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Reinforcement learning is one of the major 
neural-network approaches to learning con- 
trol. How should it be viewed from a control 
systems perspective? Control problems can be 
divided into two classes: 1) regulation and 
tracking problems, in which the objective is to 
follow a reference trajectory, and 2) optimal 
control problems, in which the objective is to 
extremize a functional of the controlled system's 
behavior that is not necessarily defined in terms 
of a reference tlajectory. Adaptive methods for 
problems of the first kind are well known, and 
include self-tuning regulators and model-refer- 
ence methods, whereas adaptive methods for 
optimal-control problems have received rela- 
tively little attention. Moreover, the adaptive 
optimal-control methods that have been studied 
are almost all indirectmethods, in which controls 
are recomputed from an estimated system model 
at each step. This computation is inherently 
complex, making adaptive methods in which 
the optimal controls are estimated directly 
more attractive. We view reinforcement leam- 
ing methods as a computationally simple, 
direct approach to the adaptive optimal control 
of nonlinear systems. For concreteness, we 
focus on one reinforcement learning method 
(Q-learning) and on its analytically proven 
capabilities for one class of adaptive optimal 
control problems (Markov decision problems 
with unknown transition probabilities). 

Tracking versus Optimization 

All control problems involve manipulating 
a dynamical system's input so that its behavior 
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meets a collection of specifications constitut- 
ing the control objective. In some problems, 
the control objective is defined in terms of a 
reference level or reference trajectory that the 
controlled system's output should match or 
track as closely as possible. Stability is the key 
i ssue  in these  regulation and  tracking 
problems. In other problems, the control ob- 
jective is to extremize a functional of the con- 
t ro l led  s y s t e m ' s  b e h a v i o r  tha t  i s  no t  
necessarily defined in terms of a reference 
level or trajectory. The key issue in the latter 
problems is constrained optimization; here 
optimal-control methods based on the cal- 
culus of variations and dynamic programming 
have been extensively studied. In recent years, 
optimal control has received less attention 
than regulation and tracking, which have 
proven to be more tractable both analytically 
and computationally, and which produce more 
reliable controls for many applications. 

When a detailed and accurate model of the 
system to be controlled is not available, adap- 
tive control methods can be applied. The over- 
whelming majority of adaptive control 
methods address regulation and tracking 
problems. However, adaptive methods for op- 
timal control problems would be widely ap- 
plicable if methods could be developed that 
were computationally feasible and that could 
be applied robustly to nonlinear systems. 

T r a c k i n g  p r o b l e m s  a s s u m e  p r i o r  
knowledge of a reference trajectory, but for 
many problems the determination of a refer- 
ence trajectory is an important part - if not 
the m m t  important part - of the overall prob- 
lem. For example, trajectory planning is a key 
and difficult problem in robot navigation 
tasks, as it is in other robot control tasks. To 
design a robot capable of walking bipedally, 
one may not be able to specify a desired trajec- 
tory for the limbs a priori, but one can specify 
the objective of moving forward, maintaining 
equilibrium, not damaging the robot, etc. 
Process control tasks are typically specified in 
terms of overall objectives such as maximiz- 
ing yield or minimizing energy consumption. 
It is generally not possible to meet these objec- 
tives by dividing the task into separate phases 
for trajectory planning and trajectory tracking. 

Ideally, one would like to have both the trajec- 
tones and the required controls determined so 
as to extremize the objective function. 

For both tracking and optimal control, it is 
usual to distinguish between indirect and 
direct adaptive control methods. An indirect 
method relies on a system identification pro- 
cedure to form an explicit model of the con- 
trolled system and determines then the control 
rule from the model. Direct methods deter- 
mine the control rule without forming such a 
system model. 

In this paper we briefly describe learning 
methods known as reinforcement learning 
methods, and present them as a direct ap- 
proach to adaptive optimal control. These 
methods have their roots in studies of animal 
learning and in early leaming control work 
(e.g., [22]) ,  and are now an active area of 
research in neural netvorks and machine leam- 
ing (e.g.. see [ l ] ,  [41]). We summarize here an 
emerging deeper understanding of these 
methods that is being obtained by viewing 
them as a synthesis of dynamic programming 
and stochastic approximation methods. 

