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Reinforcement Learning (RL): A Happy Union of AI and
Decision/Control Ideas

Decision/
Control/DP

Principle of 
Optimality

Markov Decision 
Problems

POMDP
 

Policy Iteration
Value Iteration

AI/RL
Learning through 

Experience

Simulation,
Model-Free Methods

 
Feature-Based 

Representations

A*/Games/
Heuristics

Complementary 
Ideas

Late 80s-Early 90s

Historical highlights
Exact DP, optimal control (Bellman, Shannon, 1950s ...)

First major successes: Backgammon programs (Tesauro, 1992, 1996)

Algorithmic progress, analysis, applications, first books (mid 90s ...)

Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)

AlphaGo and Alphazero (DeepMind, 2016, 2017)
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AlphaGo (2016) and AlphaZero (2017)

AlphaZero (Google-Deep Mind)

Plays different!

Learned from scratch ... with 4 hours of training!

Plays much better than all chess programs

Same algorithm learned multiple games (Go, Shogi)
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AlphaZero was Trained Using Self-Generated Data
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AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation
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E
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xm, µm(xm), wm

)
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Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)
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Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

 

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

The “current" player plays games that are used to “train" an “improved" player

At a given position, the “move probabilities" and the “value" of a position are
approximated by a deep neural net (NN)

Successive NNs are trained using self-generated data and a form of regression

A form of randomized policy improvement Monte-Carlo Tree Search (MCTS)
generates move probabilities

AlphaZero bears similarity to earlier works, e.g., TD-Gammon (Tesauro,1992), but
is more complicated because of the MCTS and the deep NN

The success of AlphaZero is due to a skillful implementation/integration of known
ideas, and awesome computational power
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Approximate DP/RL Methodology is now Ambitious and Universal

Exact DP applies (in principle) to a very broad range of optimization problems
Deterministic <—-> Stochastic

Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces

One decision maker <—-> Two player games

... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/RL overcomes the difficulties of exact DP by:
Approximation (use neural nets and other architectures to reduce dimension)

Simulation (use a computer model in place of a math model)

State of the art:
Broadly applicable methodology: Can address broad range of challenging
problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc

There are no methods that are guaranteed to work for all or even most problems

There are enough methods to try with a reasonable chance of success for most
types of optimization problems

Role of the theory: Guide the art, delineate the sound ideas
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Approximation in Value Space

Central Idea: Lookahead with an approximate cost

Compute an approximation J̃ to the optimal cost function J∗

At current state, apply control that attains the minimum in

Current Stage Cost + J̃(Next State)

Multistep lookahead extension

At current state solve an `-step DP problem using terminal cost J̃

Apply the first control in the optimal policy for the `-step problem

Example approaches to compute J̃:

Problem approximation: Use as J̃ the optimal cost function of a simpler problem

Rollout and model predictive control: Use a single policy iteration, with cost
evaluated on-line by simulation or limited optimization

Self-learning/approximate policy iteration (API): Use as J̃ an approximation to the
cost function of the final policy obtained through a policy iteration process

Role of neural networks: “Learn" the cost functions of policies in the context of
API; “learn" policies obtained by value space approximation
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Aims and References of this Talk

The purpose of this talk
To selectively review some of the methods, and bring out some of the AI-DP
connections

References
Quite a few Exact DP books (1950s-present starting with Bellman; my latest book
“Abstract DP" came out earlier this year)

Quite a few DP/Approximate DP/RL/Neural Nets books (1996-Present)
I Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
I Sutton and Barto, 1998, Reinforcement Learning (new edition 2019, Draft on-line)
I NEW DRAFT BOOK: Bertsekas, Reinforcement Learning and Optimal Control, 2019,

on-line

Many surveys on all aspects of the subject; Tesauro’s papers on computer
backgammon, and Silver, et al., papers on AlphaZero
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Terminology in RL/AI and DP/Control

RL uses Max/Value, DP uses Min/Cost
Reward of a stage = (Opposite of) Cost of a stage.

State value = (Opposite of) State cost.

Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology
Agent = Decision maker or controller.

Action = Control.

Environment = Dynamic system.

Methods terminology
Learning = Solving a DP-related problem using simulation.

Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.

