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5-4 Convergence of critic weights Ŵc(t). . . . . . . . . . . . . . . . . . . . . . . . . . 91
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Notions of optimal behavior expressed in natural systems led researchers to develop

reinforcement learning (RL) as a computational tool in machine learning to learn actions

by trial and error interactions yielding either a reward or punishment. RL provides a way

for learning agents to optimally interact with uncertain complex environments, and hence,

can address problems from a variety of domains, including artificial intelligence, controls,

economics, operations research, etc.

The focus of this work is to investigate the use of RL methods in feedback control

to improve the closed-loop performance of nonlinear systems. Most RL-based controllers

are limited to discrete-time systems, are offline methods, require knowledge of system

dynamics and/or lack a rigorous stability analysis. This research investigates new control

methods as an approach to address some of the limitations associated with traditional

RL-based controllers.

A robust adaptive controller with an adaptive critic or actor-critic (AC) architecture

is developed for a class of uncertain nonlinear systems with disturbances. The AC

structure is inspired from RL and uses a two pronged neural network (NN) architecture –

an action NN, also called the actor, which approximates the plant dynamics and generates

appropriate control actions; and a critic NN, which evaluates the performance of the actor,

based on some performance index.
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In the context of current literature on RL-based control, the contribution of this

work is the development of controllers which learn the optimal policy (approximately)

for uncertain nonlinear systems. In contrast to model learning strategies for RL-based

control of uncertain systems, the requirement of model knowledge is obviated in this work

by the development of a robust identification-based state derivative estimator. The robust

identifier is designed to yield asymptotically convergent state derivative estimates which

are leveraged for model-free formulation of the Bellman error. The identifier is combined

with the traditional actor-critic resulting in a novel actor-critic-identifier architecture,

which is used to approximate the infinite-horizon optimal control for continuous-time

uncertain nonlinear systems. The method is online, partially model-free, and is the first

ever indirect adaptive control approach to continuous-time RL.
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

RL refers to an agent which interacts with its environment and modifies its actions

based on stimuli received in response to its actions. Learning happens through trial

and error and is based on a cause and effect relationship between the actions and the

rewards/punishment. Decisions/actions which lead to a satisfactory outcome are reinforced

and are more likely to be taken when the same situation arises again. Although RL

originated in psychology to explain human behavior, it has become a useful computational

tool for learning by experience in many engineering applications, such as computer game

playing, industrial manufacturing, traffic management, robotics and control, etc. From

a computational intelligence perspective, an RL agent chooses actions which minimize

the cost of its long-term interactions with the environment [1, 2]. A cost function,

which captures the performance criteria, is used to critique the actions of the agent as

a numerical reward, called the reinforcement signal. Unlike supervised learning where

learning is instructional and based on a set of examples of correct input/output behavior,

RL is more evaluative and indicates only the measure of goodness of a particular action.

Since interaction is done without a teacher, RL is particularly effective in situations

where examples of desired behavior are not available but it is possible to evaluate the

performance of actions based on some performance criterion. Improving the closed-loop

performance of nonlinear systems has been an active research area in the controls

community. Strong connections between RL and feedback control [3] have prompted

a major effort towards convergence of the two fields – computational intelligence and

controls. Several issues still exist that hinder RL methods for control of nonlinear systems,

such as stability, convergence, choice of function approximator, etc. This work attempts

to highlight and address some of these issues and provide a scaffolding for constructive

RL-based methods for optimal control of uncertain nonlinear systems.
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1.2 Problem Statement

The analogy between a continuously learning RL-agent in an unknown environment

and a continuously adapting and improving controller for an uncertain system define

the problem statement of this work. Specifically, the problem addressed in this work is

developing RL-based controllers for continuous-time uncertain nonlinear systems. These

controllers are inspired by RL and inherit many important features, like learning by

interacting with an uncertain environment, reward-based learning, online implementation,

and optimality.

1.3 Literature Survey

AC architectures have been proposed as models of RL [2, 4]. Since AC methods are

amenable to online implementation, they have become an important subject of research,

particularly in the controls community [5–14]. In AC-based RL, an actor network learns

to select actions based on evaluative feedback from the critic to maximize future rewards.

Due to the success of NNs as universal approximators [15, 16], they have become a natural

choice in AC architectures for approximating unknown plant dynamics and cost functions

[17, 18]. Typically, the AC architecture consists of two NNs – an action or actor NN and

a critic NN. The critic NN approximates the evaluation function, mapping states to an

estimated measure of the value function, while the action NN approximates an optimal

control law and generates actions or control signals. Following the works of Sutton [1],

Barto [19], Watkins [20], and Werbos [21], current research focuses on the relationship

between RL and dynamic programming (DP) [22] methods for solving optimal control

problems. Due to the curse of dimensionality associated with using DP [22], Werbos [5]

introduced an alternative Approximate Dynamic Programming (ADP) approach which

gives an approximate solution to the DP problem, or the Hamiltonian-Jacobi-Bellman

(HJB) equation for optimal control. A detailed review of ADP designs can be found in [6].

Various modifications to ADP algorithms have since been proposed [7, 23, 24].
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The performance of ADP-based controllers have been successfully demonstrated

on various nonlinear plants with unknown dynamics. Venayagamoorthy et al. used

ADP for control of turbogenerators, synchronous generators, and power systems [25,

26]. Ferrari and Stengel [27] used a Dual Heuristic Programming (DHP) based ADP

approach to control a nonlinear simulation of a jet aircraft in the presence of parameter

variations and control failures. Jagannathan et al. [28] used ACs for grasping control of

a three-finger-gripper. Some other interesting applications are missile control [29], HVAC

control [30], and control of distributed parameter systems [11].

Convergence of ADP algorithms for RL-based control is studied in [7–10, 31, 32]. A

policy iteration (PI) algorithm is proposed in [33] using Q-functions for the discrete-time

LQR problem and convergence to the state feedback optimal solution is proven. In

[34], model-free Q-learning is proposed for linear discrete-time systems with guaranteed

convergence to the H2 and H∞ state feedback control solution. Most of the previous work

on ADP has focused on either finite state Markovian systems or discrete-time systems [35,

36]. The inherently iterative nature of the ADP algorithm has impeded the development

of closed-loop controllers for continuous-time uncertain nonlinear systems. Extensions of

ADP-based controllers to continuous-time systems entails challenges in proving stability,

convergence, and ensuring the algorithm is online and model-free. Early solutions to

the problem consisted of using a discrete-time formulation of time and state, and then

applying an RL algorithm on the discretized system. Discretizing the state space for high

dimensional systems requires a large memory space and a computationally prohibitive

learning process. Convergence of PI for continuous-time LQR was first proved in [37].

Baird [38] proposed Advantage Updating, an extension of the Q-learning algorithm which

could be implemented in continuous-time and provided faster convergence. Doya [39]

used an HJB framework to derive algorithms for value function approximation and policy

improvement, based on a continuous-time version of the temporal difference (TD) error.

Murray et al. [8] also used the HJB framework to develop a stepwise stable iterative ADP
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algorithm for continuous-time input-affine systems with an input quadratic performance

measure. In Beard et al. [40], Galerkin’s spectral method is used to approximate the

solution to the generalized HJB (GHJB), using which a stabilizing feedback controller

was computed offline. Similar to [40], Abu-Khalaf and Lewis [41] proposed a least-squares

successive approximation solution to the GHJB, where an NN is trained offline to learn

the GHJB solution. Another continuous-time formulation of adaptive critic is proposed in

Hanselman [12].

All of the aforementioned approaches for continuous-time nonlinear systems require

complete knowledge of system dynamics. The fact that continuous-time ADP requires

knowledge of the system dynamics has hampered the development of continuous-time

extensions to ADP-based controllers for nonlinear systems. Recent results by [13, 42] have

made new inroads by addressing the problem for partially unknown nonlinear systems.

A PI-based hybrid continuous-time/discrete-time sampled data controller is designed

in [13, 42], where the feedback control operation of the actor occurs at faster time scale

than the learning process of the critic. Vamvoudakis and Lewis [14] extended the idea

by designing a model-based online algorithm called synchronous PI which involved

synchronous continuous-time adaptation of both actor and critic NNs.

1.4 Dissertation Outline

Chapter 1 serves as an introduction. The motivation, problem statement, literature

survey and the contributions of the work are provided in this chapter.

Chapter 2 discusses the key elements in the field of RL from a computational

intelligence point of view and discusses how these techniques can be applied to solve

control problems. Further, the optimal control problem, optimal control methods,

and their limitations are discussed. Connections between RL and optimal control are

established and implementation issues are highlighted.

Chapter 3 develops a continuous-time adaptive critic controller to yield asymptotic

tracking of a class of uncertain nonlinear systems with bounded disturbances. The
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proposed AC-based controller consists of two NNs - an action NN, also called the actor,

which approximates the plant dynamics and generates appropriate control actions; and a

critic NN, which evaluates the performance of the actor based on some performance index.

The reinforcement signal from the critic is used to develop a composite weight tuning

law for the action NN based on Lyapunov stability analysis. A recently developed robust

feedback technique, RISE (Robust Integral of the Sign of the Error), is used in conjunction

with the feedforward action NN to yield a semi-global asymptotic result.

Chapter 4 develops a robust identification-based state derivative estimation

method for uncertain nonlinear systems. The identifier architecture consists of a

recurrent multi-layer dynamic NN which approximates the system dynamics online,

and a continuous robust feedback RISE term which accounts for modeling errors and

exogenous disturbances. The developed method finds applications in RL-based control

methods for uncertain nonlinear systems.

Chapter 5 develops an online adaptive RL-based solution for the infinite-horizon

optimal control problem for continuous-time uncertain nonlinear systems. A novel

actor-critic-identifier (ACI) is developed to approximate the HJB equation using three

NN structures - actor and critic NNs approximate the optimal control and the optimal

value function, respectively, and a robust dynamic NN (DNN) identifier asymptotically

approximates the uncertain system dynamics. An advantage of the using the ACI

architecture is that learning by the actor, critic, and identifier is continuous and

simultaneous, without requiring knowledge of system drift dynamics. Convergence of

the algorithm is analyzed using Lyapunov-based adaptive control methods.

Chapter 6 concludes the dissertation with a discussion of the key ideas, contributions

and limitations of this work. It also points to future research directions and paves a path

forward for further developments in the field.
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1.5 Contributions

This work focuses on developing RL-based controllers for continuous-time nonlinear

systems. The contributions of Chapters 3-5 are as follows.

Asymptotic tracking by a RL-based adaptive critic controller: AC-based

controllers are typically discrete and/or yield a uniformly ultimately bounded stability

result due to the presence of disturbances and uncertain approximation errors. A

continuous asymptotic AC-based tracking controller is developed for a class of nonlinear

systems with bounded disturbances. The approach is different from the optimal

control-based ADP approaches proposed in literature [8–10, 13, 14, 32, 42], where the

critic usually approximates a long-term cost function and the actor approximates the

optimal control. However, the similarity with the ADP-based methods is in the use of

the AC architecture, borrowed from RL, where the critic, through a reinforcement signal

affects the behavior of the actor leading to an improved performance. The proposed robust

adaptive controller consists of a NN feedforward term (actor NN) and a robust feedback

term, where the weight update laws of the actor NN are designed as a composite of a

tracking error term and a RL term (from the critic), with the objective of minimizing the

tracking error [43–45]. The robust term is designed to withstand the external disturbances

and modeling errors in the plant. Typically, the presence of bounded disturbances and

NN approximation errors lead to a uniformly ultimately bounded (UUB) result. The main

contribution of this work is the use of a recently developed continuous feedback technique,

RISE [46, 47], in conjunction with the AC architecture to yield asymptotic tracking of

an unknown nonlinear system subjected to bounded external disturbances. The use of

RISE in conjunction with the action NN makes the design of the critic NN architecture

challenging from a stability standpoint. To this end, the critic NN is combined with an

additional RISE-like term to yield a reinforcement signal, which is used to update the

weights of the action NN. A Lyapunov stability analysis guarantees closed-loop stability
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of the system. Experiments are performed to demonstrate the improved performance with

the proposed RL-based AC method.

Robust identification-based state derivative estimation for nonlinear

systems: A state derivative estimation method is developed which can be used to design

complete or partial model-free RL-methods for control of uncertain nonlinear systems. The

developed robust identifier provides online estimates of the state derivative of uncertain

nonlinear systems in the presence of exogenous disturbances. The result differs from

existing pure robust methods in that the proposed method combines an adaptive DNN

system identifier with a robust RISE feedback to ensure asymptotic convergence to the

state derivative, which is proven using a Lyapunov-based stability analysis. Simulation

results in the presence of noise show an improved transient and steady state performance

of the developed identifier in comparison to several other derivative estimation methods

including: a high gain observer, a 2-sliding mode robust exact differentiator, and numerical

differentiation methods, such as backward difference and central difference.

A novel actor-critic-identifier architecture for approximate optimal control

of uncertain nonlinear systems: A novel actor-critic-identifier architecture is developed

to learn the approximate solution to the HJB equation for infinite-horizon optimal control

of uncertain nonlinear systems. The online method is the first ever indirect adaptive

control approach to continuous-time RL. Another contribution of the developed method

is that unlike previous results in literature, the learning by the actor, critic and identifier

is continuous and simultaneous, and the novel addition of the identifier to the traditional

actor-critic architecture eliminates the need to know the system drift dynamics. The

stability and convergence of the algorithm is rigorously analyzed. A PE condition is

required to ensure exponential convergence to a bounded region in the neighborhood of the

optimal control and UUB stability of the closed-loop system.
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CHAPTER 2
REINFORCEMENT LEARNING AND OPTIMAL CONTROL

RL refers to the problem of a goal-directed agent interacting with an uncertain

environment. The goal of an RL agent is to maximize a long-term scalar reward by sensing

the state of the environment and taking actions which affect the state. At each step, an

RL system gets evaluative feedback about the performance of its action, allowing it to

improve the performance of subsequent actions. Several RL methods have been developed

and successfully applied in machine learning to learn optimal policies for finite-state

finite-action discrete-time Markov Decision Processes (MDPs), shown in Fig. 2-1. An

analogous RL control system is shown in Fig. 2-2, where the controller, based on state

feedback and reinforcement feedback about its previous action, calculates the next control

which should lead to an improved performance. The reinforcement signal is the output

of a performance evaluator function, which is typically a function of the state and the

control. An RL system has a similar objective to an optimal controller which aims to

optimize a long-term performance criterion while maintaining stability. This chapter

discusses the key elements in the field of RL and how they can be applied to solve control

problems. Further, the optimal control problem, optimal control methods, and their

limitations are discussed. Connections between RL and optimal control are established

and implementation issues are highlighted, which motivate the methods developed in this

dissertation.

2.1 Reinforcement Learning Methods

RL methods typically estimate the value function, which is a measure of goodness

of a given action for a given state. The value function represents the reward/penalty

accumulated by the agent in the long run, and for a deterministic MDP, may be defined as

an infinite-horizon discounted return as [2]

V u(x0) =
∞∑

k=0

γkrk+1,
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where xk and uk are the state and action, respectively, for the discrete-time system

xk+1 = f(xk, uk), rk+1 , r(xk, uk) is the reward/penalty at the kth step, and γ∈ [0, 1)

is the discount factor used to discount future rewards. The objective of an RL method

is to determine a policy which maximizes the value function. Since the value function is

unknown, typically the first step is to estimate the value function, which can be expressed

using Bellman’s equation as [2]

V u(x) = r(x, u) + γV u(f(x, u)),

22



where the index k is suppressed. The optimal value function is defined as

V ∗(x) = min
u
V u(x),

which can also be expressed using the Bellman optimality condition as

V ∗(x) = min
u

[r(x, u) + γV ∗(f(x, u))]

u∗(x) = argmin
u

[r(x, u) + γV ∗(f(x, u))]. (2–1)

The above Bellman relations form the basis of all RL methods – policy iteration,

value iteration, and Q-learning [2, 20, 35]. RL methods can be categorized as model-based

and model-free. Model-based or DP-based RL algorithms utilize the expression in Eq.

2–1 but are offline and require perfect knowledge of the environment, as seen from Eq.

2–1. On the other hand, model-free RL algorithms are based on temporal difference

(TD), which refers to the difference between temporally successive estimates of the same

quantity. In contrast to DP-based RL methods, TD-based RL methods are online and do

not use an explicit model of the system, rather they use data (set of samples, trajectories

etc.) obtained from the process, i.e., they learn by interacting with the environment. Some

of the popular RL methods are subsequently discussed.

2.1.1 Policy Iteration

Policy Iteration (PI) algorithms [22, 48] successively alternate between policy

evaluation and policy improvement. The algorithm starts with an initial admissible

policy, estimates the value function (policy evaluation), and then improves the policy

using a greedy search on the estimated value function (policy improvement). The policy

evaluation step in DP-based PI is performed using the following recurrence relations until

convergence to the value function

V u(x) ← r(x, u) + γV u(f(x, u)), (2–2)
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where the symbol ‘←’ denotes the value on the right being assigned to the quantity on the

left. After the convergence of policy evaluation, policy improvement is performed using

ū(x) = argmin
a

[r(x, a) + γV u(f(x, a))] (2–3)

It can be seen from Eqs. 2–2 and 2–3 that the DP-based PI algorithm requires knowledge

of the system model f(x, u). Using the model-free TD(0) algorithm [1], which learns from

interacting with the environment, this limitation is overcome. Using the TD(0) algorithm,

the value function is estimated using the following update

V u(x) ← V u(x) + α [r(x, u) + γV u(x̄)− V u(x)] , (2–4)

where α ∈ (0, 1] is the learning rate, and x̄ denotes the next state observed after

performing action u at x. In contrast to DP-based policy evaluation, the value function

estimation in Eq. 2–4 does not require an explicit model of the system. The PI algorithm

converges to the optimal policy [48]. Online PI algorithms do not wait for the convergence

of the policy evaluation step to implement policy improvement; however, their convergence

can only be guaranteed only under very restrictive conditions, such as generation of

infinitely long trajectories for each iteration [49].

2.1.2 Value Iteration

Value Iteration (VI) algorithms directly estimate the optimal value function, which is

then used to compute the optimal policy. It combines the truncated policy evaluation and

policy improvement steps in one step using the following recurrence relations from DP [2]

V (x) ← min
a

[r(x, a) + γV (f(x, a))]

VI converges to the optimal V ∗(x), and is said to be less computationally intensive than

PI, although PI typically converges in fewer iterations [35].
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2.1.3 Q-Learning

Q-Learning algorithms use Q-factors Q(x, u), which are state-action pairs instead of

the state value function V (x). The Q-iteration algorithm uses TD learning to find the

optimal Q-factor Q∗(x, u) as

Q(x, u) ← Q(x, u) + α
[

r(x, u) + γmin
a
Q(x̄, a)−Q(x, u)

]

.

The Q-learning algorithm [20] is one of the major breakthroughs in reinforcement learning,

since it involves learning the optimal action-value function independent of the policy being

followed (also called off-policy)1 , which greatly simplifies the convergence analysis of

the algorithm. Adequate exploration is, however, needed for the convergence to Q∗. The

optimal policy can be directly found from performing a greedy search on Q∗ as

u∗(x) = argmin
a
Q∗(x, a).

2.2 Aspects of Reinforcement Learning Methods

This section discusses aspects and issues in implementation of the RL methods on

high dimensional and large-scale practical systems.

2.2.1 Curse of Dimensionality and Function Approximation

RL methods where value function estimates are represented as a table require, at

every iteration, storage and updating of all the table entries corresponding to the entire

state space. In fact, the computation and storage requirements increase exponentially

with the size of the state space, also called the curse of dimensionality. The problem

is compounded when considering continuous spaces which contain infinitely many

states and actions. One solution approach is to represent value functions using function

approximators, which are based on supervised learning, and generalize based on limited

1 An on-policy variant of Q-learning, SARSA [50], is based on policy iteration.
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information about the state space [2]. A convenient way to represent value functions is by

using linearly parameterized approximators of the form θTφ(x), where θ is the unknown

parameter vector, and φ is a user-defined basis function. Selecting the right basis function

which represents all the independent features of the value function is crucial in solving the

RL problem. Some prior knowledge regarding the process is typically included in the basis

function. The parameter vector is estimated using optimization algorithms, e.g., gradient

descent, least squares etc. Multi-layer neural networks may also be used as nonlinearly

parameterized approximators; however, weight convergence is harder to prove as compared

to linearly parameterized network structures.

2.2.2 Actor-Critic Architecture

Actor-critic methods, introduced by Barto [19], implement the policy iteration

algorithm online, where the critic is typically a neural network which implements policy

evaluation and approximates the value function, whereas the actor is another neural

network which approximates the control. The critic evaluates the performance of the actor

using a scalar reward from the environment and generates a TD error. The actor-critic

neural networks, shown in Fig. 2-3 are updated using gradient update laws based on the

TD error.

2.2.3 Exploitation Vs Exploration

The trade-off between exploitation and exploration has been a topic of much research

in the RL community [51]. For an agent in an unknown environment, exploration is

required to try out different actions and learn based on trial and error, whereas past

experience may also be exploited to select the best actions and minimize the cost

of learning. For sample or trajectory based RL methods (e.g., Monte Carlo) in large

dimensional spaces, selecting best actions (e.g., greedy policy) based on current estimates

is not sufficient because better alternative actions may potentially never be explored.

Sufficient exploration is essential to learn the global optimal solution. However, too much

exploration can also be costly in terms of performance and stability when the method is
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Figure 2-3. Actor-critic architecture for online policy iteration.

implemented online. One approach is to use a ε-greedy policy, where the exploration is the

highest when the agent starts learning, but gradually decays as experience is gained and

exploitation is preferred to reach the optimal solution.

2.3 Infinite Horizon Optimal Control Problem

RL has close connections with optimal control. In this section, the undiscounted

infinite horizon optimal control problem is formulated for continuous-time nonlinear

systems. Consider a continuous-time nonlinear system

ẋ = F (x, u), (2–5)

where x(t) ∈ X ⊆ R
n, u(t) ∈ U ⊆ R

m is the control input, F : X × U →R
n is Lipschitz

continuous on X × U containing the origin, such that the solution x(t) of the system in

Eq. 2–5 is unique for any finite initial condition x0 and control u ∈ U . It is also assumed

that F (0, 0) = 0. Further, the system is stabilizable, i.e. there exists a continuous feedback

control law u(x(t)) such that the closed-loop system is asymptotically stable.
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The infinite-horizon scalar cost function for the system Eq. 2–5 can be defined as

J(x(t), u(τ)
t≤τ<∞

) =

∫ ∞

t

r(x(s), u(s)) ds, (2–6)

where t is the initial time, r(x, u) ∈ R is the immediate or local cost for the state and

control, defined as

r(x, u) = Q(x) + uTRu, (2–7)

where Q(x) ∈ R is continuously differentiable and positive definite, and R ∈ R
m×m is a

positive-definite symmetric matrix. The optimal control problem is to find an admissible

control u∗ ∈ Ψ(X ), such that the cost in Eq. 2–6 associated with the system Eq. 2–5 is

minimized [52]. An admissible control input u(t) can be defined as a continuous feedback

control law u(x(t)) ∈ Ψ(X ), where Ψ(·) denotes the set of admissible controls, which

asymptotically stabilizes the system Eq. 2–5 on X , u(0) = 0, and J(·) in Eq. 2–6 is finite.

