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Abstract— Q-learning is a technique used to compute an opti-
mal policy for a controlled Markov chain based on observatims
of the system controlled using a non-optimal policy. It has
proven to be effective for models with finite state and action
space. This paper establishes connections between Q-legnm
and nonlinear control of continuous-time models with geneal
state space and general action space. The main contributisn
are summarized as follows.

(i) The starting point is the observation that the “Q-function”
appearing in Q-learning algorithms is an extension of the
Hamiltonian that appears in the Minimum Principle. Based
on this observation we introduce the steepest descent Q-
learning (SDQ-learning) algorithm to obtain the optimal
approximation of the Hamiltonian within a prescribed finite -
dimensional function class.

(ii) A transformation of the optimality equations is perfor med
based on the adjoint of a resolvent operator. This is used
to construct a consistent algorithm based on stochastic
approximation that requires only causal filtering of the time-
series data.

(iii) Several examples are presented to illustrate the apjda-
tion of these techniques, including application to distrituted
control of multi-agent systems.

|I. INTRODUCTION
A. Background

Sean Meyn
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TD-learning is known to be convergent because it can be
interpreted as a stochastic approximation implementaifon

a steepest descent algorithm applied to a convex optiroizati
problem over a finite dimensional parameter space [14], [3],
[1], [10].

In the case of Q-learning the barriers are more funda-
mental. Watkins introduced the technique in his thesis, and
a complete convergence proof appeared later in [17]. An
elementary proof based on an associated ‘fluid limit model’
is contained in [2]. Unfortunately, these results are 1ggi
depending critically on a finite state space and finite action
space. More importantly, these convergence proofs reguire
complete parameterization that includes all possible ark
models whose state space has a given cardinality. Thisslimit
the applicability of these methods because complexity grow
with the size of the state space. An extension to genera& stat
spaces with finite dimensional parameterization appears in
[9], but the convergence result is essentially a local one.

Progress has been more positive for special classes of
models. For deterministic linear systems with quadratit co
(the LQR problem), a variant of Q-learning combined with an
adaptive version of policy iteration is known to be convertge
— see [4] for an analysis in discrete time, and [16] for

What does Q-learning have to do with the minimumg similar approach in continuous time. The recent work
principle? Q-learning is a technique to compute an optimgd 2] contains a variant of parameterized Q-learning design
policy, along with the associated value function, based ogpecifically for a class of queueing models.
observations of the state and input, and without knowledge |y this paper we take a fresh look at the algorithm. We
of the system model. Pontryagin's Minimum Principle is &ormulate a convex optimization problem that characterize
refinement of the Hamilton-Jacobi-Bellman (HJB) equationge pest approximation of the Q-function within a given

that characterize the optimal value function. In this paper

class, and from this obtain effective algorithms for orelin

argue that the Hamiltonian appearing in nonlinear contrompytation.
theory is essentially the same as the ‘Q-function’ that is

the object of interest in Q-learning. We find that there i:‘B
also a close connection between Q-learning and diffedentia’

Q-learning and the Minimum Principle

dynamic programming [8]. In this way we create a bridge To simplify the discussion in this paper we focus attention
between the reinforcement learning and nonlinear controh a deterministic model in continuous time. Contained in
research communities. In the process we introduce neBec. Il is discussion on how the concepts and algorithms

algorithms for both deterministic and stochastic models.

introduced in this paper can be extended to more general

Several barriers have slowed the creation of a compreherntrolled Markov processes.
sive theory of reinforcement learning (RL) techniques for The deterministic model is a nonlinear state space model
models in continuous time, and general state space. In thgth state process evolving onX, and inputu evolving on
case of temporal-difference (TD) methods, generalizatton U. The state and action space are assumed to be closed sub-
continuous time can be found in the recent works [15] angets of Euclidean space, of dimensiband/,,, respectively.
[13]. The latter is closely related to the linear programgnin The input-state process is described by the state equation,
formulation of approximate dynamic programming, which

is treated for diffusion models in the recent paper [6]. La(t) = f(z(t), ut)),

(1)



where f: X x U — R’ is assumed to be continuous, For the discounted-cost optimality criterion, the minimum
and z(0) € X is given as an initial condition. Our only of the Q-function is given by the scaled value function,
assumptions orf andw is that a unique solution exists for
each initial condition. H(2) = min H"(z,u) = 7J"(2). (6)

It is assumed that a cost functien X x U — R is given, “
and we letJ* denote an associated value function. In thisSubstituting into (5) then gives a fixed point equation
section and throughout most of the paper we restrict to the
discounted cost optimality criterion. For a given discotate DuH™ (z) = —y(c(z,u) — H*(z,u)). )

~ > 0, the value function is defined by o ) _ ) _ _
This is essentially equivalent to the fixed point equation

