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Q-learning for Optimal Control of Continuous-time
Systems

Biao Luo, Derong Liu, Fellow, IEEE and Tingwen Huang

Abstract—In this paper, two Q-learning (QL) methods are
proposed and their convergence theories are established for ad-
dressing the model-free optimal control problem of general non-
linear continuous-time systems. By introducing the Q-function for
continuous-time systems, policy iteration based QL (PIQL) and
value iteration based QL (VIQL) algorithms are proposed for
learning the optimal control policy from real system data rather
than using mathematical system model. It is proved that both
PIQL and VIQL methods generate a nonincreasing Q-function
sequence, which converges to the optimal Q-function. For im-
plementation of the QL algorithms, the method of weighted
residuals is applied to derived the parameters update rule. The
developed PIQL and VIQL algorithms are essentially off-policy
reinforcement learning approachs, where the system data can be
collected arbitrary and thus the exploration ability is increased.
With the data collected from the real system, the QL methods
learn the optimal control policy offline, and then the convergent
control policy will be employed to real system. The effectiveness
of the developed QL algorithms are verified through computer
simulation.

Index Terms—Q-learning; model-free optimal control; off-
policy reinforcement learning; the method of weighted residuals.

I. INTRODUCTION

Q -LEARNING (QL) is a popular and powerful off-policy
reinforcement learning (RL) method, which is a great

breakthrough in RL researches [1]–[4]. QL was proposed
by Watkins [5], [6] that can be used to optimally solve
Markov decision processes (MDPs). The major attractions
of QL are its simplicity and that it allows using arbitrary
sampling policies to generate the training data rather than
using the policy to be evaluated. Till present, Watkins’ QL
[5], [6] has been extended and some meaningful results have
been reported [6]–[12] in machine learning community. Such
as, the theoretical analysis of QL was studied in [7], [10]–
[13]. An incremental multi-step QL [14] was proposed, named
Q(λ)-learning, which extends the one-step QL by combining
it with TD(λ) returns for general λ in a natural way for
delayed RL. A GQ(λ) algorithm was introduced in [11], which
works to a general setting including eligibility traces and off-
policy learning of temporally abstract predictions. By using
two-timescale stochastic approximation methodology, two QL
algorithms [15] were proposed. Observe that these results
about QL are mainly for MDPs, which is highly related to
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of Sciences, Beijing 100190, P. R. China (E-mail: biao.luo@ia.ac.cn;
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the optimal control problem in control community. Thus, it is
possible and promising to introduce the basic QL framework
for addressing the optimal control design problem.

For the optimal control problem in control community, it
usually depends on the solution of the complicated Hamilton-
Jacobi-Bellman equation (HJBE) [16]–[18], which is ex-
tremely difficult and requires the accurate mathematical system
model. However, for many practical industrial systems, due to
their large scale and complex manufacturing techniques, equip-
ment and procedures, it is usually impossible to identify the
accurate mathematical model for optimal control design, and
thus the explicit expression of the HJBE is unavailable. On the
other hand, with the development and extensive applications
of digital sensor technologies, and the availability of cheaper
measurement and computing equipment, more and more sys-
tem information could be extracted for direct control design. In
the past few years, the model-free optimal control problem has
attracted researchers’ extensive attention in control community
[19], [20], and has also brought new challenges to them.
Some model-free or partially model-free RL methods [21]–
[32] have been developed for solving the optimal control
design problem by using real system data. For example, RL
approaches were employed to solve linear quadratic regulator
(LQR) problem [24], optimal tracking control problem [31]
and zero-sum game problem [30] of linear systems. For non-
linear optimal control problem, Modares et al. [28] developed
an experience-replay based integral RL algorithm for nonlinear
partially unknown constrained-input systems. Zhang et al. [22]
presented a data-driven robust approximate optimal tracking
control scheme for nonlinear systems, but it requires a prior
model identification procedure and the approximate dynamic
programming method is still model-based. Globalized dual
heuristic programming algorithms [23], [26] were developed
by using three neural networks (NNs) for estimating system
dynamics, cost function and its derivatives, and control policy,
where model NN construction error was considered.

Most recently, some QL techniques have been introduced
for solving the optimal control problems [33]–[37]. Such as,
for linear discrete-time systems, the optimal tracking control
problem [37] and H∞ control problem [33], [34] were studied
with QL. Online QL algorithms [35], [36] were investigated
for solving the LQR problem of linear continuous-time sys-
tems. However, these works are just for simple linear optimal
control problem [35]–[37] or discrete-time systems [33], [34],
[36], [37]. To the best of our knowledge, the QL method
and its theories are still rarely studied for general nonlinear
continuous-time systems.

In this paper, we consider the model-free optimal con-
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trol problem of general nonlinear continuous-time systems,
and two QL algorithms proposed: policy iteration based QL
(PIQL) and value iteration based QL (VIQL). The rest of is
paper is arranged as follows. Section II presents the problem
description. PIQL and VIQL algorithms are proposed in Sec-
tions III and IV, which are then simplified for LQR problem in
Section V. Subsequently, the computer simulation results are
demonstrated in Section VI and a brief conclusion is given in
Section VII.

Notation: Rn is the set of the n-dimensional Euclidean
space and ‖ · ‖ denotes it norm. The superscript T is used for
the transpose and I denotes the identify matrix of appropriate
dimension. ∇ , ∂/∂x denotes a gradient operator notation.
For a symmetric matrix M,M > (≥)0 means that it is a
positive (semi-positive) definite matrix. ‖v‖2M , vTMv for
some real vector v and symmetric matrix M > (≥)0 with
appropriate dimensions. C1(X ) is a function space on X with
first derivatives are continuous. Let X and U be compact sets,
denote D , {(x, u, x′)|x, x′ ∈ X , u ∈ U}. For column vector
functions s1(x, u, x′) and s2(x, u, x′), where (x, u, x′) ∈ D,
define the inner product 〈s1(x, u, x′), s2(x, u, x′)〉D ,∫
D s

T
1 (x, u, x′)s2(x, u, x′)d(x, u, x′) and the norm

‖s1(x, u, x′)‖D , 〈s1(x, u, x′), s1(x, u, x′)〉1/2D .

II. PROBLEM DESCRIPTION

Let us consider the following general nonlinear continuous-
time system:

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1)

where x = [x1 ... xn]T ∈ X ⊂ Rn is the state, x0 is the
initial state and u = [u1 ... um]T ∈ U ⊂ Rm is the control
input. Assume that f(x, u) is Lipschitz continuous on the set
X × U that contains the origin, i.e., f(0, 0) = 0. The system
is stabilizable on X , i.e., there exists a continuous control
function u(x) such that the system is asymptotically stable on
X .