The optimal value function can be defined as

V ∗(x(t)) = min
u(τ)∈Ψ(X )

t≤τ<∞

∫ ∞

t

r(x(s), u(x(s))) ds. (2–8)

Assuming the value function is continuously differentiable, Bellman’s principle of

optimality can be used to derive the following optimality condition [52]

0 = min
u(t)∈Ψ(X )

[

r(x, u) +
∂V ∗(x)

∂x
F (x, u)

]

, (2–9)

which is a nonlinear partial differential equation (PDE), also called the HJB equation.

Based on the assumption that V ∗(x) is continuously differentiable, the HJB in Eq. 2–9

provides a means to obtain the optimal control u∗(x) in feedback form. Using the convex

local cost in Eqs. 2–7 and 2–9, a closed-form expression for the optimal control can be

derived as

u∗(x) = −1
2
R−1∂F (x, u)

∂u

T ∂V ∗(x)

∂x

T

. (2–10)
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For the control-affine dynamics of the form

ẋ = f(x) + g(x)u, (2–11)

where f(x) ∈ R
n and g(x) ∈ R

n×m, the expression in Eq. 2–10 can be written in terms of

the system state as

u∗(x) = −1
2
R−1gT (x)

∂V ∗(x)

∂x

T

. (2–12)

In general, the solutions to the optimal control problem may not be smooth [53].

Existence of a unique non-smooth solution (called the viscosity solution) is studied in

[53], [54].

The HJB in Eq. 2–9 can be rewritten in terms of the optimal value function by

substituting for the local cost in Eq. 2–7, the system in Eq. 2–11 and the optimal control

in Eq. 2–12, as

0 = Q(x) +
∂V ∗(x)

∂x
f(x)− 1

4

∂V ∗(x)

∂x
g(x)R−1gT (x)

∂V ∗(x)

∂x

T

, (2–13)

0 = V ∗(0).

Although in closed-form, the optimal policy in Eq. 2–12 requires knowledge of the optimal

value function V ∗(x), the solution of the HJB equation in Eq. 2–13. The HJB equation is

problematic to solve in general and may not have an analytical solution.

2.4 Optimal Control Methods

Since the solution of the HJB is prohibitively difficult and sometimes even impossible,

several alternative methods are investigated in literature. The calculus of variations

approach generates a set of a first-order necessary optimality conditions, called the

Euler-Lagrange equations, resulting in a two-point (or multi-point) boundary value

problem, which is typically solved numerically using indirect methods, such as shooting,

multiple shooting etc [52]. Another numerical approach is to use direct methods where the

state and/or control are approximated using function approximators or discretized using

29



collocation and the optimal control problem is transcribed to a nonlinear programming

problem, which can solved using methods such as direct shooting, direct collocation,

pseudo-spectral methods etc. [55, 56]. Although these numerical approaches are

effective and practical, they are open-loop, offline, require exact model knowledge and

are dependent on initial conditions. Another approach based on feedback linearization

involves robustly canceling the system nonlinearities, thereby reducing the system to a

linear system, and solving the associated Algebraic Riccati Equation (ARE)/Differential

Riccati Equation (DRE) for optimal control [57, 58]. A drawback of feedback linearization

is that it solves a transformed optimal control problem with respect to a part of the

control while the other part is used to cancel the nonlinear terms. Moreover, linearization

cancels all nonlinearities, some of which may be useful for the system. Inverse optimal

controllers circumvent the task of solving the HJB by proving optimality of a control law

for a meaningful cost function [59–61]. The fact that the cost function cannot be chosen a

priori by the user limits the applicability of the method.

Given the limitations of methods that seek an exact optimal solution, the focus

of some literature has shifted towards developing methods which yield a sub-optimal

or an approximately optimal solution. Model-predictive control (MPC) or receding

horizon control (RHC) [62, 63] is an example of an online model-based approximate

optimal control method which solve the optimal control problem over a finite time horizon

at every state transition leading to a state feedback optimal control solution. These

methods have been successfully applied in process control where the model is exactly

known and the dynamics are slowly varying [64, 65]. An offline successive approximation

method, proposed in [66], improves the performance of an initial stabilizing control by

approximating the solution to the generalized HJB (GHJB) equation and then using

the Bellman’s optimality principle to compute an improved control law. This process

is repeated and proven to converge to the optimal policy. The GHJB, unlike the HJB,

is a linear PDE which is more tractable to solve, e.g., using methods like the Galerkin
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projection [40]. The successive approximation method is similar to the policy iteration

algorithm in RL; however, the method is offline and requires complete model knowledge.

To alleviate the curse of dimensionality associated with dynamic programming, a family

of methods, called AC designs (also called ADP), were developed in [6, 17, 35, 36] to solve

the optimal control problem using RL and neural network backpropagation algorithms.

The methods are, however, applicable only for discrete-time systems and lack a rigorous

Lyapunov stability analysis.

2.5 Adaptive Optimal Control and Reinforcement Learning

Most optimal control approaches discussed in Section 2.4 are offline and require

complete model knowledge. Even for linear systems, where the LQR gives the closed-form

analytical solution to the optimal control problem, the ARE is solved offline and requires

exact knowledge of the system dynamics. Adaptive control provides an inroad to design

controllers which can adapt online to the uncertainties in system dynamics, based on

minimization of the output error (e.g., using gradient or least squares methods). However,

classical adaptive control methods do not maximize a long-term performance function,

and hence are not optimal. Adaptive optimal control refers to methods which learn the

optimal solution online for uncertain systems. RL methods described in Section 2.1 have

been successfully used in MDPs to learn optimal polices in uncertain environments, e.g.,

TD-based Q-learning is an online model-free RL method for learning optimal policies. In

[3], Sutton et al. argue that RL is a direct adaptive optimal control technique. Owing

to the discrete nature of RL algorithms, many methods have been proposed for adaptive

optimal control of discrete-time systems [6, 7, 10, 33, 67–70]. Unfortunately, an RL

formulation for continuous-time systems is not as straightforward as in the discrete-time

case, because while the TD error in the latter is model-free, it is not the case with the

former, where the TD error formulation inherently requires complete knowledge of the

system dynamics (see Eq. 2–9). RL methods based on the model-based TD error for

continuous-time systems are proposed in [8, 14, 39, 41]. A partial model-free solution
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is proposed in [13] using an actor-critic architecture, however, the resulting controller is

hybrid with a continuous-time actor and a discrete-time critic. Other issues concerning

RL-based controllers are: closed-loop stability, convergence to the optimal control,

function approximation, and tradeoff between exploitation and exploration. Few results

have rigorously addressed these issues which are critical for successful implementation

of RL methods for feedback control. The work in this dissertation is motivated by the

need to provide a theoretical foundation for RL-based control methods and explore their

potential as adaptive optimal control methods.
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CHAPTER 3
ASYMPTOTIC TRACKING BY A REINFORCEMENT LEARNING-BASED

ADAPTIVE CRITIC CONTROLLER

AC based controllers are typically discrete and/or yield a uniformly ultimately

bounded stability result due to the presence of disturbances and unknown approximation

errors. The objective in this chapter is to design a continuous-time AC controller which

yields asymptotic tracking of a class of uncertain nonlinear systems with bounded

disturbances. The proposed AC-based controller architecture consists of two NNs —

an action NN, also called the actor, which approximates the plant dynamics and generates

appropriate control actions; and a critic NN, which evaluates the performance of the actor

based on some performance index. The reinforcement signal from the critic is used to

develop a composite weight tuning law for the action NN based on Lyapunov stability

analysis. A recently developed robust feedback technique, RISE, is used in conjunction

with the feedforward action neural network to yield a semi-global asymptotic result.

3.1 Dynamic Model and Properties

The mn-th order MIMO Brunovsky form1 can be written as [43]

ẋ1 = x2

... (3–1)

ẋn−1 = xn

ẋn = g(x) + u+ d

y = x1,

1 The Brunovsky form can be used to model many physical systems, e.g.,
Euler-Lagrange systems.
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where x(t) , [xT1 xT2 . . . x
T
n ]

T ∈ R
mn are the measurable system states, u(t) ∈ R

m, y ∈ R
m

are the control input and system output, respectively; g(x) ∈ R
m is an unknown smooth

function, locally Lipschitz in x; and d(t) ∈ R
m is an external bounded disturbance.

Assumption 3.1. The function g(x) is second order differentiable, i.e., g(·), ġ(·), g̈(·) ∈

L∞ if x(i) (t) ∈ L∞, i = 0, 1, 2 where (·)(i) (t) denotes the ith derivative with respect to time.

Assumption 3.2. The desired trajectory yd(t) ∈ R
m is designed such that y

(i)
d (t) ∈

L∞, i = 0, 1, ..., n+ 1.

Assumption 3.3. The disturbance term and its first and second time derivatives are

bounded i.e. d(t), ḋ(t), d̈(t) ∈ L∞.

3.2 Control Objective

The control objective is to design a continuous RL-based NN controller such that

the output y(t) tracks a desired trajectory yd(t). To quantify the control objective, the

tracking error e1(t) ∈ R
m is defined as

e1 , y − yd. (3–2)

The following filtered tracking errors are defined to facilitate the subsequent stability

analysis

e2 , ė1 + α1e1

ei , ėi−1 + αi−1ei−1 + ei−2, i = 3, ..., n (3–3)

r , ėn + αnen, (3–4)

where α1, ..., αn ∈ R are positive constant control gains. Note that the signals e1(t), ...,

en(t)∈ R
m are measurable whereas the filtered tracking error r(t) ∈ R

m in Eq. 3–4 is

not measurable since it depends on ẋn(t). The filtered tracking errors in Eq. 3–3 can be

expressed in terms of the tracking error e1(t) as

ei =

i−1∑

j=0

aije
(j)
1 , i = 2, ..., n (3–5)
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where aij ∈ R are positive constants obtained from substituting Eq. 3–5 in Eq. 3–3 and

comparing coefficients [47]. It can be easily shown that

aij = 1, j = i− 1. (3–6)

3.3 Action NN-Based Control

Using Eqs. 3–2-3–6, the open loop error system can be written as

r = y(n) − y(n)d + f, (3–7)

where f(e1, ė1, ..., e
(n−1)
1 ) ∈ R

m is a function of known and measurable terms, defined as

f =

n−2∑

j=0

anj(e
(j+1)
1 + αne

(j)
1 ) + αne

(n−1)
1 .

Substituting the dynamics from Eq. 3–1 into Eq. 3–7 yields

r = g(x) + d− y(n)d + f + u. (3–8)

Adding and subtracting g(xd) : R
mn → R

m, where g(xd) is a smooth unknown function of

the desired trajectory xd(t) , [yTd ẏTd . . . (y
(n−1)
d )T ]T ∈ R

mn, the expression in Eq. 3–8 can

be written as

r = g(xd) + S + d+ Y + u, (3–9)

where Y (e1, ė1, ..., e
(n−1)
1 , y

(n)
d ) ∈ R

m contains known and measurable terms and is defined

as

Y , −y(n)d + f, (3–10)

and the auxiliary function S(x, xd) ∈ R
m is defined as

S , g(x)− g(xd).

The unknown nonlinear term g(xd) can be represented by a multi-layer NN as

g(xd) = W T
a σ(V

T
a xa) + ε (xa) , (3–11)
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where xa(t) ∈ R
mn+1 , [1 xTd ]

T is the input to the NN, Wa ∈ R
(Na+1)×m and Va ∈

R
(mn+1)×Na are the constant bounded ideal weights for the output and hidden layers

respectively with Na being the number of neurons in the hidden layer, σ (·) ∈ R
Na+1 is the

bounded activation function, and ε (xa) ∈ R
m is the function reconstruction error.

Remark 3.1. The NN used in Eq. 3–11 is referred to as the action NN or the associative

search element (ASE) [19], and it is used to approximate the system dynamics and

generate appropriate control signals.

Based on the assumption that the desired trajectory is bounded, the following

inequalities hold

‖εa (xa)‖ ≤ εa1, ‖ε̇a (xa, ẋa)‖ ≤ εa2 , ‖ε̈a (xa, ẋa, ẍa)‖ ≤ εa3 , (3–12)

where εa1 , εa2, εa3 ∈ R are known positive constants. Also, the ideal weights are assumed to

exist and be bounded by known positive constants [18], such that

‖Va‖ ≤ V̄a, ‖Wa‖ ≤ W̄a. (3–13)

Substituting Eq. 3–11 in Eq. 3–9, the open loop error system can now be written as

r =W T
a σ(V

T
a xa) + ε(xa) + S + d+ Y + u. (3–14)

The NN approximation for g(xd) can be represented as

ĝ(xd) = Ŵ T
a σ(V̂

T
a xa),

where Ŵa(t) ∈ R
(Na+1)×m and V̂a(t) ∈ R

(mn+1)×Na are the subsequently designed estimates

of the ideal weights. The control input u(t) in Eq. 3–14 can now be designed as

u , −Y − ĝ(xd)− µa, (3–15)

where µa(t) ∈ R
m denotes the RISE feedback term defined as [46, 47]

µa , (ka + 1)en(t)− (ka + 1)en(0) + v, (3–16)
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where v (t) ∈ R
m is the generalized solution to

v̇ = (ka + 1)αnen + β1sgn(en), v (0) = 0 (3–17)

where ka, β1 ∈ R are constant positive control gains, and sgn (·) denotes a vector signum

function.

Remark 3.2. Typically, the presence of the function reconstruction error and disturbance

terms in Eq. 3–14 would lead to a UUB stability result. The RISE term used in Eq. 3–15

robustly accounts for these terms guaranteeing asymptotic tracking with a continuous

controller [71] (i.e., compared with similar results that can be obtained by discontinuous

sliding mode control). The derivative of the RISE structure includes a sgn(·) term in Eq.

3–17 which allows it to implicitly learn and cancel terms in the stability analysis that are

C2 with bounded time derivatives.

Substituting the control input from Eq. 3–15 in Eq. 3–14 yields

r =W T
a σ(V

T
a xa)− Ŵ T

a σ(V̂
T
a xa) + S + d+ εa − µa. (3–18)

To facilitate the subsequent stability analysis, the time derivative of Eq. 3–18 is expressed

as

ṙ = Ŵ T
a σ

′(V̂ T
a xa)Ṽ

T
a ẋa + W̃ T

a σ
′(V̂ T

a xa)V̂
T
a ẋa +W T

a σ
′(V T

a xa)V
T
a ẋa −W T

a σ
′(V̂ T

a xa)V̂
T
a ẋa

−Ŵ T
a σ

′(V̂ T
a xa)Ṽ

T
a ẋa −

˙̂
W T

a σ(V̂
T
a xa)− Ŵ T

a σ
′(V̂ T

a xa)
˙̂
V T
a xa + Ṡ + ḋ+ ε̇a − µ̇a, (3–19)

where σ′(V̂ T
a xa) ≡ dσ

(
V T
a xa

)
/d
(
V T
a xa

)
|V T

a xa=V̂ T
a xa

, and W̃a(t) ∈ R
(Na+1)×m and

Ṽa(t) ∈ R
(mn+1)×Na are the mismatch between the ideal and the estimated weights, and are

defined as

Ṽa , Va − V̂a, W̃a , Wa − Ŵa.
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The weight update laws for the action NN are designed based on the subsequent stability

analysis as

˙̂
Wa , proj(Γawαnσ

′(V̂ T
a xa)V̂

T
a ẋae

T
n + Γawσ(V̂

T
a xa)RŴ

T
c σ

′(V̂ T
c en)V̂

T
c )

˙̂
Va = proj(Γavαnẋae

T
nŴ

T
a σ

′(V̂ T
a xa) + ΓavxaRŴ

T
c σ

′(V̂ T
c en)V̂

T
c Ŵ

T
a σ

′(V̂ T
a xa)), (3–20)

where Γaw ∈ R
(Na+1)×(Na+1),Γav ∈ R

(mn+1)×(mn+1) are constant, positive definite,

symmetric gain matrices, R(t) ∈ R is the subsequently designed reinforcement signal,

proj(·) is a smooth projection operator utilized to guarantee that the weight estimates

Ŵa(t) and V̂a(t) remain bounded [72], [73], and V̂c(t) ∈ R
m×Nc and Ŵc(t) ∈ R

(Nc+1)×1 are

the subsequently introduced weight estimates for the critic NN. The NN weight update

law in Eq. 3–20 is composite in the sense that it consists of two terms, one of which is

affine in the tracking error en(t) and the other in the reinforcement signal R(t).

The update law in Eq. 3–20 can be decomposed into two terms

˙̂
W T

a = χW
en

+ χW
R

˙̂
V T
a = χV

en
+ χV

R. (3–21)

Using Assumption 3.2, Eq. 3–13 and the use of projection algorithm in Eq. 3–20, the

following bounds can be established

∥
∥χW

en

∥
∥ ≤ γ1 ‖en‖

∥
∥χW

R

∥
∥ ≤ γ2 |R| ,

∥
∥χV

en

∥
∥ ≤ γ3 ‖en‖

∥
∥χV

R

∥
∥ ≤ γ4 |R| , (3–22)

where γ1, γ2, γ3, γ4 ∈ R are known positive constants. Substituting Eqs. 3–16, 3–20, and

3–21 in Eq. 3–19, and grouping terms, the following expression is obtained

ṙ = Ñ +NR +N − en − (ka + 1)r − β1sgn(en), (3–23)

where the unknown auxiliary terms Ñ(t) ∈ R
m and NR(t) ∈ R

m are defined as

Ñ , Ṡ + en − χW
en
σ(V̂ T

a xa)− Ŵ T
a σ

′(V̂ T
a xa)χ

V
en
xa, (3–24)
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NR , −χW
R σ(V̂

T
a xa)− Ŵ T

a σ
′(V̂ T

a xa)χ
V
Rxa. (3–25)

The auxiliary term N(t) ∈ R
m is segregated into two terms as

N = Nd +NB, (3–26)

where Nd(t) ∈ R
m is defined as

Nd ,W T
a σ

′(V T
a xa)V

T
a ẋa + ḋ+ ε̇a, (3–27)

and NB(t) ∈ R
m is further segregated into two terms as

NB = NB1 +NB2 (3–28)

where NB1(t), NB2(t) ∈ R
m are defined as

NB1 , −W T
a σ

′(V̂ T
a xa)V̂

T
a ẋa − Ŵ T

a σ
′(V̂ T

a xa)Ṽ
T
a ẋa,

NB2 , W̃ T
a σ

′(V̂ T
a xa)V̂

T
a ẋa + Ŵ T

a σ
′(V̂ T

a xa)Ṽ
T
a ẋa. (3–29)

Using the Mean Value Theorem, the following upper bound can be developed [47], [71]

∥
∥
∥Ñ(t)

∥
∥
∥ ≤ ρ1 (‖z‖) ‖z‖ , (3–30)

where z(t) ∈ R
(n+1)m is defined as

z , [eT1 eT2 . . . e
T
n rT ]T , (3–31)

and the bounding function ρ1(·) ∈ R is a positive, globally invertible, non-decreasing

function. Using Assumptions 3.2 and 3.3, Eqs. 3–12, 3–13, and 3–20, the following bounds

can be developed for Eqs. 3–25-3–29

‖Nd‖ ≤ ζ1 , ‖NB1‖ ≤ ζ2 , ‖NB2‖ ≤ ζ3

‖N‖ ≤ ζ1 + ζ2 + ζ3, ‖NR‖ ≤ ζ4 |R| . (3–32)
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The bounds for the time derivative of Eqs. 3–27 and 3–28 can be developed using

Assumptions 3.2 and 3.3, Eqs. 3–12 and 3–20

∥
∥
∥Ṅd

∥
∥
∥ ≤ ζ5,

∥
∥
∥ṄB

∥
∥
∥ ≤ ζ6 + ζ7 ‖en‖+ ζ8 |R| , (3–33)

where ζi ∈ R, (i = 1, 2, ..., 8) are computable positive constants.

Remark 3.3. The segregation of the auxiliary terms in Eqs. 3–21 and 3–23 follows a

typical RISE strategy [71] which is motivated by the desire to separate terms that can be

upper bounded by state-dependent terms and terms that can be upper bounded by constants.

Specifically, Ñ(t) contains terms upper bounded by tracking error state-dependent terms,

N(t) has terms bounded by a constant, and is further segregated into Nd(t) and NB(t)

whose derivatives are bounded by a constant and linear combination of tracking error

states, respectively. Similarly, NR(t) contains reinforcement signal dependent terms. The

terms in Eq. 3–28 are further segregated because NB1(t) will be rejected by the RISE

feedback, whereas NB2(t) will be partially rejected by the RISE feedback and partially

canceled by the NN weight update law.

3.4 Critic NN Architecture

In RL literature [2], the critic generates a scalar evaluation signal which is then used

to tune the action NN. The critic itself consists of a NN which approximates an evaluation

function based on some performance measure. The proposed AC architecture is shown in

Fig. 3-1. The filtered tracking error en(t) can be considered as an instantaneous utility

function of the plant performance [43, 44].

The reinforcement signal R(t) ∈ R is defined as [43]

R , Ŵ T
c σ(V̂

T
c en) + ψ, (3–34)

where V̂c ∈ R
m×Nc , Ŵc ∈ R

(Nc+1)×1, σ (·) ∈ R
Nc+1 is the nonlinear activation function,

Nc are the number of hidden layer neurons of the critic NN, and the performance measure

en(t) defined in Eq. 3–3 is the input to the critic NN, and ψ ∈ R is an auxilliary term
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Figure 3-1. Architecture of the RISE-based AC controller.

generated as

ψ̇ = Ŵ T
c σ

′(V̂ T
c en)V̂

T
c (µa + αnen)− kcR− β2sgn(R), (3–35)

where kc, β2 ∈ R are constant positive control gains. The weight update law for the critic

NN is generated based on the subsequent stability analysis as

˙̂
Wc = proj(−Γcwσ(V̂

T
c en)R− ΓcwŴc) (3–36)

˙̂
Vc = proj(−ΓcvenŴ

T
c σ

′(V̂ T
c en)R− ΓcvV̂c),

where Γcw,Γcv ∈ R are constant positive control gains.

