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New Research Results

Integral Reinforcement Learning for Online Optimal Control
IRL for Online Solution of Multi-player Games
Multi-Player Games on Communication Graphs

Off-Policy Learning

Experience Replay

Bio-inspired Multi-Actor Critics

Output Synchronization of Heterogeneous MAS

Applications to:

Microgrid
Robotics
Industry Process Control




Optimality and Games

Optimal Control is Effective for:
Aircraft Autopilots
Vehicle engine control
Aerospace Vehicles
Ship Control
Industrial Process Control

Multi-player Games Occur in:
Networked Systems Bandwidth Assignment
Economics
Control Theory disturbance rejection
Team games
International politics
Sports strategy

But, optimal control and game solutions are found by
Offline solution of Matrix Design equations
A full dynamical model of the system is needed
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Optimal Control- The Linear Quadratic Regulator (LQOR)

User prescribed optimization criterion V(x(t)) = I(XT Qx+u'Ru) dz
t

(Q,R)
0=PA+A'P+Q-PBR'B'P Off-line Design Loop
et Using ARE
K=R"B'P
Control u . System X |' y
— K X = AX + Bu On-line real-time
7 Control Loop

An Offline Design Procedure
that requires Knowledge of system dynamics model (A,B)

System modeling is expensive, time consuming, and inaccurate



Adaptive Control is online and works for unknown systems.
Generally not Optimal

Optimal Control is off-line,
and needs to know the system dynamics to solve design eqs.

We want to find optimal control solutions
Online In real-time
Using adaptive control techniques
Without knowing the full dynamics

For nonlinear systems and general performance indices

Bring together Optimal Control and Adaptive Control

Reinforcement Learning turns out to be the key to this!



Optimality in Biological Systems

Every living organism improves its control actions based on
rewards received from the environment

The resources available to living We want OPTIMAL performance
organisms are usually meager. - ADP- Approximate Dynamic Programming

Nature uses optimal control. Actor-Critic Learning

Desired
performance
Reinforcement learning
lvan Pavlov 1890s Reinforcement
signal
< Critic
Tune
actor
Control

Adaptive ‘InpuJ[S System
Learnjng system
outputs

/ Actor




THIRD EDITION

Books

F.L. Lewis, D. Vrabie, and V. Syrmos,
Optimal Control, third edition, John Wiley and
Sons, New York, 2012.

New Chapters on:
Reinforcement Learning
Differential Games

OPTIMAL
CONTROL

Frank L. Lewis

Draguna Vrabie
maiitedaterid Wassilis L. Syrmos

D. Vrabie, K. Vamvoudakis, and F.L. Lewis,
Optimal Adaptive Control and Differential
Games by Reinforcement Learning

Principles, IET Press,

2012. Draguna Vrabie, Kyriakos G.
Vamvoudakis and Frank L Lewis




Reinforcement | |
Learninq and Adaptive F.L. Lewis and D. Vrabie,

“Reinforcement learning and

Dynamlc Pl’oqrammlnq adaptive dynamic programming

for feedback control,”
for FeedbaCk ContrOI IEEE Circuits & Systems
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Game Theory-Based
Gontrol System
Algorithms with

. l Multi-player Game Solutions
Real-Time | IEEE Control Systems Magazine,

Reinforcement &% Feb. 2017
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KYRIAKODS G. VAMVOUDAKIS, HAMIDREZA MODARES,
BAHARE KIUMARSI, and FRANK L. LEWIS
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RL for Markov Decision Processes (X,U,P,R)

X= states, U= controls

P= Probability of going to state x’ from state x
given that the control is u

R= Expected reward on going to state x’ from
state x given that the control is u
Expected Value of a policy 7z(X,u)

k+T
Vo (x) = Eﬂ'{JK,T | % =X}= En{z 7I_kri | X =X}
i=k
Optimal control problem

determine a policy 7z(x,u) to minimize the expected future cost
k+T

optimal policy 7 (x,u) =argminV,”(s)=argmin E_{>_ "5 | x, =x}.

4T i=k

optimal value Vi (X) = minV,"(x) = min E. O 7 rIx =x}.
i=k

Policy Iteration
Policy evaluation by Bellman eq. V;(X) = sz (X, U)Z P [RQX. +V, (x')] forall xe X .
Policy Improvement 7;1_+1(x, u) =arg umin Z lei' [R)‘(‘X, + 7/Vj (x')] for all xe X .

Policy Evaluation equation is a system of N simultaneous linear equations, one for each state.
Policy Improvement makes V7 (X) V7 (X)

R.S. Sutton and A.G. Barto, Reinforcement Learning— An Introduction, MIT Press, Cambridge, Massachusetts, 1998.