For the model-free optimal control problem considered in
this paper, the model f(x, u) of system (1) is completely
unknown. The objective of optimal control design is to find
a state feedback control law u(t) = u(x(t)), such that the
system (1) is closed-loop asymptotically stable, and minimize
the following generalized infinite horizon cost functional:

Vu(x0) ,
∫ +∞

0

(S(x(t)) +W (u(t)))dt (2)

where S(x) and W (u) are positive definite functions, i.e., for
∀x 6= 0, u 6= 0, S(x) > 0,W (u) > 0, and S(x) = 0,W (u) =
0 only when x = 0, u = 0. Then, the optimal control problem
is briefly presented as

u(t) = u∗(x) , arg min
u
Vu(x0). (3)

III. POLICY ITERATION BASED Q-LEARNING

In this section, a PIQL algorithm and its convergence are
established for solving the model-free optimal control problem
of the system (1). Before starting, the definition of admissible
control is necessary.

Definition 1. (Admissible control) For the given system (1),
x ∈ X , a control policy u(x) is defined to be admissible with
respect to cost function (2) on X , denoted by u(x) ∈ U(X ),
if, 1) u is continuous on X , 2) u(0) = 0, 3) u(x) stabilizes
the system, and 4) Vu(x) <∞,∀x ∈ X . �

A. Policy Iteration Based Q-learning

Noting that the mathematical system model f(x, u) is
unknown, a PIQL algorithm is proposed to learn the optimal
control policy from real system data directly. For notations
simplicity, denote t′ , t + ∆t for ∀t,∆t > 0, xt , x(t) and
x′t , x(t′). For an admissible control policy u(x) ∈ U(X ),
define its cost function

Vu(xt) ,
∫ +∞

t

R(x(τ), u(τ))dτ (4)

where R(x, u) , S(x) + W (u), and Vu(0) = 0. Define the
Hamilton function

H(x, u,∇V ) , [∇V (x)]T f(x, u) +R(x, u) (5)

for some cost function V (x) ∈ C1(X ). Taking derivative on
both sides of expression (4) along with the system (1) yields

[∇Vu(x)]T f(x, u) = −R(x, u)

i.e.,

H(x, u,∇Vu) = 0 (6)

which is linear partial differential equation.
Let V ∗(x) , Vu∗(x) be the optimal cost function, then the

optimal control law (3) is given by

u∗(x) , arg min
u
H(x, u,∇V ∗). (7)

Substituting (7) into (6) yields the following HJBE

H(x, u∗,∇V ∗) = 0 (8)

which is nonlinear partial differential equation. It is observed
that the optimal control policy u∗ relies on the solution V ∗ of
the HJBE (8), while the unavailability of the system model
f(x, u) prevents using model-based approaches for control
design.

To derive the PIQL algorithm, it is necessary to introduce
an action-state value function, named Q-function. For ∀u(x) ∈
U(X ), define its Q-function as

Qu(xt, µ) ,
∫ t′

t

R(x(τ), µ(τ))dτ +

∫ +∞

t′
R(x(τ), u(τ))dτ.

(9)
where (xt, µ) ∈ X × U and Qu(0, 0) = 0. It is found that
Qu(x, u) = Vu(x), then the Q-function (9) is rewritten as

Qu(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ +Qu(x′t, u)

=

∫ t′

t

R(x(τ), µ(τ))dτ + Vu(x′t). (10)

Note that the Q-function Qu(x, µ) for a state x and control
action µ represents the value of the performance metric
obtained when action µ is used in state x and the control
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policy u is pursued thereafter. For the optimal control policy
u∗(x), the associate optimal Q-function Q∗(x, µ) , Qu∗(x, µ)
is given by

Q∗(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ +Qu∗(x
′
t, u
∗)

=

∫ t′

t

R(x(τ), µ(τ))dτ + V ∗(x′t). (11)

Then,

Q∗(xt, u
∗) = min

µ
Q∗(xt, µ)

= min
µ

∫ t′

t

R(x(τ), µ(τ))dτ + V ∗(x′t)

=

∫ t′

t

R(x(τ), u∗(τ))dτ + V ∗(x′t)

= V ∗(xt). (12)

According to the expressions (3) and (12), the optimal control
policy u∗(x) can also be presented as

u∗(x) = arg min
µ
Vu(x) = arg min

µ
Q∗(x, µ). (13)

Now, we give the PIQL method as follows:

Algorithm 1. Policy iteration based Q-learning

I Step 1: Let u(0)(x) ∈ U(X ) be an initial control policy,
and i = 0;

I Step 2: (Policy evaluation) Solve the equation

Q(i)(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ +Q(i)(x′t, u
(i))

(14)
for unknown Q-function Q(i) , Qu(i) ;

I Step 3: (Policy improvement) Update control policy with

u(i+1)(x) = arg min
µ
Q(i)(x, µ); (15)

I Step 4: Let i = i+ 1, go back to Step 2 and continue. �

Remark 1. The PIQL Algorithm 1 involves two basic oper-
ators: policy evaluation and policy improvement. The policy
evaluation is to evaluate the current control policy u(i) for its
Q-function Q(i), and the policy improvement is to get a better
control policy u(i+1) based on the Q-function Q(i). By giving
an initial admissible control policy, PIQL algorithm implement
policy evaluation and policy improvement alternatively to learn
the optimal Q-function Q∗ and the optimal control policy
u∗. Note that the proposed PIQL algorithm has two main
features. First, it is a data-based control design approach,
where the system model f(x, u) is not required. Second, it
is an off-policy learning approach [2], [38], [39], which refers
to evaluate a target policy u(i) for its Q-function Q(i) while
following another policy µ, known as behavior policy that
can be exploratory. Thus, the proposed PIQL algorithm is
exploration insensitive, which means that it is independent of
how the behaves while the data is being collected. �

B. Theoretical Analysis
Some theoretical aspects of the PIQL method (i.e., Algo-

rithm 1) are analyzed in this subsection. Its convergence is
proved by demonstrating that the sequences {Q(i)} and {u(i)}
generated by Algorithm 1 will converge to the optimal Q-
function Q∗ and the optimal control policy u∗, respectively.

Theorem 1. Let u(i+1)(x) be given by (15), then

u(i+1)(x) = arg min
µ
H(x, µ,∇V (i)). (16)

Proof. According to (10), equation (14) can be rewritten as

Q(i)(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ + V (i)(x′t) (17)

where V (i)(x′t) , Vu(i)(x′t) = Q(i)(x′t, u
(i)). Subtracting

V (i)(xt) on both sides of equation (17) yields

Q(i)(xt, µ)− V (i)(xt)

=

∫ t′

t

R(x(τ), µ(τ))dτ + V (i)(x′t)− V (i)(xt)

=

∫ t′

t

R(x(τ), µ(τ))dτ +

∫ t′

t

dV (i)(x)

dτ
dτ

=

∫ t′

t

(
R(x(τ), µ(τ)) + [∇V (i)(x(τ))]T f(x(τ), µ(τ))

)
dτ

=

∫ t′

t

H(x(τ), µ(τ),∇V (i)(x(τ)))dτ

i.e.,

Q(i)(xt, µ) = V (i)(xt) +

∫ t′

t

H(x(τ), µ(τ),∇V (i)(x(τ)))dτ.

