A,P , r, γ),
a fixed randomized policy π, and an initial distribution q. Suppose that a state transition of the DMDP under
π can be sampled in Õ(1) time, there exists an algorithm that outputs an approximate value Ȳ such that
q⊤vπ − ǫ ≤ Ȳ ≤ q⊤vπ with probability at least 1− δ in run time Õ(1

ǫ2(1−γ)2 log(
1
δ)).

Proof. The approximate policy evaluation algorithm runs as follows: For a given policy π, we simulate the
Markov decision process under policy π from the initial distribution q for n transitions and calculate the
cumulative discounted reward Y . We repeat the simulation for K independent times and return the average
cumulative reward Ȳ = 1

K (Y1 + · · ·+ YK).
We observe that the unknown value q⊤vπ is the expectation of the infinite cumulative discounted reward.

We pick n sufficiently large such that expected n-period cumulative discounted reward is sufficiently close to
q⊤vπ . Since rij(a) ∈ [12 , 1] for i, j, a,, the cumulative discounted reward starting from the (n+1)th period is

bounded by
∑∞

t=n γ
t = γn

1−γ with probability 1. In particular, we pick n such that ǫ
2 = γn

1−γ , which suggests

that n =
(

logγ(
ǫ(1−γ)

2)
)

= Õ(1). Therefore we obtain

q⊤vπ − ǫ

2
≤ E [Y1] ≤ q⊤vπ .

Note that Y1, . . . , YK are i.i.d. random variables and Yk ∈ [0, 1
1−γ] for all k. By using the Azuma-Hoeffding

inequality, we obtain that Ȳ = 1
K

∑K
t=1 Yt satisfies for any ε > 0 that

P
(

|Ȳ −E [Y1] | ≥ ε
)

≤ 2 exp

(

−ε2K(1− γ)2

2

)

.

12

By letting ε = ǫ
2 and K = O(1

ǫ2(1−γ)2 log(1/δ)), we obtain that |Ȳ − E [Y1] | ≤ ǫ
2 with probability at least

1− δ. It follows that

P
(

q⊤vπ − ǫ ≤ Ȳ ≤ q⊤vπ
)

≥ 1− δ.

The number of sample state transitions is K ·n = Õ(1
ǫ2(1−γ)2 log

(

1
δ

)

), which equals to the total run time. �

5.4 Run-Time Complexity For Algorithms 1 and 2

Finally, we are ready to develop the main results of this paper. Our first main result is given in Theorem
1. It establishes the run-time complexity for computing an ǫ-optimal policy for arbitrary DMDP using the
randomized linear programming methods given by Algorithms 1 and 2.

Theorem 1 (Run-Time Complexity for Arbitrary DMDP). Let M = (S,A,P , r, γ) be an arbitrary

DMDP. For any ǫ ∈ (0, 1), δ ∈ (0, 1), let q = 1
|S|e, θ = (1− γ), T = Ω

(

|S|3|A| log(|S||A|)
(1−γ)6ǫ2

)

. Then:

(i) Algorithm 1 outputs a policy π̂ satisfying vπ̂(i) ≥ v∗(i)− ǫ for all i ∈ S with probability at least 2/3.

(ii) Algorithm 2 outputs a policy π̂ such that q⊤vπ̂ ≥ q⊤v∗ − ǫ in run time

Õ
(

|S|2|A|+ |S|3|A|
(1− γ)6ǫ2

log

(

1

δ

)

+
1

ǫ2(1 − γ)2

(

log
1

δ

)2
)

with probability at least 1− δ.

Proof. (i) We first show that the dual optimal solution µ∗ to the linear program (2) satisfies µ∗ ∈ Uθ,q when
θ = 1− γ, q = 1

S e. To see this, we note the dual feasibility constraint
∑

a∈A(I − γPa)
⊤µ∗

a = (1− γ)q, which
implies a lower bound to the dual variable µ, given by

∑

a∈A µ∗
a ≥ (1 − γ)q. Therefore µ∗ ∈ Uθ,q and the

assumption of Proposition 2 is satisfied.

We denote for short that Gap =
∑

a∈A,i∈S µ̂a,i

(

v∗i − γ
∑

j∈S pij(a)v
∗
j −

∑

j∈S pij(a)rij(a)
)

. Now we

apply Prop. 3 and the Markov inequality to obtain ‖v∗ − vπ̂‖∞ ≤ |S|
(1−γ)2Gap ≤ O(S

(1−γ)2)E [Gap] with

probability at least 2/3. Therefore vπ ≥ v∗ − ǫe with probability 2/3 when E [Gap] ≤ O(ǫ(1−γ)2

|S|), which

holds if we let T = Ω
(

|S|3|A| log(|S||A|)
(1−γ)6ǫ2

)

and apply Prop. 2.

(ii) Let us analyze Algorithm 2 step by step.

1. In Step 2 of Algorithm 2, it runs Algorithm 1 for K independent trials with precision parameter ǫ
2

and generates output policies π(1), . . . , π(K). The total run time is O(|S|2|A|) +K · T ǫ
2
, where T ǫ

2
is

the time complexity for each run of Algorithm 1. According to (i), each trial generates an ǫ/2-optimal
policy with probability at least 2/3.

