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Abstract

We consider the problem of control of hierarchical Markov decision processes and develop a simulation based two-timescale actor-critic
algorithm in a general framework. We also develop certain approximation algorithms that require less computation and satisfy a performance
bound. One of the approximation algorithms is a three-timescale actor-critic algorithm while the other is a two-timescale algorithm, however,
which operates in two separate stages. All our algorithms recursively update randomized policies using the simultaneous perturbation stochastic
approximation (SPSA) methodology. We briefly present the convergence analysis of our algorithms. We then present numerical experiments on
a problem of production planning in semiconductor fabs on which we compare the performance of all algorithms together with policy iteration.
Algorithms based on certain Hadamard matrix based deterministic perturbations are found to show the best results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Markov decision processes (MDPs) (Bertsekas, 2001) form
a general framework for the control of dynamic systems un-
der uncertainty. However, traditional methodologies based on
dynamic programming (DP) for solving MDPs suffer from the
twin drawbacks of curse of dimensionality and lack of model
information in most real world systems. Reinforcement learn-
ing (RL) (Bertsekas & Tsitsiklis, 1996) schemes have emerged
in recent years as efficient alternatives to traditional solution
methodologies for MDPs. These are applicable in scenarios
where obtaining exact model information is hard; however,
where transitions can be easily simulated. There are, however,
situations where one is confronted with the problem of multiple
decision makers with a clear hierarchy amongst them (Chang,
Fard, Marcus, & Shayman, 2003; Forestier & Varaiya, 1978;
Parr, 1998; Sutton, Precup, & Singh, 1999). The decisions made
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at the higher level (HL) have a greater consequence (in terms
of the overall system performance) and are made much less of-
ten than those at the lower level (LL). In Parr (1998), MDPs
with actions arranged in a hierarchy are considered. LL actions
(LLA) in this take a unit time-step for execution; however, HL
actions (HLA) are assumed to be ‘temporally abstract’ taking
varying amounts of time. Similar ideas have also been used in
Sutton et al. (1999) except for the difference that both HLA
and LLA can be initiated at any time. In Forestier and Varaiya
(1978), it is assumed that the HL controller issues a new sta-
tionary policy, each time the Markov chain visits a given sub-
set of the state space, on the basis of which the LL controller
chooses actions. In Chang et al. (2003), a framework for hier-
archical control using a system of coupled MDPs that operate
with different time schedules is provided. The transitions of the
LL MDP occur every instant whereas those of the HL MDP
occur once every T instants for some T > 1. Even though the
transition dynamics of the LL MDP depends on the (current)
state and action at both levels, that of the HL MDP is indepen-
dent of those at the LL. However, the choice of HLA depends
on the aggregate LL performance.

Reinforcement learning based actor-critic algorithms for
MDPs have been studied in Bhatnagar and Kumar (2004),
Konda and Borkar (1999), Konda and Tsitsiklis (2003). The
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algorithm in Konda and Borkar (1999) performs policy iteration
by using coupled stochastic recursions driven by different step-
size schedules or timescales. The value function for a given pol-
icy update is iterated on the faster timescale while policy itself
is updated on the slower one. In Bhatnagar and Kumar (2004), a
two-timescale actor-critic algorithm for MDPs with finite state
but compact (non-discrete) action set is proposed. This algo-
rithm does gradient search using two-simulation, randomized
difference simultaneous perturbation stochastic approximation
(SPSA) (Spall, 1992) estimates on the slower timescale. The
policy updates are performed in the space of stationary de-
terministic policies unlike (Konda & Borkar, 1999) that does
so for stationary randomized policies. SPSA requires only two
parallel simulations to estimate the performance gradient for
any N-dimensional parameter vector. A one-simulation form of
SPSA has also been proposed recently (Spall, 1997), however,
which does not show good performance as regular SPSA. In
Bhatnagar, Fu, Marcus, and Wang (2003), it is observed that the
use of certain normalized Hadamard matrix based deterministic
perturbations, in place of randomized, improves performance
significantly in the case of one-simulation SPSA algorithms.

We develop in this paper certain actor-critic algorithms for
hierarchical control. The basic framework we consider is simi-
lar to Chang et al. (2003). We assume both HL and LL MDPs
to have finite state and action spaces. We first present a general
two-timescale algorithm that requires an enumeration of all T-
horizon LL policies for any given HL state (HLS) and action.
For T large, we present two approximation (actor-critic) algo-
rithms that update stationary randomized policies for both HL
and LL MDPs. The first of these (AA1) is a three-timescale
actor-critic algorithm. Here, on the fastest timescale, the value
function for the LL MDP, and on the slowest one, the poli-
cies for both HL and LL MDPs are updated. Also, the HL
value function is updated on the timescale that falls between the
two timescales above. In the second approximation algorithm
(AA2), the HL and LL recursions are run in separate stages.
First, corresponding to each HLS and HLA pair, the optimal
LL value function and policy are computed using an actor-critic
algorithm for MDPs. Next, the optimal HL policy and value
function are obtained using a similar algorithm, except that it
takes as input the converged value estimates of the LL process.
Since the algorithm is run in two different stages, the same set
of step-size schedules can be used in both stages. All our algo-
rithms use one-simulation and update in the space of stationary
randomized policies. The slowest timescale recursions in our
algorithms use one-simulation SPSA gradient estimates.