Then,

min
µ
Q(i)(xt, µ) = min

µ
V (i)(xt)

+ min
µ

∫ t′

t

H(x(τ), µ(τ),∇V (i)(x(τ)))dτ

= V (i)(xt) + min
µ

∫ t′

t

H(x(τ), µ(τ),∇V (i)(x(τ)))dτ.

(18)

Let

µ1(τ) = arg min
µ

∫ t′

t

H(x(τ), µ(τ),∇V (i)(x(τ)))dτ (19)

and

µ2(τ) = arg min
µ
H(x(τ), µ(τ),∇V (i)(x(τ))). (20)

Thus, it follows from (20) that

H(x, µ2(τ),∇V (i)(x)) = min
µ
H(x, µ,∇V (i)(x))

6 H(x, µ1(τ),∇V (i)(x))

for ∀τ ∈ [t, t′], then integrating on interval [t, t′] yields∫ t′

t

H(x(τ), µ2(τ),∇V (i)(x(τ)))dτ

6
∫ t′

t

H(x(τ), µ1(τ),∇V (i)(x(τ)))dτ. (21)
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On the other hand, based on (19),∫ t′

t

H(x(τ), µ1(τ),∇V (i)(x(τ)))dτ

= min
µ

∫ t′

t

H(x(τ), µ(τ),∇V (i)(x(τ)))dτ

6
∫ t′

t

H(x(τ), µ2(τ),∇V (i)(x(τ)))dτ. (22)

According to (21) and (22),∫ t′

t

H(x(τ), µ1(τ),∇V (i)(x(τ)))dτ

=

∫ t′

t

H(x(τ), µ2(τ),∇V (i)(x(τ)))dτ

i.e.,

min
µ

∫ t′

t

H(x(τ), µ(τ),∇V (i)(x(τ)))dτ

=

∫ t′

t

min
µ
H(x(τ), µ(τ),∇V (i)(x(τ)))dτ. (23)

Then, it follows from equations (18) and (23) that

min
µ
Q(i)(xt, µ) = V (i)(xt)

+

∫ t′

t

min
µ
H(x(τ), µ(τ),∇V (i)(x(τ)))dτ. (24)

which means that

arg min
µ
Q(i)(x, µ) = arg min

µ
H(x, µ,∇V (i)) = u(i+1)(x).

(25)
The proof is completed. �

From Theorem 1, it is indicated that the policy improvement
with (15) for learning a control policy u(i+1) that minimizes
the Q-function Q(i), is theoretically equivalent to obtain a
control policy that minimizes the associated Hamilton function
H(x, µ,∇V (i)).

Theorem 2. Let u(0)(x) ∈ U(X ), the sequence {u(i)(x)} be
generated by Algorithm 1. Then, u(i)(x) ∈ U(X ) for ∀i =
0, 1, 2, ....

Proof. The proof is by mathematical induction. First,
u(0)(x) ∈ U(X ), i.e., Theorem 2 holds for i = 0.

Assume that Theorem 2 holds for index i = l, that is,
u(l)(x) ∈ U(X ). Then, according to (6), the cost function
V (l)(x) associated with u(l)(x) satisfies the following Hamil-
ton function equation

H(x, u(l),∇V (l)) = 0. (26)

Next, we should prove that Theorem 2 still holds for index
i = l+ 1. Under the control policy u(l+1)(x), the closed-loop
system is

ẋ = f(x, u(l+1)). (27)

Selecting V (l)(x) be the Lyapunov function, and taking deriva-
tive of V (l)(x) along the state of the closed-loop system (27)

yields

V̇ (l) =∇V (l)f(x, u(l+1))

=∇V (l)f(x, u(l+1)) + S(x) +W (u(l+1))

− S(x)−W (u(l+1))

=H(x, u(l+1),∇V (l))− S(x)−W (u(l+1)). (28)

Based on the expressions (16) and (26),

H(x, u(l+1),∇V (l)) = min
µ
H(x, µ,∇V (l))

6 H(x, u(l),∇V (l))

= 0. (29)

It follows from (28) and (29) that

V̇ (l) 6 −S(x)−W (u(l+1)) 6 0.

which means that the closed-loop system (27) is asymptoti-
cally stable. Thus, u(l+1)(x) ∈ U(X ), i.e., Theorem 2 holds
for index i = l + 1. �.

Theorem 2 shows that giving an initial admissible control
policy, all policies generated by the PIQL Algorithm 1 are
admissible.

Theorem 3. For ∀(x, µ) ∈ X ×U , the sequences {Q(i)(x, µ)}
and {u(i)(x)} are generated by Algorithm 1. Then,
1) Q(i)(x, µ) > Q(i+1)(x, µ) > Q∗(x, µ)
2) Q(i)(x, µ)→ Q∗(x, µ) and u(i)(x)→ u∗(x) as i→∞.

Proof. 1) For ∀i = 0, 1, 2, ..., define a new iterative function
sequence

V
(i)

(xt) = min
µ
Q(i)(xt, µ). (30)

Then, it follows from the expressions (14) and (30) that

V
(i)

(xt) 6 Q
(i)(xt, u

(i))

=

∫ t′

t

R(x(τ), u(i)(τ))dτ + V (i)(x′t)

= V (i)(xt). (31)

For ∀xt ∈ X , according to (4),

V (i+1)(xt) =

∫ t+∆t

t

R(x(τ), u(i+1)(τ))dτ + V (i+1)(x′t)

=

∫ t+∆t

t

R(x(τ), u(i+1)(τ))dτ + V (i)(x′t)

− V (i)(x′t) + V (i+1)(x′t)

=V
(i)

(xt)− V (i)(x′t) + V (i+1)(x′t)

6V (i)(xt)− V (i)(x′t) + V (i+1)(x′t)

=

∫ t+∆t

t

R(x(τ), u(i)(τ))dτ + V (i+1)(x′t).