2. In Step 3 of Algorithm 2, for each output policy π(k), we conduct approximate value evaluation and
obtain an approximate evaluation Ȳ (k) with precision level ǫ

2 and fail probability δ
2K . According to

Lemma 5, we have

Ȳ (k) − q⊤vπ(k) ∈ [− ǫ

2
, 0],

with probability at least 1− δ
2K . This step takes K · Õ(1

ǫ2(1−γ)2 log
(

K
δ

)

) run time.

3. Step 4 of Algorithm 2 outputs π̂ = π(k∗) such that k∗ = argmaxk=1,...,K Ȳ (k). This step takes O(K)
run time.

Now we verify that π̂ is indeed near-optimal with probability at least 1−δ whenK is chosen appropriately.

Let K =
{

k | q⊤vπ(k) ≥ q⊤v∗ − ǫ
2

}

, which can be interpreted as indices of successful trails of Algorithm 1.

Consider the event where K 6= ∅ and all policy evaluation errors belong to the small interval [− ǫ
2 , 0]. In this

13

case, we have Ȳ (k) ≤ q⊤vπ(k)

for all k and Ȳ (k) ≥ q⊤vπ(k) − ǫ
2 ≥ q⊤v∗ − ǫ if k ∈ K. As a result, the output

policy π̂ which has the largest value of Ȳ (k) must be ǫ-optimal. We use the union bound to obtain

P
(

q⊤vπ̂ < q⊤v∗ − ǫ
)

≤ P
(

{K = ∅} ∪
{

∃k : Ȳ (k) − q⊤vπ(k)

/∈ [− ǫ

2
, 0]
})

≤ P (K = ∅) +P
(

∃k : Ȳ (k) − q⊤vπ(k)

/∈ [− ǫ

2
, 0]
)

≤
K
∏

k=1

P
(

q⊤vπ(k)

< q⊤v∗ − ǫ

2

)

+

K
∑

k=1

P
(

Ȳ (k) − q⊤vπ(k)

/∈ [− ǫ

2
, 0]
)

≤ (1/3)K +K · δ

2K
.

By choosing K = Ω(log(1/δ)), we obtain P
(

q⊤vπ̂ < q⊤v∗ − ǫ
)

≤ δ. Then the output policy is ǫ-optimal
when initiated at distribution q with probability at least 1− δ.

According to Section 4, preprocessing of Algorithms 1-2 takes Õ(|S|2|A|) arithmetic operations and each
iteration takes Õ(1) arithmetic operations. The total run time is Õ(|S|2|A|+T ǫ

2
log 1

δ +
1

ǫ2(1−γ)2 (log
1
δ)

2). �

Theorem 1 establishes a worst-case complexity for Algorithms 1 and 2. The results apply to all instances
of DMDP with |S| states, |A| actions per state, and a fixed discount factor γ. Theorem 1 does not require
any additional property such as irreducibility or aperiodicity of the associated Markov chains. In fact, the
results even hold for problems with transient states and/or multiple optimal policies.

The cubic dependence |S|3 in Theorem 1 is not very satisfying. One factor of |S| comes from the
duality gap bound (Prop. 2), and two more factors come from rounding the duality gap to the policy error
‖vπ̂ − v∗‖∞ (Prop. 3). We conjecture that the term |S|3 can be improved to |S|2 (or even |S|) using an
improved algorithm and analysis. In addition, we conjecture that the complexity result should have a better
dependence on 1

1−γ , especially when all P π’s have relatively large spectral gaps. These two questions are
left open for future investigation.

Next we will see that, the DMDP becomes easier to solve when the associated Markov process is ergodic.
In what follows, we focus on the class of Markov decision processes where every stationary policy generates
an ergodic Markov chain. For an arbitrary policy π, we define νπ to be the stationary distribution under
policy π, i.e., νπ = (P π)⊤νπ. Our next main result shows that Algorithms 1-2 have significantly improved
complexity for ergodic DMDP.

Theorem 2 (Linear Run Time for Ergodic DMDP). Suppose that the Markov decision process specified
by M = (S,A,P , r, γ) is ergodic in the sense that c1q ≤ νπ ≤ c2q for some distribution vector q and any

policy π. For any ǫ ∈ (0, 1), δ ∈ (0, 1), let θ = 1− γ + γ c1
c2
, T = Ω

(

(

c2
c1

)4 |S||A| log(|S||A|)
(1−γ)4ǫ2

)

. Then:

(i) Algorithm 1 outputs a policy π̂ satisfying q⊤vπ̂ ≥ q⊤v∗ − ǫ with probability at least 2/3.

(ii) Algorithm 2 outputs a policy π̂ such that q⊤vπ̂ ≥ q⊤v∗ − ǫ in run time

Õ
(

|S|2|A|+
(

c2
c1

)4 |S||A|
(1− γ)4ǫ2

log

(

1

δ

)

+
1

ǫ2(1 − γ)2

(

log
1

δ

)2
)

(5)

with probability at least 1− δ.