D.P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, MA, 1996.
W.B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley, New York, 2009.
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Discrete-Time Systems Optimal Adaptive Control

system X1 = F(X)+a(x)u,
cost V, (%) =Y 7 *r(x,u;) Example (%, U,) =X QX, +U, Ru,
i=k

Difference eq equivalent  V, (X)) =r(X,u)+» D> 7 “r(x,u,)
i=k+1

Bellman equation  V, (X, ) = X, Qx, +U, Ru, + V. (X, ,)

Hamiltonian  H (X, VV (X, ),U, ) =r(X.,u,) + 7V, (X.,) =V, (X )

System dynamics does not appear

Continuous-time Systems Nonlinear Optimal Regulator

Nonlinear System dynamics X = f (X,u) = f (X) + g(x)u

Cost/value V(x(t)) = Tr(x, u) dt = T(Q(x) +Uu' Ru) dt
t t Leibniz gives

. . . . . Differential equivalent
Bellman Equation, in terms of the Hamiltonian function k

H(x,aa—\;,u) =V +r(x,u) =(2—\;j X+r(X,u) =[(Z—\;j (f()+g(x)u)+r(x,u)=0

Problem- System dynamics

STABILITY ?! shows up in Hamiltonian



RL ADP has been developed for Discrete-Time Systems
Discrete-Time System Hamiltonian Function X = F(X.,u)

H (X, VV (X ), h) = (X, h(% ) + My (Xiea) = Vi (%)
» Directly leads to temporal difference techniques

» System dynamics does not occur
» Two occurrences of value allow APPROXIMATE DYNAMIC PROGRAMMING methods

Continuous-Time System Hamiltonian Function X=f(x,u)

H (x,ﬂ,u) =V +r(x,u) = (gj X+r(x,u)= (ﬂj f(x,u)+r(x,u)
OX OX OX

Leads to off-line solutions if system dynamics is known
Hard to do on-line learning

» How to define temporal difference?
» System dynamics DOES occur
» Only ONE occurrence of value gradient

How can one do Policy Iteration for Unknown Continuous-Time Systems?
What is Value Iteration for Continuous-Time systems?
How can one do ADP for CT Systems?



Discrete-Time Systems
Adaptive (Approximate) Dynamic Programming

Four ADP Methods proposed by Paul Werbos

Critic NN to approximate:

Heuristic dynamic programming AD HeurisFic dynamic _programming
Value Iteration (Watkins Q Learning)
Value V (Xk) Q function Q(X,,U,)
Dual heuristic programming AD Dual heuristic programming
0 0
Gradient N Gradients Q , Q
OX ox  ou

Action NN to approximate the Control

Bertsekas- Neurodynamic Programming

Barto & Bradtke- Q-learning proof (Imposed a settling time)



CT Systems- Derivation of Nonlinear Optimal Regulator
To find online methods for optimal control Focus on these two equations

Nonlinear System dynamics X = f(X,u) = f(X)+ g(x)u

Cost/value V (x(t)) = Tr(x, u) dt = T(Q(x) +u'Ru) dt

t

Ibniz gives
. . . . . ifferential €quivalent
Bellman Equation, in terms of the Hamiltonian function ‘

oV . AN ov Y /
H(x,&,u)=V+r(x,u)=(&j X+r(x,u) = (8xj (f(x)+g(x)u)+r(x/

Stationarity condition H_, Problem- System dynamics
ou ows up in Hamiltonian

_ oV
Stationary Control Policy | U=h(x)=-%R™g’ (x)&

* N\ T +N\T *
HJB equation o:(dlj f+Q(x)_%(ddLj gR—lgTddL , V(0)=0
X X

Off-line solution
HJB hard to solve. May not have smooth solution.
Dynamics must be known



CT Policy Iteration — a Reinforcement Learning Technique

Given any admissible policy U(X) =h(x)
The cost is given by solving the CT Bellman equation

T
0= N f(x,u)+r(x,u)=H (x,ﬂ,u) Scalar equation
OX OX

utility r(x,u) =Q(x)+u'Ru

Policy Iteration Solution

e Convergence proved by Leake and Liu

Pick stabilizing initial control policy h,(X) 1967,
) ) ) Saridis 1979 if Lyapunov eq. solved
Policy Evaluation - Find cost, Bellman eq. exactly
T e Beard & Saridis used Galerkin Integrals to
0= J f(x h.OCN+r(x.h (x solve Lyapunov eq.
( T ( )) ( T ( )) e Abu Khalaf & Lewis used NN to approx. V
Vj (O) =0 for nonlinear systems and proved
Policy improvement - Update control convergence
h — YR 1g” GVJ- Full system dynamics must be known
() == %Rg"(x) ystem
OX Off-line solution
Converges to solution of HIB M. Abu-Khalaf, F.L. Lewis, and J. Huang, “Policy

T T ) iterations on the Hamilton-Jacobi-Isaacs equation for H-

dv ¢ [ adVv RgT dVv infinity state feedback control with input saturation,”

Ay +Q(X) — % F F IEEE Trans. Automatic Control, vol. 51, no. 12, pp.