(32)

Similar with (32), there is

V (i+1)(xt+k∆t) 6
∫ t+(k+1)∆t

t+k∆t

R(x(τ), u(i)(τ))dτ

+ V (i+1)(t+ x(k+1)∆t) (33)
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for ∀k. Note from Theorem 2 that u(i+1)(x) ∈ U(X ), then
xt = 0 as t→∞, that is V (i+1)(xt→∞) = 0. Thus, it follows
from (32) and (33) that

V (i+1)(xt) 6
∫ t+∆t

t

R(x(τ), u(i)(τ))dτ

+

∫ t+2∆t

t+∆t

R(x(τ), u(i)(τ))dτ

+ V (i+1)(xt+2∆t)

6
∫ t+∆t

t

R(x(τ), u(i)(τ))dτ

+

∫ t+2∆t

t+∆t

R(x(τ), u(i)(τ))dτ

+ · · ·+
∫ t+(k+1)∆t

t+k∆t

R(x(τ), u(i)(τ))dτ

+ · · ·+ V (i+1)(xt→∞)

6
∫ ∞
t

R(x(τ), u(i)(τ))dτ

=V (i)(xt). (34)

For ∀(xt, µ) ∈ X × U , by using the expressions (14) and
(34), there is

Q(i+1)(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ + V (i+1)(x′t)

6
∫ t′

t

R(x(τ), µ(τ))dτ + V (i)(x′t)

=Q(i)(xt, µ).

According to (10) and (11),

Q(i)(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ + V (i)(x′t)

>
∫ t′

t

R(x(τ), µ(τ))dτ + V ∗(x′t)

=Q∗(xt, µ).

The part 1) of Theorem 3 is proved.
2) From the part 1) of Theorem 3, {Q(i)(x, µ)} is a

nonincreasing sequence and bounded below by Q∗(x, µ).
Considering that a bounded monotone sequence always has
a limit, denote Q(∞)(x, µ) , limi→∞Q(i)(x, µ) and then
u(∞)(x) , arg minµQ

(∞)(x, µ).
Based on the proof of the part 1) in Theorem 3, {V (i)(x)} is

also a nonincreasing sequence and bounded below by V ∗(x).
Denote V (∞)(x) , limi→∞ V (i)(x). It follows from Theorem
1 (by simplify replacing V (i) with V (∞)) that

u(∞)(x) = arg min
µ
Q(∞)(x, µ) = arg min

µ
H(x, µ,∇V (∞)).

(35)
Since u(∞)(x) ∈ U(X ), it is based on (6) that
H(x, u(∞),∇V (∞)) = 0, which means that V (∞)(x) satisfies
the HJBE (8). According to the uniqueness of the HJBE’s
solution, V (∞)(x) = V ∗(x).

Then, from (14),

Q(∞)(xt, µ) = lim
i→∞

Q(i)(xt, µ)

= lim
i→∞

∫ t′

t

R(x(τ), µ(τ))dτ + lim
i→∞

Q(i)(x′t, u
(i))

=

∫ t′

t

R(x(τ), µ(τ))dτ +Q(∞)(x′t, u
(∞))

=

∫ t′

t

R(x(τ), µ(τ))dτ + V (∞)(x′t)

=

∫ t′

t

R(x(τ), µ(τ))dτ + V ∗(x′t)

=Q∗(xt, µ). (36)

The substitution of (36) into (35) yields u(∞)(x) =
arg minµQ

∗(x, µ) = u∗(x). The proof is completed. �
In Theorem 3, the convergence of the proposed PIQL

algorithm is proved. It is demonstrated that {Q(i)(x, µ)} is a
bounded nonincreasing sequence that converges to the optimal
Q-function Q∗(x, µ), and then the control sequence {u(i)(x)}
converges to the optimal control policy u∗(x).

C. The Method of Weighted Residuals

In the PIQL algorithm (i.e., Algorithm 1), the policy evalua-
tion requires the solution of the equation (14) for unknown Q-
function Q(i)(x, µ). In this subsection, the method of weighted
residuals (MWR) is developed. Let Ψ(x, µ) , {ψj(x, µ)}∞j=1

be complete set of linearly independent basis functions, such
that ψj(0, 0) = 0 for ∀j. Then, the solution Q(i)(x, µ)
of the iterative equation (14) can be expressed as linear
combination of basis function set Ψ(x, µ), i.e., Q(i)(x, µ) =∑∞
j=1 θ

(i)
j ψj(x, µ) which are assumed to converge pointwise

in X ×U . The trial solution for Q(i)(x, µ) can be respectively
taken by truncating the series to

Q̂(i)(x, µ) =

L∑
j=1

θ
(i)
j ψj(x, µ) = ΨT

L(x, µ)θ(i) (37)

where θ(i) , [θ
(i)
1 ... θ

(i)
L ]T is an unknown weight vector,

ΨL(x, µ) , [ψ1(x, µ) ... ψL(x, µ)]T . By using (15) and (37),
the estimated solution for Q(i)(x, µ) is given by

û(i)(x) = arg min
µ
Q̂(i−1)(x, µ). (38)

Due to the truncation error of the trail solution (37), the
replacement of Q(i)(x, µ) and u(i)(x) in the iterative equa-
tion (14) with Q̂(i)(x, µ) and û(i)(x) respectively, yields the
following residual error:

σ(i)(xt, µ, x
′
t) ,Q̂

(i)(xt, µ)− Q̂(i)(x′t, û
(i))

−
∫ t′

t

R(x(τ), µ(τ))dτ

=[ΨL(xt, µ)−ΨL(x′t, û
(i))]T θ(i)

−
∫ t′

t

R(x(τ), µ(τ))dτ

=ρ(i)(xt, µ, x
′
t)θ

(i) − π(xt, µ) (39)
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where ρ(i)(xt, µ, x
′
t) = [ρ

(i)
1 (xt, µ, x

′
t) · · · ρ

(i)
L (xt, µ, x

′
t)]

and π(xt, µ) ,
∫ t′
t
R(x(τ), µ(τ))dτ , with ρ

(i)
j (xt, µ, x

′
t) =

ψj(xt, µ) − ψj(x
′
t, û

(i)), j = 1, ..., L. In the MWR, the
unknown constant vector θ(i) can be solved in such a way
that the residual error σ(i)(xt, µ, x

′
t) (for ∀t, t′ > 0) of (39)

is forced to be zero in some average sense. The weighted
integrals of the residual are set to zero:〈

W(i)
L (x, µ, x′), σ(i)(x, µ, x′)

〉
D

= 0. (40)

where W(i)
L (x, µ, x′) , [ω

(i)
1 (x, µ, x′) · · · ω

(i)
L (x, µ, x′)]T

is named the weighted function vector. Then, the substitution
of (39) into (40) yields,〈

W(i)
L (x, µ, x′), ρ(i)(x, µ, x′)

〉
D
θ(i)

−
〈
W(i)
L (x, µ, x′), π(x, µ)

〉
D

= 0

where the notations
〈
W(i)
L , ρ(i)

〉
D

and
〈
W(i)
L , π

〉
D

are given
by

〈
W(i)
L , ρ(i)