Proof. (i) We first verify that µ∗ ∈ Uθ,q with the given vector q and θ = 1 − γ + γ c1
c2
. We note that

all eigenvalues of a probability transition matrix P π belong to the unit circle and γ ∈ (0, 1), therefore the
eigenvalues I − γP π belong to the positive half plane. As a result, the matrix I − γP π is invertible for all π,

14

including I − γP ∗. We have
∑

a∈A µ∗
a =

(

I − γ(P ∗)⊤
)−1

(1− γ)q, therefore

∑

a∈A
µ∗
a = (1− γ)

(∞
∑

k=0

(γP ∗)k
)⊤

q = (1 − γ)q+ (1 − γ)

(∞
∑

k=1

(γP ∗)k
)⊤

q

≥ (1 − γ)q+
1

c2
(1− γ)

∞
∑

k=1

(

(γP ∗)k
)⊤

ν∗

= (1 − γ)q+
1

c2
(1− γ)

(∞
∑

k=1

γk

)

ν∗

≥ (1 − γ)q+
c1
c2

γq

≥
(

1− γ + γ
c1
c2

)

q.

As a result, we have verified µ∗ ∈ Uθ,q and the assumption and results of Prop. 2 hold.

When Algorithm 1 is applied with q and θ = 1 − γ + γ c1
c2
. By the nature of the algorithm, we have

∑

a∈A µ̂a ≥ θq. Then we have and c1q ≥ νπ ≥ c2q for any policy π, so the assumptions of Prop. 4 hold. We

denote for short that Gap =
∑

a∈A,i∈S µ̂a,i

(

v∗i − γ
∑

j∈S pij(a)v
∗
j −

∑

j∈S pij(a)rij(a)
)

. By applying Prop.

4, we obtain that q⊤(v∗−vπ̂) ≤ c22
c21(1−γ)

Gap. Then we may use the Markov inequality to show that q⊤(v∗−

vπ̂) ≤ ǫ with probability 2/3 as long as
c22

c21(1−γ)
E [Gap] ≤ 2/3ǫ, which requires T = Ω

(

(

c2
c1

)4 |S||A| log(|S||A|)
(1−γ)4ǫ2

)

according to Prop. 2.

(ii) By using a similar analysis as in the proof of Theorem 1, we finish the proof. �

Theorem 2 shows that the iteration complexity of Algorithms 1-2 substantially improves when the DMDP
is ergodic under every stationary policy. More specifically, the complexity reduces when all policies generate
“similar” stationary distributions. Comparing the preceding complexity result with the input size O(|S|2|A|)
of the DMDP, we conclude that Algorithms 1-2 have nearly-linear run-time complexity in the worst case.
For large-scale problems, as long as |S| ≫ 1

ǫ and |A| ≫ 1
ǫ , Algorithm 1 is able to compute an approximate

policy more efficiently than any known deterministic method.

The ratio c2
c1

characterizes a notion of complexity of ergodic DMDP, i.e., the range of possible ergodic
distributions under different policies. Intuitively, dynamic programs are harder to solve when different
policies lead to vastly different state trajectories. For example, suppose that there is a critical state that
can only show up after a particular sequence of correct actions (this typical happens in aperiodic Markov
chains). In this case, any algorithm would need to search over the space of all policies to identify the critical
state. For another example, consider that all policies only affect the immediate reward but will lead to the
same outgoing transition probabilities. In this case, one would be able learn the optimal action at each state
much more efficiently, where c1/c2 = 1.

Our last result shows that it is possible to skip the preprocessing step, as long as the DMDP tuple is
specified using special formats. When the input data are given in a way that enables immediate sampling,
one can skip Step 5 in Algorithm 1 and remove the first term |S|2|A| from the overall run time.

Theorem 3 (Sublinear Time Complexity for Ergodic DMDP In Special Formats). Suppose that
the assumptions of Theorem 2 hold and the collection of transition probabilities P = (Pa)a∈A are specified
in any one of the following formats:

(a) Matrices of cumulative probabilities Ca of dimension S×S, for all a ∈ A, where Ca(i, j) =
∑j

k=1 Pa(i, k)
for all i ∈ S, a ∈ A and j ∈ S.

(b) Transition probability distributions Pa(i, ·) that are encoded in binary trees. There are |S||A| trees, one
for each state-action pair (i, a) ∈ S ×A. Each binary tree is of depth log |S| and has |S| leaves that store
the values of Pa(i, j), j ∈ S. Each inner node of the tree stores the sum of its two children.

15

Then for any ǫ ∈ (0, 1), δ ∈ (0, 1), Algorithm 2 outputs an approximately optimal policy π̂ such that q⊤vπ̂ ≥
q⊤v∗ − ǫ in run time

Õ
(

(

c2
c1

)4 |S||A|
(1− γ)4ǫ2

log

(

1

δ

)

+
1

ǫ2(1 − γ)2

(

log
1

δ

)2
)

with probability at least 1− δ.