To the best of our knowledge, this is the first work that de-
velops actor-critic algorithms for hierarchical MDPs. We give
a sketch of convergence of our algorithms. We then present
numerical experiments on a problem of production planning
in semiconductor fabs using algorithms AA1 and AA2 under
both randomized and Hadamard matrix based perturbations
(for the SPSA estimates) with exact policy iteration. The use
of Hadamard matrix based perturbations is seen to consider-
ably improve performance in this setting. The rest of the paper
is organized as follows: in Section 2, we briefly describe the
framework for hierarchical MDPs. We then present our general

adaptive algorithm and the approximation algorithms. This is
followed by the convergence analysis. In Section 3, we present
our numerical results.

2. Framework and the actor-critic algorithm

We consider a joint process {(Y u
n , Y l

n)}, n�0, where {Yu
n } and

{Y l
n} correspond to the HL and LL MDP, respectively, with state

(action) spaces Su and Sl (Au and Al), respectively. We assume
that Su∩Sl =�. Further Au∩Al =�. Let Au(x) (Al(y)) denote
the set of feasible actions in HLS x (LLS y). The LL MDP {Y l

n}
is assumed to make transitions at instants n = 0, 1, . . . , while
the HL MDP does so at instants n = 0, T , 2T , . . . , for some
integer T > 1. Thus Yu

mT =Yu
mT +1 =· · ·=Yu

(m+1)T −1, m�0. In
general, T can be chosen to be a random variable, independent
of the LLS and LLA. We assume that at instants mT , m�0,
the HL decisions are made prior to the LL ones by an infinites-
imally small amount of time so that the LL decision maker has
knowledge of HLS and HLA chosen at that instant. Let {Zu

n}
({Zl

n}) denote the associated sequence of actions chosen at HL
(LL). Also, let pu(yu | xu, zu) (pl(yl | xl, zl, xu)) denote the
transition probabilities associated with the HL (LL) MDP. Here
xu and yu (xl and yl) denote the HLS (LLS) at instants nT and
(n + 1)T (nT + j and nT + j + 1, 0�j �n − 1), respectively.

Suppose S � {x = (xu, xl) | xu ∈ Su, xl ∈ Sl s.t. xl is a
valid LLS corresponding to xu}. Then S is the set of all feasible
HLS and LLS pairs. In the following, for any generic x ∈
S, xu (xl) shall correspond to its HL (LL) component. An
admissible LL policy (LLP) �l = {�l

0, �
l
1, . . .}, is a sequence

of functions �l
j : S × Au → Al, j �0, such that �l

j (x, au) ∈
Al(xl), ∀x ∈ S and au ∈ Au(xu). We define cyclic LLP �l as
those for which �l

nT +j=�l
mT +j , ∀n �= m, j ∈ {0, 1, . . . , T −1}.

By defining T-horizon policy segments (or simply T-segments)
dl
n ={�l

nT , �l
nT +1, . . . , �

l
(n+1)T −1}, one can see that for a cyclic

LLP, dl
n = dl

m ≡ dl, ∀n �= m. Thus a cyclic LLP may also
be written as �l = {dl, dl, . . .}, or one with time stationary T-
segments. We say that �u = {�u

0, �u
1, . . .} is an admissible HL

policy (HLP) if �u
j : S → Au, j �0, are such that �u

j (x) ∈
Au(xu), ∀x ∈ S. A stationary HLP is one with �u

j = �u
k ≡ �u,

∀j �= k. By a standard abuse of notation, we simply call �u(dl)

to be the stationary HLP (cyclic LLP). Let Rl : S ×Au ×Al →
R and K : Su × Au → R be the LL cost function and the
immediate HL cost, respectively, that are both assumed to be
nonnegative and bounded. Suppose � ∈ (0, 1]. The expected
single period HL cost is then given by

Ru(x, au, dl)

= E

⎡
⎣ (n+1)T −1∑

t=nT

�f (t)Rl(xt , a
u, �l

t (xt , a
u))

∣∣∣∣∣∣ xnT = x

⎤
⎦

+ K(xu, au),

where for r ∈ {0, 1, . . . , T − 1}, f (nT + r) = r , n�0. The
expectation above is taken over all sample trajectories from
x ≡ (xu, xl) over T time steps when actions {au, dl} are used.
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The aim is to find the optimal {�u, dl} pair that attains V �(x),
x ∈ S, defined as

V �(x) = min
�u

min
dl

E

[ ∞∑
n=0

�nRu(xnT , �u(xnT ), dl)

∣∣∣∣∣ x0 = x

]
,

with 0 < � < 1 as the discount factor. For given xu ∈ Su and
au ∈ Au(xu), let Dl(xu, au) denote the set of all cyclic (T-
horizon) policies in which dl takes values. Suppose pT (· | ·)
represents the T-step transition probability of the LL process.