〉
D
,


〈
ω

(i)
1 , ρ

(i)
1

〉
D
· · ·

〈
ω

(i)
1 , ρ

(i)
L

〉
D

... · · ·
...〈

ω
(i)
L , ρ

(i)
1

〉
D
· · ·

〈
ω

(i)
L , ρ

(i)
L

〉
D


and 〈

W(i)
L , π

〉
D
,
[ 〈

ω
(i)
1 , π

〉
D
· · ·

〈
ω

(i)
L , π

〉
D

]T
.

and thus θ(i+1) can be obtained with

θ(i+1) =
〈
W(i)
L , ρ(i)

〉−1

D

〈
W(i)
L , π

〉
D
. (41)

Note that the computations of
〈
W(i)
L , ρ(i)

〉
D

and
〈
W(i)
L , π

〉
D

involve many numerical integrals on domain D, which
are computationally expensive. Thus, the Monte-Carlo
integration method [40] is introduced, which is es-
pecially competitive on multi-dimensional domain. We
now illustrate the Monte-Carlo integration for computing〈
W(i)
L (x, µ, x′), ρ(i)(x, µ, x′)

〉
D

. Let ID ,
∫
D d(x, µ, x′),

and SM , {(x[k], µ[k], x
′
[k])|(x[k], µ[k], x

′
[k]) ∈ D, k =

1, 2, ...,M} be the set that sampled on domain D, where M is
size of sample set SM . Then,

〈
W(i)
L (x, µ, x′), ρ(i)(x, µ, x′)

〉
D

is approximately computed with〈
W(i)
L (x, µ, x′), ρ(i)(x, µ, x′)

〉
D

=

∫
D
W(i)
L (x, µ, x′)ρ(i)(x, µ, x′)d(x, µ, x′)

=
ID
M

M∑
k=1

W(i)
L (x[k], µ[k], x

′
[k])ρ

(i)(x[k], µ[k], x
′
[k])

=
ID
M

(W (i))TZ(i) (42)

where

W (i) =[W(i)
L (x[1], µ[1], x

′
[1]) · · · W

(i)
L (x[M ], µ[M ], x

′
[M ])]

T

Z(i) =[(ρ(i)(x[1], µ[1], x
′
[1]))

T · · · (ρ(i)(x[M ], µ[M ], x
′
[M ]))

T ]T .

Similarly,〈
W(i)
L (x, µ, x′), π(x, µ)

〉
D

=
ID
M

M∑
k=1

(
W(i)
L (x[k], µ[k], x

′
[k])
)T

π(x[k], µ[k]

=
ID
M

(W (i))T η (43)

where η ,
[
π(x[1], µ[1]) ... π(x[M ], µ[M ])

]T
. Then, the sub-

stitution of (42) and (43) into (41) yields,

θ(i) =
[
(W (i))TZ(i)

]−1

(W (i))T η. (44)

It is observed that the sample set SM is arbitrary on domain
D, based on which W (i), Z(i) and η can be computed and
then the unknown parameter vector θ(i) is obtained with the
expression (44) accordingly.

The above MWR is for solving an iterative equation (15) in
the PIQL algorithm. Based on the expression (44), the imple-
mentation procedure of the PIQL algorithm is given as follows:

Algorithm 2. Implementation of PIQL

I Step 1: Collect real system data (xk, µk, x
′
k) for sample

set SM , and then compute ΨL(xk, µk) and η;
I Step 2: Let u(0)(x) ∈ U(X ), and i = 0;
I Step 3: Compute W (i) and Z(i), and then update param-

eter vector θ(i) with (44);
I Step 4: Update control policy û(i+1)(x) based on (38)

with index i+ 1;
I Step 5: If ‖θ(i)−θ(i−1)‖ ≤ ξ (i > 1, ξ is a small positive

number), stop iteration, else, let i = i + 1 and go back
to Step 3. �

IV. VALUE ITERATION BASED Q-LEARNING

Generally, RL involves two basic frameworks: policy iter-
ation and value iteration. Section III gives a PIQL method
for model-free optimal control design of the system (1). In
this section, we proposed a value iteration based QL (VIQL)
algorithm, which is presented as follows:

Algorithm 3. Value iteration based Q-learning

I Step 1: Let Q(0)(x, µ) > 0 be an initial Q-function. Let
i = 1;

I Step 2: (Policy improvement) Update control policy
with:

u(i)(x) , arg min
µ
Q(i−1)(x, µ); (45)

I Step 3: (Policy evaluation) Solve the iterative equation

Q(i)(xt, µ) ,
∫ t′

t

R(x(τ), µ(τ))dτ +Q(i−1)(x′t, u
(i))

(46)
for unknown Q-function Q(i);
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I Step 4: Let i = i+ 1, go back to Step 2 and continue. �

Theorem 4. For ∀(x, µ) ∈ X × U , let {Q(i)(x, µ)} be the
sequence generated by Algorithm 3. Let Q(0)(x, µ) be an
arbitrary Q-function of a stable control policy, then
1) Q(i)(x, µ) > Q(i+1)(x, µ) > Q∗(x, µ)
2) Q(i)(x, µ)→ Q∗(x, µ) and u(i)(x)→ u∗(x) as i→∞.

Proof. 1) The proof is by mathematical induction.
Without loss of generality, let Q(0)(x, µ) denotes the Q-

function of a stable control policy υ(x). Then, it follows from
the definition of Q-function (9) and (10) that

Q(0)(xt, µ) =Qυ(xt, µ)

=

∫ t′

t

R(x(τ), µ(τ))dτ +Q(0)(x′t, υ). (47)

According to (45)-(47),

Q(1)(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ +Q(0)(x′t, u
(1))

=

∫ t′

t

R(x(τ), µ(τ))dτ + min
µ
Q(0)(x′t, µ)

6
∫ t′

t

R(x(τ), µ(τ))dτ +Q(0)(x′t, υ)

=Q(0)(xt, µ)

which means that the inequality Q(i)(x, µ) > Q(i+1)(x, µ)
holds for i = 0.

Assume that the inequality Q(i)(x, µ) > Q(i+1)(x, µ) holds
for i = l − 1, i.e.,

Q(l)(x, µ) 6 Q(l−1)(x, µ). (48)

Based on the expression (45),

Q(l)(x, u(l)) = min
µ
Q(l)(x, µ) 6 Q(l)(x, µ) (49)

for ∀x, µ. Then, it follows from (46), (48) and (49) that

Q(l+1)(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ +Q(l)(x′t, u
(l+1))

=

∫ t′

t

R(x(τ), µ(τ))dτ + min
µ
Q(l)(x′t, µ)

6
∫ t′

t

R(x(τ), µ(τ))dτ +Q(l)(x′t, u
(l))

6
∫ t′

t

R(x(τ), µ(τ))dτ +Q(l−1)(x′t, u
(l))

= Q(l)(xt, µ) (50)

which means that the inequality Q(i)(x, µ) > Q(i+1)(x, µ)
holds for i = l.