Proof. In both cases (a) and (b), it is possible to draw a sample coordinate j | (i, a) with probability pij(a)
using O(log |S|) run time, because the corresponding data structure storing the vector Pa(i, ·) can be readily
used as a sampler [7, 30]. Therefore one can skip the preprocessing step (Step 5) in Algorithm 1 and remove
the Õ(|S|2|A|) term from the run-time result of Theorem 2. �

When the input is given in suitable data structures, the run-time complexity of Algorithms 1-2 reduces
from nearly-linear to sublinear with respect to the input size. The reduced run time is almost linear in
|S ×A|, i.e., the number of state-action pairs. It means that for fixed values of ǫ, γ, each state-action pair is
queried for a constant number of times on average regardless of the dimension of the DMDP. This result is
sublinear with respect to the input size O(|S|2|A|). It suggests that one can find an approximately optimal
policy without even reading a significant portion of the input entries. We recall that the input data mainly
consist of transition probabilities pij(a). An explanation for the sublinear complexity is that certain small
probabilities in the input data can be safely ignored, without deteriorating the quality of the approximate
policy significantly.

Theorems 1, 2, 3 established new complexity upper bounds for computing an approximate-optimal policy
of the DMDP. Let us compare the upper bounds given by Theorems 1, 2, 3 with recent lower bound results
for DMDP [9]. For DMDP that is specified in the standard way (arrays of transition probabilities), it shows
that any randomized algorithm needs at least Ω(|S|2|A|) run time to get any ǫ-approximate policy with high

probability; see Theorem 1 of [9]. It also shows that the lower bound reduces to Ω(|S||A|
ǫ) when the input

data are in the format of binary trees or cumulative sums (for which the preprocessing step can be skipped);
see Theorems 2-3 of [9]. Our upper bound results nearly match the lower bound results in both cases.
Both the upper and lower bounds suggest that the computational complexity of DMDP indeed depends on
the input data structure. The overall complexity for approximately solving the MDP is dominated by the
preprocessing time. Once the data is preprocessed, the remaining computation problem becomes significantly
easier.

6 Remarks

We have developed a novel randomized method that exploits the linear duality between the value function and
the policy function for solving DMDPs. It is related to several fundamental methods in linear programming,
stochastic optimization and online learning. It is easy to implement, uses sublinear space complexity and
nearly-linear (sometimes sublinear) run-time complexity.

Algorithm 1 can be viewed as a randomized version of the simplex method, which is also equivalent to
a version of the policy iteration method for solving MDP. It maintains a primal variable (value) and a dual
variable (policy). Each update πi,a ← πi,a · exp {∆} mimics a pivoting step towards a neighboring basis.
Instead of moving from one basis to another one, each update in the dual variable can be viewed as a “soft”
pivot. Our theoretical results show that the algorithm finds an approximate policy in Õ(SA) iterations.
This is somewhat similar to the simplex method, which also terminates in Õ(SA) (which is the number of
constraints) iterations on average. What makes our randomized algorithm different is its Õ(1) run time per
iteration. It avoids explicitly solving any linear system, which is unavoidable in the simplex method.

Algorithm 1 can also be viewed as a stochastic approximation method for solving a saddle point problem.
It utilizes the structures of specially crafted primal and dual constraint sets to make each update as simple
and efficient as possible. The update of the dual variable (policy) uses a special Bregman divergence function
which is related to the relative entropy between randomized policies.

It is worth noting that Algorithm 1 is related to the exponentiated gradient method for the multi-arm
bandit problem in the online learning setting. When there is a single state, Algorithm 1 reduces to the basic

16

exponentiated gradient method. This observation provides a hint that we might be able to adapt Algorithm
1 to apply to online reinforcement learning. This is a direction for future research.

The new method and complexity results of this paper suggest a promising direction that awaits further
research. The current results leave open many questions. We conjecture that the complexity result should
have a better dependence on 1

1−γ , especially when all P π’s have relatively large spectral gaps. A related
notion of complexity metric for MDP is the diameter, i.e., the maximal expected time to move from any
state to any other state. We conjecture that the diameter should play a key role in an improved complexity
analysis and replace at least one factor of 1

1−γ . We also conjecture that the sublinear-time complexity result
of Proposition 3 hold for more general DMDPs without prior knowledge about c2

c1
. Another direction for

future research is to consider the run-time complexity for finite-horizon MDP and average-reward MDP. It
remains unclear what roles the mixing rate and the horizon play in the run-time complexity. In the mean
time, an equally important (if not more) question is to establish the computation complexity lower bound
for approximating optimal policies of MDP.

7 Proof of Proposition 2

We provide the complete proof of Proposition 2 in this last section. Readers who are not interested in the
technical details are free to skip this part.

7.1 Technical Lemmas

In this section, we analyze the convergence of Algorithm 1. We denote the t-th iterates generated by
Algorithm 1 by πt, ξt, and vt. We define the auxilary variables λ =

(

λt
i,a

)

i∈S,a∈A as

λt
i,a = ξtiπ

t
i,a.

According to Algorithm 1, we can verify that ξt ∈ ℜ|S| and πt
i ∈ ℜ|A| are vectors of probability distributions.