Remark 3.4. The structure of the reinforcement signal R(t) in Eq. 3–34 is motivated by

literature such as [43–45], where the reinforcement signal is typically the output of a critic

NN which tunes the actor based on a performance measure. The performance measure

considered in this work is the tracking error en(t), and the critic weight update laws are
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designed using a gradient algorithm to minimize the tracking error, as seen from the

subsequent stability analysis. The auxiliary term ψ(t) in 3–34 is a RISE-like robustifying

term which is added to account for certain disturbance terms which appear in the error

system of the reinforcement learning signal. Specifically, the inclusion of ψ(t) is used to

implicitly learn and compensate for disturbances and function reconstruction errors in the

reinforcement signal dynamics, yielding an asymptotic tracking result.

To aid the subsequent stability analysis, the time derivative of the reinforcement

signal in Eq. 3–34 is obtained as

Ṙ =
˙̂
W T

c σ(V̂
T
c en) + Ŵ T

c σ
′(V̂ T

c en)
˙̂
V T
c en + Ŵ T

c σ
′(V̂ T

c en)V̂
T
c ėn + ψ̇. (3–37)

Using Eqs. 3–18, 3–35, 3–36, and the Taylor series expansion [18]

σ(V T
a xa) = σ

(

V̂ T
a xa

)

+ σ′(V̂ T
a xa)Ṽ

T
a xa +O

(

Ṽ T
a xa

)2

,

where O(·)2 represents higher order terms, the expression in Eq. 3–37 can be written as

Ṙ =
˙̂
W T

c σ(V̂
T
c en) + Ŵ T

c σ
′(V̂ T

c en)
˙̂
V T
c en +Ndc +Ns + Ŵ T

c σ
′(V̂ T

c en)V̂
T
c W̃

T
a σ
(

V̂ T
a xa

)

+Ŵ T
c σ

′(V̂ T
c en)V̂

T
c Ŵ

T
a σ

′(V̂ T
a xa)Ṽ

T
a xa − kcR − β2sgn(R), (3–38)

where the auxiliary terms Ndc(t) ∈ R and Ns(t) ∈ R are unknown functions defined as

Ndc , Ŵ T
c σ

′(V̂ T
c en)V̂

T
c W̃

T
a σ

′(V̂ T
a xa)Ṽ

T
a xa +W T

a O
(

Ṽ T
a xa

)2

+ d+ εa

Ns , Ŵ T
c σ

′(V̂ T
c en)V̂

T
c S. (3–39)

Using Assumptions 3.2 and 3.3, Eqs. 3–12, 3–36, and the Mean Value Theorem, the

following bounds can be developed for Eq. 3–39

‖Ndc‖ ≤ ζ9, ‖Ns‖ ≤ ρ2(‖z‖) ‖z‖ , (3–40)

where ζ9 ∈ R is a computable positive constant, and ρ2(·) ∈ R is a positive, globally

invertible, non-decreasing function.
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3.5 Stability Analysis

Theorem 3.1. The RISE-based AC controller given in Eqs. 3–15 and 3–34 along with the

weight update laws for the action and critic NN given in Eqs. 3–20 and 3–36, respectively,

ensure that all system signals are bounded under closed-loop operation and that the

tracking error is regulated in the sense that

‖e1(t)‖ → 0 as t→∞

provided the control gains ka and kc are selected sufficiently large based on the initial

conditions of the states, αn−1, αn, β2, and kc, are chosen according to the following

sufficient conditions

αn−1 >
1

2
, αn > β3 +

1

2
, β2 > ζ9, kc > β4, (3–41)

and β1, β3, β4 ∈ R, introduced in Eq. 3–46, are chosen to satisfy the following sufficient

conditions 2

β1 > max

(

ζ1 + ζ2 + ζ3, ζ1 + ζ2 +
ζ5
αn

+
ζ6
αn

)

, β3 > ζ7 +
ζ8
2
, β4 >

ζ8
2
. (3–42)

Proof. Let D ⊂ R
(n+1)m+3 be a domain containing y(t) = 0, where y(t) ∈ R

(n+1)m+3 is

defined as

y , [zT R
√
P
√

Q]T , (3–43)

where the auxiliary function Q(t) ∈ R is defined as

Q ,
1

2
tr(W̃ T

a Γ
−1
awW̃a) +

1

2
tr(Ṽ T

a Γ−1
av Ṽa) +

1

2
tr(Ŵ T

c Ŵc) +
1

2
tr(V̂ T

c V̂c), (3–44)

2 The derivation of the sufficient conditions in Eq. 3–42 is provided in the Appendix
A.1.
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where tr(·) is the trace of a matrix. The auxiliary function P (z, R, t) ∈ R in Eq. 3–43 is

the generalized solution to the differential equation

Ṗ = −L, P (0) = β1

m∑

i=1

|eni(0)| − en(0)TN(0), (3–45)

where the subscript i = 1, 2, .., m denotes the ith element of the vector, and the auxiliary

function L(z, R, t) ∈ R is defined as

L , rT (Nd +NB1 − β1sgn(en)) + ėTnNB2 − β3 ‖en‖2 − β4 |R|2 , (3–46)

where β1, β3, β4 ∈ R are chosen according to the sufficient conditions in Eq. 3–42.

Provided the sufficient conditions introduced in Eq. 3–42 are satisfied, then P (z, R, t) ≥ 0.

From Eqs. 3–23, 3–32, 3–38 and 3–40, some disturbance terms in the closed-loop error

systems are bounded by a constant. Typically, such terms (e.g., NN reconstruction error)

lead to a UUB stability result. The definition of P (z, R, t) is motivated by the RISE

control structure to compensate for such disturbances so that an asymptotic tracking

result is obtained.

Let V (y) : D × [0,∞)→ R be a Lipschitz continuous regular positive definite function

defined as

V ,
1

2
zT z +

1

2
R2 + P +Q (3–47)

which satisfies the following inequalities:

U1(y) ≤ V (y) ≤ U2(y) (3–48)

where U1(y), U2(y) ∈ R are continuous positive definite functions. From Eqs. 3–3,

3–4, 3–23, 3–38, 3–44, and 3–45, the differential equations of the closed-loop system

are continuous except in the set {(y, t)|en = 0 or R = 0}. Using Filippov’s differential

inclusion [74–77], the existence and uniqueness of solutions can be established for ẏ =

f(y, t) (a.e.), where f(y, t) ∈ R
(n+1)m+3 denotes the right-hand side of the the closed-loop

error signals. Under Filippov’s framework, a generalized Lyapunov stability theory can be
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used (see [77–80] and Appendix A.2 for further details) to establish strong stability of the

closed-loop system. The generalized time derivative of Eq. 3–47 exists almost everywhere

(a.e.), and V̇ (y) ∈a.e. ˙̃V (y) where

˙̃V =
⋂

ξ∈∂V (y)

ξTK

[

żT Ṙ 1
2
P− 1

2 Ṗ 1
2
Q− 1

2 Q̇ 1

]T

,

where ∂V is the generalized gradient of V [78], and K[·] is defined as [79, 80]

K[f ](y, t) ,
⋂

δ>0

⋂

µN=0

cof(B(y, δ)−N, t), (3–49)

where ∩
µN=0

denotes the intersection of all sets N of Lebesgue measure zero, co denotes

convex closure, and B(y, δ) represents a ball of radius δ around y. Since V (y) is a

Lipschitz continuous regular function,

˙̃V = ∇V TK

[

żT Ṙ 1
2
P− 1

2 Ṗ 1
2
Q− 1

2 Q̇ 1

]T

=

[

zT R 2P
1

2 2Q
1

2 0

]

K

[

żT Ṙ 1
2
P− 1

2 Ṗ 1
2
Q− 1

2 Q̇ 1

]T

Using the calculus for K[·] from [80] and substituting the dynamics from Eqs. 3–23, 3–38,

3–44, and 3–45, and splitting kc as kc = kc1 + kc2, yields

˙̃V ⊂ rT (Ñ +NR +N − en − (ka + 1)r − β1K[sgn(en)]) +

n∑

i=1

eTi ėi

+R(
˙̂
W T

c σ(V̂
T
c en) +Ndc +Ns) + Ŵ T

c σ
′(V̂ T

c en)
˙̂
V T
c enR− β2RK[sgn(R)]

+Ŵ T
c σ

′(V̂ T
c en)V̂

T
c W̃

T
a σ
(

V̂ T
a xa

)

R− kcR2 + Ŵ T
c σ

′(V̂ T
c en)V̂

T
c Ŵ

T
a σ

′(V̂ T
a xa)Ṽ

T
a xaR

−rT (Nd +NB1 − β1K[sgn(en)])− ėn(t)TNB2 + β3 ‖en‖2 + β4 |R|2

−1
2
tr(W̃ T

a Γ
−1
aw

˙̂
Wa)−

1

2
tr(Ṽ T

a Γ−1
av

˙̂
Va)−

1

2
tr(Ŵ T

c
˙̂
Wc)−

1

2
tr(V̂ T

c
˙̂
Vc).

= −
n∑

i=1

αi ‖ei‖2 + eTn−1en − ‖r‖2 − (kc1 + kc2) |R|2 + rT (Ñ +NR − kar)

+R(Ndc +Ns − kcR)− β2 |R| − Γcw |R|2
∥
∥
∥σ(V̂ T

c en)
∥
∥
∥

2

− Γcw

∥
∥
∥Ŵc

∥
∥
∥

2
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+2Γcw |R|
∥
∥
∥Ŵcσ(V̂

T
c en)

∥
∥
∥+ β3 ‖en‖2 + β4 |R|2 − Γcv

∥
∥
∥Ŵ T

c σ
′(V̂ T

c en)
∥
∥
∥

2

‖en‖2 |R|2

−Γcv(
∥
∥
∥V̂c

∥
∥
∥

2

− 2
∥
∥
∥Ŵ T

c σ
′(V̂ T

c en)
∥
∥
∥ ‖en‖

∥
∥
∥V̂c

∥
∥
∥ |R|), (3–50)

where the NN weight update laws from Eqs. 3–20, 3–36, and the fact that (rT −

rT )iSGN(eni) = 0 is used (the subscript i denotes the ith element), where K[sgn(en)] =

SGN(en) [80], such that SGN(eni) = 1 if eni > 0, [−1, 1] if eni = 0, and −1 if eni < 0.

Upper bounding the expression in Eq. 3–50 using Eqs. 3–30, 3–32, and 3–40, yields

˙̃V ≤ −
n−2∑

i=1

αi ‖ei‖2 −
(

αn−1 −
1

2

)

‖en−1‖2 − ‖r‖2 −
(

αn − β3 −
1

2

)

‖en‖2

−(kc1 − β4) |R|2 + (ζ9 − β2) |R| − [ka ‖r‖2 − ρ1 (‖z‖) ‖z‖ ‖r‖]

−[kc2 |R|2 − (ρ2(‖z‖) + ζ4) |R| ‖z‖]. (3–51)

Provided the gains are selected according to Eq. 3–41, the expression in Eq. 3–51 can be

further upper bounded by completing the squares as

˙̃V ≤ −λ ‖z‖2 + ρ2 (‖z‖) ‖z‖2
4k

− (kc1 − β4) |R|2

≤ −U(y) ∀y ∈ D, (3–52)

where k , min(ka, kc2) and λ ∈ R is a positive constant defined as

λ = min

{

α1, α2, ..., αn−2,

(

αn−1 −
1

2

)

,

(

αn − β3 −
1

2

)

, 1

}

.

In Eq. 3–52, ρ(·) ∈ R is a positive, globally invertible, non-decreasing function defined as

ρ2 (‖z‖) = ρ21 (‖z‖) + (ρ2 (‖z‖) + ζ4)
2 ,

and U(y) , c
∥
∥
∥

[
zT R

]T
∥
∥
∥

2

, for some positive constant c, is a continuous, positive

semi-definite function defined on the domain

D ,

{

y(t) ∈ R
(n+1)m+3 | ‖y‖ ≤ ρ−1

(

2
√
λk
)}

.
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The size of the domain D can be increased by increasing k. The result in Eq. 3–52

indicates that V̇ (y) ≤ −U(y) ∀ V̇ (y) ∈ ˙̃V (y) ∀y ∈ D. The inequalities in Eqs. 3–48

and 3–52 can be used to show that V (y) ∈ L∞ in D; hence, e1(t), e2(t), ...en(t), r(t) and

R (t) ∈ L∞ in D. Standard linear analysis methods can be used along with Eqs. 3–1-3–5

to prove that ė1(t), ė2(t), ...ėn(t), x
(i)(t) ∈ L∞ (i = 0, 1, 2) in D. Further, Assumptions 3.1

and 3.3 can be used to conclude that u(t) ∈ L∞ in D. From these results, Eqs. 3–12, 3–13,

3–19, 3–20, and 3–34-3–37 can be used to conclude that ṙ(t), ψ(t), Ṙ(t) ∈ L∞ in D. Hence,

U(y) is uniformly continuous in D. Let S ⊂ D denote a set defined as follows:

S ,

{

y(t)⊂ D | U2(y(t)) < λ1

(

ρ−1
(

2
√
λk
))2

}

. (3–53)

The region of attraction in Eq. 3–53 can be made arbitrarily large to include any initial

conditions by increasing the control gain k (i.e. a semi-global type of stability result), and

hence

‖e1(t)‖ , |R| → 0 as t→∞ ∀y(0) ∈ S.

3.6 Experimental Results

To test the performance of the proposed AC-based approach, the controller in Eqs.

3–15, 3–20, 3–34-3–36 was implemented on a two-link robot manipulator, where two

aluminum links are mounted on a 240 Nm (first link) and a 20 Nm (second link) switched

reluctance motor. The motor resolvers provide rotor position measurements with a

resolution of 614400 pulses/revolution, and a standard backwards difference algorithm

is used to numerically determine angular velocity from the encoder readings (Fig. 3-2).

The two-link revolute robot is modeled as an Euler-Lagrange system with the following

dynamics

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) + τd = τ, (3–54)
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Figure 3-2. Two-link experiment testbed.

where M(q) ∈ R
2×2 denotes the inertia matrix, Vm(q, q̇) ∈ R

2×2 denotes the centripetal-Coriolis

matrix, F (q̇) ∈ R
2 denotes friction, τd(t) ∈ R

2 denotes an unknown external disturbance,

τ(t) ∈ R
2 represents the control torque, and q(t), q̇(t), q̈(t) ∈ R

2 denote the link position,

velocity and acceleration. The dynamics in (3–54) can be transformed into the Brunovsky

form as

ẋ1 = x2

ẋ2 = g(x) + u+ d, (3–55)

where x1 , q, x2 , q̇, x = [x1 x2]
T , g(x) , −M−1(q)[Vm(q, q̇)q̇ + F (q̇)], u , M−1(q)τ(t),

and d , M−1(q)τ(t). The control objective is to track a desired link trajectory, selected as

(in degrees):

qd(t) = 60 sin(2.5t)(1− e−0.01t3).

Two controllers are implemented on the system, both having the same expression for the

control u(t) as in Eq. 3–15; however, they differ in the NN weight update laws. The first

1 For this experiment, the inertia matrix is assumed to be known as it is required for
calculation of joint torques τ(t), which are determined using the expression τ =M(q)u.
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controller (denoted by NN+RISE) employs a standard NN gradient-based weight update

law which is affine in the tracking error, given as

·

Ŵa , Γaw

[

proj(αnσ
′(V̂ T

a xa)V̂
T
a ẋae

T
n )
]

·

V̂ a = Γav

[

proj(αnẋae
T
nŴ

T
a σ

′(V̂ T
a xa))

]

.

The proposed AC-based controller (denoted by AC+RISE) uses a composite weight

update law, consisting of a gradient-based term and a reinforcement-based term, as in

Eq. 3–20, where the reinforcement term is generated from the critic architecture in Eq.

3–34. For the NN+RISE controller, the initial weights of the NN, Ŵa(0) is chosen to

be zero, whereas V̂a(0) is randomly initialized in [−1, 1], such that it forms a basis [81].

The input to the action NN is chosen as xa = [1 qTd q̇Td ], and the number of hidden

layer neurons are chosen by trial and error as Na = 10. All other states are initialized

to zero. A sigmoid activation function is chosen for the NN and the adaptation gains are

selected as Γaw = I11 Γav = 0.1I11, with feedback gains selected as α1 = diag(10, 15),

α2 = diag(20, 15), ka = (20, 15) and β1 = diag(2, 1). For the AC+RISE controller, the

critic is added to the NN+RISE by including an additional RL term in the weight update

law of the action NN. The actor NN and the RISE term in AC+RISE use the same gains

as NN+RISE. The number of hidden layer neurons for the critic are selected by trial and

error as Nc = 3. The initial critic NN weights Ŵc(0) and V̂c(0) are randomly chosen in [−1,

1]. The control gains for the critic are selected as kc = 5 β2 = 0.1 Γcw = 0.4 Γcv = 1.

Experiments for both controllers were repeated 10 consecutive times with the same gains

to check the repeatability and accuracy of results. For each run, the RMS values of the

tracking error e1(t) and torques τ(t) are calculated. A one-tail unpaired t-test is performed

with a significance level of α = 0.05. A summary of comparative results with the two

controllers are tabulated in Tables 3-1 and 3-2.

Tables 3-1 and 3-2 indicate that the AC+RISE controller has statistically smaller

mean RMS errors for Link 1 (P = 0.003) and Link 2 (P = 0.046) as compared to
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Table 3-1. Summarized experimental results and P values of one tailed unpaired t-test for
Link 1.

Experiment RMS error [Link1] Torque [Link1] (Nm)
NN+RISE AC+RISE NN+RISE AC+RISE

Maximum 0.143◦ 0.123◦ 15.937 16.013
Minimum 0.101◦ 0.098◦ 15.451 15.470
Mean 0.125◦ 0.108◦ 15.687 15.764
Std. dev. 0.014◦ 0.009◦ 0.152 0.148
P(T<=t) 0.003∗ 0.134
∗ denotes statistically significant value.

Table 3-2. Summarized experimental results and P values of one tailed unpaired t-test for
Link 2.

Experiment RMS error [Link2] Torque [Link2] (Nm)
NN+RISE AC+RISE NN+RISE AC+RISE

Maximum 0.161◦ 0.138◦ 1.856 1.858
Minimum 0.112◦ 0.107◦ 1.717 1.670
Mean 0.137◦ 0.127◦ 1.783 1.753
Std. dev. 0.015◦ 0.010◦ 0.045 0.054
P(T<=t) 0.046∗ 0.098
∗ denotes statistically significant value.

the NN+RISE controller. The AC+RISE controller, while having a reduced error, uses

approximately the same amount of control torque (statistically insignificant difference) as

NN+RISE. The results indicate that the mean RMS the position tracking errors for Link 1

and Link 2 are approximately 14% and 7% smaller for the proposed AC+RISE controller.

The plots for tracking error and control torques are shown for a typical experiment in

Figs. 3-3 and 3-4.

3.7 Comparison with Related Work

A continuous asymptotic AC-based tracking controller is developed for a class of

nonlinear systems with bounded disturbances. The approach is different from the optimal

control-based ADP approaches proposed in literature [8–10, 13, 14, 32, 42], where the

critic usually approximates a long-term cost function and the actor approximates the

optimal control. However, the similarity with the ADP-based methods is in the use

of the AC architecture, borrowed from RL, where the critic, through a reinforcement

signal affects the behavior of the actor leading to an improved performance. The
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Figure 3-3. Comparison of tracking errors and torques between NN+RISE and AC+RISE
for link 1 (a) Tracking error with NN+RISE, (b) Control Torque with
NN+RISE, (c) Tracking error with AC+RISE, (d) Control Torque with
AC+RISE.

proposed adaptive robust controller consists of a NN feedforward term (actor NN) and

a robust feedback term, where the weight update laws of the actor NN are designed as

a composite of a tracking error term and a RL term (from the critic), with the objective

of minimizing the tracking error [43–45]. The robust term is designed to withstand

the external disturbances and modeling errors in the plant. Typically, the presence of

bounded disturbances and NN approximation errors lead to a UUB result. The main

contribution of this work is the use of a recently developed continuous feedback technique,

RISE [46, 47], in conjunction with the AC architecture to yield asymptotic tracking of
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Figure 3-4. Comparison of tracking errors and torques between NN+RISE and AC+RISE
for link 2 (a) Tracking error with NN+RISE, (b) Control Torque with
NN+RISE, (c) Tracking error with AC+RISE, (d) Control Torque with
AC+RISE.

an unknown nonlinear system subjected to bounded external disturbances. The use of

RISE in conjunction with the action NN makes the design of the critic NN architecture

challenging from a stability standpoint. To this end, the critic NN is combined with an

additional RISE-like term to yield a reinforcement signal, which is used to update the

weights of the action NN. A smooth projection algorithm is used to bound the NN weight

estimates and a Lyapunov stability analysis guarantees closed-loop stability of the system.
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3.8 Summary

An AC-based controller is developed for a class of uncertain nonlinear systems with

additive bounded disturbances. The main contribution of this work is the combination of

the continuous RISE feedback with the AC architecture to guarantee asymptotic tracking

for the nonlinear system. The feedforward action NN approximates the nonlinear system

dynamics and the robust feedback (RISE) rejects the NN functional reconstruction error

and disturbances. In addition, the action NN is trained online using a combination of

tracking error and a reinforcement signal, generated by the critic. Experimental results

and t-test analysis demonstrate faster convergence of the tracking error when a RL term is

included in the NN weight update laws.
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CHAPTER 4
ROBUST IDENTIFICATION-BASED STATE DERIVATIVE ESTIMATION FOR

NONLINEAR SYSTEMS

The requirement of complete model knowledge has impeded the development of

RL-based optimal control solutions for continuous-time uncertain nonlinear systems, which

motivates the development of state derivative estimator in this chapter. Besides providing

a model-free value function approximation in RL-based control, estimation of the state

derivative is useful for many other applications including: disturbance and parameter

estimation [82], fault detection in dynamical systems [83], digital differentiation in signal

processing, acceleration feedback in robot contact transition control [84], DC motor control

[85] and active vibration control [86]. The problem of computing the state derivative

becomes trivial if the state is fully measurable and the system dynamics are exactly

known. The presence of uncertainties (parametric and non-parametric) and exogenous

disturbances, however, make the problem challenging and motivate the state derivative

estimation method for uncertain nonlinear systems developed in this work.

