Reinforcement Learning and Optimal Control

A Selective Overview

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

2018 CDC
December 2018

Bertsekas (M.L.T.) Reinforcement Learning

Reinforcement Learning (RL): A Happy Union of Al and

Decision/Control Ideas

Al/RL Decision/
, Control/DP
Learning through
Experience o
Complementary Prlnqplg of
Simulation, Ideas Optimality
Model-Free Methods [<® > Markov Dedisi
Late 80s-Early 90s arPovbl ecision
Feature-Based roblems
Representations i
A*/Games/ ' i
Heuristics Policy Iterat'|on
Value lteration

Historical highlights
@ Exact DP, optimal control (Bellman, Shannon, 1950s ...)
@ First major successes: Backgammon programs (Tesauro, 1992, 1996)
@ Algorithmic progress, analysis, applications, first books (mid 90s ...)
@ Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)
@ AlphaGo and Alphazero (DeepMind, 2016, 2017)

Bertsekas (M.L.T.) Reinforcement Learning 2/33

AlphaGo (2016) and AlphaZero (2017)

AlphaZero

Plays much better than all chess programs
Plays different!

Learned from scratch ... with 4 hours of training!

Same algorithm learned multiple games (Go, Shogi)

Bertsekas (M.L.T.) Reinforcement Learning

AlphaZero was Trained Using Self-Generated Data

(]j;i;;?;"t Policy Position “value” Pollley “I?Ii’m‘@d”
«@ it iea” ayer
— Evaluation | 2% probab1ht1es= Improvement Y -
Neural Neural
Network Network

A

Self-Learning/Policy Iteration

@ The “current" player plays games that are used to “train" an “improved" player

@ At a given position, the “move probabilities” and the “value" of a position are
approximated by a deep neural net (NN)

@ Successive NNs are trained using self-generated data and a form of regression

@ A form of randomized policy improvement Monte-Carlo Tree Search (MCTS)
generates move probabilities

@ AlphaZero bears similarity to earlier works, e.g., TD-Gammon (Tesauro,1992), but
is more complicated because of the MCTS and the deep NN

@ The success of AlphaZero is due to a skillful implementation/integration of known
ideas, and awesome computational power

Bertsekas (M.L.T.) Reinforcement Learning 4/33

Approximate DP/RL Methodology is now Ambitious and Universal

Exact DP applies (in principle) to a very broad range of optimization problems
@ Deterministic <—-> Stochastic
@ Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces
@ One decision maker <—-> Two player games
@ ... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/RL overcomes the difficulties of exact DP by:
@ Approximation (use neural nets and other architectures to reduce dimension)
@ Simulation (use a computer model in place of a math model)

State of the art:

@ Broadly applicable methodology: Can address broad range of challenging
problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc

@ There are no methods that are guaranteed to work for all or even most problems

@ There are enough methods to try with a reasonable chance of success for most
types of optimization problems

@ Role of the theory: Guide the art, delineate the sound ideas

Bertsekas (M.L.T.) Reinforcement Learning 5/33

Approximation in Value Space

Central Idea: Lookahead with an approximate cost

@ Compute an approximation J to the optimal cost function J*
@ At current state, apply control that attains the minimum in

Current Stage Cost + J(Next State)

Multistep lookahead extension

@ At current state solve an ¢-step DP problem using terminal cost J
@ Apply the first control in the optimal policy for the ¢-step problem

Example approaches to compute J:

@ Problem approximation: Use as J the optimal cost function of a simpler problem

@ Rollout and model predictive control: Use a single policy iteration, with cost
evaluated on-line by simulation or limited optimization

@ Self-learning/approximate policy iteration (API): Use as J an approximation to the
cost function of the final policy obtained through a policy iteration process

@ Role of neural networks: “Learn" the cost functions of policies in the context of
API; “learn” policies obtained by value space approximation

Bertsekas (M.L.T.) Reinforcement Learning

6/33

Aims and References of this Talk

The purpose of this talk

To selectively review some of the methods, and bring out some of the Al-DP
connections |

References

@ Quite a few Exact DP books (1950s-present starting with Bellman; my latest book
“Abstract DP" came out earlier this year)

@ Quite a few DP/Approximate DP/RL/Neural Nets books (1996-Present)

Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
Sutton and Barto, 1998, Reinforcement Learning (new edition 2019, Draft on-line)
NEW DRAFT BOOK: Bertsekas, Reinforcement Learning and Optimal Control, 2019,
on-line
@ Many surveys on all aspects of the subject; Tesauro’s papers on computer
backgammon, and Silver, et al., papers on AlphaZero

Bertsekas (M.L.T.) Reinforcement Learning 7133

Terminology in RL/Al and DP/Control

RL uses Max/Value, DP uses Min/Cost
@ Reward of a stage = (Opposite of) Cost of a stage.
@ State value = (Opposite of) State cost.
@ Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology
@ Agent = Decision maker or controller.
@ Action = Control.
@ Environment = Dynamic system.