It follows that λt is always a |S||A|-dimensional vector of probability distribution. In addition, the updates
on ξt and πt can be equivalently written as updates on λt and πt, given by

λt+1
i,a =

λt
i,a · exp(∆t+1

i,a)
∑

i′,a′ λt
i′,a′ · exp(∆t+1

i′,a′)
, πt+1

i,a =
πt
i,a · exp(∆t+1

i,a)
∑

a′ πt
i,a′ · exp(∆t+1

i,a′)
∀ i ∈ S, a ∈ A, (6)

where

∆t+1
i,a =

{

β · (γv
t
j−vt

i+rijt (a)−M)

((1−θ)ξt
i
+θqi)πt

i,a

if i = it+1, a = at+1

0 otherwise
(7)

In what follows, we denote by Ft the collection of random variables that are revealed up to the end of the
t-th iteration. We denote by µt

i,a the dual iterates given by

µt
i,a = ((1 − θ)ξti + θqi)π

t
i,a = (1− θ)λt

i,a + θqiπ
t
i,a.

According to Algorithm 1, we can verify that µt ∈ Uθ,q and vt ∈ V for all t with probability 1.

Lemma 1. If µ∗ ∈ Uθ,q, there exists probability distribution vectors λ∗ ∈ ℜ|S||A| and π∗
i ∈ ℜ|A|, i ∈ S, such

that
µ∗
i,a = (1 − θ)λ∗

i,a + θqiπ
∗
i,a, ∀ i ∈ S, a ∈ A.

Proof. The proof is straightforward by the definition of Uθ,q. �

Lemma 2. The iterates generated by Algorithm 1 satisfy

E
[

DKL(λ
∗||λt+1) | Ft

]

−DKL(λ
∗||λt) ≤

∑

i∈S

∑

a∈A
(λt

i,a − λ∗
i,a)E

[

∆t+1
i,a | Ft

]

+
1

2

∑

i∈S

∑

a∈A
λt
i,aE

[

(

∆t+1
i,a

)2 | Ft

]

,

(8)

for all t, with probability 1.

17

Proof. By using the relation (6), we have

DKL(λ
∗||λt+1)−DKL(λ

∗||λt) =
∑

i∈S

∑

a∈A
λ∗
i,a log

λ∗
i,a

λt+1
i,a

−
∑

i∈S

∑

a∈A
λ∗
i,a log

λ∗
i,a

λt
i,a

=
∑

i∈S

∑

a∈A
λ∗
i,a log

λt
i,a

λt+1
i,a

=
∑

i∈S

∑

a∈A
λ∗
i,a log

Z

exp(∆t+1
i,a)

=
∑

i∈S

∑

a∈A
λ∗
i,a log (Z)−

∑

i∈S

∑

a∈A
λ∗
i,a∆

t+1
i,a

= logZ −
∑

i∈S

∑

a∈A
λ∗
i,a∆

t+1
i,a ,

(9)

where Z =
∑

i∈S
∑

a∈A λt
i,a exp(∆

t+1
i,a). According to (7), we have γvtj−vti+rijt(a)−M ≤ γ

1−γ−0+1− 1
1−γ ≤ 0

because vi ∈ [0, 1
1−γ], rijt(a) ∈ [12 , 1] and M = 1

1−γ . It follows that ∆t+1
i,a ≤ 0 for all i ∈ S, a ∈ A with

probability 1. Then we derive

logZ = log

(

∑

i∈S

∑

a∈A
λt
i,a exp(∆

t+1
i,a)

)

≤ log
∑

i∈S

∑

a∈A
λt
i,a

(

1 + ∆t+1
i,a +

1

2

(

∆t+1
i,a

)2
)

= log

(

1 +
∑

i∈S

∑

a∈A
λt
i,a∆

t+1
i,a +

1

2

∑

i∈S

∑

a∈A
λt
i,a

(

∆t+1
i,a

)2

)

≤
∑

i∈S

∑

a∈A
λt
i,a∆

t+1
i,a +

1

2

∑

i∈S

∑

a∈A
λt
i,a

(

∆t+1
i,a

)2
,

(10)

where the first inequality uses the fact ex ≤ 1 + x + 1
2x

2 if x ≤ 0 and the second inequality uses the fact
log(1 + x) ≤ x for all x. We combine (9) and (10) and take conditional expectation E [· | Ft] on both sides,
then we obtain (8). �

Lemma 3. For any i ∈ S, the iterates generated by Algorithm 1 satisfy

E
[

DKL(π
∗
i ||πt+1

i)
∣

∣

∣ Ft

]

−DKL(π
∗
i ||πt

i) ≤
∑

a∈A
(πt

i,a − π∗
i,a)E

[

∆t+1
i,a | Ft

]

+
1

2

∑

a∈A
πt
i,aE

[

(

∆t+1
i,a

)2 | Ft

]

,

(11)

for all t ≥ 1, with probability 1.

Proof. The proof is similar to Lemma 2. We omit it for simplicity. �

Lemma 4. The iterates generated by Algorithm 1 satisfy

∑

i∈S

∑

a∈A
µt
i,aE

[

(

∆t+1
i,a

)2 | Ft

]

≤ 4|S||A|β2

(1− γ)2
,

for all t ≥ 1 with probability 1.