1989-1995, Dec. 2006.

0



Policy Iterations for the Linear Quadratic Regulator

System X = AX + Bu

Cost V(X(t)) = T(xT Qx+u'Ru)dr = x" (t)Px(t)

Differential equivalent is the Bellman equation

:
0= H(x,g—v,u):\/ +x ' Qx+Uu'Ru :2(2—\/) X+ X' Qx+u'Ru=2x"P(Ax+Bu)+x"Qx+u'Ru
X X

Given any stabilizing FB policy u=-—KX

The cost value is found by solving Lyapunov equation = Bellman equation

0=(A-BK) P+P(A-BK)+Q+K'RK

Optimal Control is
u=-R'B'Px=—-KX
Algebraic Riccati equation
0=PA+A'P+Q-PBR'B'P
Full system dynamics must be known
Off-line solution



LQR Policy iteration = Kleinman algorithm

1. For a given control policy u=-K;x solve for the cost:

0= AjT P, +P A +Q+ KjT RK; Bellman eq. = Lyapunov eq.
Matrix equation
Aj = A-— BKj
2. Improve policy:
_ p-1pT
Kijl =R™B Pj

= |f started with a stabilizing control policy K, the matrix P,
monotonically converges to the unique positive definite solution of
the Riccati equation.

= Every iteration step will return a stabilizing controller.
= The system has to be known.

OFF-LINE DESIGN
MUST SOLVE LYAPUNOV EQUATION AT EACH STEP. Kleinman 1968



Integral Reinforcement Learning

Work of Draguna Vrabie

X=f(x)+g(x)u
Can Avoid knowledge of drift term f(x)

Policy iteration requires repeated solution of the CT Bellman equation

O=V+r(x,u(x)):(2—\;) X+r(x,u(x)):[%—\;j f(x,u(x))+Q(x)+u’ Ru—H(x u(x))

This can be done online without knowing f(x)
using measurements of x(t), u(t) along the system trajectories

D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive optimal control for continuous-time linear
systems based on policy iteration,” Automatica, vol. 45, pp. 477-484, 2009.



Integral Reinforcement Learning praguna Vrabie 2009

value V(x(t))=Tr(x,u) dr:t]T r(x,u)dz+ T r(x,u)dr

Key ldea= US Patent

Lemma 1 — Draguna Vrabie

j
o:@_\’j f(x,u)+r(x,u)zH(x,aa—V,u), V(0)=0  Bad Bellman Equation
X X

Is equivalent to  Integral reinf. form (IRL) for the CT Bellman eq.

V(x(t)) = t]‘T r(x,uydz + V(X{+T)), V(0)=0
t Good Bellman Equation

Solves Bellman equation without knowing f(x,u)

Allows definition of temporal difference error for CT systems

e(t):—V(x(t))+t]Tr(x,u)dr +OVX(E+T))

t



Integral Reinforcement Learning (IRL)- Draguna Vrabie

IRL Policy iteration

Policy evaluation- IRL Bellman equ+aTtion CT Bellman eq.

Costupdate V, (X(1)) = j rou)dt + Vo (X(t+T))

t

f(x) and g(x) do not appear

T
Equivalent to 0= N f(x,u)+r(x,u)=H (x,ﬁ—v,u)
OX OX

Solves Bellman eq. (nonlinear Lyapunov eq.) without knowing system dynamics

Policy improvement

_ oV,
Control gain update U, =h . (X)=—%R™g’ (X)a—xk g(x) needed for control update

Initial stabilizing control is needed

dx dx

NT AN\T .
Converges to solutionto HIBeq. 5 _ dv f+O(x) -2 dv R1qg" v

D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive optimal control for continuous-time linear
systems based on policy iteration,” Automatica, vol. 45, pp. 477-484, 2009.