Next, we will prove Q(i)(x, µ) > Q∗(x, µ). Considering
Q(i−1)(x, µ) > Q(i)(x, µ) holds for ∀(x, µ) ∈ X × U , then

Q(i−1)(x′t, u
(i)) > Q(i)(x′t, u

(i)) (51)

Combining (46) and (51), there is

Q(i)(xt, µ) =

∫ t′

t

R(x(τ), µ(τ))dτ +Q(i−1)(x′t, u
(i))

>
∫ t′

t

R(x(τ), µ(τ))dτ +Q(i)(x′t, u
(i))

=

∫ t′

t

R(x(τ), µ(τ))dτ + V (i)(x′t)

>
∫ t′

t

R(x(τ), µ(τ))dτ + V ∗(x′t)

=Q∗(xt, µ). (52)

The part 1) of Theorem 4 is proved.
2) The part 2) of Theorem 4 can be proved similarly as that

for the part 2) of Theorem 3, and it is omitted for briefness.
The proof is completed. �

It is noted that an iterative equation (46) should be solved in
each iteration of the VIQL algorithm. Similar with Subsection
III-C, the MWR can be used to solve the equation (46). To
avoid repeat, we omit the detailed derivation of the MWR and
give the parameter update law directly as

θ(i) = [WTZ]−1WT (η + Z(i)θ(i−1)) (53)

where the notations are given by

W = [WL(x[1], µ[1]) · · · WL(x[M ], µ[M ])]
T

Z = [ρT (x[1], µ[1]) · · · ρT (x[M ], µ[M ])]
T

Z(i) = [ρT (x′[1], û
(i)(x′[1])) · · · ρ

T (x′[M ], û
(i)(x′[M ]))]

T

η =
[
π(x[1], µ[1]) ... π(x[M ], µ[M ])

]T
with WL(x, µ) = [ω1(x, µ) · · · ωL(x, µ)]T be the
weighted function vector, ρ(x, µ) = [ρ1(x, µ) · · · ρL(x, µ)]
with ρj(x, µ) = ψj(x, µ), j = 1, ..., L, and π(xt, µ) =∫ t′
t
R(x(τ), µ(τ))dτ .

Based on the parameter update law (53), the implementation
procedure of the VIQL algorithm is presented below:

Algorithm 4. Implementation of VIQL

I Step 1: Collect real system data (xk, µk, x
′
k) for sample

set SM , and then compute W,Z and η;
I Step 2: Let θ(0) be the initial parameter vector, and i = 1;
I Step 3: Update control policy û(i)(x) with (38);
I Step 4: Compute Z(i), and then update parameter vector

θ(i) with (53);
I Step 5: If ‖θ(i) − θ(i−1)‖ ≤ ξ (ξ is a small positive

number), stop iteration, else, let i = i + 1 and go back
to Step 3. �

Remark 2. There are several similarities and differences
between PIQL and VIQL algorithms, which are summarized
as follows: 1) Both of them generate a non-increasing Q-
function sequence, which converges to the optimal Q-function.
2) Both algorithms are model-free method, which learns the
optimal control policy from real system data rather than using
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mathematical model of system (1). 3) Both of them are off-
policy RL method, where the system data can be generated by
arbitrary behavior control policies. 4) Their implementations
are offline learning procedure, and then the convergent control
will be employed for real-time control. 5) PIQL algorithm
requires an initial admissible control policy, while it is not a
necessity for VIQL algorithm. 6) For RL methods, the policy
iteration has a quadratic convergence rate, while value iteration
has a linear convergence rate. This implies that PIQL algorithm
converges much faster than VIQL algorithm. �

V. Q-LEARNING FOR LQR PROBLEM

In the section, we simplify the developed PIQL and VIQL
methods for solving the model-free linear quadratic regulation
(LQR) problem. Consider a linear version of system (1):

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (54)

where A ∈ Rn×n and B ∈ Rn×m are unknown matrices, and
the quadratic cost function:

J(x0, u) =

∫ ∞
0

(
‖x(t)‖2S + ‖u(t)‖2W

)
dt (55)

where matrices S,W > 0.
For the LQR problem of system (54) with cost function

(55), its optimal Q-function can be given by

Q∗(x, µ) =

[
x
µ

]T
G

[
x
µ

]
(56)

where G > 0 is a block matrix denoted as

G ,

[
G11 G12

G21 G22

]
.

According to (13), its optimal control policy is given by

u∗(x) = arg min
µ
Q∗(x, µ) = −G−1

22 G
T
12x. (57)

Thus, denote the Q-function Q(i)(x, µ) as

Q(i)(x, µ) =

[
x
µ

]T
G(i)

[
x
µ

]
(58)

where G(i) is given by

G(i) ,

[
G

(i)
11 G

(i)
12

G
(i)
21 G

(i)
22

]
.

A. PIQL for LQR Problem

By using the expression (58), the PIQL Algorithm 1 can be
simplified for solving the model-free LQR problem of system
(54), which is given as follows:

Algorithm 5. PIQL for LQR problem

I Step 1: Let u(0)(x) ∈ U(X ) be an initial stabilizing
control policy, and i = 0;

I Step 2: (Policy evaluation) Solve the equation[
xt
µ

]T
G(i)

[
xt
µ

]
=

∫ t′

t

R(x(τ), µ(τ))dτ

+

[
x′t
u(i)

]T
G(i)

[
x′t
u(i)

]
(59)

for unknown unknown matrix G(i);
I Step 3: (Policy improvement) Update control policy with

u(i+1)(x) = −[G
(i)
22 ]−1[G

(i)
12 ]Tx; (60)

I Step 4: Let i = i+ 1, go back to Step 2 and continue. �

According to Theorem 3, Algorithm 5 generates a non-
increasing matrix sequence {G(i)} that converges to G.