J*(z) = inf /OO eV e(x(s), u(s)) ds, 2(0) =z, (2) that appears in Q-learning, and this is the promised bridge
0 between Q-learning and the Minimum Principle. The goal of
where the infimum is over al. the paper is to show how methods from Q-learning and TD-

We will borrow concepts from Markov decision theorylearning can be adapted to construct optimal approximstion
and the theory of general state space Markov processes.ohthe Q-functiont*(z, u).
particular, thegeneratorthat appears in analysis of Markov
processes is a first order differential operator in this ipec C. Contributions and overview
case. For any’! functionh: X — R we define the function

. The contributions of the paper are summarized as fol-
of two variables,

lows:

Dyh(z):=(Vh(z)) f(z,u),  (z,u) €XxU. (3) (i) The recognition of the connections between Q-learning,
differential dynamic programming, and the Minimum
Principle allows us to unify and extend previous results
on adaptive control fodeterministicnonlinear systems.

(i) The central idea of TD-learning is to construct a causal
representation of the value function to facilitate the cre-
ation of a causal on-line algorithm. In [10, Ch. 11] it is
argued that this step can be regarded as the application

min (c(z, u) + Dy J* () = vJ*(2), rzeX. (4  of an adjoint operator in a certain Hilbert space. The
“ algorithms introduced here are based on the extension of
The most natural analog of the “Q-function” that appearsthis idea to Q-learning.
in Q-learning is the function of two variables within the(jii) The application to distributed control of multi-agen
minimum on the left hand side of (4). We denote this by, systems, described with the aid of an example in Sec. IV-
X . X C, is remarkably successful, given the very partial theo-
A (@, u) = el@, u) + DuJ" (), (w,u) € X>x U (5) retical support for this approach. These numerical results
The functionH* will be the object of study throughout the invite many avenues for future research.

paper. This function appears in the methoddiferential The remainder of the paper is organized as follows. The
dynamic programmind8]. By consideration ofH*(z,u) next section develops the theory of Q-learning for determin

in place of J*(z), it is shown in [8] that algorithms can stic systems. The final refinement is contained in Sec. II-
be constructed to obtain an optimal polidgcally, in & p where the convex representation of the Q-function is
neighborhood of some nominal trajectory. The goal here igtroduced. Extensions to Markov models are discussed in
to find anapproximationto the optimal policy that is defined gg¢. lll, several examples are presented in Sec. IV, and

everywhere. _ . __ the paper ends with conclusions and suggestions for future
The Q-function (5) is closely related to the Hamiltonianyesearch in Sec. V.

Recall that the Hamiltonian is expressed,

The generator is defined so that the functiff(z,u) :=
Duh () satisfies%h(a:(t)) = fu(z(t),u(t)) for any state-
input pair (xz,u). In the remainder of this papel/ is
reserved to denote the gradient operator with respect to
If the value function (2) is finite valued, then the
discounted-cost optimality equation holds,

H*(x,u;p) = c(z,u) + p'f(z,u) Il. Q-LEARNING FOR DETERMINISTIC MODELS

wherep € R is the costate variable [8]. Under appropriate In this section we develop methods to construct approxi-
assumptions on and f we have the Minimum Principle: For mate solutions to the fixed point equation (7). Extensions to
each initial condition there is an optimal state trajectaty the total cost optimization problem are described in Sek. Il
together with an optimatostatetrajectoryp* such that the It is assumed that we have a parameterized family of real-
Hamiltonian H*(2* (t), u; p*(t)) is minimized overu € U  valued functions oX x U, denoted{ H% (z,u) : § € R?, z €
whenw = u*(t) is optimal. X, u € U}. Our goal is to choose the parameteso that

It is known that, under appropriate conditions, the costatdl’ ~ H*, where the approximation is with respect to a
trajectory can be expressed(t) = V.J (z*(t)). On sub- specific norm chosen for ease of computatiom to weight
stitution we conclude that/*(z,u; p*) = H*(z,u) when state-input pairs according to their relative importance.
x = a*(t) andp* = p*(t). We begin with the specification of an error criterion.



A. Bellman error space, which is required in the computation of the inner-
Throughout the paper we adopt a Hilbert space setting féfoduct appearing in (13). Second is the differentiation of
approximation. It is assumed that a probability distribati potentlally noisy measurements. The first issue is overcome

@ on B(X x U) is given, and for any square-integrable!l Sec. II-B by constructing a stationary solution to the
measurable functiong G: X x U — R we denote an inner deterministic model. The second issue is addressed in Sec. |

product and norm through the definitions, C by integrating the fixed point equation, and performing a
transformation to obtain a causal characterizatiof{6fthat
(F,G)e = /F(a:, WGz, u) w(dz, du), does not involve a time-derivative. The steps taken to ereat
8) this representation are adapted from TD-learning teclasqu
| F|2 = /Fz(:v,u) w(dz, du). [1], [10]. o )
For the purposes of approximation we choose an input