CT Policy Iteration — How to implement online?
Linear Systems Quadratic Cost- LQR

Value function is quadratic ~ V (x(t)):xT (t)Px(t)

Policy evaluation- solve IRL Bellman Equation
t+T

X' ORX(t)= [ X' (2)Q+K'RK)x(r)dz + X' (t+T)Rx(t+T)
t

t+T
X" (t)Rx(t) = X' (t+T)Rx(t+T)= | X" (2)(Q+Ky' RKy)x(z) dz
t

1 2 P P Xl(t) I 2 P P Xl(t+T)
X0 Xm]{ pzj{xz(t)} [Xt+T) X(”T)]{plz pzj{xz(tm}

12

(x)? | [ (x")? |

:[p11 P12 pzz] i:i;f _[pll Py, pzz] ?:(i;(j '\

(t) (t+T)

Quadratic basis set
= P [X(O-X(t+T)]
t+T

B A= B [XO-X(t+T)]= [ x(@)T Q+LRL)IX(x)dr =ptt+T)

Same form as standard System ID problems



Approximate Dynamic Programming Implementation

Value Function Approximation (VFA) to Solve Bellman Equation Optimal Control
— Paul Werbos (ADP), Dimitri Bertsekas (NDP) and
t+T Adaptive Control
Vo (x@®) = [ (Q(¥)+u,Ruy )dt+V, (x(t+T)) come together
t On this slide.
Approximate value by Weierstrass Approximator Network \/ —=\\/ T ¢(X) Because of RL

t+T

W, g(x(1) = | (QU)+u,"Ru, ) dt + W g(x(t+T))

t
t+T

W, [¢(X(t)) —p(x(t +T))] = j (Q(X) +u,"Ru, )dt Scalar equation

with vector unknowns

— _
~

Reinforcement on time interval [t, t+T]

regression vector

Same form as standard System ID problems in Adaptive Control

Now use RLS or batch least-squares along the trajectory to get new weights W,

Then find updated FB

o =Nes(0 =~ RG22 = - 4R GT (x){aé(xx(g»} W,

Direct Optimal Adaptive Control for Partially Unknown CT Systems




Solving the IRL Bellman Equation- LQR case

LQR case V (x(t))=x" (t)Px(t)

o, P
N 12} W™ =[py Pp Pyl

p12 p22

Need data from 3 time intervals to get 3 equations to solve for 3 unknowns

Solve for value function parameters {

t+T

W, [p(x(1)) - g(xt+T)]= [ (Q(x)+u,"Ru, )dt

W, [g(x(t+T) —g(x(t+2T)]= [ (Q(X)+u,Ru, )dt

t+T

t+3T

W, [#(x(t+2T)) - p(x(t +3T))] = j (Q(x) +u,"Ru, )dt

t+2T

Now solve by Batch least-squares



Integral Reinforcement Learning (IRL)

Solve Bellman Equation - Solves Lyapunov eq. without knowing dynamics

t+T

W™ [BO)-d(x(t+T)]= [ x(2)T (Q+K, RKy)x(zr)dz=p(t,t+T)
t

observe x(t) observe x(t+T)

observe x(t+2T)

Data set at time [t,t+T)

(x(t), p(t,t+T), x(t+T))

apply uk=K,x apply uk=K,x apply uk=K,x
> > : >
observe cost integral || observe cost integral || observe cost integral
ot t+T) p(t+T,t+2T) | p(t+2T,t+3T)
update P update P update P
v v v v
I | : |
t t+T t+2T t+3T

Do RLS until convergence to P,
Or use batch least-squares

E

This is a data-based approach that uses
measurements of x(t), u(t)
Instead of the plant dynamical model.

A is not needed anywhere ‘

update control gain

K., =R'B'P,




Gain update (Policy)

K A Interval T can vary
k

Control

Uy (t) = =K, x(t)

Reinforcement Intervals T need not be the same
They can be selected on-line in real time

Continuous-time control with discrete gain updates



Persistence of Excitation

W, [gx(1) - g(xt+T)] = [ (Q(x)+u, Ru, )dt

\ )t
Y

Regression vector must be PE

Relates to choice of reinforcement interval T



Implementation

Policy evaluation
Need to solve online

t+T
Wi " [gx() - (x(t+T))]= | x(2)" (Q+Ky ' RK)x(z)dz=p(t,t+T)
t

Add a new state= Integral Reinforcement
p=xQx+u'Ru

This is the controller dynamics or memory



Draguna Vrabie

Direct Optimal Adaptive Controller

Solves Riccati Equation Online without knowing A matrix

CT time Actor-Critic Structure Run RLS or use batch L.S.
To identify value of current control
'\
Critic
| |
ZOH T
T ><> T ><> Dynamic

> Control
Update FB gain after v System
Critic has converged 4o =Xx"Qx+u"Ruk w/ MEMORY