In Chang et al. (2003), the concept of an initialization func-
tion is used. The idea is that the state of the LL MDP is reini-
tialized using this function, once every T time epochs. This can
be useful in cases where the ‘next’ HLS–LLS pair obtained af-
ter T epochs, does not lie in S. Suppose

�dl (x, au; yl) =
∑
z∈Sl

pT −1(z | x, au, dl)�xu,au(yl | z),

where �xu,au(yl | z) corresponds to the probability of choosing
LLS yl at some instant (say) nT (n�1), given that the LLS at
instant nT −1 is z, and HLS and HLA at instant (n−1)T are xu

and au, respectively; see Chang et al. (2003) for a discussion
on the possible forms of the initialization function. For our
numerical experiments (Section 4), we simply choose the LLS
at instants nT, n�0, according to a uniform distribution on the
set {ŷ | (yu, ŷ) ∈ S}, where yu is the ‘next’ HLS after xu. One
can write the Bellman equation in terms of �dl as

V �(x) = min
au∈Au(xu)

min
dl∈Dl(xu,au)

⎡
⎣Ru(x, au, dl) + �

∑
yu∈Su

∑
yl∈Sl

�dl (x, au; yl)pu(yu | xu, au)V �(y)

⎤
⎦ . (1)

We now present an actor-critic algorithm for this prob-
lem. Suppose �u and �l are stationary randomized poli-
cies for the HL and LL MDPs. For notational simplicity,
we assume in the following that the cardinalities of the
sets Au(xu) and Dl(xu, au) are constants (N + 1) and
(M + 1), respectively. Let us enumerate the set of feasible
actions Au(xu) as Au(xu) = {a0

x, a1
x, . . . , a

N
x }. Similarly, let

Dl(xu, au) = {d0
x,a, d

1
x,a, . . . , d

M
x,a}. Let TP , T̂P, denote the

simplexes

TP =
⎧⎨
⎩(y1, . . . , yN)

∣∣∣∣∣∣yj �0, j = 1, 2, . . . , N,

N∑
j=1

yj �1

⎫⎬
⎭ ,

T̂P =
⎧⎨
⎩(y1, . . . , yM)

∣∣∣∣∣∣yj �0, j = 1, 2, . . . , M,

M∑
j=1

yj �1

⎫⎬
⎭ ,

respectively. Let � : RN → TP (�̂ : RM → T̂P ) denote the
projection from RN (RM) to TP (T̂P ). The policy �u (�l ) can
be identified with vector of probabilities 	̂u = [[	u(x; au)]],

x ∈ S, au ∈ Au(xu)\{a0
x} (	̂l = [[	l (x, au; dl)]], x ∈ S,

au ∈ Au(xu), dl ∈ Dl(xu, au)\{d0
x,a}). The probability

	u(x; a0
x) (	l (x, au; d0

x,a)) gets automatically specified from
the knowledge of �u (�l ). Our algorithm updates stationary
randomized policies with TP , T̂P , as the relevant constraint
sets. Let 	̂u

n and 	̂l
n denote the nth updates of 	̂u and 	̂l .

We consider variables 
u
n(x; a) and 
l

n(x, au; d), n�0 that
are used to perturb the probability vectors 	̂u

n and 	̂l
n so as

to obtain optimal policies via a gradient search procedure.
Suppose 
̂

u

n(x) = (
u
n(x; a

j
x ), j = 1, . . . , N), x ∈ S and


̂
l

n(x, au) = (
l
n(x, au; d

j
x,a), j = 1, . . . , M), x ∈ S, au ∈

Au(xu), respectively. We use one of the two constructions
below for obtaining these variables.

Construction (A): randomized perturbations

u

n(x; au) and 
l
n(x, au; dl), are independent, symmetric,

mean-zero, ±1-valued, Bernoulli distributed random variables.
More general distributions can however be considered for these
variables (see Spall, 1992).

Construction (B): deterministic perturbations

Let 
u
n(x; au) and 
l

n(x, au; dl), be ±1-valued variables. Ex-
act values of these for any given n are obtained using an appro-
priate normalized Hadamard matrix based construction as in
Bhatnagar et al. (2003). An m×m (m�2) matrix H is said to be
a normalized Hadamard matrix of order m if its entries belong
to {1, −1} and HT H = mIm, where Im is the m × m identity
matrix. Further, all the elements in the first column of this ma-
trix are 1. For general k > 1, H2k can be obtained as H2k (1, 1)=
H2k (1, 2)=H2k (2, 1)=H2k−1 and H2k (2, 2)=−H2k−1 as the
four block elements each of dimension 2k−1 × 2k−1. Also, the
elements of H2 are H2(1, 1) = H2(1, 2) = H2(2, 1) = 1 and
H2(2, 2) = −1. For an N-dimensional vector, 
̂

u

n(x), the value
of k used is k = 	log2(N + 1)
. Next remove the first col-
umn from the normalized Hadamard matrix constructed above
and pick any N of the remaining (P − 1) columns and all P
(P = 2k) rows to form a new matrix, R, whose rows are de-
noted R0, . . . , RP−1. Finally, the perturbations 
̂

u

n(x), n�0,

are obtained as 
̂
u

n(x)=Rn mod P . The perturbations 
̂
l

n(x, au),
n�0, are obtained in a similar manner.

2.1. The general actor-critic algorithm

In what follows, for ease of notation, we denote 
̂
u

n ≡

̂

u

n(x) and 
̂
l

n ≡ 
̂
l

n(x, au). Let {
̂u

n} and {
̂l

n} be obtained us-
ing one of the constructions above (the same construction is
however used for both sequences). Suppose � > 0 is a given
small constant. Let 	̄u

n(x) = �(	̂u
n(x) − �
̂

u

n) and 	̄l
n(x, au) =

�̂(	̂l
n(x, au)− �
̂

l

n), respectively. In particular, we write 	̄u
n(x)

(resp. 	̄l
n(x, au)) as 	̄u

n(x)=(	̄u
n(x; a

j
x ), j =1, . . . , N)T (resp.