Methods terminology
@ Learning = Solving a DP-related problem using simulation.
@ Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.
@ Planning vs Learning distinction = Solving a DP problem with model-based vs
model-free simulation.

Bertsekas (M.L.T.) Reinforcement Learning 8/33

0 Approximation in Value Space

e Problem Approximation

e Rollout and Model Predictive Control

0 Parametric Approximation - Neural Networks

e Neural Networks and Approximation in Value Space
Q Model-free DP in Terms of Q-Factors

e Policy lteration - Self-Learning

Bertsekas (M.L.T.) Reinforcement Learning

Finite Horizon Problem - Exact DP

Wi

|

up = p (k) System Tk
Tpgr = fr(@, uk, wi)

Mk

@ System
Xk+1:fk(xkvukvwk)7 k:07173N71
where xx: State, ux: Control, wx: Random disturbance
@ Cost function:

N—1
E {QN(XN) + > gk(Xk, U, Wk)}

k=0

@ Perfect state information: ux is applied with (exact) knowledge of xx

@ Optimization over feedback policies {uo, - . ., un—1}: Rules that specify the control
uk(Xk) to apply at each possible state xx that can occur

Bertsekas (M.L.T.) Reinforcement Learning 11/33

The DP Algorithm and Approximation in Value Space

Go backwards, k = N —1,...,0, using
In(xn) = gn(xw)
Jk(Xk) = n?lln (5, {gk(Xk, Uk, W) + Jrt (Fi (X, Uk, Wk))}

Jk(xx): Optimal cost-to-go starting from state x

Approximate DP is motivated by the ENORMOUS computational demands of exact DPJ

Approximation in value space: Use an approximate cost-to-go function Ji., 1

fik(Xx) € arg ”31” Ew, {Qk(Xk, Uk, Wie) + i1 (e (X, Uk, Wk))}

There is also a multistep lookahead version

At state x4 solve an ¢-step DP problem with terminal cost function approximation Jj. ;.
Use the first control in the optimal ¢-step sequence.

Bertsekas (M.L.T.) Reinforcement Learning 12/33

Approximation in Value Space Methods

One-step case at state x:
Approximate minimization

X First Step “Future”

+— —>

min F {gk:(xlm U, wy) + jk+1(ﬂ?k+1)}

/ \

Approximations: Computation of jk+1:

Simplify E{-} Problem approximation

(certainty equivalence) Rollout

Adaptive simulation Model Predictive Control
Parametric approximation
Aggregation

Multistep case at state x:
DP minimization
First ¢ Steps “Future”

!

k+£—-1
min E S gl e, wi) + > gk(Tm, i (Tm), wim) + Jkpo(Thte)
UksPk+15 P k+£—1 .

Cost-to-go

Lookahead Minimization Approximation

Bertsekas (M.L.T.) Reinforcement Learning

Problem Approximation: Simplify the Tail Problem and Solve it Exactly

Use as cost-to-go approximation Ji1 the exact cost-to-go of a simpler problem J

Many problem-dependent possibilities:

@ Probabilistic approximation
Certainty equivalence: Replace stochastic quantities by deterministic ones (makes the
lookahead minimization deterministic)
Approximate expected values by limited simulation
Partial versions of certainty equivalence
@ Enforced decomposition of coupled subsystems
One-subsystem-at-a-time optimization
Constraint decomposition
Lagrangian relaxation
@ Aggregation: Group states together and view the groups as aggregate states
Hard aggregation: Ji_ 1 is a piecewise constant approximation to J., 1
Feature-based aggregation: The aggregate states are defined by “features" of the
original states .
Biased hard aggregation: Jx 1 is a piecewise constant local correction to some other

approximation JAkH, e.g., one provided by a neural net

Bertsekas (M.L.T.) Reinforcement Learning 15/33

Rollout: On-Line Simulation-Based Approximation in Value Space

Lookahead Tree Terminal Cost

Approximation J

Py
L4

Simulation with
Base Policy

[]

States p41

States Tp12

@ The base policy can be any suboptimal policy (obtained by another method)
@ One-step or multistep lookahead; exact minimization or a “randomized form of
lookahead" that involves “adaptive" simulation and Monte Carlo tree search

@ With or without terminal cost approximation (obtained by another method)

@ Some forms of model predictive control can be viewed as special cases (base
policy is a short-term deterministic optimization)