4.1 Robust Identification-Based State Derivative Estimation

Consider a control-affine uncertain nonlinear system

ẋ = f(x) +

m∑

i=1

gi(x)ui + d, (4–1)

where x(t) ∈ R
n is the measurable system state, f(x) ∈ R

n and gi(x) ∈ R
n, i = 1, ..., m

are unknown functions, ui(t) ∈ R, i = 1, ..., m is the control input, and d(t) ∈ R
n is an

exogenous disturbance. The objective is to design an estimator for the state derivative

ẋ(t) using a robust identification-based approach that adaptively identifies the uncertain

dynamics.

Assumption 4.1. The functions f(x) and gi(x), i = 1, ..., m are second-order differen-

tiable.
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Assumption 4.2. The system in Eq. 4–1 is bounded input bounded state (BIBS) sta-

ble, i.e., ui(t), x(t) ∈ L∞, i = 1, ..., m. Also, ui(t) is second order differentiable, and

u̇i(t), üi(t) ∈ L∞ i = 1, ..., m.

Assumption 4.3. The disturbance d(t) is second order differentiable, and d(t), ḋ(t), d̈(t) ∈

L∞.

Assumption 4.4. Given a continuous function F : S → R
n, where S is a compact simply

connected set, there exists ideal weights θ, such that the output of the NN, denoted by

F̂ (·, θ), approximates F (·) to an arbitrary accuracy [15].

Remark 4.1. Assumptions 4.1-4.3 indicate that the technique developed in this work is

only applicable for sufficiently smooth systems (i.e. at least second-order differentiable)

that are BIBS stable. The requirement that the disturbance is C2 can be restrictive. For

example, random noise does not satisfy this assumption; however, simulations with added

noise show robustness to these disturbances as well. Assumption 4.4 states the universal

approximation property of the NNs which is proved for sigmoidal activation functions

in [15]. Since x(t) is assumed to be bounded (Assumption 4.2), the functions f(x) and

g(x) can be defined on a compact set; hence, the NN universal approximation property

(Assumption 4.4) holds.

Using Assumption 4.4, the dynamic system in Eq. 4–1 can be represented by

replacing the unknown functions with multi-layer NNs, as

ẋ = W T
f σ(V

T
f x) + εf(x) +

m∑

i=1

[
W T

giσ(V
T
gi x) + εgi(x)

]
ui + d, (4–2)

where Wf ∈ R
Lf+1×n, Vf ∈ R

n×Lf , Wgi ∈ R
Lgi+1×n, Vgi ∈ R

n×Lgi, i = 1, ..., m are the

unknown ideal NN weights, σf , σ(V T
f x) ∈ R

Lf+1 and σgi , σ(V T
gix) ∈ R

Lgi+1 are the

NN activation functions, and εf(x) ∈ R
n and εgi(x) ∈ R

n are the function reconstruction

errors.

Assumption 4.5. The ideal weights are bounded by known positive constants [18], i.e.

‖Wf‖F ≤ W̄f , ‖Vf‖F ≤ V̄f , ‖Wgi‖F ≤ W̄g and ‖Vgi‖F ≤ V̄g, ∀i.
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Assumption 4.6. The activation functions σf (·) and σgi(·), and their derivatives with

respect to their arguments, σ′
f (·), σ′

gi(·), σ′′
f (·), σ′′

gi(·), are bounded with known bounds (e.g.,

sigmoidal and hyperbolic tangent activation functions).

Assumption 4.7. The function reconstruction errors εf(·) and εgi(·), and their deriva-

tives with respect to their arguments, ε′f(·), ε′gi(·), ε′′f(·), ε′′gi(·), are bounded with known

bounds [18].

The following multi-layer dynamic neural network (MLDNN) identifier is proposed to

identify the system in Eq. 4–2 and estimate the state derivative

˙̂x = Ŵ T
f σ̂f +

m∑

i=1

Ŵ T
gi σ̂giui + µ, (4–3)

where x̂(t) ∈ R
n is the identifier state, Ŵf (t) ∈ R

Lf+1×n, V̂f(t) ∈ R
n×Lf , Ŵgi(t) ∈

R
Lgi+1×n, V̂gi(t) ∈ R

n×Lgi, i = 1, ..., m are the weight estimates, σ̂f , σ(V̂ T
f x̂) ∈ R

Lf+1,

σ̂gi , σ(V̂ T
gi x̂) ∈ R

Lgi+1, i = 1, ..., m, and µ(t) ∈ R
n denotes the RISE feedback term

defined as [47, 71]

µ , kx̃(t)− kx̃(0) + v,

where x̃(t) , x(t) − x̂(t) ∈ R
n is the identification error, and v(t) ∈ R

n is the generalized

solution (in Filippov’s sense [74]) to

v̇ = (kα + γ)x̃+ β1sgn(x̃); v (0) = 0,

where k, α, γ, β1 ∈ R are positive constant control gains, and sgn (·) denotes a vector

signum function.

Remark 4.2. The DNN-based system identifiers in literature, [87–91], typically do not

include a feedback term based on the identification error, except in results such as [92–94],

where a high gain proportional feedback term is used to guarantee bounded stability. The

novel use of RISE feedback term, µ(t) in Eq. 4–3, ensures asymptotic regulation of the

identification error in the presence of disturbance and NN function approximation errors.
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The identification error dynamics can be written as

˙̃x = W T
f σf − Ŵ T

f σ̂f +
m∑

i=1

[

(W T
giσgi − Ŵ T

gi σ̂gi) + εgi(x)
]

ui + εf(x) + d− µ. (4–4)

A filtered identification error is defined as

r , ˙̃x+ αx̃. (4–5)

Taking the time derivative of Eq. 4–5 and using Eq. 4–4 yields

ṙ = W T
f σ

′
fV

T
f ẋ−

˙̂
W T

f σ̂f − Ŵ T
f σ̂

′
f
˙̂
V T
f x̂− Ŵ T

f σ̂
′
f V̂

T
f
˙̂x+

m∑

i=1

(W T
giσgi − Ŵ T

giσ̂gi)u̇i

+
m∑

i=1

[

W T
giσ

′
giV

T
gi ẋui −

˙̂
W T

gi σ̂giui − Ŵ T
giσ̂

′
gi
˙̂
V T
gi x̂ui − Ŵ T

gi σ̂
′
giV̂

T
gi
˙̂xui

]

+
m∑

i=1

[ε̇gi(x)ui + εgi(x)u̇i] + ε̇f(x) + ḋ− kr − γx̃− β1sgn(x̃) + α ˙̃x. (4–6)

The weight update laws for the DNN in Eq. 4–3 are developed based on the subsequent

stability analysis as

˙̂
Wf = proj(Γwf σ̂

′
f V̂

T
f
˙̂xx̃T ),

˙̂
Vf = proj(Γvf

˙̂xx̃T Ŵ T
f σ̂

′
f ),

˙̂
Wgi = proj(Γwgiσ̂

′
giV̂

T
gi
˙̂xuix̃

T ),
˙̂
Vgi = proj(Γvgi

˙̂xuix̃
T Ŵ T

giσ̂
′
gi) i = 1...m, (4–7)

where proj(·) is a smooth projection operator, and Γwf ∈ R
Lf+1×Lf+1, Γvf ∈ R

n×n, Γwgi ∈

R
Lgi+1×Lgi+1, Γvgi ∈ R

n×n are constant positive diagonal adaptation gain matrices. The

space of DNN weight estimates is projected onto a compact convex set, constructed using

known upper bounds of the ideal weights (Assumption 4.5). This ensures that the weight

estimates are always bounded, which is exploited in the subsequent stability analysis.

Any of the several smooth projection algorithms may be used ([72, 73]). Adding and

subtracting 1
2
W T

f σ̂
′
f V̂

T
f
˙̂x + 1

2
Ŵ T

f σ̂
′
fV

T
f
˙̂x +

∑m
i=1

[
1
2
W T

giσ̂
′
giV̂

T
gi
˙̂xui +

1
2
Ŵ T

gi σ̂
′
giV

T
gi
˙̂xui

]

, and

grouping similar terms, the expression in Eq. 4–6 can be rewritten as

ṙ = Ñ +NB1 + N̂B2 − kr − γx̃− β1sgn(x̃), (4–8)
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where the auxiliary signals, Ñ(x, x̃, r, Ŵf , V̂f , Ŵgi, V̂gi, t), NB1(x, x̂, Ŵf , V̂f , Ŵgi, V̂gi, t), and

N̂B2(x̂, ˙̂x, Ŵf , V̂f , Ŵgi, V̂gi, t) ∈ R
n in Eq. 4–8 are defined as

Ñ , α ˙̃x− ˙̂
W T

f σ̂f − Ŵ T
f σ̂

′
f
˙̂
V T
f x̂+

1

2
W T

f σ̂
′
f V̂

T
f
˙̃x+

1

2
Ŵ T

f σ̂
′
fV

T
f
˙̃x (4–9)

−
m∑

i=1

[

˙̂
W T

gi σ̂giui + Ŵ T
giσ̂

′
gi
˙̂
V T
gi x̂ui −

1

2
Ŵ T

gi σ̂
′
giV

T
gi
˙̃xui −

1

2
W T

gi σ̂
′
giV̂

T
gi
˙̃xui

]

,

NB1 ,

m∑

i=1

[
W T

giσgiu̇i +W T
giσ

′
giV

T
gi ẋui + ε̇gi(x)ui + εgi(x)u̇i

]
+W T

f σ
′
fV

T
f ẋ

+ε̇f(x) + ḋ−
m∑

i=1

[
1

2
Ŵ T

gi σ̂
′
giV

T
gi ẋui +

1

2
W T

gi σ̂
′
giV̂

T
gi ẋui + Ŵ T

gi σ̂giu̇i

]

(4–10)

−1
2
W T

f σ̂
′
f V̂

T
f ẋ−

1

2
Ŵ T

f σ̂
′
fV

T
f ẋ,

N̂B2 ,

m∑

i=1

[
1

2
W̃ T

gi σ̂
′
giV̂

T
gi
˙̂xui +

1

2
Ŵ T

gi σ̂
′
giṼ

T
gi
˙̂xui

]

+
1

2
W̃ T

f σ̂
′
f V̂

T
f
˙̂x+

1

2
Ŵ T

f σ̂
′
f Ṽ

T
f
˙̂x.

(4–11)

To facilitate the subsequent stability analysis, an auxiliary term NB2(x̂, ẋ, Ŵf , V̂f , Ŵgi, V̂gi, t) ∈

R
n is defined by replacing ˙̂x(t) in N̂B2(·) by ẋ(t), and ÑB2(x̂, ˙̃x, Ŵf , V̂f , Ŵgi, V̂gi, t) ,

N̂B2(·) − NB2(·). The terms NB1(·) and NB2(·) are grouped as NB , NB1 + NB2. Using

Assumptions 4.2, 4.5-4.7, Eq. 4–5 and Eq. 4–7, the following bound can be obtained for

Eq. 4–9
∥
∥
∥Ñ
∥
∥
∥ ≤ ρ1(‖z‖) ‖z‖ , (4–12)

where z ,
[
x̃T rT

]T ∈ R
2n, and ρ1(·) ∈ R is a positive, globally invertible, non-decreasing

function. The following bounds can be developed based on Eq. 4–2, Assumptions 4.2-4.3,

4.5-4.7, Eq. 4–7, Eq. 4–10 and Eq. 4–11

‖NB1‖ ≤ ζ1, ‖NB2‖ ≤ ζ2,
∥
∥
∥ṄB

∥
∥
∥ ≤ ζ3 + ζ4ρ2(‖z‖) ‖z‖ , (4–13)

∥
∥
∥ ˙̃xT ÑB2

∥
∥
∥ ≤ ζ5 ‖x̃‖2 + ζ6 ‖r‖2 , (4–14)
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where ζi ∈ R, i = 1, ..., 6 are computable positive constants, and ρ2(·) ∈ R is a positive,

globally invertible, non-decreasing function.

To facilitate the subsequent stability analysis, let D ⊂ R
2n+2 be a domain containing

y(t) = 0, where y(t) ∈ R
2n+2 is defined as

y ,

[

x̃T rT
√
P

√

Q
]
T , (4–15)

where the auxiliary function P (z, t) ∈ R is the generalized solution (in Filippov’s sense) to

the differential equation

Ṗ = −L, P (0) = β1

n∑

i=1

|x̃i(0)| − x̃T (0)NB(0), (4–16)

where the auxiliary function L(z, t) ∈ R is defined as

L , rT (NB1 − β1sgn(x̃)) + ˙̃xTNB2 − β2ρ2(‖z‖) ‖z‖ ‖x̃‖ , (4–17)

where β1, β2 ∈ R are selected according to the following sufficient conditions1 :

β1 > max(ζ1 + ζ2, ζ1 +
ζ3
α
), β2 > ζ4, (4–18)

to ensure that P (t) ≥ 0. The auxiliary function Q(W̃f , Ṽf , W̃gi, Ṽgi) ∈ R in Eq. 4–15 is

defined as

Q ,
1

4
α

[

tr(W̃ T
f Γ

−1
wfW̃f ) + tr(Ṽ T

f Γ−1
vf Ṽf) +

m∑

i=1

(tr(W̃ T
giΓ

−1
wgiW̃gi) + tr(Ṽ T

giΓ
−1
vgiṼgi))

]

,

(4–19)

where tr(·) denotes the trace of a matrix.

1 The derivation of the sufficient conditions in Eq. 4–18 is provided in the Appendix.
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Theorem 4.1. The identifier developed in Eq. 4–3 along with its weight update laws in

Eq. 4–7 ensures asymptotic convergence, in the sense that

lim
t→∞
‖x̃(t)‖ = 0 and lim

t→∞

∥
∥ ˙̃x(t)

∥
∥ = 0

provided the control gains k and γ are selected sufficiently large based on the initial

conditions of the states2 , and satisfy the following sufficient conditions

γ >
ζ5
α
, k > ζ6, (4–20)

where ζ5 and ζ6 are introduced in Eq. 4–14, and β1 and β2 are selected according to the

sufficient conditions in Eq. 4–18.

Proof. Let V : D → R be a Lipschitz continuous regular positive definite function defined

as

V ,
1

2
rT r +

1

2
γx̃T x̃+ P +Q, (4–21)

which satisfies the following inequalities:

U1(y) ≤ V (y) ≤ U2(y), (4–22)

where U1(y), U2(y) ∈ R are continuous positive definite functions defined as U1 ,

1
2
min(1, γ) ‖y‖2 and U2 , max(1, γ) ‖y‖2, respectively.

Let ẏ = F (y, t) represent the closed-loop differential equations in Eqs. 4–4, 4–7,

4–8, and 4–16, where F (·) ∈ R
2n+2 denotes the right-hand side of the the closed-loop

error signals. Since F (y, t) is discontinuous in the set {(y, t)|x̃ = 0}, the existence and

stability of solutions cannot be studied in the classical sense. Using the differential

inclusion ẏ ∈ F (y, t), where y is absolutely continuous and F (·) is Lebesgue measurable

and locally bounded, existence and uniqueness of solutions can be established in the

2 See subsequent stability analysis.
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Filippov’s sense (see [74, 76] and Appendix A.2 for further details). Stability of solutions

based on differential inclusion is studied using non-smooth Lyapunov functions, using

the development in [79, 80]. The generalized time derivative of Eq. 4–21 exists almost

everywhere (a.e.), and V̇ (y) ∈a.e. ˙̃V (y) where

˙̃V =
⋂

ξ∈∂V (y)

ξTK

[

ṙT ˙̃xT
1

2
P− 1

2 Ṗ
1

2
Q− 1

2 Q̇ 1

]T

, (4–23)

where ∂V is the generalized gradient of V [78], and K[·] is defined in 3–49. Since V (y) is a

Lipschitz continuous regular function, Eq. 4–23 can be simplified as [79]

˙̃V = ∇V TK

[

ṙT ˙̃xT
1

2
P− 1

2 Ṗ
1

2
Q− 1

2 Q̇ 1

]T

=
[

rT γx̃T 2P
1

2 2Q
1

2 0
]

K

[

ṙT ˙̃xT
1

2
P− 1

2 Ṗ
1

2
Q− 1

2 Q̇ 1

]T

.

Using the calculus for K[·] from [80] (Theorem 1, Properties 2,5,7), and substituting the

dynamics from Eq. 4–8 and Eq. 4–16, yields

˙̃V ⊂ rT (Ñ +NB1 + N̂B2 − kr − β1K[sgn(x̃)]− γx̃) + γx̃T (r − αx̃)

−rT (NB1 − β1K[sgn(x̃)])− ˙̃xTNB2 + β2ρ2(‖z‖) ‖z‖ ‖x̃‖

−1
2
α
[

tr(W̃ T
f Γ

−1
wf

˙̂
Wf ) + tr(Ṽ T

f Γ−1
vf

˙̂
Vf)
]

−1
2
α

m∑

i=1

[

tr(W̃ T
giΓ

−1
wgi

˙̂
Wgi) + tr(Ṽ T

giΓ
−1
vgi

˙̂
Vgi)

]

.

= −αγx̃T x̃− krT r + rT Ñ +
1

2
αx̃T W̃ T

f σ̂
′
f V̂

T
f
˙̂x+

1

2
αx̃T Ŵ T

f σ̂
′
f Ṽ

T
f
˙̂x

+

m∑

i=1

1

2
αx̃T W̃ T

gi σ̂
′
giV̂

T
gi
˙̂xui +

1

2
αx̃T Ŵ T

gi σ̂
′
giṼ

T
gi
˙̂xui + ˙̃xT (N̂B2 −NB2)

+β2ρ2(‖z‖) ‖z‖ ‖x̃‖ −
1

2
αtr(W̃ T

f σ̂
′
f V̂

T
f
˙̂xx̃T )− 1

2
αtr(Ṽ T

f
˙̂xx̃T Ŵ T

f σ̂
′
f ) (4–24)

−1
2
α

m∑

i=1

[

tr(W̃ T
giσ̂

′
giV̂

T
gi
˙̂xuix̃

T ) + tr(Ṽ T
gi
˙̂xuix̃

T Ŵ T
gi σ̂

′
gi)
]

,

where Eq. 4–7, K[sgn(x̃)] = SGN(x̃) [80], and the fact that (rT − rT )iSGN(x̃i) = 0, is

used (the subscript i denotes the ith element), such that SGN(x̃i) = 1 if x̃i > 0, [−1, 1]
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if x̃i = 0, and −1 if x̃i < 0. Canceling common terms, substituting for k , k1 + k2 and

γ , γ1 + γ2, using Eqs. 4–12, 4–14, and completing the squares, the expression in Eq. 4–24

can be upper bounded as

˙̃V ≤ −(αγ1 − ζ5) ‖x̃‖2 − (k1 − ζ6) ‖r‖2 +
ρ1(‖z‖)2

4k2
‖z‖2 + β2

2ρ2(‖z‖)2
4αγ2

‖z‖2 . (4–25)

Provided the sufficient conditions in Eq. 4–20 are satisfied, the expression in Eq. 4–25 can

be rewritten as

˙̃V ≤ −λ ‖z‖2 + ρ(‖z‖)2
4η

‖z‖2

≤ −U(y) ∀y ∈ D (4–26)

where λ , min{αγ1 − ζ5, k1 − ζ6}, η , min{k2, αγ2
β2

2

}, ρ(‖z‖)2 , ρ1(‖z‖)2 + ρ2(‖z‖)2

is a positive, globally invertible, non-decreasing function, and U(y) = c ‖z‖2 , for some

positive constant c, is a continuous, positive semi-definite function defined on the domain

D ,
{
y(t) ∈ R

2n+2 | ‖y‖ ≤ ρ−1
(
2
√
λη
)}
. The size of the domain D can be increased

by increasing the gains k and γ. The result in Eq. 4–26 indicates that V̇ (y) ≤ −U(y)

∀ V̇ (y) ∈a.e. ˙̃V (y) ∀y ∈ D. The inequalities in Eq. 4–22 and Eq. 4–26 can be used

to show that V (y) ∈ L∞ in D; hence, x̃(t), r(t) ∈ L∞ in D. Using Eq. 4–5, standard

linear analysis can be used to show that ˙̃x(t) ∈ L∞ in D. Since ẋ(t) ∈ L∞ from Eq.

4–1 and Assumption 4.2-4.3, ˙̂x(t) ∈ L∞ in D. From the use of projection in Eq. 4–7,

Ŵf(t), Ŵgi(t) ∈ L∞, i = 1...m. Using the above bounding arguments, it can be shown

from Eq. 4–8 that ṙ(t) ∈ L∞ in D. Since x̃(t),r(t) ∈ L∞, the definition of U(y) can be

used to show that it is uniformly continuous in D. Let S ⊂ D denote a set defined as

S ,

{

y(t)⊂ D | U2(y(t)) <
1
2

(
ρ−1

(
2
√
λη
))2
}

, where the region of attraction can be made

arbitrarily large to include any initial conditions by increasing the control gain η (i.e. a

semi-global type of stability result), and hence c ‖z‖2 → 0 as t→∞ ∀y(0) ∈ S. Using the

definition of z(t), it can be shown that ‖x̃(t)‖ ,
∥
∥ ˙̃x(t)

∥
∥ , ‖r‖ → 0 as t→∞ ∀y(0) ∈ S.
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4.2 Comparison with Related Work

The most common approach to estimate derivatives is by using numerical differentiation

methods. The Euler backward difference approach is one of the simplest and the most

common numerical methods to differentiate a signal; however, this ad hoc approach yields

erroneous results in the presence of sensor noise. The central difference algorithm performs

better than backward difference; however, the central difference algorithm is non-causal

since it requires future state values to estimate the current derivative. Noise attenuation

in numerical differentiators may be achieved by using a low-pass filter, at the cost of

introducing a phase delay in the system. A more analytically rigorous approach is to cast

the problem of state derivative estimation as an observer design problem by augmenting

the state with its derivative, where the state is fully measurable and the state derivative

is not, thereby, reducing the problem to designing an observer for the unmeasurable state

derivative. Previous approaches to solve the problem use pure robust feedback methods

requiring infinite gain or infinite frequency [95–97]. A high gain observer is presented in

[96] to estimate the output derivatives, and asymptotic convergence to the derivative is

achieved as the gain tends to infinity, which is problematic in general and especially in the

presence of noise. In [97], a robust exact differentiator using a 2-sliding mode algorithm is

developed which assumes a known upper bound for a Lipschitz constant of the derivative.