Reinforcement Learning 

Reinforcement leaming is based on the 
common sense idea that if an action is fol- 
lowed by a satisfactory state of affairs, or by 
an improvement in the state of affairs (as 
determined in some clearly defined way), then 
t h e  tendency t o  produce  that action is 
strengthened, i.e., reinforced. This idea plays 
a fundamental role in theories of animal learn- 
ing, in parameter-perturbation adaptive-con- 
trol methods (e.g., [ 12]), and in the theory of 
learning automata and bandit problems [SI, 
[26]. Extending this idea to allow action selec- 
tions to depend on state information intro- 
duces aspects of feedback control, pattem 
recognition, and associative learning (e.g., [2],  
[6]). Further, it is possible to extend the idea 
of being "followed by a satisfactory state of 
affairs" to include the long-term consequences 
of actions. By combining methods for adjust- 
ing action-selections with methods for es- 
timating the long-term consequences of 
actions, reinforcement learning methods can 
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be devised that are applicable to control 
problems involving temporally extended b e  

[36], (401). Most formal results that have been 
obtained are for the control of Markov proces- 
ses with unknown transition probabilities 
(e.g., [31], [34]). Also relevent are formal 
results showing that optimal controls can often 
be computed using more asynchronous or in- 
cremental forms of dynamic programming 
than are conventionally used (e.g., [91, [391, 
[42]). Empirical (simulation) results using 
reinforcement learning combined with neural 
networks or other associative memory struc- 
tures have shown robust efficient learning on 
a variety of nonlinear control problems (e.g., 
[5l, [13l, P O I ,  [24l, L251, [291, [321, [381, 
[43]). An overview of the role of reinforce- 
ment learning within neural-network ap- 
proaches is provided by [I]. For a readily 
accessible example of reinforcement learning 
using neural networks the reader is referred to 
Anderson's article on the inverted pendulum 
problem [43]. 

Studies of reinforcement-learning neural 
networks in nonlinear control problems have 
generally focused on one of two main types of 
algorithm: actor-critic learning or Q-leam- 
ing. An actor-critic leaming system contains 
two distinct subsystems, one to estimate the 
long-term utility for each state and another to 
learn to choose the optimal action in each 
state. A Q-learning system maintains es- 
timates of utilities for all state-action pairs and 
makes use of these estimates to select actions. 
Either of these techniques qualifies as an ex- 
ample of a direct adaptive optimal control 
algorithm, but because Q-learning is concep- 
tually simpler, has a better-developed theory, 
and has been found empirically to converge 
faster in many cases. We elaborate on this 
particular technique here and omit further dis- 
cussion of actor-critic learning. 

havior (e.g., P I ,  VI ,  [7l, [131, [141, [301, [341- 

Q-Learning 

One of the simplest and most promising 
reinforcement learning methods is called Q- 
learning [34]. Consider the following finite- 
state, finite-action Markov decision problem. 
At each discrete time step, k = I ,  2 ,...., the 
controller observes the state X k  of the Markov 
process, selects action ak, receives resulant 
reward rk, and observes the resultant next state 
xk+l. The probability distributions for rk and 
xk+l depend only on xk and ak, and rk has finite 
expected value. The objective is to find a 
control rule (here a stationary control rule 
suffices, which is a mapping from states to 
actions) that maximizes at each time step the 

expected discounted sum of future reward. 
That is, at any time step k ,  the control rule 
should specify action ak so as to maximize 

where y, 0 2 y < 1, is a discount factor. 
Given a complete and accurate model of 

the Markov decision problem in the form of 
the state transition probabilities for each ac- 
tion and the probabilities specifying the 
reward process, it is possible to find an optimal 
control rule by applying one of several 
dynamic programming (DP) algorithms. If 
such a model is not available apriori, it could 
be estimated from observed rewards and state 
transitions, and DP could be applied using the 
estimated model. That would constitute an 
indirect adaptive control method. Most of the 
methods for the adaptive control of Markov 
processes described in the engineering litera- 
ture are indirect (e.g., [IO], [18], [21], [28]). 

Reinforcement leaming methods such as 
Q-leaming, on the other hand, do not estimate 
a system model. The basic idea in Q-learning 
is to estimate a real-valued function, Q,  of 
states and actions, where Q(x,a) is the ex- 
pected discounted sum of future reward for 
performing action a in slate x and peifomiing 
optimally thereafter. (The name "Q-learning" 
comes purely from Watkins' notation.) This 
function satisfies the following recursive 
relationship (or "functional equation"): 

An optimal control rule can be expressed in 
terms of Q by noting that an optimal action for 
state x is any action U that maximizes Q(x.a). 

The Q-learning procedure maintains an es- 
timateb of the function Q.  At each transition 
from step k to k + I ,  the leaming system can 
observe xk, ak, rk, and xk+l. Based on these 
observations, & is updated at time step k + 1 
as follows: o(x,a) remains unchanged for all 
pairs (x,a) f(xk,ak) and 

A A 

Q(xk, a k )  : = eh,  a k )  

+ Pk[rk+vax& ( x k + 1 , b1-b (x k ,  a k 11 

(1) 
where P k  is a gain sequence such that 

Watkins [34] has shown that & converges to 
Q with probability one if all actions continue 
to be tried from all states. This is a weak 
condition in the sense that it would have to be 
met by any algorithm capable of solving this 
problem. The simplest way to satisfy this con- 
dition while also attempting to follow the cur- 
rent estimate for the optimal control rule is to 
use a stochastic control rule that "prefers," for 
statex, the action a that maximizes $(x,a) , but 
that occassionally selects an action at random. 
The probability of taking a random action can 
be reduced with time according to a fixed 
schedule. Stochastic automata methods or ex- 
ploration methods such as that suggested by 
Sato et. al. [28] can also be employed [4]. 