18

Proof. We note that P(it+1 = i, at+1 = a | Ft) = µt
i,a. Then we have

∑

i∈S

∑

a∈A
µt
i,aE

[

(

∆t+1
i,a

)2 | Ft

]

=
∑

i∈S

∑

a∈A
µt
i,a · µt

i,a ·
∑

j∈S
pij(a)

(

β ·
(γvtj − vti + rij(a)−M)

µt
i,a

)2

=
∑

i∈S

∑

a∈A

∑

j∈S
pij(a)

(

β · (γvtj − vti + rij(a)−M)
)2

≤
∑

i∈S

∑

a∈A

(

β · 2

1− γ

)2

=
4|S||A|β2

(1− γ)2
,

where the inequality uses the fact that vt belongs to the ‖ · ‖∞ ball of radius 1
1−γ and M = 1

1−γ . �

Proposition 6. We let Φ(µt) be the divergence function given by

Φ(µt) = (1− θ)DKL(λ
∗||λt) + θ

∑

i∈S
qiDKL(π

∗
i ||πt

i).

The iterates generated by Algorithm 1 satisfy

E
[

Φ(µt+1) | Ft

]

≤ Φ(µt) + β
∑

a∈A
(µt

a − µ∗
a)

⊤ ((γPa − I)vt + ra
)

+
2|S||A|β2

(1− γ)2
, (12)

for all t, with probability 1.

Proof. We take the weighted sum between (8) and (11), so we have

E
[

Φ(µt+1) | Ft

]

≤ Φ(µt) + (1− θ)
∑

i∈S

∑

a∈A
(λt

i,a − λ∗
i,a)E

[

∆t+1
i,a | Ft

]

+
1− θ

2

∑

i∈S

∑

a∈A
λt
i,aE

[

(

∆t+1
i,a

)2 | Ft

]

+ θ
∑

i∈S
qi
∑

a∈A
(πt

i,a − π∗
i,a)E

[

∆t+1
i,a | Ft

]

+
θ

2

∑

i∈S
qi
∑

a∈A
πt
i,aE

[

(

∆t+1
i,a

)2 | Ft

]

= Φ(µt) +
∑

i∈S

∑

a∈A
(µt

i,a − µ∗
i,a)E

[

∆t+1
i,a | Ft

]

+
1

2

∑

i∈S

∑

a∈A
µt
i,aE

[

(

∆t+1
i,a

)2 | Ft

]

,

where the equality uses the relations µt
i,a = (1− θ)λt

i,a + θqiπ
t
i,a and µ∗

i,a = (1− θ)λ∗
i,a + θqiπ

∗
i,a (by Lemma

1 since µ∗ ∈ Uθ,q). For arbitrary i ∈ S and a ∈ A, we have

1

β
·E
[

∆t+1
i,a | Ft

]

= γ
∑

j∈S
pij(a)v

t
j − vti +

∑

j∈S
pij(a)rij(a)−M = (γPav

t − vt + ra)i −M.

It follows that

1

β
·
∑

i∈S

∑

a∈A
(µt

i,a − µ∗
i,a)E

[

∆t+1
i,a | Ft

]

=
∑

a∈A

∑

i∈S
(µt

i,a − µ∗
i,a)
[

(γPav
t − vt + ra)i −M

]

=
∑

a∈A
(µt

a − µ∗
a)

⊤ ((γPa − I)vt + ra
)

,

where the second equality comes from the fact
∑

i∈S
∑

a∈A µt
i,a =

∑

i∈S
∑

a∈A µ∗
i,a = 1 (because µt ∈ Uθ,q,

µ∗ ∈ Uθ,q). According to Lemma 4, we also have E
[

∑

i∈S
∑

a∈A µt
i,a

(

∆t+1
i,a

)2 | Ft

]

≤ 4|S||A|β2

(1−γ)2 . We apply

the preceding two relations and complete the proof.
�

19

Proposition 7. The iterates generated by Algorithm 1 satisfy for all t with probability 1 that

E
[

‖vt+1 − v∗‖2 | Ft

]

≤ ‖vt − v∗‖2 + 2α(vt − v∗)⊤
(

∑

a∈A
(I − γPa)

⊤µt
a − (1 − γ)q

)

+ 4α2. (13)

Proof. We let vt+1/2 be the vector such that

v
t+1/2
it+1

= vtit+1
− α

(

(1− γ)qit+1

(1− θ)ξtit+1
+ θqit+1

− 1

)

,

v
t+1/2
jt+1

= vtjt+1
− αγ,

v
t+1/2
i = vti , if i /∈ {it+1, jt+1}.

Then we can verify that vt+1 = ΠVvt+1/2, where Π denotes the Euclidean projection. We note that
P(it+1 = i | Ft) = (1 − θ)ξti + θqi =

∑

a∈A µt
i,a, P(jt+1 = j | Ft) =

∑

i∈S
∑

a∈A µt
i,apij(a). Then we can

verify that

E
[

vt+1/2 − vt | Ft

]

= −α
(

(1− γ)q−
∑

a∈A
(I − γPa)

⊤µt
a

)

.