All the above mentioned methods are robust non model-based approaches. In contrast

to purely robust feedback methods, an identification-based robust adaptive approach is

considered in this work. The proposed identifier consists of a dynamic neural network

(DNN) [87, 88, 90, 98] and a RISE (Robust Integral of the Sign of the Error) term [47, 71],

where the DNN adaptively identifies the unknown system dynamics online, while RISE, a

continuous robust feedback term, is used to guarantee asymptotic convergence to the state

derivative in the presence of uncertainties and exogenous disturbances. The DNN with

its recurrent feedback connections has been shown to learn dynamics of high dimensional

uncertain nonlinear systems with arbitrary accuracy [98, 99], motivating their use in the
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proposed identifier. Unlike most previous results on DNN-based system identification

[88–91, 94], which only guarantee bounded stability of the identification error system in

the presence of DNN approximation errors and exogenous disturbances, the addition of

RISE to the DNN identifier guarantees asymptotic identification.

The RISE structure combines the features of the high gain observer and higher order

sliding mode methods, in the sense that it consists of high gain proportional and integral

state feedback terms (similar to a high gain observer), and the integral of a signum term,

allowing it to implicitly learn and cancel the effects of DNN approximation errors and

exogenous disturbances in the Lyapunov stability analysis, guaranteeing asymptotic

convergence.

4.3 Experiment and Simulation Results

Experiments and simulations on a two-link robot manipulator (Fig. 3-2) are

performed to compare the proposed method with several other derivative estimation

methods. The following robot dynamics are considered:

M(q)q̈ + Vm(q, q̇)q̇ + Fdq̇ + Fs(q̇) = u(t), (4–27)

where q(t) = [q1 q2]
T and q̇(t) = [q̇1 q̇2]

T are the angular positions (rad) and angular

velocities (rad/sec) of the two links, respectively, M(q) is the inertia matrix, and Vm(q, q̇)

is the centripetal-Coriolis matrix, defined as

M ,






p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2




 Vm ,






−p3s2q̇2 −p3s2 (q̇1 + q̇2)

p3s2q̇1 0




 ,

where p1 = 3.473 kg ·m2, p2 = 0.196 kg ·m2, p3 = 0.242 kg ·m2, c2 = cos(q2), s2 = sin(q2),

Fd = diag {5.3, 1.1} Nm · sec and F s(q̇) = diag {8.45tanh(q̇1), 2.35tanh(q̇2)} Nm are

the models for dynamic and static friction, respectively. The robot model in Eq. 4–27

can be expressed as ẋ = f(x) + g(x)u + d, where the state x(t) ∈ R
4 is defined as

x(t) , [q1 q2 q̇1 q̇2]
T , d(t) , 0.1sin(10t)[1 1 1 1]T is an exogenous disturbance, and

64



f(x) ∈ R
4 and g(x) ∈ R

4×2 are defined as f(x) ,

[

q̇T {M−1 (−Vm − Fd) q̇ − Fs}T
]T

and g(x) = [02×2 M−1] , respectively. The control input is designed as a PD controller

to track the desired trajectory qd(t) = [0.5sin(2t) 0.5cos(2t)]T , as u(t) = −2[q1(t) −

0.5sin(2t) q2(t) − 0.5cos(2t)]T − [q̇1(t) − cos(2t) q̇2(t) + sin(2t)]T . The objective

is to design a state derivative estimator ˙̂x(t) to asymptotically converge to ẋ(t). The

performance of the developed RISE-based DNN identifier in Eqs. 4–3 and 4–7 is compared

with the 2-sliding mode robust exact differentiator [97]

˙̂x = zs + λs
√

|x̃|sgn(x̃), żs = αssgn(x̃), (4–28)

and the high gain observer [96]

˙̂x = zh +
αh1

εh1
(x̃), żh =

αh2

εh2
(x̃). (4–29)

The motor encoders in Fig. 3-2 provide position measurements for the two links (x1(t) and

x2(t)) with a resolution of 614400 pulses/revolution, and a standard backwards difference

algorithm is used to numerically determine angular velocities (x3(t) and x4(t)) from the

encoder readings. The experimental results for the state derivative estimates with the

2-sliding mode, the high gain observer, the proposed method, and the backward difference

algorithm, are shown in Fig. 4-1. Because of unavailability of velocity and acceleration

sensors to verify the state derivative estimates, no performance comparisons could be

made. However, a few observations can be made from Fig. 4-1 – the steady-state estimates

of the state derivative for the 2-sliding mode, the high gain observer, and the proposed

method look similar; however, the transient response of the 2-sliding mode differs from

that of the high gain observer and the proposed method. On the other hand, the state

derivative estimate with backward difference is very noisy and does not resemble the

response of any of the other methods. The experimental results demonstrate that the

performance of the proposed identifier-based state derivative estimator is comparable

to existing methods in literature, and that the estimates from backward difference are
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Figure 4-1. Comparison of the state derivative estimate ˙̂x(t) for (a) 2-sliding mode, (b)
high gain observer, (c) proposed method, and (d) backward difference on a
two-link experiment testbed.

prone to error in presence of sensor noise. Simulations are performed to compare,

qualitatively and quantitatively, the performance of the different estimators. The gains

for the identifier in Eqs. 4–3 and 4–7 are selected as k = 20, α = 5, γ = 200, β1 = 1.25,

and the DNN adaptation gains are selected as Γwf = 0.1I11×11, Γvf = I4×4, Γwg1 =

0.7I4×4, Γwg2 = 0.4I4×4, Γvg1 = Γvg2 = I4×4, where In×n denotes an identity matrix of

appropriate dimensions. The neural networks for f(x) and g(x) are designed to have 10

and 3 hidden layer neurons, respectively, and the DNN weights are initialized as uniformly

distributed random numbers in the interval [−1, 1]. The gains for the 2-sliding mode

differentiator in Eq. 4–28 are selected as λs = 4.1, αs = 4, while the gains for the high

gain observer in Eq. 4–29 are selected as αh1 = 0.2, εh1 = 0.01, αh2 = 0.3, εh2 = 0.001.

To ensure a fair comparison, the gains of all the three estimators were tuned for best

performance (least RMS error) for the same settling time of approximately 0.4 seconds

for the state derivative estimation errors. A white Gaussian noise was added to the state

measurements, maintaining a signal to noise ratio of 60 dB. The initial conditions of the

system and the estimators are chosen as x(t) = x̂(t) = [1 1 1 1]T .
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Figure 4-2. Comparison of the state estimation errors x̃(t) for (a) 2-sliding mode, (b) high
gain observer, and (c) proposed methods, in the presence of sensor noise (SNR
60 dB).

Table 4-1. Comparison of transient (t = 0− 5 sec.) and steady-state (t = 5− 10 sec.) state
derivative estimation errors ˙̃x(t) for different derivative estimation methods in
presence of noise (60 dB).

Backward
difference

Central
difference

2-sliding
mode

High gain
observer

Proposed

Transient
RMS error

14.4443 7.6307 2.3480 2.1326 1.7808

Steady state
RMS error

14.1461 7.0583 0.1095 0.0414 0.0297

Figs. 4-2-4-4 show the simulation results for state estimation and state derivative

estimation errors for the 2-sliding mode robust exact differentiator in [97], the high gain

observer in [96], and the developed RISE-based DNN estimator. While the maximum

overshoot in estimating the state derivative (Fig. 4-3) using 2-sliding mode is smaller,
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Figure 4-3. Comparison of the state derivative estimation errors ˙̃x(t) for (a) 2-sliding
mode, (b) high gain observer, and (c) proposed methods, in the presence of
sensor noise (SNR 60 dB).
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Figure 4-4. Comparison of the state derivative estimation errors ˙̃x(t) at steady state, for
(a) 2-sliding mode, (b) high gain observer, and (c) proposed methods, in the
presence of sensor noise (SNR 60 dB).
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(b) State Derivative Estimation Error with Central Difference

Figure 4-5. State derivative estimation errors ˙̃x(t) for numerical differentiation methods
(a) backward difference and (b) central difference with step-size of 10−4, in the
presence of sensor noise (SNR 60 dB).

the steady state errors are comparatively larger than both the high gain observer and the

proposed method. Table 4-1 gives a comparison of the transient and steady state RMS

state derivative estimation errors for different estimation methods. Results of standard

numerical differentiation algorithms - backward difference and central difference (with a

step-size of 10−4) are also included; as seen from Table 4-1 and Fig. 4-5, they perform

significantly worse than the other methods, in presence of noise. Although, simulation

results for the high gain observer and the developed method are comparable, as seen

from Figs. 4-2-4-4 and Table 4-1, differences exist in the structure of the estimators

and proof of convergence of the estimates. The developed identifier includes the RISE

structure, which combines the features of the high gain observer with the integral of a

signum term, allowing it to implicitly learn and cancel terms in the stability analysis;

thus, guaranteeing asymptotic convergence. While singular perturbation methods can

be used to prove asymptotic convergence of the high gain observer to the derivative of

the output signal (ẋ(t) in this case) as the gains tend to infinity [100], Lyapunov-based

stability methods are used to prove asymptotic convergence of the proposed identifier

(as t → ∞) with finite gains. Further, while both high gain observer and 2-sliding mode

robust exact differentiator are purely robust feedback methods, the developed method,
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in addition to using a robust RISE feedback term, uses a DNN to adaptively identify the

system dynamics.

4.4 Summary

A robust identifier is developed for online estimation of the state derivative of

uncertain nonlinear systems in the presence of exogenous disturbances. The result differs

from existing pure robust methods in that the proposed method combines a DNN system

identifier with a robust RISE feedback to ensure asymptotic convergence to the state

derivative, which is proven using a Lyapunov-based stability analysis. Simulation results

in the presence of noise show an improved transient and steady state performance of the

developed identifier in comparison to several other derivative estimation methods.
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CHAPTER 5
AN ACTOR-CRITIC-IDENTIFIER ARCHITECTURE FOR APPROXIMATE

OPTIMAL CONTROL OF UNCERTAIN NONLINEAR SYSTEMS

RL uses evaluative feedback from the environment to take appropriate actions

[101]. One of the most widely used architectures to implement RL algorithms is the AC

architecture, where an actor performs certain actions by interacting with its environment,

the critic evaluates the actions and gives feedback to the actor, leading to improvement in

performance of subsequent actions [4, 19, 101]. AC algorithms are pervasive in machine

learning and are used to learn the optimal policy online for finite-space discrete-time

Markov decision problems [6, 17, 19, 101, 102]. The objective of this chapter is to append

an identifier structure to the standard AC architecture, called actor-critic-identifier,

which solves the continuous-time optimal control problem for nonlinear systems without

requiring complete knowledge of system dynamics.

5.1 Actor-Critic-Identifier Architecture for HJB Approximation

Consider a continuous-time nonlinear system

ẋ = F (x, u),

where x(t) ∈ X ⊆ R
n, u(t) ∈ U ⊆ R

m is the control input, F : X × U →R
n is Lipschitz

continuous on X × U containing the origin, such that the solution x(t) of the system is

unique for any finite initial condition x0 and control u ∈ U . The optimal value function

can be defined as

V ∗(x(t)) = min
u(τ)∈Ψ(X )

t≤τ<∞

∫ ∞

t

r(x(s), u(x(s))) ds, (5–1)

where Ψ(X ) is a set of admissible policies, and r(x, u) ∈ R is the immediate or local cost,

defined as

r(x, u) = Q(x) + uTRu, (5–2)
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where Q(x) ∈ R is continuously differentiable and positive definite, and R ∈ R
m×m is a

positive-definite symmetric matrix. For the local cost in Eq. 5–2, which is convex in the

control, and control-affine dynamics of the form

ẋ = f(x) + g(x)u, (5–3)

where f(x) ∈ R
n and g(x) ∈ R

n×m, the closed-form expression for optimal control is

derived as [52]

u∗(x) = −1
2
R−1gT (x)

∂V ∗(x)

∂x

T

, (5–4)

where it is assumed that the value function V ∗(x) is continuously differentiable and

satisfies V ∗(0) = 0.

The Hamiltonian of the system in Eq. 5–3 is given by

H(x, u, V ∗
x ) , V ∗

x Fu + ru,

where V ∗
x , ∂V ∗

∂x
∈ R

1×n denotes the gradient of the optimal value function V ∗(x),

Fu(x, u) , f(x) + g(x)u ∈ R
n denotes the system dynamics with control u(x), and

ru , r(x, u) denotes the local cost with control u(x). The optimal value function V ∗(x) in

Eq. 5–1 and the associated optimal policy u∗(x) in Eq. 5–4 satisfy the HJB equation

H∗(x, u∗, V ∗
x ) = V ∗

x Fu∗ + ru∗ = 0. (5–5)

Replacing u∗(x), V ∗
x (x), and Fu∗(x, u∗) in Eq. 5–5 by their approximations, û(x) (actor),

V̂ (x)(critic), and F̂û(x, x̂, û) (identifier), respectively, the approximate HJB equation is

given by

Ĥ∗(x, x̂, û, V̂x) = V̂xF̂û + rû, (5–6)

where x̂(t) denotes the state of the identifier. Using Eqs. 5–5 and 5–6, the error between

the actual and the approximate HJB equation is given by the Bellman residual error
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Figure 5-1. Actor-critic-identifier architecture to approximate the HJB.

δhjb(x, x̂, û, V̂x), defined as

δhjb , Ĥ∗(x, x̂, û, V̂x)−H∗(x, u∗, V ∗
x ). (5–7)

Since H∗(x, u∗, V ∗
x ) ≡ 0, the Bellman error can be written in a measurable form as

δhjb = Ĥ∗(x, x̂, û, V̂x) = V̂xF̂û + r(x, û). (5–8)

The actor and critic learn based on the Bellman error δhjb(·), whereas the identifier

estimates the system dynamics online using the identification error x̃(t) , x(t) − x̂(t),

and hence is decoupled from the design of actor and critic. The block diagram of the ACI

architecture is shown in Fig. 5-1.

The following assumptions are made about the control-affine system in Eq. 5–3.
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Assumption 5.1. The functions f(x) and g(x) are second-order differentiable.

Assumption 5.2. The input gain matrix g(x) is known and bounded i.e. 0 < ‖g(x)‖ ≤ ḡ,

where ḡ is a known positive constant.

Assuming the optimal control, the optimal value function and the system dynamics

are continuous and defined on compact sets, NNs can be used to approximate them

[15, 103]. Some standard NN assumptions which will be used throughout the work are:

Assumption 5.3. Given a continuous function Υ : S → R
n, where S is a compact simply

connected set, there exists ideal weights W, V such that the function can be represented by

a NN as

Υ(x) = W Tσ(V Tx) + ε(x),

where σ(·) is the nonlinear activation function, and ε(x) is the function reconstruction

error.

Assumption 5.4. The ideal NN weights are bounded by known positive constants i.e.

‖W‖ ≤ W̄ , ‖V ‖ ≤ V̄ [18].

Assumption 5.5. The NN activation function σ(·) and its derivative with respect to its

arguments, σ′(·), are bounded.

Assumption 5.6. Using the NN universal approximation property [15, 103], the function

reconstruction errors and its derivative with respect to its arguments are bounded [18] as

‖ε(·)‖ ≤ ε̄, ‖ε′(·)‖ ≤ ε̄′.

5.2 Actor-Critic Design

Using Assumption 5.3 and Eq. 5–4, the optimal value function and the optimal

control can be represented by NNs as

V ∗(x) = W Tφ(x) + εv(x),

u∗(x) = −1
2
R−1gT (x)(φ′(x)TW + ε′v(x)

T ), (5–9)
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where W ∈ R
N are unknown ideal NN weights, N is the number of neurons, φ(x) =

[φ1(x) φ2(x). . . φN(x)]
T ∈ R

N is a smooth NN activation function such that φi(0) = 0 and

φ′
i(0) = 0 ∀i = 1...N , and εv(·) ∈ R is the function reconstruction error.

Assumption 5.7. The NN activation functions {φi(x) : i = 1...N} are selected so that as

N →∞, φ(x) provides a complete independent basis for V ∗(x).

Using Assumption 5.7 and the Weierstrass higher-order approximation Theorem, both

V ∗(x) and ∂V ∗(x)
∂x

can be uniformly approximated by NNs in Eq. 5–9, i.e. as N → ∞, the

approximation errors εv(x), ε
′
v(x)→ 0 [41]. The critic V̂ (x) and the actor û(x) approximate

the optimal value function and the optimal control in Eq. 5–9, and are given by

V̂ (x) = Ŵ T
c φ(x); û(x) = −1

2
R−1gT (x)φ′T (x)Ŵa, (5–10)

where Ŵc(t) ∈ R
N and Ŵa(t) ∈ R

N are estimates of the ideal weights of the critic and

actor NNs, respectively. The weight estimation errors for the critic and actor NNs are

defined as W̃c(t) , W − Ŵc(t) ∈ R
N and W̃a(t) , W − Ŵa(t) ∈ R

N , respectively.

Remark 5.1. Since the optimal control is determined using the gradient of the optimal

value function in Eq. 5–9, the critic NN in Eq. 5–10 may be used to determine the actor

without using another NN for the actor. However, for ease in deriving weight update laws

and subsequent stability analysis, separate NNs are used for the actor and the critic [14].

The actor and critic NN weights are both updated based on the minimization of the

Bellman error δhjb(·) in Eq. 5–8, which can be rewritten by substituting V̂ (x) from Eq.

5–10 as

δhjb = Ŵ T
c ω + r(x, û), (5–11)

where ω(x, x̂, û) , φ′(x)F̂û(x, x̂, û) ∈ R
N is the critic NN regressor vector.
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5.2.1 Least Squares Update for the Critic

Let Ec(δhjb) ∈ R
+ denote the integral squared Bellman error as

Ec =

t∫

0

δ2hjb(τ) dτ. (5–12)

The least squares (LS) update law for the critic is generated by minimizing Eq. 5–12 as

∂Ec

∂Ŵc

= 2

t∫

0

δhjb(τ)
∂δhjb(τ)

∂Ŵc(t)
dτ = 0. (5–13)

Using
∂δhjb

∂Ŵc
= ωT from Eq. 5–11, the batch LS critic weight estimate is determined from

Eq. 5–13 as [104]

Ŵc(t) = −





t∫

0

ω(τ)ω(τ)T dτ





−1 t∫

0

ω(τ)r(τ) dτ, (5–14)

provided the inverse
(∫ t

0
ω(τ)ω(τ)T dτ

)−1

exists. For online implementation, a normalized

recursive formulation of the LS algorithm is developed by taking the time derivative Eq.

5–14 and normalizing as [104]

˙̂
Wc = −ηcΓ

ω

1 + νωTΓω
δhjb, (5–15)

where ν, ηc ∈ R are constant positive gains, and Γ(t) ,
(∫ t

0
ω(τ)ω(τ)T dτ

)−1

∈ R
N×N is a

symmetric estimation gain matrix generated as

Γ̇ = −ηcΓ
ωωT

1 + νωTΓω
Γ; Γ(t+r ) = Γ(0) = ϕ0I, (5–16)

where t+r is the resetting time at which λmin {Γ(t)} ≤ϕ1, ϕ0 > ϕ1 > 0 . The covariance

resetting ensures that Γ(t) is positive-definite for all time and prevents its value from

becoming arbitrarily small in some directions, thus avoiding slow adaptation in some

directions (also called the covariance wind-up problem) [104]. From Eq. 5–16, it is clear
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that Γ̇ ≤ 0, which means that the covariance matrix Γ(t) can be bounded as

ϕ1I ≤ Γ(t) ≤ ϕ0I. (5–17)

5.2.2 Gradient Update for the Actor

The actor update, like the critic update in Section 5.2.1, is based on the minimization

of the Bellman error δhjb(·). However, unlike the critic weights, the actor weights appear

nonlinearly in δhjb(·), making it problematic to develop a LS update law. Hence, a

gradient update law is developed for the actor which minimizes the squared Bellman error

Ea(t) ,
1
2
δ2hjb, whose gradient is given by

∂Ea

∂Ŵa

=
∂δhjb

∂Ŵa

δhjb =

(

Ŵ T
c φ

′∂F̂û

∂û

∂û

∂Ŵa

+ Ŵ T
a φ

′Gφ′T
)

δhjb, (5–18)

where Eq. 5–11 is used, and G(x) , g(x)R−1g(x)T ∈ R
n×n is a symmetric matrix. Using

Eq. 5–18, the gradient-based update law for the actor NN is given by

·

Ŵ a = proj






− ηa1√

1 + ωTω

(

Ŵ T
c φ

′∂F̂û

∂û

∂û

∂Ŵa

)T

δhjb −
ηa1√

1 + ωTω
φ′Gφ′T Ŵaδhjb

−ηa2(Ŵa − Ŵc)
}

, (5–19)

where proj{·} is a projection operator used to bound the weight estimates [72], [73],

ηa1, ηa2 ∈ R are positive adaptation gains, 1√
1+ωTω

is the normalization term, and the last

term in Eq. 5–19 is added for stability (based on the subsequent stability analysis).

5.3 Identifier Design

The following assumption is made for the identifier design:

Assumption 5.8. The control input is bounded i.e. u(t) ∈ L∞.

Remark 5.2. Using Assumptions 5.2 and 5.5, and the projection algorithm in Eq. 5–19,

Assumption 5.8 holds for the control design u(t) = û(x) in Eq. 5–10.
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Using Assumption 5.3, the dynamic system in Eq. 5–3, with control û(x), can be

represented using a multi-layer NN as

ẋ = Fû(x, û) = W T
f σ(V

T
f x) + εf(x) + g(x)û, (5–20)

where Wf ∈ R
Lf+1×n, Vf ∈ R

n×Lf are the unknown ideal NN weights, σf , σ(V T
f x) ∈

R
Lf+1 is the NN activation function, and εf(x) ∈ R

n is the function reconstruction

error. The following multi-layer dynamic neural network (MLDNN) identifier is used to

approximate the system in Eq. 5–20

˙̂x = F̂û(x, x̂, û) = Ŵ T
f σ̂f + g(x)û+ µ, (5–21)

where x̂(t) ∈ R
n is the DNN state, σ̂f , σ(V̂ T

f x̂) ∈ R
Lf+1, Ŵf(t) ∈ R

Lf+1×n and

V̂f(t) ∈ R
n×Lf are weight estimates, and µ(t) ∈ R

n denotes the RISE feedback term

defined as [47, 71]

µ , kx̃(t)− kx̃(0) + v,

where x̃(t) , x(t) − x̂(t) ∈ R
n is the identification error, and v(t) ∈ R

n is the generalized

solution (in Filippov’s sense [105]) to

v̇ = (kα + γ)x̃+ β1sgn(x̃); v (0) = 0,

where k, α, γ, β1 ∈ R are positive constant control gains, and sgn (·) denotes a vector

signum function. The identification error dynamics can be written as

˙̃x = F̃u(x, x̂, u) = W T
f σf − Ŵ T

f σ̂f + εf(x)− µ, (5–22)

where F̃û(x, x̂, û) , Fû(x, û)− F̂û(x, x̂, û) ∈ R
n. A filtered identification error is defined as

r , ˙̃x+ αx̃. (5–23)
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Taking the time derivative of Eq. 5–23 and using Eq. 5–22 yields

ṙ = W T
f σ

′
fV

T
f ẋ−

˙̂
W T

f σ̂f − Ŵ T
f σ̂

′
f
˙̂
V T
f x̂− Ŵ T

f σ̂
′
f V̂

T
f
˙̂x+ ε̇f(x)− kr − γx̃ (5–24)

−β1sgn(x̃) + α ˙̃x.