	̄l
n(x, au) = (	̄l

n(x, au; d
j
x,a), j = 1, . . . , M)T ). Let {�u

n} be a
sequence of random variables with distribution pu(. | xu, au).

Let dl denote the cyclic policy {�l
0, �

l
1, . . . , �

l
T −1}. For a given

j = 0, 1, . . . , T − 2, let {�l
n,j } be a sequence of i.i.d. random

variables with distribution pl(. | x, au, �l
j (x, au)). Also for
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j =T −1, suppose {�l
n,T −1} be a sequence of i.i.d. random vari-

ables with distribution �xu,au(. | xl). Further we assume that
all the above (T ) sequences of random variables are mutually
independent. Random variables �u

n and �l
n,j , 0�j �T − 1, are

used to simulate the next states of the corresponding HL and
LL MDPs.

Suppose L�1 is a given integer. Denote 	̃u
n(x) = 	̂u

[n/L](x),

	̃l
n(x, au)= 	̂l

[n/L](x, au), 
̃
u

n = 
̂
u

[n/L] and 
̃
l

n = 
̂
l

[n/L], respec-

tively, n�0. Let u
n(

l
n) be an Au(xu)(Dl(xu, au)) valued ran-

dom variable with conditional distribution given �(Vj (·), 	̃u
j (·),


̃
u

j , 	̃
l
j (·, ·), 
̃

l

j ,�u
j , �l

j,r , j �n, 0�r �T −1) being 	̄u
[n/L](x)

(	̄l
[n/L](x, au)) on the set Au(xu)\{a0

x} (Dl(xu, au)\{d0
x,a})

with 	̄u
[n/L](x; a0

x) (	̄l
[n/L](x, au; d0

x,a)) automatically speci-
fied. Here Vj (·) is as in the algorithm below. Random vari-
ables u

n and l
n are used to simulate the actions chosen by

the HL and LL MDPs according to the given randomized
policies. Note that here too we suppress dependence of �u

n,
u

n etc. on the state/action variables to simplify notation. De-

fine (
̂
u

n)
−1 = (1/
u

n(x; a
j
x ), j = 1, . . . , N). Similarly let

(
̂
l

n)
−1 = (1/
l

n(x, au; d
j
x,a), j = 1, . . . , M). Let {b(n)} and

{c(n)} be two step-size sequences that satisfy∑
n

b(n) =
∑
n

c(n) = ∞,
∑
n

(b(n)2 + c(n)2) < ∞,

c(n) = o(b(n)). (2)

Consider the hierarchical MDP (Y u
n , Y l

n), n�0 that takes values
in S and is governed according to the randomized policy pair
(	̄u

[n/L], 	̄
l
[n/L]). Let V0(x) = 0 ∀x ∈ S. Then,

	̂u
n+1(x) = �

(
	̂u

n(x) + c(n)
VnL(x)

�
(
̂

u

n)
−1
)

, (3)

	̂l
n+1(x, au) = �̂

(
	̂l

n(x, au) + c(n)
VnL(x)

�
(
̂

l

n)
−1
)

, (4)

where for m = 0, 1, . . . , L − 1,

VnL+m+1(x) = (1 − b(n))VnL+m(x) + b(n)

(R̃u(x, u
nL+m, l

nL+m) + �VnL+m(�u
nL+m, �l

nL+m)). (5)

In the above, �l
n are independent random variables with

distribution �dl (x, au; .). These are simulated using �l
n,j ,

j = 0, 1, . . . , T − 1. Also, the estimate of Ru is

R̃u(x, au, l
nL+m) =

T −1∑
j=0

�jRl(xj , a
u, l

nL+m,j )

+ K(xu, au).

Here au is the HLA in state x chosen according to u
nL+m

and is simulated only once. Also, l
nL+m,j simulates the LLA

�l
(nL+m)T +j (xj , a

u) used at instant (nL + m)T + j . Further,

xl
j , 0�j �T − 1, are defined recursively according to xl

0 = xl

and for j �1, xl
j = �l

(nL+m)T ,j that in turn depends on xl
j−1.

The random variables �u
n, �l

n, u
n, l

n, etc. serve as estimators of

conditional expectations, w.r.t. their respective distributions, of
the corresponding quantities in whose arguments they appear.
The averaging itself is, however, achieved using the appropriate
stochastic approximation recursions.

2.2. Approximation algorithms

For ease of computation, we assume as in Chang et al.
(2003) that the initialization function is independent of LLP.
Thus at the LL, given xnT = x and au

nT = au, the goal is to find
R�(x, au)=mind∈Dl(xu,au) Ru(x, au, d), which corresponds to
solving a T-horizon problem for given x and au. Note that we
do not consider the (original) value function V �(·) in the mini-
mization above. Here, we consider a scenario where T is large
and � < 1. We propose to approximate in this case the T-horizon
LL MDP with an infinite horizon MDP. The solution method-
ology would then give an optimal LLP that is stationary
(instead of cyclic). The Bellman equation of optimality can be
written as

V �(x) = min
au∈Au(xu)

⎡
⎣R�(x, au) + �

∑
yu∈Su

∑
yl∈Sl

�̂
′
(x, au; yl)pu(yu | xu, au)V �(y)

⎤
⎦ . (6)

Here �̂
′
is the initialization function that is independent of LLP.