Also since θ ≥ 1−γ we have
(1−γ)qit+1

(1−θ)ξt
it+1

+θqit+1
∈ [0, 1]. Then we have |vt+1/2

it+1
−vtit+1

| < α and |vt+1/2
jt+1

−vtjt+1
| <

α. Then we can verify that ‖vt+1/2 − vt‖2 ≤ 4α2 for all t with probability 1. Finally, by using the
nonexpansive property of ΠV and v∗ ∈ V , we further obtain

E
[

‖vt+1 − v∗‖2 | Ft

]

= E
[

‖ΠVv
t+1/2 − v∗‖2 | Ft

]

≤ E
[

‖vt+1/2 − v∗‖2 | Ft

]

= ‖vt − v∗‖2 + 2(vt − v∗)⊤E
[

(vt+1/2 − vt) | Ft

]

+E
[

‖vt+1/2 − vt‖2 | Ft

]

,

≤ ‖vt − v∗‖2 + 2α(vt − v∗)⊤
(

∑

a∈A
(I − γPa)

⊤µt
a − (1− γ)q

)

+ 4α2,

for all t with probability 1. �

Proposition 8. We define for short that

Et = Φ(µt) +
(1− γ)2

|S| ‖vt − v∗‖2

and
Gt =

∑

a∈A
(µt

a)
⊤ ((I − γPa)v

∗ − ra) =
∑

i∈S

∑

a∈A
µt
i,a(v

∗ − γPav
∗ − ra)i.

Let α = |S|
2(1−γ)2β. The iterates generated by Algorithm 1 satisfy for all t with probability 1 that

E
[

Et+1 | Ft

]

≤ Et − βGt + β2 2|S|(|A| + 1)

(1− γ)2
. (14)

Proof. Let α = |S|
2(1−γ)2β. We multiply (13) with (1−γ)2

|S| and takes its sum with (12), obtaining

E
[

Et+1 | Ft

]

≤ Et + β2 2|S||A|+ |S|
(1− γ)2

+ β

(

∑

a∈A
(µt

a − µ∗
a)

⊤ ((γPa − I)vt + ra
)

+ (vt − v∗)⊤
(

∑

a∈A
(I − γPa)

⊤µt
a − (1− γ)q

))

.

20

We have

∑

a∈A
(µt

a − µ∗
a)

⊤ ((γPa − I)vt + ra
)

+ (vt − v∗)⊤
(

∑

a∈A
(I − γPa)

⊤µt
a − (1− γ)q

)

=
∑

a∈A
(µt

a − µ∗
a)

⊤ ((γPa − I)vt + ra
)

+ (vt − v∗)⊤
∑

a∈A
(I − γPa)

⊤(µt
a − µ∗

a)

=
∑

a∈A
(µt

a − µ∗
a)

⊤ ((γPa − I)v∗ + ra) (by the dual feasibility of µ∗)

=
∑

a∈A
(µt

a)
⊤ ((γPa − I)v∗ + ra) (by the linear complementarity condition for v∗, µ∗)

where the second equality uses the dual feasibility of µ∗ that
∑

a∈A(I − γPa)
⊤µ∗

a = (1− γ)q and the fourth
equality uses the complementary condition µ∗

a,i ((γPa − I)v∗ + ra)i = 0 for all i ∈ S, a ∈ A. Combining the
preceding relations, we obtain (14). �

7.2 Proof of Proposition 2

Proof. We claim that E1 ≤ log(|S||A|) + 1. To see this, we note that λ1 and π1
i ’s are uniform distributions

(according to Step 3 of Algorithm 1). Therefore we have DKL(λ
∗||λ1) ≤ log(SA) and DKL(π

∗
i ||π1

i) ≤ log(S)
for i, and ‖vt − v∗‖2 ≤ S

(1−γ)2 for all t. Then we have E1 ≤ (1− θ)DKL(λ
∗||λ1) + θ

∑

i∈S qiDKL(π
∗
i ||π1

i) +
(1−γ)2

|S| ‖v1 − v∗‖2 ≤ log(|S||A|) + 1.

We rearrange the terms of (14) and obtain

Gt ≤ 1

β
(Et −E

[

Et+1 | Ft

]

) +
2β|S|(|A|+ 1)

(1− γ)2
.

Summing over t = 1, . . . , T and taking average, we have

E

[

T
∑

t=1

Gt
]

≤ 1

β

T
∑

t=1

(E
[

Et
]

−E
[

Et+1
]

) +
2β|S|(|A| + 1)T

(1− γ)2

=
E
[

E1
]

−E
[

ET
]

β
+

2β|S|(|A|+ 1)T

(1 − γ)2

≤ 1

β
(log(|S||A|) + 1) +

2β|S|(|A| + 1)T

(1− γ)2
.

where the inequality is based on the fact E1 ≤ log(|S||A|) + 1 and ET ≥ 0. Therefore by taking β =

(1− γ)
√

log |S||A|+1
2|S||A|T , we obtain E

[

1
T

∑⊤
t=1 Gt

]

≤
√

2|S|(|A|+1)(log |S||A|+1)

(1−γ)
√
T

. �

References

[1] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[2] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic approximations, volume 22.
Springer Science & Business Media, 2012.