For each iteration of Algorithm 5, the iterative equation (59)
should be solved for the unknown unknown matrix G(i). It is
observed that G(i) is a (n+m)× (n+m) symmetric matrix,
which has (n+m)(n+m+1)/2 unknown parameters. Letting

ΨL(x, µ) = [x2
1 x1x2 ... x1µ1 ... x1µm x2

2

x2µ1 ... µ2
m]T (61)

and

θ(i) = [(g
(i)
1,1)2 2g

(i)
1,2 ... 2g

(i)
1,n+1 ... 2g

(i)
1,n+m (g

(i)
2,2)2

2g
(i)
2,n+m ... (g

(i)
n+m,n+m)2]T (62)

the iterative equation (59) can be equivalently rewritten as

[ΨL(xt, µ)−ΨL(x′t, û
(i)(x′t))]

T θ(i) = π(xt, µ) (63)

where π(xt, µ) ,
∫ t′
t
R(x(τ), µ(τ))dτ . By using the data

set SM collected from real system, the following least-square
scheme is obtained for updating the unknown parameter vector
θ(i)

θ(i) =
[
(Z(i))TZ(i)

]−1

(Z(i))T η (64)

where

Z(i) =[ΨL(x[1], µ[1])−ΨL(x′[1], û
(i)(x′[1]))

... ΨL(x[M ], µ[M ])−ΨL(x′[M ], û
(i)(x′[M ]))]

T

η =[π(x[1], µ[1]) ... π(x[M ], µ[M ])]
T .

With the least-square scheme (64), the implementation proce-
dure of Algorithm 5 will be obtained similarly with Algorithm
2.

Remark 3. For the LQR problem of the linear system (54),
there is no residual error in the expression (63) because the Q-
function Q(x, µ) can be exactly represented by basic function
vector (62). �

B. VIQL for LQR Problem

With the expression (58), the VIQL Algorithm 3 can be
simplified for solving the model-free LQR problem of system
(54), which is given as follows:
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Algorithm 6. VIQL for LQR problem

I Step 1: Let G(0) > 0 and i = 1;
I Step 2: (Policy improvement) Update control policy

with:
u(i)(x) = −[G

(i−1)
22 ]−1[G

(i−1)
12 ]Tx; (65)

I Step 3: (Policy evaluation) Solve the iterative equation[
xt
µ

]T
G(i)

[
xt
µ

]
=

∫ t′

t

R(x(τ), µ(τ))dτ

+

[
x′t
u(i)

]T
G(i−1)

[
x′t
u(i)

]
(66)

for unknown unknown matrix G(i);
I Step 4: Let i = i+ 1, go back to Step 2 and continue. �

Based on Theorem 4, Algorithm 6 generates a non-
increasing matrix sequence {G(i)} that converges to G. By
using the expressions (61) and (62) the iterative equation (66)
can be equivalently rewritten as

ΨT
N (xt, µ)θ(i) = π(xt, µ) + ΨT

N (x′t, û
(i)(x′t))θ

(i−1) (67)

where π(xt, µ) =
∫ t′
t
R(x(τ), µ(τ))dτ . By using the data

set SM collected from real system, the following least-square
scheme is obtained for the updating unknown parameter vector
θ(i)

θ(i) = [ZTZ]−1ZT (η + Z(i)θ(i−1)) (68)

where the notations are given by

Z =[ΨL(x[1], µ[1]) · · · ΨL(x[M ], µ[M ])]
T

Z(i) =[ΨL(x′[1], û
(i)(x′[1])) · · · ΨL(x′[M ], û

(i)(x′[M ]))]
T

η =
[
π(x[1], µ[1]) ... π(x[M ], µ[M ])

]T
.

With the least-square scheme (68), the implementation
procedure of Algorithm 6 will be obtained similarly with
Algorithm 4, which is omitted for briefness.

VI. SIMULATION STUDIES

To test the effectiveness of the proposed QL algorithms,
computer simulation studies are conducted on a linear F-
16 aircraft plant and a numerical nonlinear system. For all
simulations, the algorithm stop accuracy is set as ξ = 10−5,
the system data set SM is collected randomly and its size is
set as M = 100.

A. Example 1: Linear F-16 Aircraft Plant

Consider a linear F16 aircraft plant [41]–[43], where the
system dynamics is described with (54), and the system
matrices given by:

A =

 −1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

 , B =

 0
0
1


where the system state vector is x = [α q δe]

T , α denotes the
angle of attack, q is the pitch rate, δe is the elevator deflection
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Fig. 1. For example 1, all parameters of vector θ(i) obtained by PIQL
algorithm.
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Fig. 2. For example 1, the norm ‖θ(i)‖ obtained by PIQL algorithm.

angle, and the control input u is the elevator actuator voltage.
Select S,W as unit matrices for quadratic cost function (55).
Then, solve the associated Riccati algebraic equation with the
MATLAB command CARE, we can obtain the optimal control
policy given by u∗(x) = Kx, where K = [−0.1352 −
0.1501 0.4329] is the optimal control gain.

For the LQR problem, it follows from (61) and (62) that
the the basic function set is

ΨL(x, µ) = [x2
1 x1x2 x1x3 x1µ x2

2 x2x3

x2µ x2
3 x3µ µ2]T (69)

and the parameter vector is

θ(i) = [(g
(i)
1,1)2 2g

(i)
1,2 2g

(i)
1,3 2g

(i)
1,4 (g

(i)
2,2)2 2g

(i)
2,3

2g
(i)
2,4 (g

(i)
3,3)2 2g

(i)
3,4 (g

(i)
4,4)2]T .

According to the policy improvement rule (60), the it-
erative control gain is K(i) = [k

(i)
1 k

(i)
2 k

(i)
3 ] =

−(g
(i)
4,4)−1[g

(i)
1,4 g

(i)
2,4 g

(i)
3,4] = −0.5(θ

(i)
10 )−1[θ

(i)
4 θ

(i)
7 θ

(i)
9 ].

First, the PIQL algorithm (i.e., Algorithm 2) with param-
eters update law (64) is used to solve this model-free LQR
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Fig. 3. For example 1, the iterative control gain K(i) obtained by PIQL
algorithm.
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Fig. 4. For example 1, all parameters of vector θ(i) obtained by VIQL
algorithm.

problem. Figures 1-3 gives the simulation results, where the
PIQL algorithm achieves convergence at i = 5 iteration.
Figures 1 and 2 show the parameter vector θ(i) and its norm
‖θ(i)‖ respectively, where the parameter vector converges to

θ(5) = [1.4250 2.3374 − 0.2734 − 0.0068 1.4355

−0.3034 − 0.0076 0.4375 0.0216 0.0254]T .

Figure 3 shows the control gain K(i) at each iteration, where
the dot lines represent idea value of the optimal control gain
K. It is observed that K(i) converges to

K(5) = [0.1343 0.1488 − 0.4256]

which approaches to the optimal control gain K.
Next, with the same basic function vector (69), the VIQL

algorithm (i.e., Algorithm 4) with parameters update law (68)
is employed to solve this model-free LQR problem. It is
observed that the VIQL algorithm achieves convergence at
i = 872 iteration, where the parameter vector θ(i) converges
to

θ(872) = [1.4254 2.3382 − 0.2735 − 0.0068 1.4359

−0.3035 − 0.0076 0.4375 0.0216 0.0254]T .
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Fig. 5. For example 1, the norm ‖θ(i)‖ obtained by VIQL algorithm.
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Fig. 6. For example 1, the iterative control gain K(i) obtained by VIQL
algorithm.

and the iterative control gain K(i) converges to

K(872) = [0.1344 0.1489 − 0.4256]

which approaches to the optimal control gain K. Figure 4-5
give the the parameter vector θ(i) and the norm ‖θ(i)‖ at each
iteration, respectively. Figure 6 shows the control gain K(i) at
each iteration, where the dot lines represent idea value of the
optimal control gain K.