Based on Eq. 5–24 and the subsequent stability analysis, the weight update laws for the

DNN are designed as

˙̂
Wf = proj(Γwf σ̂

′
f V̂

T
f
˙̂xx̃T ),

˙̂
Vf = proj(Γvf

˙̂xx̃T Ŵ T
f σ̂

′
f ), (5–25)

where proj(·) is a smooth projection operator [72], [73], and Γwf ∈ R
Lf+1×Lf+1, Γvf ∈ R

n×n

are positive constant adaptation gain matrices. The expression in Eq. 5–24 can be

rewritten as

ṙ = Ñ +NB1 + N̂B2 − kr − γx̃− β1sgn(x̃), (5–26)

where the auxiliary signals, Ñ(x, x̃, r, Ŵf , V̂f , t), NB1(x, x̂, Ŵf , V̂f , t), and N̂B2(x̂, ˙̂x, Ŵf , V̂f , t) ∈

R
n are defined as

Ñ , α ˙̃x− ˙̂
W T

f σ̂f − Ŵ T
f σ̂

′
f
˙̂
V T
f x̂+

1

2
W T

f σ̂
′
f V̂

T
f
˙̃x+

1

2
Ŵ T

f σ̂
′
fV

T
f
˙̃x, (5–27)

NB1 , W T
f σ

′
fV

T
f ẋ−

1

2
W T

f σ̂
′
f V̂

T
f ẋ−

1

2
Ŵ T

f σ̂
′
fV

T
f ẋ+ ε̇f(x), (5–28)

N̂B2 ,
1

2
W̃ T

f σ̂
′
f V̂

T
f
˙̂x+

1

2
Ŵ T

f σ̂
′
f Ṽ

T
f
˙̂x, (5–29)

where W̃f , Wf − Ŵf (t) ∈ R
Lf+1×n and Ṽf , Vf − V̂f(t) ∈ R

n×Lf . To facilitate the

subsequent stability analysis, an auxiliary term NB2(x̂, ẋ, Ŵf , V̂f , t) ∈ R
n is defined by

replacing ˙̂x(t) in N̂B2(·) by ẋ(t), and ÑB2(x̂, ˙̃x, Ŵf , V̂f , t) , N̂B2(·) − NB2(·). The terms

NB1(·) and NB2(·) are grouped as NB , NB1 + NB2. Using Assumptions 5.2, 5.4-5.6, and

Eqs. 5–23, 5–25, 5–28 and 5–29, the following bounds can be obtained

∥
∥
∥Ñ
∥
∥
∥ ≤ ρ1(‖z‖) ‖z‖ , (5–30)
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‖NB1‖ ≤ ζ1, ‖NB2‖ ≤ ζ2,
∥
∥
∥ṄB

∥
∥
∥ ≤ ζ3 + ζ4ρ2(‖z‖) ‖z‖ , (5–31)

∥
∥
∥ ˙̃xT ÑB2

∥
∥
∥ ≤ ζ5 ‖x̃‖2 + ζ6 ‖r‖2 , (5–32)

where z ,
[
x̃T rT

]T ∈ R
2n, ρ1(·), ρ2(·) ∈ R are positive, globally invertible, non-decreasing

functions, and ζi ∈ R, i = 1, ..., 6 are computable positive constants. To facilitate the

subsequent stability analysis, let D ⊂ R
2n+2 be a domain containing y(t) = 0, where

y(t) ∈ R
2n+2 is defined as

y ,

[

x̃T rT
√
P

√

Q
]
T , (5–33)

where the auxiliary function P (z, t) ∈ R is the generalized solution to the differential

equation

Ṗ = −L, P (0) = β1

n∑

i=1

|x̃i(0)| − x̃T (0)NB(0), (5–34)

where the auxiliary function L(z, t) ∈ R is defined as

L , rT (NB1 − β1sgn(x̃)) + ˙̃xTNB2 − β2ρ2(‖z‖) ‖z‖ ‖x̃‖ , (5–35)

where β1, β2 ∈ R are chosen according to the following sufficient conditions to ensure

P (z, t) ≥ 0 [71]

β1 > max(ζ1 + ζ2, ζ1 +
ζ3
α
), β2 > ζ4. (5–36)

The auxiliary function Q(W̃f , Ṽf) ∈ R in Eq. 5–33 is defined as

Q ,
1

4
α
[

tr(W̃ T
f Γ

−1
wfW̃f) + tr(Ṽ T

f Γ−1
vf Ṽf)

]

,

where tr(·) denotes the trace of a matrix.
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Theorem 5.1. For the system in Eq. 5–3, the identifier developed in Eq. 5–21 along with

the weight update laws in Eq. 5–25 ensures asymptotic identification of the state and its

derivative, in the sense that

lim
t→∞
‖x̃(t)‖ = 0 and lim

t→∞

∥
∥ ˙̃x(t)

∥
∥ = 0,

provided the control gains k and γ are chosen sufficiently large based on the initial

conditions of the states1 , and satisfy the following sufficient conditions

γ >
ζ5
α
, k > ζ6, (5–37)

where ζ5 and ζ6 are introduced in Eq. 5–32, and β1, β2 introduced in Eq. 5–35, are chosen

according to the sufficient conditions in Eq. 5–36.

Proof. The proof is similar to the proof of Theorem 4.1, the difference being that g(x) is

assumed to be exactly known in this chapter. This simplifies the design of the identifier,

where g(x) is directly used, unlike in Chapter 4 where its NN estimate is used instead.

Using the developed identifier in Eq. 5–21, the actor weight update law can now be

simplified using Eq. 5–19 as

·

Ŵ a = proj

{

− ηa1√
1 + ωTω

φ′Gφ′T
(

Ŵa − Ŵc

)

δhjb − ηa2(Ŵa − Ŵc)

}

. (5–38)

5.4 Convergence and Stability Analysis

The unmeasurable form of the Bellman error can be written using Eqs. 5–5-5–8 and

Eq. 5–11, as

δhjb = Ŵ T
c ω −W T

c φ
′Fu∗ + ûTRû− u∗TRu∗ − ε′vFu∗ .

= −W̃ T
c ω −W Tφ′F̃û +

1

4
W̃ T

a φ
′Gφ′T W̃a −

1

4
ε′vGε

′T
v − ε′vFu∗ , (5–39)

1 See subsequent semi-global stability analysis.
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where Eqs. 5–9 and 5–10 are used. The dynamics of the critic weight estimation error

W̃c(t) can now be developed by substituting Eq. 5–39 in Eq. 5–15, as

·
W̃ c = −ηcΓψψT W̃c + ηcΓ

ω

1 + νωTΓω

[

−W Tφ′F̃û +
1

4
W̃ T

a φ
′Gφ′T W̃a −

1

4
ε′vGε

′T
v − ε′vFu∗

−1
4
ε′vGε

′T
v − ε′vFu∗

]

,

(5–40)

where ψ(t) , ω(t)√
1+νω(t)T Γ(t)ω(t)

∈ R
N is the normalized critic regressor vector, bounded as

‖ψ‖ ≤ 1√
νϕ1

, (5–41)

where ϕ1 is introduced in Eq. 5–17. The error system in Eq. 5–40 can be represented by

the following perturbed system

·
W̃ c = Ωnom +∆per, (5–42)

where Ωnom(W̃c, t) , −ηcΓψψT W̃c ∈ R
N , denotes the nominal system, and ∆per(t) ,

ηcΓ
ω

1+νωTΓω

[

−W Tφ′F̃û +
1
4
W̃ T

a φ
′Gφ′T W̃a − 1

4
ε′vGε

′T
v − ε′vFu∗

]

∈ R
N denotes the

perturbation. Using Theorem 2.5.1 in [104], the nominal system

·
W̃ c = −ηcΓψψT W̃c (5–43)

is globally exponentially stable, if the bounded signal ψ(t) is PE, i.e.

µ2I ≥
t0+δ∫

t0

ψ(τ)ψ(τ)Tdτ ≥ µ1I ∀t0 ≥ 0,

for some positive constants µ1, µ2, δ ∈ R. Since Ωnom(W̃c, t) is continuously differentiable

and the Jacobian ∂Ωnom

∂W̃c
= −ηcΓψψT is bounded for the exponentially stable system in Eq.

5–43, the converse Lyapunov Theorem 4.14 in [106] can be used to show that there exists
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a function Vc : R
N × [0, ∞)→ R, which satisfies the following inequalities

c1

∥
∥
∥W̃c

∥
∥
∥

2

≤ Vc(W̃c, t) ≤ c2

∥
∥
∥W̃c

∥
∥
∥

2

∂Vc
∂t

+
∂Vc

∂W̃c

Ωnom(W̃c, t) ≤ −c3
∥
∥
∥W̃c

∥
∥
∥

2

(5–44)

∥
∥
∥
∥

∂Vc

∂W̃c

∥
∥
∥
∥
≤ c4

∥
∥
∥W̃c

∥
∥
∥ ,

for some positive constants c1, c2, c3, c4 ∈ R. Using Assumptions 5.2, 5.4-5.6 and 5.8, the

projection bounds in Eq. 5–19, the fact that Fu∗ ∈ L∞ (since u∗(x) is stabilizing), and

provided the conditions of Theorem 1 hold (required to prove that F̃û ∈ L∞), the following

bounds can be developed:

∥
∥
∥W̃a

∥
∥
∥ ≤ κ1,

∥
∥
∥φ′Gφ′T

∥
∥
∥ ≤ κ2,

∥
∥
∥
∥

1

4
W̃ T

a φ
′Gφ′T W̃a −W Tφ′F̃û − ε′vFu∗

∥
∥
∥
∥
≤ κ3,

∥
∥
∥
∥

1

2
W Tφ′Gε′

T

v +
1

2
ε′vGε

′T
v +

1

2
W Tφ′Gφ′T W̃a +

1

2
ε′vGφ

′T
∥
∥
∥
∥
≤ κ4, (5–45)

where κ1, κ2, κ3, κ4 ∈ R are computable positive constants.

Theorem 5.2. If Assumptions 5.1-5.8 hold, the normalized critic regressor ψ(t) defined

in 5–40 is PE (persistently exciting), and provided Eq. 5–36, Eq. 5–37 and the following

sufficient gain condition is satisfied2

c3
ηa1

> κ1κ2, (5–46)

where ηa1, c3, κ1, κ2 are introduced in Eqs. 5–19, 5–44, and 5–45, then the controller in

Eq. 5–10, the actor and critic weight update laws in Eqs. 5–15-5–16 and 5–38, and the

2 Since c3 is a function of the critic adaptation gain ηc, ηa1 is the actor adaptation gain,
and κ1, κ2 are known constants, the sufficient gain condition in Eq. 5–46 can be easily
satisfied.
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identifier in Eq. 5–21 and 5–25, guarantee that the state of the system x(t), and the actor

and critic weight estimation errors W̃a(t) and W̃c(t) are UUB.

Proof. To investigate the stability of Eq. 5–3 with control û(x), and the perturbed system

in Eq. 5–42, consider VL : X × R
N × R

N × [0,∞) → R as the continuously differentiable,

positive-definite Lyapunov function candidate defined as

VL(x, W̃c, W̃a, t) , V ∗(x) + Vc(W̃c, t) +
1

2
W̃ T

a W̃a,

where V ∗(x) (the optimal value function), is the Lyapunov function for Eq. 5–3, and

Vc(W̃c, t) is the Lyapunov function for the exponentially stable system in Eq. 5–43. Since

V ∗(x) is continuously differentiable and positive-definite from Eq. 5–1 and 5–2, there exist

class K functions α1 and α2 defined on [0, r], where Br ⊂ X ( Lemma 4.3 in [106]), such

that

α1(‖x‖) ≤ V ∗(x) ≤ α2(‖x‖) ∀x ∈ Br. (5–47)

Using Eqs. 5–44 and 5–47, VL(x, W̃c, W̃a, t) can be bounded as

α1(‖x‖) + c1

∥
∥
∥W̃c

∥
∥
∥

2

+
1

2

∥
∥
∥W̃a

∥
∥
∥

2

≤ VL(x, W̃c, W̃a, t) ≤ α2(‖x‖) + c2

∥
∥
∥W̃c

∥
∥
∥

2

+
1

2

∥
∥
∥W̃a

∥
∥
∥

2

,

which can be written as

α3(‖z̃‖) ≤ VL(x, W̃c, W̃a, t) ≤ α4(‖z̃‖) ∀z̃ ∈ Bs,

where z̃(t) , [x(t)T W̃c(t)
T W̃a(t)

T ]T ∈ R
n+2N , α3 and α4 are class K functions defined on

[0, s], where Bs ⊂ X × R
N × R

N . Taking the time derivative of VL(·) yields

V̇L =
∂V ∗

∂x
f +

∂V ∗

∂x
gû+

∂Vc
∂t

+
∂Vc

∂W̃c

Ωnom +
∂Vc

∂W̃c

∆per − W̃ T
a

˙̂
Wa, (5–48)

where the time derivative of V ∗(·) is taken along the the trajectories of the system Eq. 5–3

with control û(·) and the time derivative of Vc(·) is taken along the along the trajectories

of the perturbed system Eq. 5–42. To facilitate the subsequent analysis, the HJB in Eq.
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5–5 is rewritten as ∂V ∗

∂x
f = −∂V ∗

∂x
gu∗ − Q(x) − u∗TRu∗. Substituting for ∂V ∗

∂x
f in Eq. 5–48,

using the fact that ∂V ∗

∂x
g = −2u∗TR from Eq. 5–4, and using Eqs. 5–19 and 5–44, Eq.

5–48) can be upper bounded as

V̇L ≤ −Q− u∗TRu∗ − c3
∥
∥
∥W̃c

∥
∥
∥

2

+ c4

∥
∥
∥W̃c

∥
∥
∥ ‖∆per‖+ 2u∗

T

R(u∗ − û)

+ ηa2W̃
T
a (Ŵa − Ŵc) +

ηa1√
1 + ωTω

W̃ T
a φ

′Gφ′T (Ŵa − Ŵc)δhjb. (5–49)

Substituting for u∗, û, δhjb, and ∆per using Eqs. 5–4, 5–10, 5–39, and 5–42, respectively,

and using Eq. 5–17 and Eq. 5–41 in Eq. 5–49, yields

V̇L ≤ −Q− c3
∥
∥
∥W̃c

∥
∥
∥

2

− ηa2
∥
∥
∥W̃a

∥
∥
∥

2

+
1

2
W Tφ′Gε′

T

v +
1

2
ε′vGε

′T
v +

1

2
W Tφ′Gφ′T W̃a

+ c4
ηcϕ0

2
√
νϕ1

∥
∥
∥
∥
−W Tφ′F̃û +

1

4
W̃ T

a φ
′Gφ′T W̃a −

1

4
ε′vGε

′T
v − ε′vFu∗

∥
∥
∥
∥

∥
∥
∥W̃c

∥
∥
∥ (5–50)

+
ηa1√

1 + ωTω
W̃ T

a φ
′Gφ′T (W̃c − W̃a)

(

−W̃ T
c ω −W Tφ′F̃û +

1

4
W̃ T

a φ
′Gφ′T W̃a

−1
4
ε′vGε

′T
v − ε′vFu∗

)

+
1

2
ε′vGφ

′T W̃a + ηa2

∥
∥
∥W̃a

∥
∥
∥

∥
∥
∥W̃c

∥
∥
∥ .

Using the bounds developed in Eqs. 5–45, 5–50 can be further upper bounded as

V̇L ≤ −Q− (c3 − ηa1κ1κ2)
∥
∥
∥W̃c

∥
∥
∥

2

− ηa2
∥
∥
∥W̃a

∥
∥
∥

2

+ ηa1κ
2
1κ2κ3 + κ4

+

(
c4ηcϕ0

2
√
νϕ1

κ3 + ηa1κ1κ2κ3 + ηa1κ
2
1κ2 + ηa2κ1

)∥
∥
∥W̃c

∥
∥
∥ .

Provided c3 > ηa1κ1κ2, and completing the square yields

V̇L ≤ −Q− (1− θ)(c3 − ηa1κ1κ2)
∥
∥
∥W̃c

∥
∥
∥

2

− ηa2
∥
∥
∥W̃a

∥
∥
∥

2

+ ηa1κ
2
1κ2κ3 + κ4

+
1

4θ(c3 − ηa1κ1κ2)

[
c4ηcϕ0

2
√
νϕ1

κ3 + ηa1κ1κ2κ3 + ηa1κ
2
1κ2 + ηa2κ1

]2

(5–51)

where 0 < θ < 1. Since Q(x) is positive definite, Lemma 4.3 in [106] indicates that there

exist class K functions α5 and α6 such that

α5(‖z̃‖) ≤ Q+ (1− θ)(c3 − ηa1κ1κ2)
∥
∥
∥W̃c

∥
∥
∥

2

+ ηa2

∥
∥
∥W̃a

∥
∥
∥

2

≤ α6(‖z̃‖) ∀v ∈ Bs. (5–52)
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Using Eq. 5–52, the expression in Eq. 5–51 can be further upper bounded as

V̇L ≤ −α5(‖z̃‖) + ηa1κ
2
1κ2κ3 + κ4

+
1

4θ(c3 − ηa1κ1κ2)

[
c4ηcϕ0

2
√
νϕ1

κ3 + ηa1κ1κ2κ3 + ηa1κ
2
1κ2 + ηa2κ1

]2

,

which proves that V̇L(·) is negative whenever z̃(t) lies outside the compact set Ωz̃ ,
{

z̃ : ‖z̃‖ ≤ α−1
5

(

1
4θ(c3−ηa1κ1κ2)

[
c4ηcϕ0

2
√
νϕ1

κ3 + ηa1κ1κ2κ3 + ηa1κ
2
1κ2 + ηa2κ1 + ηa1κ

2
1κ2κ3 + κ4

]2
)}

,

and hence, ‖z̃(t)‖ is UUB (Theorem 4.18 in [106]). The bounds in Eq. 5–45 depend on

the actor NN approximation error ε′v, which can be reduced by increasing the number

of neurons N , thereby reducing the size of the residual set Ωz̃. From Assumption 5.7,

as the number of neurons of the actor and critic NNs N → ∞, the reconstruction error

ε′v → 0.

Remark 5.3. Since the actor, critic and identifier are continuously updated, the developed

RL algorithm can be compared to fully optimistic PI in machine learning literature [107],

where policy evaluation and policy improvement are done after every state transition,

unlike traditional PI, where policy improvement is done after convergence of the policy

evaluation step. Proving convergence of optimistic PI is complicated and is an active area

of research in machine learning [107, 108]. By considering an adaptive control framework,

this result investigates the convergence and stability behavior of fully optimistic PI in

continuous-time.

Remark 5.4. The PE condition in Theorem 2 is equivalent to the exploration paradigm

in RL which ensures sufficient sampling of the state space and convergence to the optimal

policy [101].

5.5 Comparison with Related Work

Similar to RL, optimal control involves selection of an optimal policy based on some

long-term performance criteria. DP provides a means to solve optimal control problems

[52]; however, DP is implemented backward in time, making it offline and computationally

expensive for complex systems. Owing to the similarities between optimal control and

86



RL [3], Werbos [17] introduced RL-based AC methods for optimal control, called ADP.

ADP uses NNs to approximately solve DP forward-in-time, thus avoiding the curse of

dimensionality. A detailed discussion of ADP-based designs is found in [6, 24, 107]. The

success of ADP prompted a major research effort towards designing ADP-based optimal

feedback controllers. The discrete/iterative nature of the ADP formulation lends itself

naturally to the design of discrete-time optimal controllers [7, 10, 67–70, 109].

Extensions of ADP-based controllers to continuous-time systems entails challenges

in proving stability, convergence, and ensuring the algorithm is online and model-free.

Early solutions to the problem consisted of using a discrete-time formulation of time and

state, and then applying an RL algorithm on the discretized system. Discretizing the state

space for high dimensional systems requires a large memory space and a computationally

prohibitive learning process. Baird [38] proposed Advantage Updating, an extension of

the Q-learning algorithm which could be implemented in continuous-time and provided

faster convergence. Doya [39] used a HJB framework to derive algorithms for value

function approximation and policy improvement, based on a continuous-time version of

the temporal difference error. Murray et al. [8] also used the HJB framework to develop

a stepwise stable iterative ADP algorithm for continuous-time input-affine systems with

an input quadratic performance measure. In Beard et al. [40], Galerkin’s spectral method

is used to approximate the solution to the GHJB, using which a stabilizing feedback

controller was computed offline. Similar to [40], Abu-Khalaf and Lewis [41] proposed a

least-squares successive approximation solution to the GHJB, where an NN is trained

offline to learn the GHJB solution. Recent results by [13, 42] have made new inroads by

addressing the problem for partially unknown nonlinear systems. However, the inherently

iterative nature of the ADP algorithm has prevented the development of rigorous stability

proofs of closed-loop controllers for continuous-time uncertain nonlinear systems.

All the aforementioned approaches for continuous-time nonlinear systems are offline

and/or require complete knowledge of system dynamics. One of the contributions in
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[13] is that only partial knowledge of the system dynamics is required, and a hybrid

continuous-time/discrete-time sampled data controller is developed based on PI, where

the feedback control operation of the actor occurs at faster time scale than the learning

process of the critic. Vamvoudakis and Lewis [14] extended the idea by designing a

model-based online algorithm called synchronous PI which involved synchronous,

continuous-time adaptation of both actor and critic neural networks. Inspired by the

work in [14], a novel actor-critic-identifier architecture is proposed in this work to

approximately solve the continuous-time infinite horizon optimal control problem for

uncertain nonlinear systems; however, unlike [14], the developed method does not require

knowledge of the system drift dynamics. The actor and critic NNs approximate the

optimal control and the optimal value function, respectively, whereas the identifier

DNN estimates the system dynamics online. The integral RL technique in [13] leads

to a hybrid continuous-time/discrete-time controller with two time-scale actor and

critic learning process, whereas the approach in [14], although continuous-time, requires

complete knowledge of system dynamics. A contribution of this work is the use of a

novel actor-critic-identifier architecture, which obviates the need to know the system drift

dynamics, and where the learning of the actor, critic and identifier is continuous and

simultaneous. Moreover, the actor-critic-identifier method utilizes an identification-based

online learning scheme, and hence is the first ever indirect adaptive control approach

to RL. The idea is similar to the Heuristic Dynamic Programming (HDP) algorithm

[5], where Werbos suggested the use of a model network along with the actor and critic

networks.

