
Q-learning and Pontryagin’s Minimum Principle

Prashant Mehta
Dept. of Mechanical Science and Engg.

and the Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Sean Meyn
Dept. of Electrical and Computer Engg.
and the Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Abstract— Q-learning is a technique used to compute an opti-
mal policy for a controlled Markov chain based on observations
of the system controlled using a non-optimal policy. It has
proven to be effective for models with finite state and action
space. This paper establishes connections between Q-learning
and nonlinear control of continuous-time models with general
state space and general action space. The main contributions
are summarized as follows.
(i) The starting point is the observation that the “Q-function”

appearing in Q-learning algorithms is an extension of the
Hamiltonian that appears in the Minimum Principle. Based
on this observation we introduce the steepest descent Q-
learning (SDQ-learning) algorithm to obtain the optimal
approximation of the Hamiltonian within a prescribed finite -
dimensional function class.

(ii) A transformation of the optimality equations is perfor med
based on the adjoint of a resolvent operator. This is used
to construct a consistent algorithm based on stochastic
approximation that requires only causal filtering of the time-
series data.

(iii) Several examples are presented to illustrate the applica-
tion of these techniques, including application to distributed
control of multi-agent systems.

I. I NTRODUCTION

A. Background

What does Q-learning have to do with the minimum
principle? Q-learning is a technique to compute an optimal
policy, along with the associated value function, based on
observations of the state and input, and without knowledge
of the system model. Pontryagin’s Minimum Principle is a
refinement of the Hamilton-Jacobi-Bellman (HJB) equations
that characterize the optimal value function. In this paperwe
argue that the Hamiltonian appearing in nonlinear control
theory is essentially the same as the ‘Q-function’ that is
the object of interest in Q-learning. We find that there is
also a close connection between Q-learning and differential
dynamic programming [8]. In this way we create a bridge
between the reinforcement learning and nonlinear control
research communities. In the process we introduce new
algorithms for both deterministic and stochastic models.

Several barriers have slowed the creation of a comprehen-
sive theory of reinforcement learning (RL) techniques for
models in continuous time, and general state space. In the
case of temporal-difference (TD) methods, generalizations to
continuous time can be found in the recent works [15] and
[13]. The latter is closely related to the linear programming
formulation of approximate dynamic programming, which
is treated for diffusion models in the recent paper [6].

TD-learning is known to be convergent because it can be
interpreted as a stochastic approximation implementationof
a steepest descent algorithm applied to a convex optimization
problem over a finite dimensional parameter space [14], [3],
[1], [10].

In the case of Q-learning the barriers are more funda-
mental. Watkins introduced the technique in his thesis, and
a complete convergence proof appeared later in [17]. An
elementary proof based on an associated ‘fluid limit model’
is contained in [2]. Unfortunately, these results are fragile,
depending critically on a finite state space and finite action
space. More importantly, these convergence proofs requirea
complete parameterization that includes all possible Markov
models whose state space has a given cardinality. This limits
the applicability of these methods because complexity grows
with the size of the state space. An extension to general state
spaces with finite dimensional parameterization appears in
[9], but the convergence result is essentially a local one.

Progress has been more positive for special classes of
models. For deterministic linear systems with quadratic cost
(the LQR problem), a variant of Q-learning combined with an
adaptive version of policy iteration is known to be convergent
— see [4] for an analysis in discrete time, and [16] for
a similar approach in continuous time. The recent work
[12] contains a variant of parameterized Q-learning designed
specifically for a class of queueing models.

In this paper we take a fresh look at the algorithm. We
formulate a convex optimization problem that characterizes
the best approximation of the Q-function within a given
class, and from this obtain effective algorithms for on-line
computation.

B. Q-learning and the Minimum Principle

To simplify the discussion in this paper we focus attention
on a deterministic model in continuous time. Contained in
Sec. III is discussion on how the concepts and algorithms
introduced in this paper can be extended to more general
controlled Markov processes.