We let Ly(cw) denote those functions with finite norm. ThisSO that the Law of Large Numbers (LLN) holds with respect

function space is a Hilbert space with inner-prodct - ).,. 10 @, in the following form: . For each continuous function
The most natural error criterion based on the Hilbert spadg: R® x R — R that is integrable with respect tw,

norm (8) is the direct errof| H* — H®||.. This is not and almost every initial conditiof:(0), «(0)), we have as

easily minimized since?* is not known. An alternative is T — oo,

the Bellman error, defined as the mean-square error in the, T

fixed point equation. For the discounted-cost setting this i T/o F(z(t),u(t) dt — F(z,u) w(dz,du). (14)

expressed, U
For example, under general conditions on the system (1)

Esa(0) == 3(1L°)12, 9 € R? (9) with a scalar input, the inpuk can be chosen as a linear
combination of sinusoids.

The creation of an ergodic realization of the nonlinear
L0z, u) :=D,H (z) +~v(c — H) (10) model is what allows us to construct computationally effi-

. 0 o ) ) cient on-line algorithms to compute an optimal approxima-
with H(z) :=inf,, H’(z, u). If the infimum is achieved for gp,

eachz then we denote,

¢’ (z) € argmin HY (z,u), z e X (12)

where the point-wise error is defined by

B. A stationary environment for learning

The usual Q-learning algorithm is based on the assumption
that a randomized stationary policy is applied [1]. Ran-
domization is imposed to allow sufficient sampling of the
state-input space, very much like persistence of excitdato

. g i
Of\z |s| ftull,etzen t?etﬁohcygbd. 'Stoor;;gnalfth t tod required in adaptive control algorithms. We impose a simila
e lety” denote the gradien with respect tof. . assumptions here.

Assuming that we can take the derivative under the norm, In the deterministic model the “excitation signal” is as-

the optimal parameter solves the nonlinear equation, sumed to be deterministic: Suppose t§as an exogenous
<£9,Duﬂ — ) =0, (12) process evolving on a subset &f-dimensional Euclidean

o ; _ _ . space, denoted/. The control at time is a function of the

with o7 (z) = ¢ (z, ¢*(2)), 1 < i < d. As with H in (6), state and this process,

the underline notation is used to denote the minimum taken

with respect tou € U and ¢*(z) is the minimizing policy. u(t) = ¢(z(t),£(t),  t=0, (15)
A solution to (12) can be found using steepest descent;: some functionp: X x W — U.

Let 8 denote the solution to the differential equation,

Our goal is to minimize the Bellman error over élic R?.
If the Bellman error is zero for som#, and if the support

The following assumptions are imposed in our treatment

%9 = V& (0) = — (L, Dab? — e (13) of the determlms'flc model: . -
) ) (Al) The excitation process is the solution to an au-
The right hand side appears to depend upon the unknowiynomous ODE: For a Lipschitz-continuous function
dynamics, sinc®,, is defined based on the nonlinear system g: W — R,

equations (1). This is resolved by recaIIm_g the mt_erp_reta %g(t) = g(£(t)). (16)
of the generator as representing the time derivative. For
example, (A2) There exists a probability measufeon B(X x W)
D HY () = L H?(2(t)) such that the joint process is stationary on the non-negativ
e = B time-axis when(z(0), £(0)) ~ . It is ergodic in the sense

: . p
Consequently, a version of the ODE (13) can be constructegihé"]lt the LLN holds for every continuous functidf R
Rf» — R and almost every initial conditiofx(0), £(0)) €

so that the right hand side is computable without knowledge _
of system dynamics. XxW:As T — oo,

There are however two issues that must be overcome: 1 [T
First is the complexity of integration over the state-input T/O F(a(t),€(t)) dt — /F(x,w)F(d:c,dw). (17)



The support off" is a compact subset @&* x R, For Q-learning, a parameterizatidi’ (z,u) = c(z,u) +
Under (A1) and (A2) we letz°, £°) denote the stationary E? (z) + u"F?"(x) is considered in terms of given set
version of the process on the two-sided time interval, witl®f basis functions, scalar valued functiofy;} and vector-
marginall’, and we denote°(t) = ¢(z°(t), £°(t)). valued functions{¢;'}:

Under these assumptions wlefinethe induced marginal d

dx
w as follows: For any measurable functign X x U — R, H(z,u) = c(z,u)+ % Z@x_wx_(x) +Z@x_uuT (). (25)
5 ) 2 [ J J :
[ steu) @z, du) = [ g(a. o, w) Tdr, du). = =

Observe thatz®,u°) is stationary with marginabs, and the § o 1 "
LLN (14) holds for a.e. initial conditiorico]. H(x) = c(x) + E” (v) = $F* (z) RT'F" (). (26)