The Bellman equation for the LL MDP is

V l,�(x, au) = min
al∈Al(xl)

[Rl(x, au, al)

+ �
∑
yl∈Sl

pl(yl | x, au, al)V l,�(y, au)], (7)

where y = (yu, yl) with yu = xu. We have

R�(x, au) = V l,�(x, au) + K(xu, au). (8)

We now propose two actor-critic approximation algorithms for
this setting. Both of these algorithms use the fact that solution of
(6) requires (via (8)) the solution of (7). Our first approximation
algorithm (AA1) uses three timescales since (cf. (6)–(8)) the
upper-level value update requires the converged value of the LL
value function. Hence, the latter is updated on a faster timescale
than the former. Moreover, both HLP and LLP are updated
on the slowest scale. The next algorithm (AA2) on the other
hand, handles the HL and LL problems in two separate stages.
In the first stage, for each upper-level state and action pair, a
two-timescale actor-critic algorithm is used for computing the
optimal LLP and value function. Next, another two-timescale
actor-critic algorithm is used for the upper-level problem. For
simplicity, let us assume that each set Al(xl) has the form
Al(xl) = {b0

x, . . . , b
R
x } and has exactly (R + 1) elements. Let

T̄P denote the simplex

T̄P =
⎧⎨
⎩(y1, . . . , yR) | yj �0, j = 1, 2, . . . , R,

R∑
j=1

yj �1

⎫⎬
⎭ .
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Let �̄ : RR → T̄P denote the projection map from RR to T̄P .
We simply denote the LLP (in this case) by 	̂l=[[	l (x, au; bl)]],
x ∈ S, au ∈ Au(xu), bl ∈ Al(xl)\{b0

x}. Here 	l (x, au; bl) is
the probability of choosing LLA bl in state x ∈ S when the
HLA is au. Also, 	l (x, au; b0

x) gets automatically specified.
Let 	̂l

n denote the nth update of 	̂l . Consider now perturba-
tion variables (by abuse of notation) 
l

n(x, au; b), x ∈ S,
au ∈ Au(xu), b ∈ Al(xl), n�0, obtained using one of the

two constructions above. Let 
̂
l

n = (
l
n(x, au; b

j
x), 1�j �R)

and 	̄l
n(x, au) = �̄(	̂l

n(x, au) − �
̂
l

n), respectively. Denote

	̄l
n(x, au) ≡ (	̄l

n(x, au; b
j
x), 1�j �R). Let {�l

n}, be a sequence
of independent random variables with distribution pl(· |
x, au, �l (x, au)). Here �l corresponds to the stationary LLP.

Suppose for n�0, 	̃l
n(x, au)=	̂l

[n/L](x, au) and 
̃
l

n=
̂
l

[n/L], re-

spectively. Let {�̂l
n} be a sequence of independent random vari-

ables with distribution �̂
′
(x, au; ·) over Sl . Let �l

n be an Al(xl)-
valued random variable with conditional distribution given

�(V̂ l
j (·, ·), V̂ u

j (·), 	̃u
j (·), 
̃

u

j , 	̃
l
j (·, ·), 
̃

l

j , �
u
j , �

l
j , �̂

l
j , j �n) be-

ing 	̄l
[n/L](x, au) on the set Al(xl)\{b0

x}. Here 	̃u
j (·), 
̃

u

j , �u
j

and u
j are defined as before.

2.2.1. Approximation Algorithm 1 (AA1)
Let

(
̂
l

n)
−1 =

(
1


l
n(x, au; b1

x)
, . . . ,

1


l
n(x, au; bR

x )

)T

.

Consider positive real numbers {a(n)} satisfying

∑
n

a(n) = ∞,
∑
n

a(n)2 < ∞, b(n) = o(a(n)).

Let V̂ u
0 (x) = V̂ l

0(x, au) = 0 ∀x ∈ S, au ∈ Au(xu). Then,

	̂l
n+1(x, au) = �̄

(
	̂l

n(x, au) + c(n)
V̂ l

nL(x, au)

�
(
̂

l

n)
−1

)
,

(9)

	̂u
n+1(x) = �

(
	̂u

n(x) + c(n)
V̂ u

nL(x)

�
(
̂

u

n)
−1

)
, (10)

where for m = 0, 1, . . . , L − 1,

V̂ l
nL+m+1(x, au) = V̂ l

nL+m(x, au) + a(n)(Rl(x, au, �l
nL+m)

+ �V̂ l
nL+m((xu, �l

nL+m), au)

− V̂ l
nL+m(x, au)), (11)

V̂ u
nL+m+1(x) = (1 − b(n))V̂ u

nL+m(x)

+ b(n)(V̂ l
nL+m(x, u

nL+m)

+ K(xu, u
nL+m)

+ �V̂ u
nL+m(�u

nL+m, �̂l
nL+m)). (12)

With AA1, one no longer needs to update policies in the set
Dl(xu, au) as only stationary policies are considered and for
which the set Al(xl) suffices. Note that the cardinality of
Dl(xu, au) increases exponentially with T. The infinite horizon
approximation in (8) along with the use of different timescales
allows one to use V̂ l

nL+m(x, au) + K(xu, au) as an estimate

for R�(x, au) in (12). Suppose V
l,�
T (·, ·) corresponds to the

(actual) value function for the T-horizon LL MDP. Then it is
easy to see that

‖V l,�(x, au) − V
l,�
T (x, au)‖� �T G

(1 − �)
,

where

‖Rl(·, ·, ·)‖�G < ∞.