The deterministic model is a nonlinear state space model
with state processx evolving onX, and inputu evolving on
U. The state and action space are assumed to be closed sub-
sets of Euclidean space, of dimensionℓ andℓu, respectively.
The input-state process is described by the state equation,

d
dt
x(t) = f(x(t), u(t)), t ≥ 0, (1)

where f : X × U → R
ℓ is assumed to be continuous,

and x(0) ∈ X is given as an initial condition. Our only
assumptions onf andu is that a unique solution exists for
each initial condition.

It is assumed that a cost functionc : X×U → R+ is given,
and we letJ∗ denote an associated value function. In this
section and throughout most of the paper we restrict to the
discounted cost optimality criterion. For a given discountrate
γ > 0, the value function is defined by

J∗(x) = inf

∫ ∞

0

e−γsc(x(s), u(s)) ds, x(0) = x, (2)

where the infimum is over allu.
We will borrow concepts from Markov decision theory

and the theory of general state space Markov processes. In
particular, thegeneratorthat appears in analysis of Markov
processes is a first order differential operator in this special
case. For anyC1 functionh : X → R we define the function
of two variables,

Duh (x) := (∇h (x))Tf(x, u), (x, u) ∈ X × U. (3)

The generator is defined so that the functionfh(x, u) :=
Duh (x) satisfies d

dt
h(x(t)) = fh(x(t), u(t)) for any state-

input pair (x,u). In the remainder of this paper,∇ is
reserved to denote the gradient operator with respect tox.

If the value function (2) is finite valued, then the
discounted-cost optimality equation holds,

min
u

(

c(x, u) + DuJ
∗ (x)

)

= γJ∗(x), x ∈ X. (4)

The most natural analog of the “Q-function” that appears
in Q-learning is the function of two variables within the
minimum on the left hand side of (4). We denote this by,

H∗(x, u) = c(x, u) + DuJ
∗ (x), (x, u) ∈ X × U. (5)

The functionH∗ will be the object of study throughout the
paper. This function appears in the method ofdifferential
dynamic programming[8]. By consideration ofH∗(x, u)
in place of J∗(x), it is shown in [8] that algorithms can
be constructed to obtain an optimal policylocally, in a
neighborhood of some nominal trajectory. The goal here is
to find anapproximationto the optimal policy that is defined
everywhere.

The Q-function (5) is closely related to the Hamiltonian.
Recall that the Hamiltonian is expressed,

H∗(x, u; p) = c(x, u) + pTf(x, u)

wherep ∈ R
ℓ is the costate variable [8]. Under appropriate

assumptions onc andf we have the Minimum Principle: For
each initial condition there is an optimal state trajectoryx∗

together with an optimalcostatetrajectoryp∗ such that the
HamiltonianH∗(x∗(t), u; p∗(t)) is minimized overu ∈ U

whenu = u∗(t) is optimal.
It is known that, under appropriate conditions, the costate

trajectory can be expressedp∗(t) = ∇J (x∗(t)). On sub-
stitution we conclude thatH∗(x, u; p∗) = H∗(x, u) when
x = x∗(t) andp∗ = p∗(t).

For the discounted-cost optimality criterion, the minimum
of the Q-function is given by the scaled value function,

H∗(x) := min
u∈U

H∗(x, u) = γJ∗(x). (6)

Substituting into (5) then gives a fixed point equation

DuH
∗ (x) = −γ(c(x, u) −H∗(x, u)). (7)

This is essentially equivalent to the fixed point equation
that appears in Q-learning, and this is the promised bridge
between Q-learning and the Minimum Principle. The goal of
the paper is to show how methods from Q-learning and TD-
learning can be adapted to construct optimal approximations
of the Q-functionH∗(x, u).

C. Contributions and overview

The contributions of the paper are summarized as fol-
lows:

(i) The recognition of the connections between Q-learning,
differential dynamic programming, and the Minimum
Principle allows us to unify and extend previous results
on adaptive control fordeterministicnonlinear systems.

(ii) The central idea of TD-learning is to construct a causal
representation of the value function to facilitate the cre-
ation of a causal on-line algorithm. In [10, Ch. 11] it is
argued that this step can be regarded as the application
of an adjoint operator in a certain Hilbert space. The
algorithms introduced here are based on the extension of
this idea to Q-learning.