Because it does not rely on an explicit 
model of the Markov Process, Q-learning is a 
direct adaptive method. It differs from the 
direct method of Wheeler and Narendra [37] 
in that their method does not estimate a value 
function, but constructs the control rule direct- 
ly. Q-learning and other reinforcement leam- 
ing methods are most closely related to - but 
were developed independently of - the adap- 
tive Markov control method of Jalali and Fer- 
guson [ 161, which they call "asynchronous 
transient programming." Asynchronous DP 
methods described by Bertsekas and Tsitsiklis 
[9] perform local updates of the value function 
asynchronously instead of using the sys- 
tematic updating sweeps of conventional DP 
algorithms. Like Q-learning, asynchronous 
transient programming performs local updates 
on the state currently being visited. Unlike 
Q-learning, however, asynchronous transient 
programming is an indirect adaptive control 
method because it requires an explicit model 
of the Markov process. The Q function, on the 
other hand, combines information about state 
transitions and estimates of future reward 
without relying on explicit estimates of state 
transition probablities. The advantage of all of 
these methods is that they require enormously 
less computation at each time step than do 
indirect adaptive optimal control methods 
using conventional D P  algorithms. 

Representing the Q Function 

Like conventional D P  methods, the Q- 
learning method given by ( I )  requires memory 
and overall computation proportional to the 
number  of state-action pa i rs .  I n  la rge  
problems, or in problems with continuous 
state and action spaces which must be quan- 
tized, these methods becomes extremely com- 
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plex (Bellman's "curse of dimensionality"). 
One approach to reducing the severity of this 
problem is to represent & not as a look-up 
table, but as a parameterized structure such as 
a low-order polynomial, k-d tree, decision 
tree, or neural network. In general, the local 
update rule for & given by ( 1 )  can be adapted 
for use with any method for adjusting 
parameters of function representations via su- 
pervised learning methods (e.g., see [ l l ] ) .  
One can define a general way of moving from 
a unit of experience (xk, ak, rk, and x k + l ,  as in 
(1 )) to a training example for : 

This training example can then be input to any 
supervised learning method, such  a s  a 
parameter estimation procedure based on 
stochastic approximation. The choice of leam- 
ing method will have a strong effect on 
generalization, the speed of leaming, and the 
quality of the final result. This approach has 
been used successfully with supervised leam- 
ing methods based on error backpropagation 
[19], CMACs [34], and nearest-neighbor 
methods [25]. Unfortunately, it is not currently 
known how theoretical guarantees of conver- 
gence extend to  various function repre- 
sentations, even representations in which the 
estimated function values are linear in the 
representation's parameters. This is an impor- 
tant area of current research. 

Hybrid Directhdirect Methods 

Q-learning and other reinforcement leam- 
ing methods are incremental methods for per- 
forming DP using actual experience with the 
controlled system in place of a model of that 
system [7], [34], [36]. It is also possible to use 
these methods with a system model, for ex- 
ample,  by using the  model to  generate 
hypothe t ica l  exper ience  which  is then 
processed by Q-learning just as if it were 
experience with the actual system. Further, 
there is nothing to prevent using reinforce- 
ment leaming methods on both actual and 
simulated experience simultaneously. Sutton 
[32] has proposed a leaming architecture 
called "Dyna" that simultaneously 1) performs 
reinforcement leaming using actual experien- 
ces, 2) applies the same reinforcement leam- 
ing method to model-generated experiences, 
and 3) updates the system model based on 
actual experiences. This is a simple and effec- 
tive way to combine leaming and incremental 
planning capabilities, an issue of increasing 

significance in artificial intelligence (e.g., see 
[151). 

Integrating Insights 

Although its roots are in theories of animal 
learning developed by experimental psychol- 
ogists, reinforcement leaming has strong con- 
nections to theoretically justified methods for 
direct adaptive optimal control. When proce- 
dures for designing controls from a system 
model are computationally simple, as they are 
in linear regulation and tracking tasks, the 
distinction between indirect and direct adap- 
t ive methods has minor impact on  the 
feasibility of an adaptive control method. 
However, when the design procedure is very 
costly, as it is in nonlinear optimal control, the 
distinction between indirect  and  direct  
methods becomes much more important. In 
this paper we presented reinforcement leam- 
ing as an on-line D P  method and a computa- 
tionally inexpensive approach to  direct 
adaptive optimal control. Methods of this kind 
are helping to integrate insights from animal 
learning [7], [33] ,  artificial intelligence [17], 
[27], [31], [32], and perhaps - as we have 
argued here - optimal control theory. 
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