[3] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific, Belmont, MA, 1995.

[4] Dimitri P Bertsekas. Abstract dynamic programming. Athena Scientific, Belmont, MA, 2013.

[5] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Proceedings of the 34th IEEE
Conference on Decision and Control, volume 1, pages 560–564. IEEE, 1995.

[6] Vivek S. Borkar. Stochastic approximation: a dynamical systems viewpoint. Cambridge University Press, Cambridge,
2008.

21

[7] Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods for discrete distributions. In International
Colloquium on Automata, Languages, and Programming, pages 133–144. Springer, 2012.

[8] Yichen Chen and Mengdi Wang. Stochastic primal-dual methods and sample complexity of reinforcement learning. arXiv
preprint arXiv:1612.02516, 2016.

[9] Yichen Chen and Mengdi Wang. Lower bound on the computational complexity of discounted markov decision problems.
arXiv preprint arXiv:1705.07312, 2017.

[10] Kenneth L Clarkson, Elad Hazan, and David P Woodruff. Sublinear optimization for machine learning. Journal of the
ACM (JACM), 59(5):23, 2012.

[11] George Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 2016.

[12] Daniela Pucci de Farias and Benjamin Van Roy. The linear programming approach to approximate dynamic programming.
Operations Research, 51(6):850–865, 2003.

[13] Guy De Ghellinck. Les problemes de decisions sequentielles. Cahiers du Centre dEtudes de Recherche Opérationnelle,
2(2):161–179, 1960.

[14] F d’Epenoux. A probabilistic production and inventory problem. Management Science, 10(1):98–108, 1963.

[15] Eugene A Feinberg and Jefferson Huang. The value iteration algorithm is not strongly polynomial for discounted dynamic
programming. Operations Research Letters, 42(2):130–131, 2014.

[16] Ronald A. Howard. Dynamic programming and Markov processes. The MIT press, Cambridge, MA, 1960.

[17] Anatoli Juditsky, Arkadi Nemirovski, Claire Tauvel, et al. Solving variational inequalities with stochastic mirror-prox
algorithm. Stochastic Systems, 1(1):17–58, 2011.

[18] Michael J Kearns and Satinder P Singh. Finite-sample convergence rates for q-learning and indirect algorithms. In
Advances in neural information processing systems, pages 996–1002, 1999.

[19] Harold J Kushner and George Yin. Stochastic Approximation and Recursive Algorithms and Applications. Springer, 2003.

[20] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear programs in o (vrank)
iterations and faster algorithms for maximum flow. In Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on, pages 424–433. IEEE, 2014.

[21] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear programming. In Foundations
of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 230–249. IEEE, 2015.

[22] Michael L Littman, Thomas L Dean, and Leslie Pack Kaelbling. On the complexity of solving Markov decision problems.
In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, pages 394–402. Morgan Kaufmann
Publishers Inc., 1995.

[23] Yishay Mansour and Satinder Singh. On the complexity of policy iteration. In Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence, pages 401–408. Morgan Kaufmann Publishers Inc., 1999.

[24] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

[25] Arkadi Nemirovski and Reuven Y Rubinstein. An efficient stochastic approximation algorithm for stochastic saddle point
problems. In Modeling Uncertainty, pages 156–184. Springer, 2005.

[26] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.

[27] Bruno Scherrer. Improved and generalized upper bounds on the complexity of policy iteration. In Advances in Neural
Information Processing Systems, pages 386–394, 2013.

[28] Paul Tseng. Solving h-horizon, stationary markov decision problems in time proportional to log (h). Operations Research
Letters, 9(5):287–297, 1990.

[29] Mengdi Wang and Yichen Chen. An online primal-dual method for discounted Markov decision processes. In IEEE
Conference of Decisions and Control, 2016.

[30] Chak-Kuen Wong and Malcolm C. Easton. An efficient method for weighted sampling without replacement. SIAM Journal
on Computing, 9(1):111–113, 1980.

[31] Yinyu Ye. A new complexity result on solving the Markov decision problem. Mathematics of Operations Research,
30(3):733–749, 2005.

[32] Yinyu Ye. The simplex and policy-iteration methods are strongly polynomial for the Markov decision problem with a fixed
discount rate. Mathematics of Operations Research, 36(4):593–603, 2011.

22

	1 Introduction
	1.1 Our Approach and Technical Novelties
	1.2 Main Results

	2 Related Literatures
	3 Bellman Equation, Linear Programs, and Stochastic Saddle Point Problem
	4 Algorithms
	4.1 Programming Techniques for Markov Decision Processes
	4.2 The Randomized Primal-Dual Algorithm
	4.3 The Meta Algorithm

	5 Complexity Analysis
	5.1 Duality Gap Analysis
	5.2 From Dual Variable To Approximate Policy
	5.3 Approximate Policy Evaluation
	5.4 Run-Time Complexity For Algorithms ?? and ??

	6 Remarks
	7 Proof of Proposition ??
	7.1 Technical Lemmas
	7.2 Proof of Proposition ??