The joint processz(t),£(t)) is the solution to an au-
tonomous differential equation under these assumptio

7 (@(0),€(1) = (f(z, ¢(x(t)),£(t))). g(£())). For any con-

tinuously differentiable functioh: X x W — R we denote,

In this notation the minimum off? overu is given by,

n'ghe functionH (z) is linear in¢*, and quadratic irf™.
'A version of the steepest descent algorithm (19) is given
by,

10i(8) = —e (L%, Dut} — 1)

Loty = —e(L0, ~Dy[F™ R — y)

Dh (2, 0) = Soh(e,w) - (2, 6(2,0) + 5-h(a,w) - g(w)

This is the generator for the joint process, defined so that fg . . . . . .
g J P The SDQ-learning algorithm is the stochastic approxinmatio

any timet, X , !
y of these equations obtained via (20).
Dh (z,w) = Lh(z(t),£(t)) ) (18) Our next task is to remove the derivative in (21).
w=£(t)
This definition is consistent with (3): i is a function ofz € Causal smoothing without bias
alone then, The value function/* is defined as an integral of dis-

counted future cost. The main idea of TD learning is to obtain
z=e() a representation of a value function in terms of integrath wi

. . . respect to the reversed-time process. This construction ca
We can now define the SDQ-learning algorithm as a P b

S : as apg performed based on a resolvent kernel and its adjoint [10]
approximation of the steepest descent algorithm to mirémiz . :
(9): The resolvent acts on functiogs X x W — R via

4g = —e(L0 DyVoH’ —VoH") 5 (19)

4 p(x(t)) weoy = Duh(z), whenu = ¢(z,w).

Rog () = [ e Pganem)dr, (@7
wheree = £(0(t),t) is a positive gain. In the stochastic 0
approximation approach the inner product (defined as amith initialization z(0) = =z, £(0) = w. The following
expectation) is replaced by realized values, resolvent equation is central: We have for ghy> 0 and

. . 5. Co
%9 _ —&Ef(%veﬂe (2°(t)) — ’ngHe(Io(t),uo(t))), any functiong for which g” := Ry is finite valued,

(20) Dy’ = B¢’ —g (28)
where LY is realized as
0 derbs o . . 0 o . This follows from the interpretation of the generator in 18
L= 2 (2°(8) +(c(2®(8), u® (1)) = H”(z°(t), u’ (). put is valid even ifg? is not everywhere differentiable. It is
o ) ) ) (21) straightforward to show that the integral form always hplds
To justify this representation we impose further assump- .
tions: 8 8 _/ 8 dt. T
— gy = — , >0, (z,w) e XxXW,
(A3) HY(x,u) and H?(x) are C' functions of (z, u, ). gr=9% = |, (%95 = 91) (,w)
Example. Consider the special case in which the dynamichere, = n(x(t),£(t)) for anyh: X x W — R.
are linear inu, and the cost quadratic im The adjointR% can be expressed in terms of the stationary
Fat) = f@(®) + g(a(®))u(t) g  PrOcess(®. o). -
_ 1,7 (22) Proposition 2.1: The following identities hold for any
c(z,u) = c(r) + 3u’Ru .
8 > 0, and any functiong, h € Lo(T):
(i) Rg is a bounded linear operator frofy(I") to Lo (T),
with induced operator noriRs|r < 371
(ii) Its adjoint coincides with the resolvent for the time-
¢*(x) = —R'F* (z), (23)  reversed process,

with ¢: X — R4 andR > 0. Since dynamics are linear in
we considerQ-function of the formH*(z,u) = c(x,u) +
E*(z) + u"F*(x). The minimization ovelt) in (6) gives

and we have,

H*(z) = H(z,¢"(x)) = c(x)+E*(x)— 3 F* («) 'R F*(x).
(24) with expectation conditional om°(0) = z, £°(0) = w.

Rlyg (2, w) = /OOO e By, wlg(x® (=), €° (1)) dt



(i) RLRs = (28)"1 (R}, + Rp). That s,

(Rog, Roh) = == ((g, RY) + (b, REg))

the motivation is not clear since the Bellman error is not
convex infd. We now introduce a convex setting to obtain an
approximate Newton-Raphson algorithm.