Planning vs Learning distinction = Solving a DP problem with model-based vs
model-free simulation.
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Outline

1 Approximation in Value Space

2 Problem Approximation

3 Rollout and Model Predictive Control

4 Parametric Approximation - Neural Networks

5 Neural Networks and Approximation in Value Space

6 Model-free DP in Terms of Q-Factors

7 Policy Iteration - Self-Learning
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Finite Horizon Problem - Exact DP

System
xk+1 = fk(xk, uk, wk)

uk = µk(xk) xk

wk

) µk

System
xk+1 = fk (xk , uk ,wk ), k = 0, 1, . . . ,N − 1

where xk : State, uk : Control, wk : Random disturbance

Cost function:

E

{
gN(xN) +

N−1∑
k=0

gk (xk , uk ,wk )

}

Perfect state information: uk is applied with (exact) knowledge of xk

Optimization over feedback policies {µ0, . . . , µN−1}: Rules that specify the control
µk (xk ) to apply at each possible state xk that can occur
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The DP Algorithm and Approximation in Value Space

Go backwards, k = N − 1, . . . ,0, using

JN(xN) = gN(xN)

Jk (xk ) = min
uk

Ewk

{
gk (xk , uk ,wk ) + Jk+1

(
fk (xk , uk ,wk )

)}
Jk (xk ): Optimal cost-to-go starting from state xk

Approximate DP is motivated by the ENORMOUS computational demands of exact DP

Approximation in value space: Use an approximate cost-to-go function J̃k+1

µ̃k (xk ) ∈ arg min
uk

Ewk

{
gk (xk , uk ,wk ) + J̃k+1

(
fk (xk , uk ,wk )

)}

There is also a multistep lookahead version

At state xk solve an `-step DP problem with terminal cost function approximation J̃k+`.
Use the first control in the optimal `-step sequence.
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Approximation in Value Space Methods

One-step case at state xk :
min

uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

Approximations: Replace E{·} with nominal values (certainty equiv-
alent control)

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +
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gk

(
xm, µm(xm), wm
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+ J̃k+ℓ(xk+ℓ)

}
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Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

1

Approximations: Computation of J̃k+ℓ:

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout
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E
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}

First ℓ Steps “Future”
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Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
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gk(xk, uk, wk) + J̃k+1(xk+ℓ)

}

min
uk,µk+1,...,µk+ℓ−1
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Mobility, Safety, etc Weighting of Features Score Position Evaluator
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State xk Feature Vector φk(xk) Approximator r′
kφk(xk)
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Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)
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}

First ℓ Steps “Future” First Step
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DP minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk
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{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

min
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gk(xk, uk, wk) +
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}
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Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
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(
xk(Ik)
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Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)
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Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk
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Approximations: Computation of J̃k+ℓ: (Could be approximate)

Approximate minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
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Approximations: Computation of J̃k+ℓ: (Could be approximate)

Approximate minimization Replace E{·} with nominal values
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Limited simulation (Monte Carlo tree search)
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s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·
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�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination
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(x)

Improper policy µ

Proper policy µ
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s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search

Is di + aij < UPPER � hj?
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J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0
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1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search (certainty equivalence)

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

 

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

Multistep case at state xk :

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1
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Problem Approximation: Simplify the Tail Problem and Solve it Exactly

Use as cost-to-go approximation J̃k+1 the exact cost-to-go of a simpler problem

Many problem-dependent possibilities:
Probabilistic approximation

I Certainty equivalence: Replace stochastic quantities by deterministic ones (makes the
lookahead minimization deterministic)

I Approximate expected values by limited simulation
I Partial versions of certainty equivalence

Enforced decomposition of coupled subsystems
I One-subsystem-at-a-time optimization
I Constraint decomposition
I Lagrangian relaxation

Aggregation: Group states together and view the groups as aggregate states
I Hard aggregation: J̃k+1 is a piecewise constant approximation to Jk+1
I Feature-based aggregation: The aggregate states are defined by “features" of the

original states
I Biased hard aggregation: J̃k+1 is a piecewise constant local correction to some other

approximation Ĵk+1, e.g., one provided by a neural net
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Rollout: On-Line Simulation-Based Approximation in Value Space

Selective Depth Lookahead Tree

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Iteration Index k PI index k Jµk J∗ 0 1 2 . . . Error Zone Width (ϵ + 2αδ)/(1 − α)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Policy Cost Evaluation Jµ of Current policy µ µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