Since,

V �(x) = min E

[ ∞∑
n=0

�nR�(Yn, �
u(Yn)

∣∣∣∣∣Y0 = x

]
,

by (8), it is easy to see that ‖V �
T (x) − V �(x)‖

��T G/((1 − �)(1 − �)), where V �
T (x) is the optimal value

function for the hierarchical MDP when the LL MDP problem
has a time horizon of T. Thus for large T and � < 1, it is rea-
sonable to approximate the LL MDP with an infinite horizon,
discounted cost problem.

2.2.2. Approximation Algorithm 2 (AA2)
We have similar recursions (here) as (9)–(12), except that

these are run in two different stages. In the first stage, corre-
sponding to each HLS and HLA pair, the optimal LL value
function V l,�(·, ·) is computed using recursions (9) and (11),
respectively. Next, recursions (10) and (12) are run, however,
with V l,�(·, ·) in place of V̂ l

nL+m(·, ·) in (12). One may choose
a(n) = b(n) here.

2.3. Convergence analysis

We sketch the analysis for the general algorithm. We first as-
sume Construction (A). Let Gn=�(Vj (x), 	̃u

j (x), 
̃
u

j , 	̃l
j (x, au),


̃
l

j , j �n; �u
j , �l

j,k , �l
j , u

j , l
j,k , l

j , j < n, k = 0, 1, . . . , T −
1), n�0, denote a sequence of �-fields. Note that

E[Rl(xkT , u
k , 

l
k,0) | Gk, xkT = x]

=
∑

au∈Au(xu)

∑
dl∈Dl(xu,au)

	̄u
k (x; au)	̄l

k(x, au; dl)

× Rl(x, au, �l
0(x, au)),

E[Rl(xkT +1, 
u
k , 

l
k,1) | Gk, xkT = x]

=
∑
au,dl

	̄u
k (x; au)	̄l

k(x, au; dl)
∑
y∈Sl

pl(y | x, au, �l
0)

× Rl((xu, y), au, �l
1(x, au)).
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Proceeding in this manner, one can see that

E[(R̃u(x, u
k , 

l
k) + �Vk(�

u
k , �

l
k)) | Gk]

=
∑
au,dl

	̄u
k (x; au)	̄l

k(x, au; dl)(Ru(x, au, dl)

+ �
∑

r∈Su,s∈Sl

pu(r | xu, au)�dl (x, au; s)

× Vj ((r, s))). (13)

For n�0, let b̃(n) = b([n/L]). Then
∑

n b̃(n) = ∞,
∑

n b̃(n)2

< ∞ and c(n) = o(b̃(n)). The recursions (3)–(5) in the algo-
rithm can now be rewritten using step-sizes c(n) and b̃(n).
One can show as in Theorem 2.1 of Tsitsiklis (1994) that
supk ‖Vk(x)‖ < ∞, ∀x ∈ S. As a consequence of (13), one can
form a suitable martingale sequence as the sum of terms involv-
ing the product of b̃(n) with the difference of the term multiply-
ing b(n) on the RHS of (5) and the LHS of (13). The resulting
martingale sequence can be seen to be convergent. Hence, the
above terms asymptotically diminish. Note that (3)–(4) can be
rewritten as

	̂u
n+1(x) = �(	̂u

n(x) + b̃(n)�1(n)),

	̂l
n+1(x, au) = �̂(	̂l

n(x, au) + b̃(n)�2(n)),

where �1(n) and �2(n) are o(1) since c(n) = o(b̃(n)). Now for
given 	̄u, 	̄l , consider the following ODE: for x ∈ S,

˙̂
V t (x) =

∑
au,dl

	̄u(x; au)	̄l (x, au; dl)(Ru(x, au, dl)

+ �
∑

r∈Su, s∈Sl

pu(r | xu, au)�dl (x, au; s)

× Vt (r, s)) − Vt (x). (14)

It is easy to see that (14) is an asymptotically stable linear
system with a unique fixed point corresponding to the solution
of the Poisson equation: for x ∈ S,

V̂ (x) =
∑
au,dl

	̄u(x; au)	̄l (x, au; dl)(Ru(x, au, dl)

+
∑

r∈Su, s∈Sl

pu(r | xu, au)�dl (x, au; s)

× V̂ ((r, s))). (15)

Thus the faster timescale recursion (5), for given HLP and
LLP updates, asymptotically tracks the solution of (15). The re-
mainder of the analysis works towards showing that the slower
timescale recursions (3)–(4) converge to corresponding opti-
mal policies for the hierarchical MDP. For bounded, contin-
uous v(.)(w(.)) : RN(RM) → RN(RM), define �′(v(y)) =
lim�↓0 (�(y + �v(y)) − �(y))/�(�̄

′
(w(y)) = lim�↓0 (�̂(y +

�w(y)) − �̂(y))/�). Consider the ODEs:

˙̂	u

t (x) = �′(−∇	̂u
t (x)V	̂u

t ,	̂l
t
(x)), (16)

˙̂	l

t (x, au) = �̄
′
(−∇	̂l

t (x,au)
V	̂u

t ,	̂l
t
(x)). (17)