Proof: Part (i) follows from Jensen’s inequality. See [10,p. A convex characterization of the Q-function

Ch. 11] for a proof of (ii) in the Markovian setting. Part Jiii

is established using elementary calculus. Here is an |rtibrmth

interpretation based on the following two facts: The getwera
for the time-reversed process isD, and we haveRg =
[BI —D]~! on a suitable domain. Consequently,

RLRs =8I + D] *[BI — D]

so that (iii) can be interpreted as a partial fraction expgans
O

To define the SD@X)-learning algorithm we first obtain

Our goal in this section is to find a fixed point equation
at characterizes an optimal approximation to the Bellman
equation, obtained as a stationary point for a convex progra
We seek an approximation among the affine family,

H(z,u) = c(z,u) + 0")(z,u), (31)

Even in this special case, the Bellman eréy, is not a
convex function off, so that the existence of a unique
global minimum is unresolved. Specifically, the difficulty
is that H’(z) is not an affine function of). To frame

reX, ueUlU.

a steepest descent algorithm based on a transformationt@¢ approximation problem in a convex analytic setting we

the dynamic programming equation. For a givén- 0 we
denote£?# = RzL? = [BRs — I|H® + vRs(c — HY),
which is a function of the initial conditioriz(0), £(0)). If
this function is zero for somé and all(x, w), it then follows
from the resolvent equation that the same is true fitr
The smoothed Bellman error is given hgs(0) :=
3ILPPI1%,,
sition 2.1 in terms of the adjoint,

vgﬁ(e) = <‘C0,ﬁa v9£0’6>w
— (H®,V,H)., —(<RTE’,4>w +{d, R},vgﬂ">w)
+ 55 (Bhd O+ (4 RYO)
(29)
with d(z,u) := v(c(z,u) — H(z,u)) + BH’(z), and

C(x,u) = [~yVeH’ + BV H"].

whose gradient can be expressed using Propo-

first take a second look at the standard linear programming
approach to dynamic programming.

The discounted cost optimization problem can be formu-
lated as the infinite-dimensional linear program (LP) oher t
space ofC! functions.J: X — R:

(1, J)e

clx,u) + Dy J () > vJ(x)
where(1, J)o = [ J(z)w(dz, du) is the steady-state mean
of J. If we enlarge the varlable space to include functions

of two variables(z,v) then we obtain in (33) an LP that
characterizedi*,

11,60)

c(z,u) + v 1D,G ()
H(xz,u)

max
(32)

s.t. all z, u

max vy

s.t. H(z,u) (33)

>
> G(x).

Each of these five inner products can be estimated usifde variables in this LP are the pair of functiqids, 1), with
sample path averages. The only complication is the adjoifi in the domain of the generator. The inequality constraints
Rg appearing in four of these terms. To treat this we borrow (33) can be interpreted as a relaxation of the identity (5)

from TD learning.

Consider the final inner product, R () appearing in

Note that in this non-parameterized setting, the first in-
equality constraint in (33) can be taken to be an equality

(29). Denote by¢? = {¢¥ :t > 0} the process obtained by constraint without loss of generality in any optimizer. The

filtering ¢ := {¢s = ((2°(s),u°(s))},

t
gf:/ e P9, ds.
0

¢? is similar to theeligibility vector that appears in TD-
learning. The LLN gives, for a.e. initial condition,

1 T
/ di ¢ dt = (d, RiC)w
0

following result, stated without proof, easily implies than
optimizer (G*, H*) for (33) will satisfy y~1G*(x) = J*(z)
for a.e.xz [w].

Lemma 2.2:The following are equivalent for a pair of
functionsG: X — R, H: Xx U — R, with G in the domain
of the generator:

() D.G (x) = —y(c(z,u)—
for each(z,u).
(i) There exists a function™

H(z,u))andG(z) < H(z,u)

: Xx U — R satisfyinge™ <

Based on these representations we arrive at the SpQ( ¢ everywhere,

learning algorithm — a stochastic approximation of steepes  H(z,u) — c(z,u) = H (z,u) — ¢ (x, )
descent, G(r) = H (v), rzeX, ueu,
_ 0 0 0\8 N
@t = —et {ﬂt Vo, _((ﬂ )i Ct +di(VeH); ) with H ™ (z) := min,, H (x,v'), and H~ the Q-function
3 (30)  associated with:~.
*35 (d Ge + dice )} 0

An approximate Newton-Raphson algorithm can be ob- These results suggest many approaches to approximating
tained in a manner similar to LSTD learning [10]. However,H* within the affine family (31). Suppose th&tG?, H?) :



6 € R} is a parameterized family of functions. Consider &. Causal smoothing fails for Bellman error

variant of the smoothed errat” defined in Sec. II-C, The final term in (29) was obtained from the partial
L% = [3Rs — 1|G® +vRs(c — HY) (34) fraction (epresentatioR;Rﬁ = _(_25_)‘1(}2}, + Rp) stated in
Proposition 2.1. In the probabilistic setting the adjoifttee
Our goal is to maximiz&1, G%),, subject tof??(z,u) =0  generator is not simply the negative, and this represemtati
andH (x,u) > G(x) for all z, u. We can construct a convex fails. To obtain a convex program to define an optimal ap-

loss-function by relaxing these constraints through a {pgna proximation we return to the original Q-learning formalism
function. For fixedsx > 0 define, . .
B. Galerkin relaxation