Actor u_ System X <
— | X = AX+ Bu
4

A hybrid continuous/discrete dynamic controller
whose internal state is the observed cost over the interval

Reinforcement interval T can be selected on line on the fly — can change



Optimal Adaptive IRL for CT systems

D. Vrabie, 2009

Actor / Critic structure for CT Systems

Reinforcement learning

_ oV j
U = hk+1(X) =-»R 1gT (X)ﬁ—xk f

Desired behavior/ .
Reference trajectoryT

t

t+T

Vex@) = [ r(xu)dt + Vi (x(t+T))

Theta waves 4-8 Hz

" (cost approximation/

Critic

policy evaluation)
Actorff Control R SyS tem
(control pgﬂicy) signal
4

Qutput/State

Motor control 200 Hz

A new structure of adaptive controllers



Data-driven Online Adaptive Optimal Control

DDO
User prescribed optimization criterion
J - (Q’ R) t+T
TORX®= [ X (@K RKOx@dr+x" +TRT) On-line Performance Loop
K., =R'B'P,
A A
Control u S
ystem X :
> . On-line Control Loo
— K X = AX + Bu g
- v

Data set at time [t,t+T)

(x(t), p(t, t+T),x(t+T))

An Online Supervisory Control Procedure
that requires no Knowledge of system dynamics model A

Automatically tunes the control gains in real time to optimize a user given cost function
Uses measured data (u(t),x(t)) along system trajectories



Simulation 1- F-16 aircraft pitch rate controller

X=| 0.82225 -1.07741 -0.17555 0

-1.01887 0.90506 —-0.00215 0
X+ u
0 0 -1 1

ARE 0=PA+A"P+Q-PBR'B'P

Select quadratic NN basis set for VFA

Stevens and Lewis 2003

x=[a q J]

Exact solution Wl*:[p11 2P, 2P13 Poo 2P93 p33]T
=[1.4245 1.1682 -0.1352 1.4349 -0.1501 0.4329]T



Simulations on: F-16 autopilot

A matrix not needed

System states

3.51 \*\
3t
\
2.5r Y
2 ;\k

X‘\s
0.5} ****** |
0 ‘ M“WWM
0 0.5 1 15 2
Time (s)
Critic parameters
| | e 00 .*
02 [ o® o ©°° 4
« P12
° * P(1,2
015 [ ° . P(2,2)
* P(1,1) - optimal
* P(1,2) - optimal
0.1 * P(2,2) - optimal | |
005* . ® oo oo ee o oo o TR YT AR Y Y .
0_ oo, oo o0 o0 o e e (XXX o ol
0 1 2 3 4 5 6

Time (s)

Control signal

il W
-0.1r ~ ]
0 // //f
_0.3, I I I ,

0 0.5 1 1.5 2

Time (s)

Controller parameters
OF—= ¥ ‘ B
4
e

-0.2r A .
0.4 ! ! o ! %
0 0.5 1 15 2

Time (s)

Converge to SS Riccati equation soln

Solves ARE online without knowing A

0=PA+A"P+Q-PBR'B"P



A. Al-Tamimi, D. Vrabie, Youyi Wang

Simulation 2: Load Frequency Control of Electric Power system

X=Ax+Bu Frequency
Generator output
x(t)=[Af (t) AP (t) AX,(t) AEQ®)] Governor position
Integral control
[ -1/T, K, /T, 0 0 ] [0 ]
0 ~1T, 1T, 0 0
A= . B=
-1/RT, 0 1T, -1/T, 1/T,
Ke 0 0 0 0
ARE

0=PA+A'P+Q-PBR'B'P
ARE solution using full dynamics model (A,B)

[0.4750 0.4766 0.0601 0.4751
0.4766 0.7831 0.1237 0.3829
0.0601 0.1237 0.0513 0.0298 |
| 0.4751 0.3829 0.0298 2.3370 |

ARE —




0=PA+A'"P+Q-PBR'B'P

04750 0.4766 00601 0.4751 Solves ARE online without knowing A
o 0.4766 0.7831 0.1237 0.3829
" | 0.0601 01237 00513 0.0298 | 704802 0.4768 0.0603 0.4754]
04751 0.3829 0.0298 2.3370 | 04768 0.7887 01239 0.3834
P = .
et 1 0.0603 0.1239 0.0567 0.0300
IRL period of T= 0.1s. 04754 0.3843 0.0300 2.3433]
Fifteen data points  (x(t),x(t+T), p(t:t+T))
Hence, the value estimate was updated every 1.5s.
System states P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)
01 ‘ ‘ ‘ ‘ ‘ 2.5 ‘ ‘ ‘ ‘ ‘
0.08 ""’“._ e s o R 0 0= @ men o
0.06} 2 - P(1,1)
R ——P(13)
0.04 - = 157 ’.I ......... P(2,4) i
0.02 - ] / === P(44)
of 7\\%\ e 1t / ]
. — g
T ‘
-0.02+ B 05l .’0 j
004} ] S SRTTCRR LA eerrriiiiiiiiiiiiiiie
0.06] 1 QU et 9
-0.08+ b
01 : : : ‘ : 05, 10 20 30 40 50 60
0 1 2 3 4 5 6 .
Time (s) Time (s)