In the developed method, the actor and critic NNs use gradient and least squares-based

update laws, respectively, to minimize the Bellman error, which is the difference between

the exact and the approximate HJB equation. The identifier DNN is a combination of

a Hopfield-type [110] component, in parallel configuration with the system [111], and a

novel RISE (Robust Integral of Sign of the Error) component. The Hopfield component of
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the DNN learns the system dynamics based on online gradient-based weight tuning laws,

while the RISE term robustly accounts for the function reconstruction errors, guaranteeing

asymptotic estimation of the state and the state derivative. The online estimation of

the state derivative allows the actor-critic-identifier architecture to be implemented

without knowledge of system drift dynamics; however, knowledge of the input gain matrix

is required to implement the control policy. While the design of the actor and critic

are coupled through the HJB equation, the design of the identifier is decoupled from

actor-critic, and can be considered as a modular component in the actor-critic-identifier

architecture. Convergence of the actor-critic-identifier-based algorithm and stability of the

closed-loop system are analyzed using Lyapunov-based adaptive control methods, and a

persistence of excitation (PE) condition is used to guarantee exponential convergence to

a bounded region in the neighborhood of the optimal control and UUB stability of the

closed-loop system. The PE condition is equivalent to the exploration paradigm in RL

[101] and ensures adequate sampling of the system’s dynamics, required for convergence to

the optimal policy.

5.6 Simulation

5.6.1 Nonlinear System Example

The following nonlinear system is considered [14]

ẋ =






−x1 + x2

−0.5x1 − 0.5x2(1− (cos(2x1) + 2)2)




+






0

cos(2x1) + 2




 u, (5–53)

where x(t) , [x1(t) x2(t)]
T ∈ R

2 and u(t) ∈ R. The state and control penalties are chosen

as

Q(x) = xT






1 0

0 1




 x; R = 1.
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Figure 5-2. System states x(t) with persistently excited input for the first 3 seconds.

The optimal value function and optimal control for the system in Eq. 5–53 are known, and

given by [14]

V ∗(x) =
1

2
x21 + x22; u∗(x) = −(cos(2x1) + 2)x2.

The activation function for the critic NN is selected with N = 3 neurons as

φ(x) = [x21 x1x2 x22]
T ,

while the activation function for the identifier DNN is selected as a symmetric sigmoid

with Lf = 5 neurons in the hidden layer. The identifier gains are selected as

k = 800, α = 300, γ = 5, β1 = 0.2, Γwf = 0.1I6×6, Γvf = 0.1I2×2,

and the gains for the actor-critic learning laws are selected as

ηa1 = 10, ηa2 = 50, ηc = 20, ν = 0.005.
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Figure 5-3. Error in estimating the state derivative ˙̃x(t) by the identifier.
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Figure 5-4. Convergence of critic weights Ŵc(t).
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Figure 5-5. Convergence of actor weights Ŵa(t).
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Figure 5-6. Error in approximating the optimal value function by the critic at steady
state.
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Figure 5-8. Errors in approximating the (a) optimal value function, and (b) optimal
control, as a function of time.
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The covariance matrix is initialized to Γ(0) = 5000, all the NN weights are randomly

initialized in [−1, 1], and the states are initialized to x(0) = [3, −1]. An implementation

issue in using the developed algorithm is to ensure PE of the critic regressor vector.

Unlike linear systems, where PE of the regressor translates to sufficient richness of the

external input, no verifiable method exists to ensure PE in nonlinear regulation problems.

To ensure PE qualitatively, a small exploratory signal consisting of sinusoids of varying

frequencies, n(t) = sin2(t)cos(t)+sin2(2t)cos(0.1t)+sin2(−1.2t)cos(0.5t)+sin5(t), is added

to the control u(t) for the first 3 seconds [14]. The evolution of states is shown in Fig. 5-2.

The identifier approximates the system dynamics, and the state derivative estimation error

is shown in Fig. 5-3. Persistence of excitation ensures that the weights converge converge

to their optimal values of W = [0.5 0 1]T in approximately 2 seconds, as seen from the

evolution of actor and critic weights in Figs. 5-4 and 5-5. The errors in approximating

the optimal value function and optimal control at steady state (t = 10 sec.) are plotted

against the states in Figs. 5-6 and 5-7, respectively. Fig. 5-8 shows the error between the

optimal value function and approximate optimal value function, and the optimal control

and approximate optimal control, as a function of time along the trajectory x(t).

5.6.2 LQR Example

The following linear system is considered [14]

ẋ =









−1.01887 0.90506 −0.00215

0.82225 −1.07741 −0.17555

0 0 1









︸ ︷︷ ︸

A

+









0

0

1









︸ ︷︷ ︸

B

u.

with the following state and the control penalties

Q(x) = xT









1 0 0

0 1 0

0 0 1









x; R = 1.
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Figure 5-9. System states x(t) with persistently excited input for the first 25 seconds.

The following solution to the ARE can be obtained

P =









1.4245 1.1682 −0.1352

1.1682 1.4349 −0.1501

−0.1352 −0.1501 2.4329









.

The optimal value function is given by V ∗(x) = xTPx, and the optimal control is given by

u∗ = −R−1BTPx = −
[

−0.1352 −0.1501 2.4329

]

x.

ηa1 = 5, ηa2 = 50, ηc = 20, ν = 0.001.

The above LQR design assumes complete knowledge of system dynamics (i.e. A

and B), and the ARE is solved offline to obtain P . The proposed actor-critic-identifier

architecture is used to solve the LQR problem online without requiring knowledge of the

system drift dynamics (i.e. A). The basis for the critic NN is selected by exploiting the
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Figure 5-10. Convergence of critic weights Ŵc(t).
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Figure 5-11. Convergence of actor weights Ŵa(t).
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structure of the value function as

φ(x) =

[

x21 x1x2 x1x3 x22 x2x3 x23

]T

,

and the optimal weights are given by

W =

[

1.4245 2.3364 −0.2704 1.4349 −0.3002 2.4329

]T

.

The same identifier as in the nonlinear example in Section 5.6.1 is used, and the gains for

the actor and critic learning laws are selected as The covariance matrix is initialized to

Γ(0) = 50000, all the NN weights are randomly initialized in [−1, 1], and the states are

initialized to x(0) =

[

15 −13 −12
]

. To ensure PE, an exploratory signal consisting

of sinusoids of varying frequencies, n(t) = 10(sin(2πt) + sin(et) + cos(5t)5 + sin(10t) +

cos(3t) + sin(2t)2cos(0.1t) + sin(0.5πt) + cos(10t) + sin(20t)), is added to the control

u(t) for the first 25 seconds. The evolution of states is shown in Fig. 5-9, and Figs. 5-10

and 5-11 show the convergence of critic and actor weights, respectively. Fig. 5-12 shows

the error between the optimal value function and approximate optimal value function,

and the optimal control and approximate optimal control, as a function of time along the

trajectory x(t).
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5.7 Summary

An actor-critic-identifier architecture is proposed to learn the approximate solution

to the HJB equation for infinite-horizon optimal control of uncertain nonlinear systems.

The online method is the first ever indirect adaptive control approach to continuous-time

RL. The learning by the actor, critic and identifier is continuous and simultaneous, and

the novel addition of the identifier to the traditional AC architecture eliminates the need

to know the system drift dynamics. The actor and critic minimize the Bellman error using

gradient and least-squares update laws, respectively, and provide online approximations to

the optimal control and the optimal value function, respectively. The identifier estimates

the system dynamics online and asymptotically converges to the system state and its

derivative. A PE condition is required to ensure exponential convergence to a bounded

region in the neighborhood of the optimal control and UUB stability of the closed-loop

system. Simulation results demonstrate the performance of the actor-critic-identifier-based

method.
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CHAPTER 6
CONCLUSION AND FUTURE WORK

This chapter concludes the dissertation by discussing the key ideas developed in

each chapter. Limitations and implementation issues of the work are discussed and

recommendations are made regarding possible future research directions.

6.1 Dissertation Summary

This work focusses on replicating the success of RL methods in machine learning to

control continuous-time nonlinear systems. While in Chapter 3, the RL approach is used

to develop robust adaptive controllers which guarantee asymptotic tracking, RL methods

are used in Chapter 5 to develop online adaptive optimal controllers. The improvement in

performance of the closed-loop system demonstrated through simulations and experiments

shows the potential of online data-driven RL methods, where the controller is able to learn

the optimal policy by interacting with the environment. The RL approach for optimal

control is cast as a parameter estimation and identification problem, and is considered in

an adaptive control framework. The adaptive control framework allows rigorous analysis of

stability and convergence of the algorithm. For the RL-based optimal control in Chapter

5, a persistence of excitation condition is found to be crucial in ensuring exponential

convergence of the parameters to a bounded region in the neighborhood of the optimal

control and yields UUB stability of the closed-loop system.

The focus of Chapter 3 is to develop a non-dynamic programming based adaptive

critic controller for a class of continuous-time uncertain nonlinear systems with additive

bounded disturbances. This work overcomes the limitation of previous work where

adaptive critic controllers are either discrete-time and/or yield a uniformly ultimately

bounded stability result due to the presence of disturbances and unknown approximation

errors. The asymptotic tracking result is made possible by combining a continuous RISE

feedback with both the actor and the critic NN structures. The feedforward actor NN

approximates the nonlinear system dynamics while the robust feedback (RISE) rejects
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the NN functional reconstruction error and disturbances. In addition, the actor NN is

trained online using a combination of tracking error, and a reinforcement signal, generated

by the critic. Experimental results and t-test analysis demonstrate faster convergence

of the tracking error when a reinforcement learning term is included in the NN weight

update laws. Although the proposed method guarantees asymptotic tracking, a limitation

of the controller is that it does not ensure optimality, which is a common feature (at least

approximate optimal control) of DP-based RL controllers.

The development of the state derivative estimator in Chapter 4 is motivated by

the need to develop model-free RL-based solutions to the optimal control problem for

nonlinear systems. In contrast to purely robust feedback methods in literature, an

identification-based robust adaptive approach is developed. The result differs from existing

pure robust methods in that the proposed method combines a DNN system identifier with

a robust RISE feedback to ensure asymptotic convergence to the state derivative, which

is proven using a Lyapunov-based stability analysis. Simulation results in the presence

of noise show an improved transient and steady state performance of the developed state

derivative identifier in comparison to several other derivative estimation methods. Initially

developed for model-free RL-based control, the developed estimator can be used in a wide

range of applications, e.g., parameter estimation, fault detection, acceleration feedback,

output feedback control, etc.

Due to the difficulty in solving the HJB for optimal control of continuous-time

systems, few results exist which solve/circumvent the problem in an online model-free way.

The state derivative estimator developed in Chapter 4 paved the way for the development

of a novel actor-critic-identifier architecture in Chapter 5 which learns the approximate

optimal solution for infinite-horizon optimal control of uncertain nonlinear systems. The

method is online, partially model-free, and is the first ever indirect adaptive control

approach to continuous-time RL. The actor and critic minimize the Bellman error using

gradient and least-squares update laws, respectively, and provide online approximations to
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the optimal control and the optimal value function, respectively. The identifier estimates

the system dynamics online and asymptotically converges to the system state and its

derivative. Another contribution of the result is that the learning by the actor, critic and

identifier is continuous and simultaneous, and the novel addition of the identifier to the

traditional actor-critic architecture eliminates the need to know the system drift dynamics.

A limitation of the method, however, is the requirement of the knowledge of the input gain

matrix.

6.2 Future Work

This work illustrates that RL methods can be successfully applied to feedback control.

While the methods developed are fairly general and applicable to a wide range of systems,

research in this area is still at a nascent stage and several interesting open problems exist.

This section discusses the open theoretical problems, implementation issues, and future

research directions.

6.2.1 Model-Free RL

RL methods based on TD learning typically do not need a model to learn the

optimal policy; they either learn the model online (indirect adaptive approach) or directly

learn the parameters of the optimal control (direct adaptive approach). The controller

developed in Chapter 5 is based on an indirect adaptive approach, where an identifier is

used to approximate the system dynamics online resulting in a model-free formulation

of the Bellman error which is used to approximate the value function. Although the

approximation of the value function is model-free, the greedy policy used to compute

the optimal policy requires knowledge of the input gain matrix. Hence, the developed

approach is only partially model-free. A possible approach for completely model-free RL

for continuous-time nonlinear systems is to use Q-learning methods [20], a direct adaptive

model-free approach to learn optimal policies in MDPs. However, Q-learning-based control

design still remains an open problem for continuous-time nonlinear systems. A recent

result in [112] points to a possible approach to solve the problem.
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6.2.2 Relaxing the Persistence of Excitation Condition

The critic regressor in Chapter 5 is required to satisfy the PE condition for

convergence to a neighborhood of the optimal control. As observed in Chapter 5, the

PE condition in adaptive control is equivalent to the exploration paradigm, which lies at

the heart of RL. Exploration is essential to explore the state space and converge to the

global optimal solution. For linear systems, the PE condition translates to the sufficient

richness of the external input. However, PE is hard to verify in general for nonlinear

systems. Future efforts can focus on relaxing the PE assumption by replacing it with a

milder condition on the regressor vector. A recent result in [113] attempts to relax the PE

assumption by exploiting prior information about the system but that may go against the

spirit of RL which relies on online learning.

6.2.3 Asymptotic RL-Based Optimal Control

Although asymptotic tracking is guaranteed in Chapter 3, the controller is not

optimal. In Chapter 5, where an optimal controller is developed, a UUB stability result

is achieved. An open problem in RL-based optimal control is asymptotic stability of

the closed-loop system in presence of NN approximation errors. One way is to account

for approximation errors by combining the optimal control with a robust feedback, e.g.,

sliding mode or RISE. Although asymptotic stability can be proved by the addition of

these robust methods, optimality of the overall controller may be compromised in doing

so. Hence, it is not straightforward to extend the robust feedback control tools to optimal

control in presence of NN approximation errors.

6.2.4 Better Function Approximation Methods

Generalization and the use of appropriate function approximators for value function

approximation is one of the most important issues facing RL, preventing its use in

large-scale systems. Function approximation was introduced in RL to alleviate the curse

of dimensionality when solving sequential decision problems with large or continuous state

spaces [35]. Most RL algorithms for continuous-time control involve parameterization
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of the value function and the control. These parameterizations involve selecting an

appropriate basis function for the value and the control, a task which can be very hard

without any prior knowledge about the system. Linear function approximators, though

convenient to use from analysis point of view, have limited approximation capability.

Nonlinear approximators like multilayer NNs have better approximation capability but

are not amenable for analysis and proving convergence. A challenge for the computational

intelligence community is to develop simple yet powerful approximators which are also

amenable to mathematical analysis.

6.2.5 Robustness to Disturbances

In practical systems, disturbances are inevitable, e.g., wind gust pushing against

an aircraft, contaminant in a chemical process, sudden political upheaval affecting

the stock market, etc. The system considered in Chapter 5 is not subjected to any

external disturbances, and hence, robustness to external disturbances is not guaranteed.

Optimal control of systems subjected to disturbances can be considered in the framework

of minimax differential games [114], where the control and disturbance are treated

as players with conflicting interests – one minimizes the objective function whereas

the other maximizes it, and both reach an optimal compromise (if it exists) which is

called the saddle point solution. Recent results in [115, 116] have made inroads into the

continuous-time differential game problem. The ACI method developed in Chapter 5 can

be extended to solve the differential game problem in an online, partially model-free way.

6.2.6 Output Feedback RL Control

The methods developed in this work assume full state feedback, however, there may

be situations where all the states are not available for measurement. In RL jargon, such

situations are referred as Partially Observable Markov Decision Processes (POMDPs)

[117]. From a controls perspective, in absence of full-state feedback, the problem can be

dealt by developing observers and output feedback controllers. An open problem is to

extend these methods to RL-based control. A challenge in extending the observer-based
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techniques for output feedback RL is that observers typically need a model of the system

while RL methods are ideally model-free. A possible alternative is to use non-model based

observers, like high gain or sliding mode. The state derivative estimator developed in

Chapter 4 can also be extended to the output feedback case.

6.2.7 Extending RL beyond the Infinite-Horizon Regulator

The methods developed in this work are applicable only for infinite-horizon

regulation of continuous-time systems. Also, the system considered in 5 is restricted

to be autonomous. ADP for time-varying systems and tracking are interesting open

problems. Other extensions where future research efforts can be directed are: minimum

time, finite-time, and constrained optimal control problems.
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APPENDIX A
ASYMPTOTIC TRACKING BY A REINFORCEMENT LEARNING-BASED

ADAPTIVE CRITIC CONTROLLER

A.1 Derivation of Sufficient Conditions in Eq. 3–42

Integrating Eq. 3–46, the following expression is obtained

∫ t

0

L(τ)dτ =

∫ t

0

{
rT (Nd +NB1 − β1sgn(en)) + ėTnNB2 − β3 ‖en‖2 − β4 |R|2

}
dτ.

Using Eq. 3–4, integrating the first integral by parts, and integrating the second integral

yields

∫ t

0

L(τ)dτ = eTnN − eTn (0)N (0)−
∫ t

0

eTn

(

ṄB + Ṅd

)

dτ + β1

m∑

i=1

|eni(0)| − β1
m∑

i=1

|eni(t)|

+

∫ t

0

αne
T
n (Nd +NB1 − β1sgn(en))dτ −

∫ t

0

(β3 ‖en‖2 + β4 |R|2)dτ.

Using the fact that ‖en‖ ≤
m∑

i=1

|eni| , and using the bounds in Eqs. 3–32 and 3–33, yields

∫ t

0

L(τ)dτ ≤ β1

m∑

i=1

|eni(0)| − eTn (0)N (0)− (β1 − ζ1 − ζ2 − ζ3) ‖en‖

−
∫ t

0

(

β3 − ζ7 −
ζ8
2

)

‖en‖2 dτ −
∫ t

0

(

β4 −
ζ8
2

)

|R|2 dτ

+

∫ t

0

αn ‖en‖ (ζ1 + ζ2 +
ζ5
αn

+
ζ6
αn

− β1)dτ.

If the sufficient conditions in Eq. 3–42 are satisfied, then the following inequality holds

∫ t

0

L(τ)dτ ≤ β1

m∑

i=1

|eni(0)| − en(0)TN(0).

∫ t

0

L(τ)dτ ≤ P (0). (A–1)

Using Eqs. A–1 and 3–45, it can be shown that P (z, R, t) ≥ 0.
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A.2 Differential Inclusions and Generalized Solutions

Consider a system

ẋ = f(x, t), (A–2)

where x ∈ R
n and f : R

n × R→ R
n. If the function f is Lipschitz continuous in x

and piecewise continuous in t, existence and uniqueness of solutions can be studied and

proved in the classical sense (Cauchy-Peano theorem). However, many practical systems

with discontinuous right hand sides exist, e.g., Coulomb friction, sliding mode, contact

transition etc. For such systems, there may be no solutions in the usual sense, and the

notion of solutions has to be generalized to ensure its existence. One of the ways1 is to

study the generalized solutions in Filippov’s sense using the following differential inclusion

ẋ ∈ K[f ](x, t), (A–3)

where f is Lebesgue measurable and locally bounded, and K[·] is defined as

K[f ](x, t) ,
⋂

δ>0

⋂

µM=0

cof(B(x, δ)−M, t),

where
⋂

µM=0

denotes the intersection of all sets M of Lebesgue measure zero, co denotes

convex closure. In words, K[·] is the convex closure of the set of all possible limit

values of f in small neighborhoods of a given point x. If x is absolutely continuous

(i.e. differentiable a.e.) and satisfies Eq. A–3, then it is called a generalized solution (in

Filippov’s sense) of the differential equation Eq. A–2.

The differential equations of the closed-loop system, Eqs. 3–3, 3–4, 3–20, 3–23, 3–36,

3–38, and 3–45, have discontinuous right hand sides. Specifically, they are continuous

except in the set {(y, t)|x̃ = 0}, which has a Lebesgue measure of 0. Hence, the Filippov’s

differential inclusion framework is used to ensure existence and unqueness of solutions

1 If the function f is discontinuous in t and continuous in x, the solution to Eq. A–2
can be studied in the sense of Caratheodory.
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(a.e.) for ẏ = F (y, t), where F denotes the right hand sides of the differential equations of

the closed-loop system. The function F is Lebesgue measurable and locally bounded, and

is continuous except in the set {(y, t)|x̃ = 0}. Stability of solutions based on differential

inclusion is studied using non-smooth Lyapunov functions, using the development in

[79, 80]. The generalized time derivative of Eq. 3–47 exists almost everywhere (a.e.), and

V̇ (y) ∈a.e. ˙̃V (y) where

˙̃V =
⋂

ξ∈∂V (y)

ξTK [F ] (y, t), (A–4)

where ∂V is the generalized gradient of V [78]. Since the Lyapunov function in Eq. 3–47 is

a Lipschitz continuous regular function, the generalized time derivative in Eq. A–4 can be

computed as

˙̃V = ∇V TK [F ] (y, t).

The following relations from [80] are then used to arrive at equation Eq. 3–50:

1. If f and g are locally bounded functions, K[f + g](x) ⊂ K[f ](x) +K[g](x).

2. If g : R
m → R

p×n is C0 and f : R
m → R

n is locally bounded, K[gf ](x) =

g(x)K[f ](x).

3. If f : R
m → R

n is continuous, K[f ](x) = {f(x)}.