1

States xk+1 States xk+2 xk Rollout Policy Approximation J̃

Adaptive Simulation Terminal cost approximation

Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

States xk+1 States xk+2 xk Rollout Policy Approximation J̃

Adaptive Simulation Terminal cost approximation

Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

States xk+1 States xk+2 xk Heuristic/Suboptimal Policy

Approximation J̃

Adaptive Simulation Terminal cost approximation Heuristic Policy

Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

States xk+1 States xk+2 xk Heuristic/ Suboptimal Base Policy

Approximation J̃

Adaptive Simulation Terminal cost approximation Heuristic Policy

Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

States xk+1 States xk+2 xk Heuristic/ Suboptimal Base Policy

Approximation J̃

Adaptive Simulation Terminal cost approximation Heuristic Policy
Simulation with

Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme
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The base policy can be any suboptimal policy (obtained by another method)
One-step or multistep lookahead; exact minimization or a “randomized form of
lookahead" that involves “adaptive" simulation and Monte Carlo tree search
With or without terminal cost approximation (obtained by another method)
Some forms of model predictive control can be viewed as special cases (base
policy is a short-term deterministic optimization)
Important theoretical fact: With exact lookahead and no terminal cost
approximation, the rollout policy improves over the base policy
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Example of Rollout: Backgammon (Tesauro, 1996)

Av. Score by 
Monte-Carlo 
Simulation

Av. Score by 
Monte-Carlo 
Simulation

Av. Score by 
Monte-Carlo 
Simulation

Av. Score by 
Monte-Carlo 
Simulation

Possible Moves

Base policy was a backgammon player developed by a different RL method [TD(λ)
trained with a neural network]; was also used for terminal cost approximation

The best backgammon players are based on rollout ... but are too slow for
real-time play (MC simulation takes too long)

AlphaGo has similar structure to backgammon
The base policy and terminal cost approximation are obtained with a deep neural net.
In AlphaZero the rollout-with-base-policy part was dropped (long lookahead suffices)
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Parametric Approximation in Value Space
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E

{
gk(xk, uk, wk) +
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}
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Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k
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k u3
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Leafs of the Tree
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Cost of Period k Stock Ordered at Period k Inventory System
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Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
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Approximations: Computation of J̃k+ℓ:

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout
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Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search
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J̃k comes from a class of functions J̃k (xk , rk ), where rk is a tunable parameter vector

Feature-based architectures: The linear case
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⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)
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Selective Depth Lookahead Tree

Feature Extraction Features: Material Balance, uk = µd
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Training with Fitted Value Iteration

This is just DP with intermediate approximation at each step

Start with J̃N = gN and sequentially train going backwards, until k = 0

Given J̃k+1, we construct a number of samples (xs
k , β

s
k ), s = 1, . . . , q,

βs
k = min

u
E
{

g(xs
k , u,wk ) + J̃k+1

(
fk (xs

k , u,wk ), rk+1
)}
, s = 1, . . . , q

We “train" J̃k on the set of samples (xs
k , β

s
k ), s = 1, . . . , q

Training by least squares/regression
We minimize over rk

q∑
s=1

(
J̃k (xs

k , rk )− βs)2
+ γ‖rk − r̄‖2

where r̄ is an initial guess for rk and γ > 0 is a regularization parameter
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Neural Networks for Constructing Cost-to-Go Approximations J̃k

Major fact about neural networks
They automatically construct features to be used in a linear architecture

Neural nets are approximation architectures of the form

J̃(x , v , r) =
m∑

i=1

riφi (x , v) = r ′φ(x , v)

involving two parameter vectors r and v with different roles

View φ(x , v) as a feature vector

View r as a vector of linear weights for φ(x , v)

By training v jointly with r , we obtain automatically generated features!

Neural nets can be used in the fitted value iteration scheme

Train the stage k neural net (i.e., compute J̃k ) using a training set generated with the
stage k + 1 neural net (which defines J̃k+1)

Bertsekas (M.I.T.) Reinforcement Learning 23 / 33



Neural Network with a Single Nonlinear Layer
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i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
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i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
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i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
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State encoding (could be the identity, could include special features of the state)

Linear layer Ay(x) + b [parameters to be determined: v = (A, b)]

Nonlinear layer produces m outputs φi (x , v) = σ
((

Ay(x) + b
)

i

)
, i = 1, . . . ,m

σ is a scalar nonlinear differentiable function; several types have been used
(hyperbolic tangent, logistic, rectified linear unit)

Training problem is to use the training set (xs, βs), s = 1, . . . , q, for

min
v,r

q∑
s=1

(
m∑

i=1

riφi (xs, v)− βs

)2

+ (Regularization Term)