(iii) The application to distributed control of multi-agent
systems, described with the aid of an example in Sec. IV-
C, is remarkably successful, given the very partial theo-
retical support for this approach. These numerical results
invite many avenues for future research.

The remainder of the paper is organized as follows. The
next section develops the theory of Q-learning for determin-
istic systems. The final refinement is contained in Sec. II-
D, where the convex representation of the Q-function is
introduced. Extensions to Markov models are discussed in
Sec. III, several examples are presented in Sec. IV, and
the paper ends with conclusions and suggestions for future
research in Sec. V.

II. Q-LEARNING FOR DETERMINISTIC MODELS

In this section we develop methods to construct approxi-
mate solutions to the fixed point equation (7). Extensions to
the total cost optimization problem are described in Sec. II-E.

It is assumed that we have a parameterized family of real-
valued functions onX×U, denoted{Hθ(x, u) : θ ∈ R

d, x ∈
X, u ∈ U}. Our goal is to choose the parameterθ so that
Hθ ≈ H∗, where the approximation is with respect to a
specific norm chosen for ease of computationand to weight
state-input pairs according to their relative importance.

We begin with the specification of an error criterion.

A. Bellman error

Throughout the paper we adopt a Hilbert space setting for
approximation. It is assumed that a probability distribution
̟ on B(X × U) is given, and for any square-integrable
measurable functionsF,G : X×U → R we denote an inner
product and norm through the definitions,

〈F,G〉̟ :=

∫

F (x, u)G(x, u)̟(dx, du),

‖F‖2
̟ :=

∫

F 2(x, u)̟(dx, du).

(8)

We letL2(̟) denote those functions with finite norm. This
function space is a Hilbert space with inner-product〈 · , · 〉̟.

The most natural error criterion based on the Hilbert space
norm (8) is the direct error‖H∗ − Hθ‖̟. This is not
easily minimized sinceH∗ is not known. An alternative is
the Bellman error, defined as the mean-square error in the
fixed point equation. For the discounted-cost setting this is
expressed,

EBell(θ) := 1
2‖L

θ‖2
̟, θ ∈ R

d (9)

where the point-wise error is defined by

Lθ(x, u) := DuH
θ (x) + γ(c−Hθ) (10)

with Hθ(x) := infuH
θ(x, u). If the infimum is achieved for

eachx then we denote,

φθ(x) ∈ argmin
u

Hθ(x, u), x ∈ X. (11)

Our goal is to minimize the Bellman error over allθ ∈ R
d.

If the Bellman error is zero for someθ∗, and if the support
of ̟ is full, then the policyφθ∗

is optimal.
We let ψθ denote the gradient ofHθ with respect toθ.

Assuming that we can take the derivative under the norm,
the optimal parameter solves the nonlinear equation,

〈Lθ,Duψ
θ
i − γψθ

i 〉̟ = 0, (12)

with ψθ
i (x) = ψθ

i (x, φ∗(x)), 1 ≤ i ≤ d. As with H in (6),
the underline notation is used to denote the minimum taken
with respect tou ∈ U andφ∗(x) is the minimizing policy.

A solution to (12) can be found using steepest descent:
Let θ denote the solution to the differential equation,

d
dt
θ = −∇EBell (θ) = −〈Lθ,Duψ

θ − γψθ〉̟ (13)

The right hand side appears to depend upon the unknown
dynamics, sinceDu is defined based on the nonlinear system
equations (1). This is resolved by recalling the interpretation
of the generator as representing the time derivative. For
example,

DuH
θ (x) = d

dt
Hθ(x(t))

∣

∣

∣

x=x(t)
u=u(t)

Consequently, a version of the ODE (13) can be constructed
so that the right hand side is computable without knowledge
of system dynamics.

There are however two issues that must be overcome:
First is the complexity of integration over the state-input

space, which is required in the computation of the inner-
product appearing in (13). Second is the differentiation of
potentially noisy measurements. The first issue is overcome
in Sec. II-B by constructing a stationary solution to the
deterministic model. The second issue is addressed in Sec. II-
C by integrating the fixed point equation, and performing a
transformation to obtain a causal characterization ofH∗ that
does not involve a time-derivative. The steps taken to create
this representation are adapted from TD-learning techniques
[1], [10].