_ 0 K 6 0y |12 0,82 . i .
Eaanne(0) = —(1,G")w + §(||(G —H7) [l + 1£77] ) Our goal is to findH? so that the Bellman error (9) is

. . . ; . (35)  zero, or nearly so. Suppose that instead we insist that its
The function of¢ given by (G’ (x) — H” (x))3 is convex for projection on a subspace is zero.

eachz when the parameterization is affine. The loss-function | et , denote ad-dimensional function orX x W, and
Eaarip(0) is also convex. We can define a steepest descegfioosed so that the projection onto the span fp;} is
or Newton algorithm to compute the valdé that achieves zerg:

its minimum. An on-line implementation is then created by 0= (L i), 1<i<d. (39)

applying the adjoint formulae as in the previous algorithms
The starting point of the Q-learning formalism is to intepr

E. Total cost criterion this as a stationary point for the ODE,
Extension to the total cost criterion is straightforwartieT g (08 )

total cost value function is given by (2) with = 0, and in dt” Ple
this case the optimality equation becomes, Under general conditions, this ODE is locally asymptotical

) . B stable [9]. In particular, it is assumed in [9] that the param

Hﬂn(c(x’u) +DuJ (x)) =0 zeX. eterization is linear, and that = ¢. The ODE is known

Consequently, with* defined in (5) we obtain a version of {0 be globally asymptotically stable when these conditions
the fixed point eq. (6)H* () = min, H*(z,u) = 0. This hold, and in add|t|on{_¢i} consists of indicator functions of
unfortunately does not provide a useful fixed point equatiof®tS that form a partition of > U [1].

for application of Q-learning techniques. A consistent algorithm is obtained by applying the convex
Consider the modified definition: For a given > 0 characterization of Sec. II-D. The optimal discounted cost
redefineH* by, remains a solution to (33) under general conditions on the

Markov model.
H*(z,u) = 0" J* () + c(z,u) + D, J* (z) (36) Let £%% denote the smoothed error defined in (34).

The fixed point equation obtained from the dynamic pro.l-EXaCtIy as in (35) we obtain a convex program through the

gramming equation is then introduction of penalty functions:

— 0 Koo 0y 112
H*(z) =min H*(z,u) = 0 'J*(z), z€X Eaars(0) = —(1, G")w + SII(G” = H)+ (%
) 2 ) (40)
Substituting.* = o~ H* into (36) then gives, + 3 Z(we,ﬁ’%)w)
i=1

DuH™ (x) = —ele(z,u) — H*(z,u) + H(x)]  (37) - .
wherex > 0 is fixed. We can define a steepest descent or
Any of any of the algorithms introduced in this section carNewton algorithm to compute the val@é that achieves its
be adapted to approximaté* by using (37) in place of (7). minimum. This can be translated to form a stochastic approx-
imation algorithm using standard techniques, along with th

introduction of the adjoint to create a causal algorithm.
We now describe briefly extension to Markov models. It is

assumed thaf is itself Markovian, and that the joint process IV. EXAMPLES
(x,€) is Harris ergodic [11]. The resolvent is then defined The examples considered here are all taken to be the
as in (27), with the inclusion of a conditional expectation special case of (22) with a cost quadraticuin

Rsg (z,w) = / e_BtEm,w[g(x(t),ﬁ(t))] dt, (38) A. Local approximation for a nonlinear system
0 The following simple example is borrowed from [8]:
conditional onz°(0) = z and&°(0) = w. The (extended) d

_ .3 1.2, 1,2
generator for the joint process is virtualtjefinedby the @t = LA, c(w,u) = 32° + qu (41)

resolvent equation (28). Consequently, we can almostmbtarhe HJB equation (22) and the formula (23) give(x) =
the expression (29) for the gradient of the Bellman error. v j* (z) and

Unfortunately the development of Sec. II-C fails at one 19 19 5 i} i}
crucial point. min{3z” + zu” + (=2° + )VJ*(2)} = 7J* ().

IIl. EXTENSIONS TOMARKOV MODELS



u emenen. Optimal policy o B. Linear systems
— ) When (22) is linear and:(z,u) = 12'Qz + ju'Ru
005 guadratic, then we take the parameterization
004 dy dxu
008 HY(z,u) = c(x,u) + : Z Fx"E'x + Z O Flu (42)
002 =1 j=1
where the matrices| E*, F'*} are pre-specified. We also

-1 (S

-1 0 Tt

denote the Q-function using the following matrix adaptatio
Fig. 1: Comparison of the optimal policy and the policy obéal fromH?" of (24)

based on SDQ) for the scalar example (41). Also shown is a density plot ’

of the stationary distributioro. The approximation is most accurate where H? (x u) _ c(:z: u) + 2B + 2 Fu (43)
the density has largest mass. ’ ’