From the simulation results, it is found that the PIQL algo-
rithm achieves much faster convergence than VIQL algorithm.

B. Example 2: Numerical Nonlinear System

This numerical example is constructed by using the converse
HJB approach [44]. The system model is given as follows:

ẋ =

[
−x1 + x2

−0.5(x1 + x2) + 0.5x2
1x2

]
+

[
0
x1

]
u (70)

where x0 = [0.1 0.1]T . With the choice of Q(x) = xTx and
W (u) = u2 in the cost function (2), the optimal control policy
is u∗(x) = −x1x2.
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Fig. 7. For example 2, all parameters of vector θ(i) obtained by PIQL
algorithm.

Select the basic function vector as

ΨL(x, µ) = [x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2

x3
2 x4

1 x3
1x2 x2

1x
2
2 x1x

3
2 x4

1

x1µ x2µ x2
1µ x1x2µ x2

2µ µ2]T (71)

of size L = 18, and the weighted basic func-
tion vector as WL = ΨL. According to the pol-
icy improvement rule (15), the iterative control policy is
u(i)(x) = K(i)[x1 x2 x2

1 x1x2 x2
2]T with con-

trol gain K(i) = [k
(i)
1 k

(i)
2 k

(i)
3 k

(i)
4 k

(i)
5 ] =

−0.5(θ
(i)
18 )−1[θ

(i)
13 θ

(i)
14 θ

(i)
15 θ

(i)
16 θ

(i)
17 ]. Consider that the

optimal control policy is u∗(x) = −x1x2, which can be
represented as u∗(x) = K[x1 x2 x2

1 x1x2 x2
2]T with the

idea optimal control gain K = [0 0 0 − 1 0].
First, the PIQL algorithm (i.e., Algorithm 2) is used to solve

the model-free optimal control problem of the system (70). It
is observed that the algorithm achieves convergence at i = 7
iteration, where the parameter vector θ(i) converges to

θ(7) = [0.5097 0.0078 0.9977 − 0.0189 − 0.0142

−0.0060 0.0120 0.0091 0.0038 0.0215

−0.0057 − 0.0078 − 0.0003 0.0000 0.0006

0.0497 0.0004 0.0252]T .

and the iterative control gain K(i) converges to

K(7) = [0.0067 − 0.0009 − 0.0112 − 0.9860 − 0.0076].

Figure 7-8 give the the parameter vector θ(i) and the norm
‖θ(i)‖ at each iteration, respectively. Figure 9 shows the con-
trol gain K(i) at each iteration, where the dot lines represent
idea value of the optimal control gain K. It is noted that
good convergence is achieved. Then, the convergent control
policy û(7)(x) is used for real control of the system (70). It is
observed that the cost is 0.0150. Figure 10 shows the closed-
loop trajectories of system state and control signal.

Next, by using the same basic function vector (71), the
VIQL algorithm (i.e., Algorithm 4) is employed to solve the
model-free optimal control problem of system (70). Figures
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Fig. 8. For example 2, the norm ‖θ(i)‖ obtained by PIQL algorithm.

0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

Iteration (i)

K
(i

)

 

 

k
1

(i)
k

2

(i)
k

3

(i)
k

4

(i)
k

5

(i)

Fig. 9. For example 2, the iterative control gain K(i) obtained by PIQL
algorithm.
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Fig. 10. For example 2, the closed-loop trajectories of system state x(t) and
control signal u(t) obtained by PIQL algorithm.
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Fig. 11. For example 2, all parameters of vector θ(i) obtained by VIQL
algorithm.
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Fig. 12. For example 2, the norm ‖θ(i)‖ obtained by VIQL algorithm.

11-13 give the simulation results, where the VIQL algorithm
achieves convergence at i = 390 iteration. Figures 11 and 12
show the parameter vector θ(i) and its norm ‖θ(i)‖ respec-
tively, where the parameter vector converges to

θ(390) = [0.4958 0.0132 0.9983 − 0.0021 0.0022

−0.0214 0.0112 0.0029 − 0.0102 0.0219

0.0047 − 0.0089 − 0.0003 − 0.0001 0.0007

0.0495 0.0006 0.0252]T .

Figure 13 shows the control gain K(i) at each iteration, where
the dot lines represent idea value of the optimal control gain
K. It is observed that K(i) converges to

K(390) = [0.0055 0.0016 − 0.0130 − 0.9813 − 0.0117]

which approaches to the optimal control gain K. With the
convergent control policy û(390)(x), closed-loop simulation is
conducted on the real system (70). It is observed that the cost
is 0.0150, and the the closed-loop trajectories of system state
and control signal are almost the same as that in Figure 10,
which is omitted here.
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Fig. 13. For example 2, the iterative control gain K(i) obtained by VIQL
algorithm.

VII. CONCLUSIONS

In this paper, the model-free optimal control problem of
general nonlinear continuous-time systems is considered, and
two QL methods are developed. First, PIQL and VIQL al-
gorithms are proposed and their convergence is proved. For
implementation purpose, the MWR is employed to derive a
update law for unknown parameters. Both PIQL and VIQL
algorithms are model-free off-policy RL methods, which learn
the optimal control policy offline from real system data and
then be used for real-time control. Subsequently, PIQL and
VIQL algorithms are simplified to solve the LQR problem
of linear systems. Finally, a linear F-16 aircraft plant and a
numerical nonlinear system are used to test the developed QL
algorithms, and the obtained simulation results demonstrate
their effectiveness.
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[44] V. Nevistić and J. A. Primbs, “Optimality of nonlinear design techniques:
a converse HJB approach,” tech. rep., California Institute of Technology,
TR96-022, 1996.

View publication statsView publication stats

https://www.researchgate.net/publication/266856634

	I Introduction
	II Problem Description
	III Policy Iteration Based Q-learning
	III-A Policy Iteration Based Q-learning
	III-B Theoretical Analysis
	III-C The Method of Weighted Residuals

	IV Value Iteration Based Q-learning
	V Q-learning for LQR Problem
	V-A PIQL for LQR Problem
	V-B VIQL for LQR Problem

	VI Simulation Studies
	VI-A Example 1: Linear F-16 Aircraft Plant
	VI-B Example 2: Numerical Nonlinear System

	VII Conclusions
	References