4. K[sgn(x)] = SGN(x), where SGN(·) refers to the set-valued sgn(·) function.
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APPENDIX B
ROBUST IDENTIFICATION-BASED STATE DERIVATIVE ESTIMATION FOR

NONLINEAR SYSTEMS

B.1 Proof of Inequalities in Eqs. 4–12-4–14

Some preliminary inequalities are proved which will facilitate the proof of inequalities

in Eqs. 4–12-4–14. Using the triangle inequality in Eq. 4–2, the following bound can be

obtained

‖ẋ‖ ≤ ‖Wf‖ ‖σf‖+ ‖εf‖+
m∑

i=1

[‖Wgi‖ ‖σgi‖+ ‖εgi‖] ‖ui‖+ ‖d‖ ,

≤ c1, (B–1)

where Assumptions 4.2, 4.3, 4.5-4.7 are used and c1 ∈ R is a computable constant. Using

triangle inequality in Eq. 4–3, and the fact that ˙̂x = ẋ − r + αx̃, the following bound can

be obtained

∥
∥
∥ ˙̂x
∥
∥
∥ ≤ ‖ẋ‖+ ‖r‖+ α ‖x̃‖ ,

≤ c1 + c2 ‖z‖ , (B–2)

where c2 , max{1, α} ∈ R. Using Assumptions 4.2, 4.6, projection bounds on the weight

estimates in Eq. 4–7, and the bounds in Eqs. B–1 and B–2, the following bounds can be

developed for the DNN weight update laws in Eq. 4–7

∥
∥
∥
˙̂
Wf

∥
∥
∥ ≤ c3 ‖x̃‖+ c4 ‖x̃‖ ‖z‖ ,

∥
∥
∥
˙̂
Vf

∥
∥
∥ ≤ c5 ‖x̃‖+ c6 ‖x̃‖ ‖z‖ ,

∥
∥
∥
˙̂
Wgi

∥
∥
∥ ≤ c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖ ,

∥
∥
∥
˙̂
Vgi

∥
∥
∥ ≤ c9 ‖x̃‖+ c10 ‖x̃‖ ‖z‖ ∀i = 1...m, (B–3)

where ci∈ R i = 3...10 are computable constants. Using Assumptions 4.1-4.3, the derivative

of the dynamics in Eq. 4–2 yields

ẍ = W T
f σ

′
fV

T
f ẋ+ ε′f ẋ+

m∑

i=1

([
W T

giσ
′
giV

T
gi ẋ+ ε′giẋ

]
ui +

[
W T

giσgi + εgi
]
u̇i
)
+ ḋ, (B–4)
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and using the triangle inequality yields the following bound

‖ẍ‖ ≤ ‖Wf‖
∥
∥σ′

f

∥
∥ ‖Vf‖ ‖ẋ‖+

∥
∥ε′f
∥
∥ ‖ẋ‖+

m∑

i=1

([
‖Wgi‖

∥
∥σ′

gi

∥
∥ ‖Vgi‖ ‖ẋ‖+

∥
∥ε′gi

∥
∥ ‖ẋ‖

]
‖ui‖

+ [‖Wgi‖ ‖σgi‖+ ‖εgi‖] ‖u̇i‖) +
∥
∥
∥ḋ
∥
∥
∥ ,

≤ c11, (B–5)

where Assumptions 4.2, 4.3, 4.5-4.7, and Eq. B–1 is used, and c11 ∈ R is a computable

constant.

B.1.1 Proof of Inequality in Eq. 4–12

Using triangle inequality in Eq. 4–9 yields

∥
∥
∥Ñ
∥
∥
∥ ≤ α

∥
∥ ˙̃x
∥
∥+

∥
∥
∥
˙̂
Wf

∥
∥
∥ ‖σ̂f‖+

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥
˙̂
Vf

∥
∥
∥ ‖x̂‖+ 1

2

∥
∥W T

f

∥
∥
∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥

∥
∥ ˙̃x
∥
∥

+
1

2

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥ ‖Vf‖

∥
∥ ˙̃x
∥
∥+

m∑

i=1

[∥
∥
∥
˙̂
Wgi

∥
∥
∥ ‖σ̂gi‖ ‖ui‖+

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥
˙̂
Vgi

∥
∥
∥ ‖x̂‖ ‖ui‖

+
1

2

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥ ‖Vgi‖

∥
∥ ˙̃x
∥
∥ ‖ui‖+

1

2

∥
∥W T

gi

∥
∥
∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥

∥
∥ ˙̃x
∥
∥ ‖ui‖

]

. (B–6)

Using Eq. 4–5, the fact that ‖x‖ , ‖r‖ ≤‖z‖, and the bounds developed in Eqs. B–1, B–2,

and B–3, the expression in Eq. B–6 can be further upper bounded as

∥
∥
∥Ñ
∥
∥
∥ ≤

[

‖Γwf‖
∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥ ‖σ̂f‖ (c3 + c4 ‖z‖) +

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥ (‖x‖+ ‖x̃‖)(c5 + c6 ‖z‖)

+ α + α2 +
1

2
c2
∥
∥W T

f

∥
∥
∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥+

1

2
c2

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥ ‖Vf‖

]

‖z‖

+

[
m∑

i=1

{

‖σ̂gi‖ ‖ui‖ (c7 + c8 ‖z‖) + c2

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥ ‖Vgi‖ ‖ui‖

}
]

‖z‖

+
1

2

[
m∑

i=1

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥ ‖ui‖ (‖x‖ + ‖x̃‖)(c9 + c10 ‖z‖)

]

‖z‖

+
1

2

[
m∑

i=1

1

2
c2
∥
∥W T

gi

∥
∥
∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖

]

‖z‖

≤ ρ1(‖z‖) ‖z‖ ,

where ρ1(·) ∈ R is a positive, globally invertible, non-decreasing function.
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B.1.2 Proof of Inequalities in Eq. 4–13

Using the triangle inequality in Eq. 4–10 yields

‖NB1‖ ≤
m∑

i=1

[
‖Wgi‖ ‖σgi‖ ‖u̇i‖+ c1 ‖Wgi‖

∥
∥σ′

gi

∥
∥ ‖Vgi‖ ‖ui‖+ ‖ε̇gi‖ ‖ui‖+ ‖εgi‖ ‖u̇i‖

]

+c1 ‖Wf‖
∥
∥σ′

f

∥
∥ ‖Vf‖+ ‖ε̇f‖+

∥
∥
∥ḋ
∥
∥
∥++

1

2
c1 ‖Wf‖

∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥ (B–7)

+

m∑

i=1

[
1

2

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥ ‖Vgi‖ ‖ui‖+

1

2
‖Wgi‖

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖+

∥
∥
∥Ŵgi

∥
∥
∥ ‖σ̂gi‖ ‖u̇i‖

]

+
1

2
c1

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥ ‖Vf‖

≤ ζ1,

where Assumptions 4.2, 4.3, 4.5-4.7, and projection bounds on the weight estimates in Eq.

4–7 are used, and ζ1 ∈ R is a positive constant computed using the upper bounds of the

terms in Eq. B–7. By replacing ˙̂x(t) by ẋ(t) in Eq. 4–11, the expression for NB2(·) can be

obtained as

NB2 ,

m∑

i=1

[
1

2
W̃ T

gi σ̂
′
giV̂

T
gi ẋui +

1

2
Ŵ T

gi σ̂
′
giṼ

T
gi ẋui

]

+
1

2
W̃ T

f σ̂
′
f V̂

T
f ẋ+

1

2
Ŵ T

f σ̂
′
f Ṽ

T
f ẋ. (B–8)

Using the triangle inequality in Eq. B–8 yields

‖NB2‖ ≤
m∑

i=1

[
1

2
c1

∥
∥
∥W̃gi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖+

1

2
c1

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥Ṽgi

∥
∥
∥ ‖ui‖

]

(B–9)

+
1

2
c1

∥
∥
∥W̃f

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥+

1

2
c1

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥Ṽf

∥
∥
∥

≤ ζ2,

where Assumptions 4.2, 4.3, 4.5-4.7 and projection bounds on the weight estimates in Eq.

4–7 are used, and ζ2 ∈ R is a positive constant computed using the upper bounds of the

terms in Eq. B–9. Taking the derivative of NB , NB1+NB2, and using Eqs. 4–11 and B–8

yields ṄB(·), which can be split as

ṄB , ṄBa + ṄBb, (B–10)
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where

ṄBa ,

m∑

i=1

[
W T

giσ
′
giV

T
gi ẋu̇i +W T

giσgiüi +W T
giσ

′
giV

T
gi ẋu̇i +W T

giσ
′
giV

T
gi ẍui +W T

gi σ̇
′
giV

T
gi ẋui

]

+
m∑

i=1

[

ε̈giui + 2ε̇giu̇i + ε̇giüi −
1

2
Ŵ T

gi σ̂
′
giV

T
gi ẍui −

1

2
Ŵ T

giσ̂
′
giV

T
gi ẋu̇i −

1

2
W T

gi σ̂
′
giV̂

T
gi ẍui

]

+

m∑

i=1

[

−1
2
W T

gi σ̂
′
giV̂

T
gi ẋu̇i − Ŵ T

gi σ̂giüi +
1

2
W̃ T

gi σ̂
′
giV̂

T
gi ẍui +

1

2
W̃ T

giσ̂
′
giV̂

T
gi ẋüi

]

(B–11)

+ε̈f + d̈+W T
f σ̇

′
fV

T
f ẋ+W T

f σ
′
fV

T
f ẍ−

1

2
W T

f σ̂
′
f V̂

T
f ẍ−

1

2
Ŵ T

f σ̂
′
fV

T
f ẍ

+
1

2
W̃ T

f σ̂
′
f V̂

T
f ẍ+

1

2
Ŵ T

f σ̂
′
f Ṽ

T
f ẍ,

ṄBb , −
m∑

i=1

[
1

2
˙̂
W T

gi σ̂
′
giV

T
gi ẋui +

1

2
Ŵ T

gi
˙̂σ′
giV

T
gi ẋui +

1

2
W T

gi
˙̂σ′
giV̂

T
gi ẋui +

1

2
W T

gi σ̂
′
gi
˙̂
V T
gi ẋui

]

−1
2
W T

f σ̂
′
f
˙̂
V T
f ẋ−

1

2
˙̂
W T

f σ̂
′
fV

T
f ẋ−

1

2
Ŵ T

f
˙̂σ′
fV

T
f ẋ+

1

2
˙̂
W T

f σ̂
′
f V̂

T
f ẋ+

1

2
W̃ T

f
˙̂σ′
f V̂

T
f ẋ

+

m∑

i=1

[

− ˙̂
W T

gi σ̂giu̇i − Ŵ T
gi
˙̂σgiu̇i −

1

2
˙̂
W T

giσ̂
′
giV̂

T
gi ẋui +

1

2
W̃ T

gi
˙̂σ′
giV̂

T
gi ẋui +

1

2
W̃ T

gi σ̂
′
gi
˙̂
V T
gi ẋui

]

+
m∑

i=1

[
1

2
˙̂
W T

giσ̂
′
giṼ

T
gi ẋui +

1

2
˙̂
W T

gi
˙̂σ′
giṼ

T
gi ẋui −

1

2
˙̂
W T

gi σ̂
′
gi
˙̂
V T
gi ẋui +

1

2
˙̂
W T

gi σ̂
′
giṼ

T
gi ẍui (B–12)

+
1

2
˙̂
W T

gi σ̂
′
giṼ

T
gi ẋu̇i

]

+
1

2
W̃ T

f σ̂
′
f
˙̂
V T
f ẋ+

1

2
˙̂
W T

f σ̂
′
f Ṽ

T
f ẋ+

1

2
Ŵ T

f
˙̂σ′
f Ṽ

T
f ẋ−

1

2
Ŵ T

f σ̂
′
f
˙̂
V T
f ẋ,

where ˙̂σ′
gi denotes the time derivative of σ̂′

gi. To develop upper bounds for Eqs. B–11 and

B–12, the following bound will be used

∥
∥
∥ ˙̂σ′

gi

∥
∥
∥ ≤

∥
∥σ̂′′

gi

∥
∥

∥
∥
∥
˙̂
Vgi

∥
∥
∥ ‖x̂‖+

∥
∥σ̂′′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥

∥
∥
∥ ˙̂x
∥
∥
∥

≤ (c9 ‖x̃‖+ c10 ‖x̃‖ ‖z‖)
∥
∥σ̂′′

gi

∥
∥ (‖x‖+ ‖x̃‖) + (c1 + c2 ‖z‖)

∥
∥σ̂′′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥

≤ c12 + ρ0(‖z‖) ‖z‖ ,

where Eqs. B–2 and B–3 are used, c12 ∈ R
+, and ρ0(·) ∈ R is a positive, globally

invertible, non-decreasing function. Using the bound in Eq. B–5,
∥
∥
∥ṄBa

∥
∥
∥ in Eq. B–11 can
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be upper bounded using the triangle inequality as

∥
∥
∥ṄBa

∥
∥
∥ ≤

m∑

i=1

[
c1 ‖Wgi‖

∥
∥σ′

gi

∥
∥ ‖Vgi‖ ‖u̇i‖+ ‖Wgi‖ ‖σgi‖ ‖üi‖+ c1 ‖Wgi‖

∥
∥σ′

gi

∥
∥ ‖Vgi‖ ‖u̇i‖

]

+
m∑

i=1

[
c11 ‖Wgi‖

∥
∥σ′

gi

∥
∥ ‖Vgi‖ ‖ui‖+ c1 ‖Wgi‖

∥
∥σ̇′

gi

∥
∥ ‖Vgi‖ ‖ui‖+ ‖ε̈gi‖ ‖ui‖

]

+

m∑

i=1

[

2 ‖ε̇gi‖ ‖u̇i‖ ‖ε̇gi‖ ‖üi‖+
1

2
c11

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥ ‖Vgi‖ ‖ui‖

]

+
m∑

i=1

[
1

2
c1

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥ ‖Vgi‖ ‖u̇i‖+

1

2
c11 ‖Wgi‖

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖

]

+ ‖ε̈f‖+
∥
∥
∥d̈
∥
∥
∥+ c1 ‖Wf‖

∥
∥σ̇′

f

∥
∥ ‖Vf‖+ c11 ‖Wf‖

∥
∥σ′

f

∥
∥ ‖Vf‖+

1

2
c11 ‖Wf‖

∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥

+
1

2
c11

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥ ‖Vf‖+

m∑

i=1

[
1

2
‖Wgi‖

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ẋ‖ ‖u̇i‖

∥
∥
∥Ŵgi

∥
∥
∥ ‖σ̂gi‖ ‖üi‖

]

+
m∑

i=1

1

2
c11

∥
∥
∥W̃gi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖+

1

2

∥
∥
∥W̃gi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ẋ‖ ‖üi‖

+
1

2
c11

∥
∥
∥W̃f

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥+

1

2
c11

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥Ṽf

∥
∥
∥ .

Using Assumptions 4.2, 4.3, 4.5-4.7, all the terms in the above expression can be bounded

by a constant, and hence the following bound can be developed

∥
∥
∥ṄBa

∥
∥
∥ ≤ ζ31, (B–13)

where ζ31 ∈ R
+is a computable constant. The bound on Eq. B–14 is developed as

∥
∥
∥ṄBb

∥
∥
∥ ≤

m∑

i=1

1

2
c1(c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖)

∥
∥σ̂′

gi

∥
∥ ‖Vgi‖ ‖ui‖

+

m∑

i=1

1

2
c1(c12 + ρ0(‖z‖) ‖z‖)

∥
∥
∥Ŵgi

∥
∥
∥ ‖Vgi‖ ‖ui‖

+
m∑

i=1

1

2
c1(c12 + ρ0(‖z‖) ‖z‖) ‖Wgi‖

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖

+

m∑

i=1

1

2
c1(c9 ‖x̃‖+ c10 ‖x̃‖ ‖z‖) ‖Wgi‖

∥
∥σ̂′

gi

∥
∥ ‖ui‖

+
1

2
c1(c5 ‖x̃‖+ c6 ‖x̃‖ ‖z‖) ‖Wf‖

∥
∥σ̂′

f

∥
∥+

1

2
c1(c3 ‖x̃‖+ c4 ‖x̃‖ ‖z‖)

∥
∥σ̂′

f

∥
∥ ‖Vf‖
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+
1

2
c1(c12 + ρ0(‖z‖) ‖z‖)

∥
∥
∥Ŵf

∥
∥
∥ ‖Vf‖+

1

2
c1(c3 ‖x̃‖+ c4 ‖x̃‖ ‖z‖)

∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥

+
m∑

i=1

[

(c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖) ‖σ̂gi‖ ‖u̇i‖+ (c12 + ρ0(‖z‖) ‖z‖)
∥
∥
∥Ŵgi

∥
∥
∥ ‖u̇i‖

]

+

m∑

i=1

1

2
c1(c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖)

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖

+
m∑

i=1

1

2
c1(c12 + ρ0(‖z‖) ‖z‖)

∥
∥
∥W̃gi

∥
∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖

+

m∑

i=1

1

2
c1(c9 ‖x̃‖+ c10 ‖x̃‖ ‖z‖)

∥
∥
∥W̃gi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥ ‖ui‖

+

m∑

i=1

1

2
c1(c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖)

∥
∥σ̂′

gi

∥
∥

∥
∥
∥Ṽgi

∥
∥
∥ ‖ui‖

+
m∑

i=1

1

2
c1(c12 + ρ0(‖z‖) ‖z‖)(c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖)

∥
∥
∥Ṽgi

∥
∥
∥ ‖ui‖

+

m∑

i=1

1

2
c11(c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖)

∥
∥σ̂′

gi

∥
∥

∥
∥
∥Ṽgi

∥
∥
∥ ‖ui‖

+
m∑

i=1

1

2
c1(c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖)

∥
∥σ̂′

gi

∥
∥

∥
∥
∥Ṽgi

∥
∥
∥ ‖u̇i‖

+

m∑

i=1

1

2
c1(c7 ‖x̃‖+ c8 ‖x̃‖ ‖z‖)(c9 ‖x̃‖+ c10 ‖x̃‖ ‖z‖)

∥
∥σ̂′

gi

∥
∥ ‖ui‖

+
1

2
c1(c12 + ρ0(‖z‖) ‖z‖)

∥
∥
∥W̃f

∥
∥
∥

∥
∥
∥V̂f

∥
∥
∥+

1

2
c1(c5 ‖x̃‖+ c6 ‖x̃‖ ‖z‖)

∥
∥
∥W̃f

∥
∥
∥

∥
∥σ̂′

f

∥
∥

+
1

2
c1(c3 ‖x̃‖+ c4 ‖x̃‖ ‖z‖)

∥
∥σ̂′

f

∥
∥

∥
∥
∥Ṽf

∥
∥
∥+

1

2
c1(c12 + ρ0(‖z‖) ‖z‖)

∥
∥
∥Ŵf

∥
∥
∥

∥
∥
∥Ṽf

∥
∥
∥

+
1

2
c1(c5 ‖x̃‖+ c6 ‖x̃‖ ‖z‖)

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥ ,

which can be simplified by combining terms bounded by constants and terms bounded by

a function of states, as

∥
∥
∥ṄBb

∥
∥
∥ ≤ ζ32 + ζ4ρ2(‖z‖) ‖z‖ , (B–14)

where ζ32, ζ4 ∈ R
+are computable constants, and ρ2(·) ∈ R is a positive, globally invertible,

non-decreasing function. From Eqs. B–10, B–13, and B–14, the following bound can be
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obtained

∥
∥
∥ṄB

∥
∥
∥ ≤ ζ3 + ζ4ρ2(‖z‖) ‖z‖ .

B.1.3 Proof of Inequality in Eq. 4–14

Using the definition ÑB2 , N̂B2 −NB2

˙̃xT ÑB2 = ˙̃xT (N̂B2 −NB2)

= ˙̃xT
m∑

i=1

[
1

2
W̃ T

gi σ̂
′
giV̂

T
gi
˙̃xui +

1

2
Ŵ T

gi σ̂
′
giṼ

T
gi
˙̃xui

]

+
1

2
˙̃xT W̃ T

f σ̂
′
f V̂

T
f
˙̃x

+
1

2
˙̃xT Ŵ T

f σ̂
′
f Ṽ

T
f
˙̃x,

which can be upper bounded using the triangle inequality as

∥
∥
∥ ˙̃xT ÑB2

∥
∥
∥ ≤ 1

2

∥
∥ ˙̃x
∥
∥
2

{
m∑

i=1

[∥
∥
∥W̃gi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖+

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥Ṽgi

∥
∥
∥ ‖ui‖

]

+
∥
∥
∥W̃f

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥+

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥Ṽf

∥
∥
∥

}

. (B–15)

Using the fact that
∥
∥ ˙̃x
∥
∥
2
= ‖r − αx̃‖2 = (r−αx̃)T (r−αx̃) ≤ ‖r‖2+α2 ‖x̃‖2+2α ‖r‖ ‖x̃‖ ≤

(1 + α) ‖r‖2 + α(1 + α) ‖x̃‖2, Eq. B–15 can be further upper bounded as

∥
∥
∥ ˙̃xT ÑB2

∥
∥
∥ ≤ 1

2
(1 + α)

[
‖r‖2 + α ‖x̃‖2

] {
∥
∥
∥W̃f

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥V̂f

∥
∥
∥+

∥
∥
∥Ŵf

∥
∥
∥

∥
∥σ̂′

f

∥
∥

∥
∥
∥Ṽf

∥
∥
∥

+
m∑

i=1

[∥
∥
∥W̃gi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥V̂gi

∥
∥
∥ ‖ui‖+

∥
∥
∥Ŵgi

∥
∥
∥

∥
∥σ̂′

gi

∥
∥

∥
∥
∥Ṽgi

∥
∥
∥ ‖ui‖

]
}

.

Using the Assumptions 4.2, 4.3, 4.5-4.7, the following bound can obtained

∥
∥
∥ ˙̃xT ÑB2

∥
∥
∥ ≤ ζ5 ‖x̃‖2 + ζ6 ‖r‖2 , (B–16)

where ζ5, ζ6 ∈ R
+ are computable constants.
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B.2 Derivation of Sufficient Conditions in Eq. 4–18

Integrating Eq. 4–17 yields

t∫

0

L(τ)dτ =

t∫

0

{
rT [NB1(τ)− β1sgn(x̃))] + ˙̃x(τ)TNB2(τ)− β2ρ2(‖z‖) ‖z‖ ‖x̃‖

}
dτ.

= x̃TNB − x̃T (0)NB(0)−
t∫

0

x̃T ṄBdτ + β1

n∑

i=1

|x̃i(0)| − β1
n∑

i=1

|x̃i(t)|

+

t∫

0

αx̃T (NB1 − β1sgn(x̃))dτ −
t∫

0

β2ρ2(‖z‖) ‖z‖ ‖x̃‖ dτ,

where Eq. 4–8 is used. Using the fact that ‖x̃‖2 ≤
n∑

i=1

|x̃i| , and using the bounds in Eq.

4–13, yields

t∫

0

L(τ)dτ ≤ β1

n∑

i=1

|x̃i(0)| − x̃T (0)NB(0)− (β1 − ζ1 − ζ2) ‖x̃‖

−
t∫

0

α(β1 − ζ1 −
ζ3
α
) ‖x̃‖ dτ −

t∫

0

(β2 − ζ4) ρ2(‖z‖) ‖z‖ ‖x̃‖ dτ.

If the sufficient conditions in Eq. 4–18 are satisfied, then the following inequality holds

t∫

0

L(τ)dτ ≤ β1

n∑

i=1

|x̃i(0)| − x̃T (0)NB(0) = P (0) (B–17)

Using Eqs. 4–16 and B–17, it can be shown that P (z, t) ≥ 0.
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