@ Important theoretical fact: With exact lookahead and no terminal cost
approximation, the rollout policy improves over the base policy

Bertsekas (M.L.T.) Reinforcement Learning

Example of Rollout: Backgammon (Tesauro, 1996)

TREE

Possible Moves

Av. Score by Av. Score by Av. Score by Av. Score by

Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation

@ Base policy was a backgammon player developed by a different RL method [TD())
trained with a neural network]; was also used for terminal cost approximation

@ The best backgammon players are based on rollout ... but are too slow for
real-time play (MC simulation takes too long)

AlphaGo has similar structure to backgammon

The base policy and terminal cost approximation are obtained with a deep neural net.
In AlphaZero the rollout-with-base-policy part was dropped (long lookahead suffices)

Bertsekas (M.L.T.) Reinforcement Learning

Parametric Approximation in Value Space

Cost-to-go
Lookahead Minimization Approximation
First ¢ Steps “Future”
< L >
k+6—1
min E 9k (517ls:7 Uk, 'wk:) + Z 9k (-/I/'m,7 Hm (-/L'm), /w’m> + Jk:+£ (xk+ﬂ)
Uhg Mot 155 Bk 0—1 ot 1 T

Parametric approximation

Jx comes from a class of functions Jx(x, rx), where ry is a tunable parameter vector J

Feature-based architectures: The linear case

Linear Cost

State k | Feature Extraction | Feature Vector ¢y (zy) Linear Approximator 7, ¢x(zx)
— > >

Mapping Mapping

Bertsekas (M.L.T.) Reinforcement Learning

Training with Fitted Value lteration

This is just DP with intermediate approximation at each step J

@ Start with Jy = gn and sequentially train going backwards, until k = 0
@ Given Jx.1, we construct a number of samples (X2, B8),s=1,...,q,

ﬂ; = muin E{g(X/‘(SvLI: Wk) +jk+1 (fk(X/f,U, Wk)7rk+1)}7 S = 17' . 'aq

@ We “train" Jx on the set of samples (x{,35), s=1,...,q

Training by least squares/regression
@ We minimize over ry

q
> (i, 1) = B°)2 + Al — FIP

s=1

where T is an initial guess for r, and v > 0 is a regularization parameter

Bertsekas (M.L.T.) Reinforcement Learning 21/33

Neural Networks for Constructing Cost-to-Go Approximations Jj

Major fact about neural networks
They automatically construct features to be used in a linear architecture
@ Neural nets are approximation architectures of the form

m

Jix,v,r) =" ngi(x,v) = r'g(x,v)
i=1
involving two parameter vectors r and v with different roles
@ View ¢(x, v) as a feature vector
@ View r as a vector of linear weights for ¢(x, v)
@ By training v jointly with r, we obtain automatically generated features!

Neural nets can be used in the fitted value iteration scheme

Train the stage k neural net (i.e., compute Jx) using a training set generated with the
stage k + 1 neural net (which defines Jx.1)

Bertsekas (M.L.T.) Reinforcement Learning 23/33

Neural Network with a Single Nonlinear Layer

N Cost
roximation
State x y(x) PI;,&(T. v)
— I,
[
e
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter

v=(A,b) r

@ State encoding (could be the identity, could include special features of the state)

@ Linear layer Ay(x) + b [parameters to be determined: v = (A, b)]

@ Nonlinear layer produces m outputs ¢;(x, v) = rr((Ay(x) + b),), i=1,....m

@ o is a scalar nonlinear differentiable function; several types have been used
(hyperbolic tangent, logistic, rectified linear unit)

@ Training problem is to use the training set (x°, 8°), s =1,...,q, for

2
m'”Z(ZW/X v) - ﬁs> + (Regularization Term)

i=1

@ Solved often with incremental gradient methods (known as backpropagation)

@ Universal approximation theorem: With sufficiently large number of parameters,
“arbitrarily" complex functions can be closely approximated
Bertsekas (M.L.T.) Reinforcement Learning 24/33

Deep Neural Networks

z
5 —
[
- >
Stﬂtf’ Linear Nonlinear Linear Nonlinear Linear
Encoding Layer Layer Layer Layer ‘Weighting

@ More complex NNs are formed by concatenation of multiple layers

@ The outputs of each nonlinear layer become the inputs of the next linear layer
@ A hierarchy of features

@ Considerable success has been achieved in major contexts

Possible reasons for the success

@ With more complex features, the number of parameters in the linear layers may be
drastically decreased

@ We may use matrices A with a special structure that encodes special linear
operations such as convolution