For the purposes of approximation we choose an inputu

so that the Law of Large Numbers (LLN) holds with respect
to ̟, in the following form: For each continuous function
F : R

ℓ × R
ℓu → R that is integrable with respect to̟ ,

and almost every initial condition(x(0), u(0)), we have as
T → ∞,

1

T

∫ T

0

F (x(t), u(t)) dt −→

∫

X×U

F (x, u)̟(dx, du). (14)

For example, under general conditions on the system (1)
with a scalar input, the inputu can be chosen as a linear
combination of sinusoids.

The creation of an ergodic realization of the nonlinear
model is what allows us to construct computationally effi-
cient on-line algorithms to compute an optimal approxima-
tion.

B. A stationary environment for learning

The usual Q-learning algorithm is based on the assumption
that a randomized stationary policy is applied [1]. Ran-
domization is imposed to allow sufficient sampling of the
state-input space, very much like persistence of excitation is
required in adaptive control algorithms. We impose a similar
set of assumptions here.

In the deterministic model the “excitation signal” is as-
sumed to be deterministic: Suppose thatξ is an exogenous
process evolving on a subset ofℓw-dimensional Euclidean
space, denotedW. The control at timet is a function of the
state and this process,

u(t) = φ(x(t), ξ(t)), t ≥ 0, (15)

for some functionφ : X × W → U.
The following assumptions are imposed in our treatment

of the deterministic model:
(A1) The excitation process is the solution to an au-

tonomous ODE: For a Lipschitz-continuous function
g : W → R

ℓw ,
d
dt
ξ(t) = g(ξ(t)). (16)

(A2) There exists a probability measureΓ on B(X × W)
such that the joint process is stationary on the non-negative
time-axis when(x(0), ξ(0)) ∼ Γ. It is ergodic in the sense
that the LLN holds for every continuous functionF : R

ℓ×
R

ℓw → R and almost every initial condition(x(0), ξ(0)) ∈
X × W: As T → ∞,

1

T

∫ T

0

F (x(t), ξ(t)) dt −→

∫

F (x,w) Γ(dx, dw). (17)

The support ofΓ is a compact subset ofRℓ × R
ℓw .

Under (A1) and (A2) we let(x◦, ξ◦) denote the stationary
version of the process on the two-sided time interval, with
marginalΓ, and we denoteu◦(t) = φ(x◦(t), ξ◦(t)).

Under these assumptions wedefinethe induced marginal
̟ as follows: For any measurable functiong : X × U → R,

∫

g(x, u)̟(dx, du) =

∫

g(x, φ(x,w)) Γ(dx, dw).

Observe that(x◦,u◦) is stationary with marginal̟ , and the
LLN (14) holds for a.e. initial condition[̟].

The joint process(x(t), ξ(t)) is the solution to an au-
tonomous differential equation under these assumptions,
d
dt

(x(t), ξ(t)) = (f(x, φ(x(t)), ξ(t))), g(ξ(t))). For any con-
tinuously differentiable functionh : X×W → R we denote,

Dh (x,w) =
∂

∂x
h(x,w) · f(x, φ(x,w)) +

∂

∂w
h(x,w) · g(w)

This is the generator for the joint process, defined so that for
any timet,

Dh (x,w) = d
dt
h(x(t), ξ(t))

∣

∣

∣

x=x(t)
w=ξ(t)

. (18)

This definition is consistent with (3): Ifh is a function ofx
alone then,

d
dt
h(x(t))

∣

∣

∣

x=x(t)
w=ξ(t)

= Duh (x), whenu = φ(x,w).