! ; — The minimum (26) becomes

u L 1 IR Optimal policy | 0.06

¢ () 3| oo Ee(x) — %ZCT (Q 4 EG _ FQTR—lFe) T.
The policy (11) is given by the linear state feedback law,
¢ () = —R'F' (44)

In the remainder of this example, we summarize the results
; ; L of the SDQf)-learning for a two dimensional state space
B ° T model with a single input,

Fig. 2: The same experiment used to obtain Fig. 1 was perfiyrmecept
that the control input amplitude was increased. This redlilt a stationary = 01 4+ 0 u
distribution zo with broader support. It is evident that the approximating B\ R | 1)’
policy more nearly matches the optimal policy néaf ~ 1 in this case.
Q= (%)), R=1andy = 0.1. The Q-function in (43) has

L . ) ~ the parametrization:
On substitutingu = ¢*(z) into the HIB equation we obtain

12?2 — L(VJ*(2))? — 23V J*(z) = vJ*(z). In the special EY — (exlx 953), FO — (9:1:)
casey = 0 this can be solved: 03 05 03
. Fig. 3 shows results from SD@)-learning for these param-
VI (@) = =2’ + Val +a? eters. Two input trajectories were applied: The first was a
For non-zeroy we don't have an explicit solution to the HIB sum of sinusoids with irrationally related frequencies] tre
equation, but the order of growth can be estimated to givesecond equal to the sum of the first and a (scaled) pulse train.
These inputs are illustrated on the left. The introductién o

VJ*(x) ~ Ol(x) . z~0 impulses speeded convergence of parameters significantly.
55 To(z) T~ The Bellman error converged to zerary quickly using
The Q-function is equal to the sul*(z,u) = c(x,u) + ©ither input.
VJ*(z)(—23 + u). The following two dimensional parame- optimalvalues 70
terization is consistent with these asymptotic expression ... . smoothinput T s s
Smooth + impulsive input
He(‘rau) :C(xvu)+9xx2+9xu1 —|—x2x2u. Input
. . 3 npu
The SDQ()-learning algorithm was run witl = v = 0.1 o2
and the input J
05 t L ! t
u(t) = A(sin(t) + sin(nt) + sin(et)), o 0 | e

whereA is the amplitude of the input. Input trajectories with Fig. 3: sample paths of estimates of the matix for a linear model.
two amplitudes were appliedd = 0.2 and A = 1. In either

case, the parametefs 6™ converge to a steady-state value.C Distributed | of "
For A = 0.2, Fig. 1 compares the optimal policy - Distributed control of multi-agent systems

o T Q-learning is a natural candidate for applications in dis-
¢ (@) = 0" 5 tributed control. We illustrate this with results obtainfed
the large-population cost-coupled LQG problemroduced

evaluated at the steady state value of parametersatith), in [7]

the .analyt|cally obtained th'mal policy at . 0. Fig. 2 The model consists ofi nhon-homogeneous autonomous
depicts the same comparison fdr= 1. The figures show th . .

Y : agents. The"-agent is modeled as a scalar linear system
that the approximation is consistent on the support of the

stationary distributiono. 42 = aw; + b, (45)



where z; and u; denote the state and the control of the There are many avenues open for future research. We list
ih-agent, respectively. The agents are coupled through thgist a few here:

respective quadratic cost functions, () The algorithm can be refined in many ways. State
weighting can be introduced as in LP approaches [5], or
TD learning [10]. Variance reduction techniques might be
where z is the meanz = n=*(z; + -+ + z,). For the  employed for Markovian models [10].

discounted cost LQ problem, the authors introduce a stafi#) The distributed control may be considered by selecting
aggregation procedure whereby each agent solves the dptimaguitable basis. Consider for example the basis in Sec. IV-
control problem using its own state and the average state o€ based on structure for a limiting model with an infinite
all agents, referred to as theass(see Eq. (4.6)-(4.9)in [7]).  number of agents (see also [12], [10]).

The formulation in [7] suggests that each agent cafiii) Finite dimensional parameterizations of Q-learning
learn an approximately optimal policy using Q-learningeTh vite extensions to the POMDP models and the output
“state” of the i"-agent is taken to béz;,z] and the Q- feedback case for deterministic models.
function for the LQ problem is defined according to theacknowLEDGMENT Financial support from the National
matrix parametrization (43). As with the previous examplegcience Foundation (ECS-0523620 and CMS 05-56352) and
each agent has three parametér$)(that are coefficients of | TMANET DARPA RK 2006-07284 is gratefully acknowl-
the basis functiongz?, 2%, z;2}, and two parameterd¥)  edged. Any opinions, findings, and conclusions or recom-
that are coefficients of the basis functiopsu;, zu; }. mendations expressed in this material are those of the @utho

We carried out numerical simulations with five agentsnd do not necessarily reflect the views of NSF or DARPA.

cilwi,ug) = (v, — 2)> +u?, 1<i<n,

described by (45) with

{a;}] _[-01 —0.09 ~0.10 —0.09
{b:}| T 1.0 066 —0.75 0.013

Apart from the first agent, the parameters for the other a;gent[zl
were picked randomly.