Bertsekas (M.L.T.) Reinforcement Learning

Q-Factors - Model-Free RL

@ The Q-factor of a state-control pair (xx, ux) at time k is defined by

Qi (Xk, Uk) = E{Qk(xfm Ui, Wic) + i1 (Xk+1)}

where Ji1 is the optimal cost-to-go function for stage k + 1

@ Note that
Jk(Xk) = min Qk(X;ﬁUk)
u€ Uk (xk)

so the DP algorithm is written in terms of Qx

Qi (X, Uk) = E{Qk(xk, Uk, W) + min Qkyq (Xk+1,U)}

UE U1 (Xie41)

@ We can approximate Q-factors instead of costs

Bertsekas (M.L.T.) Reinforcement Learning

Fitted Value lteration for Q-Factors: Model-Free Approximate DP

@ Consider fitted value iteration of Q-factor parametric approximations

Qr (X, Uk, k) ~ E{gk(xk, Uk, Wi) + min (ND;M (Xk+1, U, rk+1)}
UE Uy 1 (Xk1)

(Note a mathematical magic: The order of E{-} and min have been reversed.)

@ We obtain Qk(x«, U, r) by training with many pairs ((x§, uf), 55), where 5 is a
sample of the approximate Q-factor of (xg, u;). No need to compute E{-}

@ No need for a model to obtain ;. Sufficient to have a simulator that generates
random samples of state-control-cost-next state

((ka Ux), (Gk (X, Uk, Wi), Xk41))

@ Having computed rk, the one-step lookahead control is obtained on-line as
T (xx) =arg min Q(x ,u, n
e (Xic) ¢} wethn) k (Xk)

without the need of a model or expected value calculations
@ Also the on-line calculation of the control is simplified

Bertsekas (M.L.T.) Reinforcement Learning

28/33

A Few Remarks on Infinite Horizon Problems

Initial Policy

v
Evaluate Approximate Cost Approximate Policy
Ju(i,7) of Current Policy Evaluation

Generate “Improved” Policy 7i by

Policy Improvement
Lookahead Min Based on J,,(%,T)

@ Most popular setting: Stationary finite-state system, stationary policies,
discounting or termination state
@ Policy iteration (P1) method generates a sequence of policies
» The current policy 1 is evaluated using a parametric architecture: J,,(x, F)
» An “improved" policy 7z is obtained by one-step lookahead using J#(x,f)
@ The architecture is trained using simulation data with
@ Thus the system “observes itself" under n and uses the data to “learn” the
improved policy & - “self-learning”
@ Exact PI converges to an optimal policy; approximate Pl “converges" to within an
“error zone" of the optimal, then oscillates
@ TD-Gammon, AlphaGo, and AlphaZero, all use forms of approximate PI for training

Bertsekas (M.L.T.) Reinforcement Learning

A Few Topics we did not Cover in this Talk

@ Infinite horizon extensions: Approximate value and policy iteration methods, error
bounds, model-based and model-free methods

@ Temporal difference methods: A class of methods for policy evaluation in infinite
horizon problems with a rich theory, issues of variance-bias tradeoff

@ Sampling for exploration, in the context of policy iteration
@ Monte Carlo tree search, and related methods
@ Aggregation methods, synergism with other approximate DP methods

@ Approximation in policy space, actor-critic methods, policy gradient and
cross-entropy methods

@ Special aspects of imperfect state information problems, connections with
traditional control schemes

@ Infinite spaces optimal control, connections with aggregation schemes
@ Special aspects of deterministic problems: Shortest paths and their use in
approximate DP

@ A broad view of using simulation for large-scale computations: Methods for large
systems of equations and linear programs, connection to proximal algorithms

Bertsekas (M.L.T.) Reinforcement Learning

Concluding Remarks

Some words of caution

@ There are challenging implementation issues in all approaches, and no fool-proof
methods

@ Problem approximation and feature selection require domain-specific knowledge
@ Training algorithms are not as reliable as you might think by reading the literature
@ Approximate Pl involves oscillations

@ Recognizing success or failure can be a challenge!

@ The RL successes in game contexts are spectacular, but they have benefited from
perfectly known and stable models and small number of controls (per state)

@ Problems with partial state observation remain a big challenge

On the positive side

@ Massive computational power together with distributed computation are a source
of hope

@ Silver lining: We can begin to address practical problems of unimaginable difficulty!
@ There is an exciting journey ahead!

Bertsekas (M.L.T.) Reinforcement Learning 32/33

Thank you!

Bertsekas (M.L.T.) Reinforcement Learning

	Approximation in Value Space
	Problem Approximation
	Rollout and Model Predictive Control
	Parametric Approximation - Neural Networks
	Neural Networks and Approximation in Value Space
	Model-free DP in Terms of Q-Factors
	Policy Iteration - Self-Learning