Solved often with incremental gradient methods (known as backpropagation)

Universal approximation theorem: With sufficiently large number of parameters,
“arbitrarily" complex functions can be closely approximated
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i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
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i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
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i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
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More complex NNs are formed by concatenation of multiple layers

The outputs of each nonlinear layer become the inputs of the next linear layer

A hierarchy of features

Considerable success has been achieved in major contexts

Possible reasons for the success
With more complex features, the number of parameters in the linear layers may be
drastically decreased

We may use matrices A with a special structure that encodes special linear
operations such as convolution
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Q-Factors - Model-Free RL

The Q-factor of a state-control pair (xk , uk ) at time k is defined by

Qk (xk , uk ) = E
{

gk (xk , uk ,wk ) + Jk+1(xk+1)
}

where Jk+1 is the optimal cost-to-go function for stage k + 1

Note that
Jk (xk ) = min

u∈Uk (xk )
Qk (xk , uk )

so the DP algorithm is written in terms of Qk

Qk (xk , uk ) = E
{

gk (xk , uk ,wk ) + min
u∈Uk+1(xk+1)

Qk+1(xk+1, u)
}

We can approximate Q-factors instead of costs
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Fitted Value Iteration for Q-Factors: Model-Free Approximate DP

Consider fitted value iteration of Q-factor parametric approximations

Q̃k (xk , uk , rk ) ≈ E
{

gk (xk , uk ,wk ) + min
u∈Uk+1(xk+1)

Q̃k+1(xk+1, u, rk+1)
}

(Note a mathematical magic: The order of E{·} and min have been reversed.)

We obtain Q̃k (xk , uk , rk ) by training with many pairs
(
(xs

k , u
s
k ), βs

k

)
, where βs

k is a
sample of the approximate Q-factor of (xs

k , u
s
k ). No need to compute E{·}

No need for a model to obtain βs
k . Sufficient to have a simulator that generates

random samples of state-control-cost-next state(
(xk , uk ), (gk (xk , uk ,wk ), xk+1)

)
Having computed rk , the one-step lookahead control is obtained on-line as

µk (xk ) = arg min
u∈Uk (xk )

Q̃k (xk , u, rk )

without the need of a model or expected value calculations

Also the on-line calculation of the control is simplified
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A Few Remarks on Infinite Horizon Problems
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Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ
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Most popular setting: Stationary finite-state system, stationary policies,
discounting or termination state
Policy iteration (PI) method generates a sequence of policies

I The current policy µ is evaluated using a parametric architecture: J̃µ(x , r)
I An “improved" policy µ is obtained by one-step lookahead using J̃µ(x , r)

The architecture is trained using simulation data with µ
Thus the system “observes itself" under µ and uses the data to “learn" the
improved policy µ - “self-learning"
Exact PI converges to an optimal policy; approximate PI “converges" to within an
“error zone" of the optimal, then oscillates
TD-Gammon, AlphaGo, and AlphaZero, all use forms of approximate PI for training
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A Few Topics we did not Cover in this Talk

Infinite horizon extensions: Approximate value and policy iteration methods, error
bounds, model-based and model-free methods

Temporal difference methods: A class of methods for policy evaluation in infinite
horizon problems with a rich theory, issues of variance-bias tradeoff

Sampling for exploration, in the context of policy iteration

Monte Carlo tree search, and related methods

Aggregation methods, synergism with other approximate DP methods

Approximation in policy space, actor-critic methods, policy gradient and
cross-entropy methods

Special aspects of imperfect state information problems, connections with
traditional control schemes

Infinite spaces optimal control, connections with aggregation schemes

Special aspects of deterministic problems: Shortest paths and their use in
approximate DP

A broad view of using simulation for large-scale computations: Methods for large
systems of equations and linear programs, connection to proximal algorithms
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Concluding Remarks

Some words of caution
There are challenging implementation issues in all approaches, and no fool-proof
methods

Problem approximation and feature selection require domain-specific knowledge

Training algorithms are not as reliable as you might think by reading the literature

Approximate PI involves oscillations

Recognizing success or failure can be a challenge!

The RL successes in game contexts are spectacular, but they have benefited from
perfectly known and stable models and small number of controls (per state)

Problems with partial state observation remain a big challenge

On the positive side
Massive computational power together with distributed computation are a source
of hope

Silver lining: We can begin to address practical problems of unimaginable difficulty!

There is an exciting journey ahead!
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Thank you!
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