Suppose M = {(	̂u
, 	̂l

) | �′(∇	̂u
(x)V	̂u

,	̂l (x)) = 0, ∀x ∈ S,

�̄
′
(∇	̂l

(x,au)
V	̂u

,	̂l (x)) = 0, ∀x ∈ S, au ∈ Au(xu)}. Suppose

for � > 0, M� = {(	u, 	l ) | ∃(	̂u
0, 	̂l

0) ∈ M with ‖(	u, 	l ) −
(	̂u

0, 	̂l
0)‖ < �}. Consider now �-fields Ĝn = �(VmL(x), 	̂u

m(x),

	̂l
m(x, au), x ∈ S, au ∈ Au(xu), m�n; 
̂

u

m, 
̂
l

m, x ∈ S, au ∈
Au(xu), m < n), n�1. We finally have

Theorem 1. Given � > 0, ∃�0 > 0 such that for all � ∈ (0, �0],
the algorithm (3)– (5) converges to M� with probability one.

Proof. Note that recursion (3) of the algorithm is asymptoti-
cally analogous to the recursion

	̂u
n+1(x) = �

(
	̂u

n(x) + c(n)E

[
V	̄u

n,	̄l
n
(x)

�
(
̂

u

n)
−1 | Ĝn

])
.

Assume now that 	̂u
n(x) lies in the interior of the simplex TP

such that for � small, �(	̂u
n(x) −�
̂

u

n) =	̂u
n(x) −�
̂

u

n. By a
Taylor series expansion, we have

V	̄u
n,	̄l

n
(x) = V	̂u

n,	̂l
n
(x) − �

N∑
j=1


u
n(x; a

j
x )∇	u

n(x;aj
x )

V	̂u
n,	̂l

n
(x)

− �
M∑
l=1


l
n(x, au; dl

x,a)∇	l
n(x,au;dl

x,a)

× V	̂u
n,	̂l

n
(x) + O(�2).

It is now easy to verify from Construction (A) that

E

[
V	̄u

n,	̄l
n
(x)

�
u
n(x; au)

∣∣∣∣∣ Ĝn

]
= −∇	u

n(x;au)V	̂u
n,	̂l

n
(x) + O(�),

for au ∈ Au(xu)\{a0
x}. A similar analysis can be seen to hold

for recursion (4) of the algorithm as well. Finally, using stan-
dard arguments, it can be seen that

∑
x∈S V	̂u

t ,	̂l
t
(x) is a strict

Liapunov function for (16)–(17). The claim follows by letting
� → 0. An argument similar to Bhatnagar and Kumar (2004)
gives the claim for 	̂u

n on the boundary of simplex TP . �

Consider now the case when Construction (B) is used for
generating perturbations. The only changes needed are in the
proof of Theorem 1 as the rest of the analysis proceeds along
exactly the same lines. It can be shown as in Bhatnagar et al.
(2003) that∥∥∥∥∥∥

(n+P)∑
m=n

c(m)

c(n)

V	̂u
n,	̂l

n
(x)

�
u
n(x; ak

x)

∥∥∥∥∥∥ ,

∥∥∥∥∥∥
(n+P)∑
m=n

N∑
j=1,j �=k

c(m)

c(n)


u
n(x; a

j
x )


u
n(x; ak

x)
∇	u

n(x;aj
x )

V	̂u
n,	̂l

n
(x)

∥∥∥∥∥∥
→ 0 as n → ∞.

Note that perturbations 
u
n(x; ak

x) are generated using a nor-
malized Hadamard matrix with P rows while perturbations
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l
n(x, al; d) are generated using a similar matrix with

P̄ = 2	log2(M+1)
 rows. However,


l
n(x; au, d)


u
n(x; ak

x)
= +1 or − 1

exactly half the number of times in a cycle with P = P̄ if
	log2(N +1)
=	log2(M +1)
. Otherwise, P is greater (lower)
than P̄ by at least a factor of 2 if 	log2(N + 1)
 > 	log2(M +
1)
(	log2(N + 1)
 < 	log2(M + 1)
). Thus one also obtains as
in Bhatnagar et al. (2003) that∥∥∥∥∥∥

(n+P)∑
m=n

M∑
j=1

c(m)

c(n)


l
n(x, au; d

j
x,a)


u
n(x; ak

x)
∇	l

n(x,au;dj
x,a)

V	̂u
n,	̂l

n
(x)

∥∥∥∥∥∥
→ 0 as n → ∞.

Thus, as � → 0, (3) is analogous to

	̂u
n+1(x) = �(	̂u

n(x) − c(n)∇	̂u
n(x)V	̂u

n,	̂l
n
(x)). (18)

The rest follows as in Theorem 1. An analogous argument set-
tles the claim for iteration (4). Finally, the analysis for the ap-
proximation algorithms can be shown in a similar manner with
appropriate changes.

3. Numerical experiments

We consider the problem of planning and scheduling in a
semiconductor fab. We consider a model similar to Bhatnagar,
Fernandez-Gaucherand, Fu, Marcus, and He (1999), Panigrahi
and Bhatnagar (2004). The HL decisions correspond to buying
new and/or discarding old machines, while those at the LL cor-
respond to capacity switch over from one type of production
and/or operation to another. We assume that decisions on ca-
pacity switchover are made at each instant while those on buy-
ing/discarding are made once every T instants. In the numerical
results in Bhatnagar et al. (1999), HL decisions are not consid-
ered for computational simplicity. In Panigrahi and Bhatnagar
(2004), a similar framework as here is considered and TD(0)
and Q-learning algorithms are applied for finding the optimal
policy and value function pair. We refer the reader to Panigrahi
and Bhatnagar (2004) for a detailed model description.