We can now define the SDQ-learning algorithm as an
approximation of the steepest descent algorithm to minimize
(9):

d
dt
θ = −ε〈Lθ,Du∇θH

θ − γ∇θH
θ〉̟ (19)

where ε = ε(θ(t), t) is a positive gain. In the stochastic
approximation approach the inner product (defined as an
expectation) is replaced by realized values,

d
dt
θ = −εtL

θ
t

(

d
dt
∇θH

θ (x◦(t)) − γ∇θH
θ(x◦(t), u◦(t))

)

,

(20)
whereLθ

t is realized as

Lθ
t := d

dt
Hθ (x◦(t))+γ(c(x◦(t), u◦(t))−Hθ(x◦(t), u◦(t))).

(21)
To justify this representation we impose further assump-
tions:
(A3) Hθ(x, u) andHθ(x) areC1 functions of(x, u, θ).
Example. Consider the special case in which the dynamics
are linear inu, and the cost quadratic inu:

d
dt
x(t) = f(x(t)) + g(x(t))u(t)

c(x, u) = c(x) + 1
2u

TRu
(22)

with c : X → R+ andR > 0. Since dynamics are linear inu,
we considerQ-function of the formH∗(x, u) = c(x, u) +
E∗(x) + uTF ∗(x). The minimization overU in (6) gives

φ∗(x) = −R−1F ∗ (x), (23)

and we have,

H∗(x) = H(x, φ∗(x)) = c(x)+E∗(x)− 1
2F

∗(x)
T
R−1F ∗(x).

(24)

For Q-learning, a parameterizationHθ(x, u) = c(x, u) +
Eθx

(x) + uTF θxu
(x) is considered in terms of agiven set

of basis functions, scalar valued functions{ψx
i} and vector-

valued functions{ψxu
i }:

Hθ(x, u) = c(x, u)+ 1
2

dx
∑

i=1

θx
iψ

x
i(x)+

dxu
∑

j=1

θxu
j u

Tψxu
j (x). (25)

In this notation the minimum ofHθ overu is given by,

Hθ(x) = c(x) + Eθx

(x) − 1
2F

θxu

(x)
T
R−1F θxu

(x). (26)

The functionHθ(x) is linear inθx, and quadratic inθxu.
A version of the steepest descent algorithm (19) is given

by,

d
dt
θx

i(t) = −εx〈Lθ,Duψ
x
i − γψx

i〉̟
d
dt
θxu

i (t) = −εxu〈Lθ,−Du[F θxuT
R−1ψxu

i] − γψxu
i 〉̟

The SDQ-learning algorithm is the stochastic approximation
of these equations obtained via (20).�

Our next task is to remove the derivative in (21).

C. Causal smoothing without bias

The value functionJ∗ is defined as an integral of dis-
counted future cost. The main idea of TD learning is to obtain
a representation of a value function in terms of integrals with
respect to the reversed-time process. This construction can
be performed based on a resolvent kernel and its adjoint [10].

The resolvent acts on functionsg : X × W → R via

Rβg (x,w) =

∫ ∞

0

e−βtg(x(t), ξ(t)) dt, (27)

with initialization x(0) = x, ξ(0) = w. The following
resolvent equation is central: We have for anyβ > 0 and
any functiong for which gβ :=Rβg is finite valued,

Dgβ = βgβ − g (28)

This follows from the interpretation of the generator in (18),
but is valid even ifgβ is not everywhere differentiable. It is
straightforward to show that the integral form always holds,

g
β
T − g

β
0 =

∫ T

0

(

βg
β
t − gt

)

dt, T > 0, (x,w) ∈ X × W ,

whereht = h(x(t), ξ(t)) for anyh : X × W → R.
The adjointR†

β can be expressed in terms of the stationary
process(x◦, ξ◦).

Proposition 2.1:The following identities hold for any
β > 0, and any functionsg, h ∈ L2(Γ):

(i) Rβ is a bounded linear operator fromL2(Γ) to L2(Γ),
with induced operator norm‖Rβ‖Γ ≤ β−1.

(ii) Its adjoint coincides with the resolvent for the time-
reversed process,

R
†
βg (x,w) =

∫ ∞

0

e−βt
Ex, w[g(x◦(−t), ξ◦(−t))] dt

with expectation conditional onx◦(0) = x, ξ◦(0) = w.