Optimal Control Design Allows a Lot of Design Freedom

The Power of Optimal Design

Once you can do optimal design that minimizes a performance index. many sorts of designs are
immediately possible.

Minimum energy
1 o
J= ;j.TTQI+MTRH dt
=0

Minimum fuel
1 = &]
J =E!:.TTQ.T+p|u| dt

Minimum time

T
J=[ldt=T
0
Constrained control inputs tanh(p) &
17 "o | 41 [
J=_I[Q(x)+ o (v)dv ]a‘f
2 0 0 _
Approximate minimum time with smooth control inputs / g
. P
_ 1 T R -1 i
J —;J‘ tanh(x Qx)+p] o (v)dv |dt - — —+ -1
<=0 0 _




Issues with Nonlinear ADP Selection of NN Training Set

LS local smooth solution for Critic NN update

Oz(é—vj f(x,u)+r(x,u)= H(x,a—v,u), V(0)=0
OX OX

V(x(t))=t+jTr(x,u)dr + V(X(+T)), V(0)=0
A oO—— X2‘
Pzt

@ Xl

time
> , lime
Integral over a region of state-space
Approximate using a set of points

Batch LS Recursive Least-Squares RLS

Take sample points along a single trajectory

Set of points over a region vs. points along a trajectory

For Linear systems- these are the same

For Nonlinear systems
Persistence of excitation is needed to solve for the weights
But EXPLORATION is needed to identify the complete value function
- PE Versus Exploration



IRL Value lteration - Draguna Vrabie
IRL Policy iteration Initial stabilizing control is needed

Policy evaluation- IRL Bellman Equation
t+1 CT PI Bellman eq.

Cost update i(x(t)):jr(x,uk)dt + Vi (X(t+T)) | =Lyapunov eq.

t

Policy improvement

oV,
U, :h+ X)=— R_lgT(X)—k
Control gain update o1 = a0 ==7% OX

* T * T *
v v Y
( ~ J f+Q(x)—%(—J gRgT ——

Converges to solution to HJB eq. 0
& G dx dx

IRL Value iteration Initial stabilizing control is NOT needed

Value evaluation- IRL Bellman Equa’cTion CT VI Bellman eq.

Cost update Vi (X(®) = [ rixu)dt + Vi (x(t+T))

t

Policy improvement
Vk+1

0
u.,=h..(X)=-—%R™'g"(x
Control gain update o1 = Mea(x) 2R78 () OX

Converges if T is small enough




Kung Tz 500 BC

Man'’s relations to

Confucius Family
Friends
Society
Tian xia da tong Nation
Harmony under heaven Emperor
Ancestors
Archery
Chariot driving
Music

Rites and Rituals

Poetry
Mathematics







Optimal Adaptive IRL for CT systems

D. Vrabie, 2009

Actor / Critic structure for CT Systems

Reinforcement learning

_ oV j
U = hk+1(X) =-»R 1gT (X)ﬁ—xk f

Desired behavior/ .
Reference trajectoryT

t

t+T

Vex@®) = [ r(xu)dt + Vi (x(t+T))

Theta waves 4-8 Hz

" (cost approximation/

Critic

policy evaluation)
Actorff Control R SyS tem
(control pgﬂicy) signal
4

Qutput/State

Motor control 200 Hz

A new structure of adaptive controllers



Oscillation is a fundamental property of neural tissue

Brain has multiple adaptive clocks with different timescales

gamma rhythms 30-100 Hz, hippocampus and neocortex
high cognitive activity.
 consolidation of memory
« spatial mapping of the environment — place cells

The high frequency processing is due to the large amounts of sensorial data
to be processed

theta rhythm, Hippocampus, Thalamus, 4-10 Hz
sensory processing, memory and voluntary control of movement.

Spinal cord

v

Motor control 200 Hz
D. Vrabie, F.L. Lewis, D. Levine, “Neural Network-Based Adaptive Optimal Controller- A Continuous-Time
Formulation -,” Proc. Int. Conf. Intelligent Control, Shanghai, Sept. 2008.