We consider a semiconductor fab manufacturing products
of types A and B with each product requiring one ‘litho’ and
one ‘etch’ operation that can be performed in any order. We
assume that all machines are either litho or etch and can perform
the corresponding operation on both products. Both types of
machines require one (two) unit(s) of time on A (B). The HLS
has the form (Tl, Te). We assume that Tl, Te ∈ {2, 3}. Thus the
total number of HL states is 4. We also assume that at most one
unit of litho and/or etch capacity can be bought or discarded at
any instant. The HLA has the form (yl, ye) where yi =+1(−1)

if type i capacity is bought (discarded). Further, yi = 0 implies
that the corresponding capacity is neither bought nor discarded.
We also assume for simplicity that we do not buy and discard
the same type of machine in a given period. The possible HLA
are a1 =(1, 1), a2 =(1, 0), a3 =(1, −1), a4 =(0, 0), a5 =(0, 1),
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Fig. 1. Convergence of action selection probabilities in state (0,0) using AA2
with Hadamard matrix based perturbations.

a6 = (0, −1), a7 = (−1, 0), a8 = (−1, 1) and a9 = (−1, −1),
respectively. The LLS has four components—litho capacity for
A (XA,l), etch capacity for A (XA,e), inventory of A (IA) and
inventory of B (IB), respectively. The litho and etch capacities
for B get automatically set. We assume that the inventories of
A and B are constrained according to IA ∈ {−1, 0, +1} and
IB ∈ {−0.5, 0, +0.5}, respectively. We thus have a total of 81,
108, 108 and 144 LLS corresponding to the HLS (2, 2), (2, 3),
(3, 2) and (3, 3), respectively. The optimal policy and value
function is thus obtained for a total of 441 possible HLS and
LLS combinations. We assume here that the demands DA and
DB for A and B are independent random variables that are both
distributed according to the Bernoulli distribution (though with
different parameters).

For our experiments, we select T =100. The cost for buying
(discarding) unit capacity equals 100 (40). Further, Pr(DA =
1) = 0.4 = 1 − Pr(DA = 2). Also, Pr(DB = 0.5) = 0.7 = 1 −
Pr(DB =1). The unit inventory cost for A (B) equals 2 (1). The
unit backlog cost for A (B) equals 10 (5). The unit operating
cost on litho (etch) machines for both A and B is 0.2 (0.1). Also,
the unit switch over cost on both litho and etch machines is 3.
We use here a linear approximation architecture (Bertsekas &
Tsitsiklis, 1996) for the value function for our algorithms AA1
and AA2, along with a feature based representation for states.
We select a total of thirteen features for each HLS and LLS pair.
The first feature chosen is 1 while the rest are the components
of state values and their squares. The weight components are
then updated instead of the value function estimates using the
recursions in AA1 and AA2. We start both algorithms assuming
equal probabilities for all actions in each state. We set L = 10,
c(n) = a/(n + b) and b(n) = (a/(n + b))3/4, respectively, with
a, b > 0. For algorithm AA1, we also set a(n)=(a/(n+b))2/3.
The values of �, � and � are chosen to be 0.1, 0.98 and 0.9,
respectively. In Fig. 1, we show the convergence plot for the
probabilities of choosing the various actions for a representa-
tive state when AA2 with Hadamard matrix based perturba-
tions is used. Fig. 2 shows the optimal value function and pol-
icy obtained using the above algorithm while Fig. 3 shows the
same for exact policy iteration. From Fig. 1, one can see that
the probability of selecting the optimal action increases while
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Fig. 2. Optimal value function and optimal policy using AA2 with Hadamard
matrix based perturbations.
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Fig. 3. Optimal value function and optimal policy with exact policy iteration.

the corresponding probabilities for all other feasible actions de-
crease with the number of iterations. Similar behaviour is also
seen in the case of other algorithms as well. However, algo-
rithms with randomized perturbations exhibit large oscillations
unlike those with Hadamard matrix based perturbations. The
latter show graceful and fast convergence. We do not show
the other convergence plots for lack of space. As argued in
Bhatnagar et al. (2003), algorithms based on Hadamard matrix
based perturbations track the steepest descent direction more
closely than those that use randomized perturbations. The opti-
mal policy obtained using all our algorithms is the same as that
using policy iteration. The value function plots also look similar
except for some differences in the converged values obtained
in these. The amount of computational (CPU) times required
by these algorithms on an IBM workstation with Linux oper-
ating system are approximately 9 and 28 min (7 and 30 min)
for the Hadamard matrix based and randomized perturbations,
respectively, using AA2 (AA1). Algorithm AA1 is slightly bet-
ter than AA2 when Hadamard matrix based perturbations are
used while AA2 is better in the case of randomized perturba-
tions. The policy iteration algorithm takes about 83 min here.
Finally, the TD(0) and Q-learning algorithms in Panigrahi and
Bhatnagar (2004) took about 15 and 30 min, respectively.
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