—0.03

1.11 1]

(3]
(4]

1 0.06
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Agent 5 is barely controllable
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Fig. 4: Sample paths of estimates @f., k%) for i = 4 and 5, using the
SDQ-learning algorithm. The dashed lines show the asynoptiyt optimal
values obtained in [7].

[71
Five applications of the Q-learning algorithm were run
in parallel. Each of the five inputs; were taken to be 8l
sinusoidal, with irrationally related frequencies. Fig. 4 g
depicts the evolution of estimates of the two components of
the local optimal gain (44) for two of the five agenis<{4 [10]
and 5), expressedi; = —kLxz; — kLz. Also shown are the
gains introduced in [7] that were found to be asymptotically11]
optimal for largen. For all but one qf the five agents, the[lz]
limiting values of the estimates dft’, k%) were close to
those predicted in [7]. The first plot shows typical behaviofi3]

of the algorithm.
In the sole case where the results appear inconsistent, {ag
magnitude of the optimal control gain is nearly zero. This is

because agent 5 is “nearly uncontrollable” with= 0.013. [15]

V. CONCLUSIONS

The reader might now ask, should Watkin’s algorithm be
called H-learning? Or, perhaps D-Q learning? (recall that®!
the Q-function first appeared in the differential dynamic
programming framework of Jacobson and Mayne [8]). WéL7]
leave this decision to the author of the algorithm.

REFERENCES

D.P. Bertsekas and J. N. TsitsiklisNeuro-Dynamic Programming
Atena Scientific, Cambridge, Mass, 1996.

V. S. Borkar and S. P. Meyn. The O.D.E. method for conveogeof
stochastic approximation and reinforcement learnlBigAM J. Control
Optim, 38(2):447-469, 2000.

S. J. Bradtke and A. G. Barto. Linear least-squares #lgos for
temporal difference learningMach. Learn, 22(1-3):33-57, 1996.
S.J. Bradtke, B.E. Ydstie, and A.G. Barto. Adaptive negjuadratic
control using policy iteration. IfProc. of the 1994 American Control
Conferencevolume 3, pages 3475-3479, 1994.

D. P. Pucci de Farias and B. Van Roy. A cost-shaping liragram
for average-cost approximate dynamic programming witfioperance
guaranteesMath. Oper. Res.31(3):597-620, 2006.

J. Han and B. Van Roy. Control of diffusions via linear gram-
ming. To appear in a volume on stochastic programming in hono
of George Dantzig, edited by Gerd Infanger. Preprint abéglaat
http://www.stanford.edu/"bvr/, 2009.

M. Huang, P. E. Caines, and R. P. Malhame. Large-popmati
cost-coupled LQG problems with nonuniform agents: Indigidmass
behavior and decentralized-Nash equilibria. IEEE Trans. Auto.
Control, 52(9):1560-1571, 2007.

D. H. Jacobson and D. Q. Maynbifferential dynamic programming
American Elsevier Pub. Co., New York, NY, 1970.

F. S. Melo, S. Meyn, and M. Isabel Ribeiro. An analysis of
reinforcement learning with function approximatioRroc. of ICML,
pages 664—671, 2008.

S. P. Meyn. Control Techniques for Complex Network€ambridge
University Press, Cambridge, 2007.

S. P. Meyn and R. L. Tweedi®arkov Chains and Stochastic Stability
Springer-Verlag, London, 1993. 2nd Edition to appear, ClOPR2
C.C. Moallemi, S. Kumar, and B. Van Roy. Approximate atata-
driven dynamic programming for queueing networks, 2008.

Y. Tassa and T. Erez. Least squares solutions of the HjiBt®n
with neural network value-function approximatoréEEE Trans. on
Neural Networks18(4):1031-1041, 2007.

J. N. Tsitsiklis and B. Van Roy. An analysis of tempodifference
learning with function approximation.IEEE Trans. Auto. Control
42(5):674-690, 1997.

D. Vrabie, M. Abu-Khalaf, F.L. Lewis, and Y. Wang. Comtious-
time ADP for linear systems with partially unknown dynamick
Proc. IEEE International Symposium on Approximate DynaRrvic-
gramming and Reinforcement Learnjngages 247-253, April 2007.
D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F.L. Lewisdaptive
optimal control for continuous-time linear systems basedpolicy
iteration. Automatica 45(2):477 — 484, 2009.

C. J. C. H. Watkins and P. DayarQ-learning. Machine Learning
8(3-4):279-292, 1992.