D. Vrabie and F.L. Lewis, “Neural network approach to continuous-time direct adaptive optimal control for
partially-unknown nonlinear systems,” Neural Networks, vol. 22, no. 3, pp. 237-246, Apr. 2009.



FUHBUPEWISEEI Learning

theta rhythms 4-10 Hz

!

Output >
A

-,

Deliberative
evaluation

"Reinforcement Learning

li Reward
Out@ ut >
-y

~,

Limbic system

f

(Supervised Learning Target

+

{ Error
Motor control 200 Hz
control JE> Output ,

Figure 1. Leamning-oriented specialization of the cerebellum, the basal ganglia, and the cerebral
cortex (1], [2]. The cerebellum is specialized for supervised learning based on the ervor signal
encoded n the climbing fibers from the inferior olive. The basal ganglia are specialized for
reinforcement learning based on the reward signal encoded in the dopaminergic fibers from the
substantia nigra. The cevebral cortex is specialized for unsupervised learning based on the statistical

properties of the input signal.

Doya, Kimura, Kawato 2001



picture by E. Stingu

Summary of Motor Control in the Human Nervous System D. Vrabie

Long term

Memory
functions

Short term

Kenji Doya

Cerebral cortex

gamma rhythms 30-100 Hz

Reinforcement
Learning- dopamine

Supervised
learning

A A

A 4

i
Motor areas _
Unsupervised
A .
learning
\ 4
Y
gli;lsa'l »  Thalamus Limbic|System | Hippocampus

theta|rhythms 4-10 Hz

y

Cerebellum

Brainstem

A

(eye movement)

vV VY

[ Spinal cord

olive

1 1 Motor control 200 Hz
reflex

A 4

Exteroceptive
receptors

Interoceptive
receptors

Muscle contraction
and movement

A

A

Hierarchy of multiple parallel loops
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Optimal Adaptive D. Vrabie, 2009

Integral Reinforcement Learning for CT systems
Policy Iteration gives the structure needed for online optimal solution

Actor / Critic structure for CT Systems
Vex@®) = [ r(xu)dt + Vi (x(t+T))

t
Theta waves 4-8 Hz

___________ Critic

! " (cost approximation/
/ policy evaluation)

B oV j
U = hk+1(X) =-»R 19T (X)a—xk J;’

!
!
!

T

' ' /| Control
Desired beha‘\.florf . Actor{ ontro > System
Reference trajectory (control pghcy) signal

Qutput/State

4

Motor control 200 Hz

A new structure of adaptive controllers



Synchronous Online Solution of Optimal Control for Nonlinear Systems
Kyriakos Vamvoudakis

Critic Network
Take VFAas  V(X) =W, 4, (x)+&(X) . W (X)=VgIW,

t

Then IRL Bellmaneq  V(x(t)) = I (Q(x)+ukT Ruk)dt+V(x(t+T))

¢ =T

becomes W g(x(t-T)) = [ (Q9)+u,Ru, ) dt+W, g(x(t))

t-T
Action Network for Control Approximation

u(x)=—2R7g" (Vg W,,

Define  Ag(x(1)) = H(x(1)) ~ #(x(t~T))
t
Bellman eq becomes  A@(x(t))" V\A/1 + J‘ (Q(X) +%V\A/2T 61V\A/2j =0
t-T

K.G. Vamvoudakis and F.L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite horizon
optimal control problem,” Automatica, vol. 46, no. 5, pp. 878-888, May 2010.



Data-driven Online Synchronous Policy Iteration using IRL

Does not need to know f(x) Vamvoudakis & Vrabie

Theorem (Vamvoudakis & Vrabie)- Online Learning of Nonlinear Optimal Control

Let Ag(X(1)) =d(x(t))—¢(x(t—T)) be PE. Tune critic NN weights as

W, = —a, =24tU) E— [Aqﬁ(x(t)fv@l +

j [Q(X)%WZT 51V\72jdf} Learning the Value
(1+ AG(x(E)T A(x(1)

t-T

Tune actor NN weights as

W, = -a, (M, ~ RAGOKO) W, ) ~2a, Di (W, AG(x(1)' i, Learning the control policy
(2+Ag(x()" Ag(x(1)))

Then there exists an N, such that, for the number of hidden layer units N > N,

the closed-loop system state, the critic NN error W, =W, W,

and the actor NN error W, =W, —V\A/2 are UUB bounded.

Data set at time [t,t+T)

(x(t), p(t=T,1),x(t-T))




Lyapunov energy-based Proof:

L(t) =V (x)+ %tr(\/\lT a,"W,) + %tr(\/\72T a,"W,).

/

V(x)= Unknown solution to HIB eq.

dv ) dv ) dv
0= 22| F+Q(X) -1 —— | gRg" —
(dxj Q) 4(dxj Y

Guarantees stability

V\72 :Wl _V\72

W,= Unknown LS solution to Bellman equation for given N

H (W, u) =W, Vg (f +gu)+Q(x)+u' Ru = ¢,



Synchronous Online Solution of Optimal Control for Nonlinear Systems

K.G. Vamvoudakis and F.L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite
horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878-888, May 2010.

A new form of Adaptive Control with TWO tunable networks

Adaptive Critic structure

: : . t
Reinforcement learning Vi - a A(X(1) 2[A¢(x(t))TV\71+ f (Q(X)+ 3W2T51V\72jer
(L+Ad(xO) Ag(x(1) Cr 4
o Critic
/ * (cost approximation/
x . . — . T . f olicy evaluation
+AP(X(t)) Ap(x(t r
!
Desired behavior/ AG'[OI?F Control | Svstem Outguthtate
Reference trajectory ~ |(control pgﬂjcy) signal Y
4

Two Learning Networks
Tune them Simultaneously

A new structure of adaptive controllers



A New Class of Adaptive Control

Identify the V(x) =W T p(x)

W
O

ptimal Adaptive

|dentify the
|-
Indirect Adaptive

| ' e
Controller-
Direct Adaptive

A\ 4

v

Plant

control output




Simulation 1- F-16 aircraft pitch rate controller

-1.01887 0.90506 —0.00215 0 Stevens and Lewis 2003
x=| 0.82225 -1.07741 -0.17555|x+|0|u x=[a q &]
0 0 -1 1
Q=1, R=I

Solves ARE online
0=PA+A"P +Q - PBR'B'P

Select quadratic NN basis set for VFA

Exactsolution W, =[p;; 2P, 2Pz P 2Pp3 Pasl'
=[1.4245 1.1682 -0.1352 1.4349 -0.1501 0.4329]T

Must add probing noise to get PE
u(x)=—1Rg" (YVA'W, +n(t) (exponentially decay n(t))

Algorithm converges to

Wy (t;)=[L.4279 1.1612 -0.1366 1.4462 -0.1480 0.4317]".

R [2x, 0 0 ] [1.4279]
W, (t; )=[1.4279 1.1612 -0.1366 1.4462 -0.1480 0.4317]" le x 0 |1 1612

T
0

~  1p-1pTpy. 1p-1 X3 0 X -0.1366

U2 ()=—3R "B Px=—3R M 0 2x, 0 | |1.4462

0 0 2x3]

0.4317 |



Parameters of the critic NN

25 T
—Wm
oL —Wcz |
—WC3
M e
.y BT J o S TN e [ 3
Critic NN parameters- | W,
Converge to ARE solution 1§ -
ast | . _ . §
D - 4
_05 1 | | 1 1 1 1
0 100 200 300 400 500 B00 700 800
Time (=)
System States
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40 F <
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[ ]
L (R w\‘{' A _
10 |
| | .l! | | 1 ‘h! ) ol
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Nevistic V. and Primbs J. A. (1996)
Converse optimal

Simulation 2. — Nonlinear System

x=f(x)+g(X)u, xeR?

_ =X+ X
f(x) —[_o_sxl_o.5x2(1—(cos(2x1)+2)2)} Solves HIJB equation online
0 a . *
g(x):{cos(2x1)+2}' o:(dlj f+Q(x)—%(dV J gR—lgTdL
dx dx dx
Q=1, R=I

Optimal Value V*(X)zlxl2 +X,°
2

Optimal control  u"(x) = —(cos(2x,) + 2)X,.

Select VFA basis set g (X)=[ x° xX% X°1,

Algorithm converges to

W (t; )=[0.5017 -0.0020 1.0008]" .

W, (t;)=[0.5017 -0.0020 1.0008]". o T[2a 0 " [0.5017
1) —_1p"1 -
U (X)=—5R {cos(2x1)+2} Xo X 0.0020

0 2%, 1.0008



Pazamedars of the critic MH

-.-.-.-.'A.'.I'=I
1 pre——— Ve
f Wy
0gf 4
0&}
04f
azk HLL
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B T T e T
Q mw X ] 50 1] WO @

Tene (8)

Critic NN parameters

Ciptimal Valuie function

Optimal value fn.

PLEE B

Value fn. approx. error

o

8 om{--
Fa

Q005 -

Appraximation Emor af the Value fmction

System Sates

XN I 40 5 8 W 8w W

Tirnix [3)

states

Error between lhe approximated confral and the egplimal ane

Control approx error