(iii) R
†
βRβ = (2β)−1(R†

β + Rβ). That is,

〈Rβg,Rβh〉 =
1

2β

(

〈g,R†
βh〉 + 〈h,R†

βg〉
)

Proof: Part (i) follows from Jensen’s inequality. See [10,
Ch. 11] for a proof of (ii) in the Markovian setting. Part (iii)
is established using elementary calculus. Here is an informal
interpretation based on the following two facts: The generator
for the time-reversed process is−D, and we haveRβ =
[βI −D]−1 on a suitable domain. Consequently,

R
†
βRβ = [βI + D]−1[βI −D]−1

so that (iii) can be interpreted as a partial fraction expansion.
⊓⊔

To define the SDQ(β)-learning algorithm we first obtain
a steepest descent algorithm based on a transformation of
the dynamic programming equation. For a givenβ > 0 we
denoteLθ,β = RβL

θ = [βRβ − I]Hθ + γRβ(c − Hθ),
which is a function of the initial condition(x(0), ξ(0)). If
this function is zero for someθ and all(x,w), it then follows
from the resolvent equation that the same is true florLθ.

The smoothed Bellman error is given byEβ(θ) :=
1
2‖L

θ,β‖2
̟, whose gradient can be expressed using Propo-

sition 2.1 in terms of the adjoint,

∇Eβ(θ) = 〈Lθ,β ,∇θL
θ,β〉̟

= 〈Hθ,∇θH
θ〉̟−

(

〈R†
βH

θ, ζ〉̟ + 〈d,R†
β∇θH

θ〉̟

)

+
1

2β

(

〈R†
βd, ζ〉̟ + 〈d,R†

βζ〉̟

)

(29)
with d(x, u) := γ(c(x, u) − Hθ(x, u)) + βHθ(x), and
ζ(x, u) := [−γ∇θH

θ + β∇θH
θ].

Each of these five inner products can be estimated using
sample path averages. The only complication is the adjoint
R

†
β appearing in four of these terms. To treat this we borrow

from TD learning.
Consider the final inner product〈d,R†

βζ〉̟ appearing in

(29). Denote byζβ = {ζβ
t : t ≥ 0} the process obtained by

filtering ζ := {ζs = ζ(x◦(s), u◦(s))},

ζ
β
t =

∫ t

0

e−β(t−s)ζs ds.

ζβ is similar to theeligibility vector that appears in TD-
learning. The LLN gives, for a.e. initial condition,

lim
T→∞

1

T

∫ T

0

dtζ
β
t dt = 〈d,R†

βζ〉̟.

Based on these representations we arrive at the SDQ(β)-
learning algorithm — a stochastic approximation of steepest
descent,

d
dt
θ = −εt

[

Hθ
t∇θH

θ
t−

(

(Hθ)β
t ζt + dt(∇θH

θ)β
t

)

+
1

2β

(

d
β
t ζt + dtζ

β
t

)]

.
(30)

An approximate Newton-Raphson algorithm can be ob-
tained in a manner similar to LSTD learning [10]. However,

the motivation is not clear since the Bellman error is not
convex inθ. We now introduce a convex setting to obtain an
approximate Newton-Raphson algorithm.

D. A convex characterization of the Q-function

Our goal in this section is to find a fixed point equation
that characterizes an optimal approximation to the Bellman
equation, obtained as a stationary point for a convex program.
We seek an approximation among the affine family,

Hθ(x, u) = c(x, u) + θTψ(x, u), x ∈ X, u ∈ U. (31)

Even in this special case, the Bellman errorEBell is not a
convex function ofθ, so that the existence of a unique
global minimum is unresolved. Specifically, the difficulty
is that Hθ(x) is not an affine function ofθ. To frame
the approximation problem in a convex analytic setting we
first take a second look at the standard linear programming
approach to dynamic programming.

The discounted cost optimization problem can be formu-
lated as the infinite-dimensional linear program (LP) over the
space ofC1 functionsJ : X → R+:

max 〈1, J〉̟

s.t. c(x, u) + DuJ (x) ≥ γJ(x) all x, u
(32)

where〈1, J〉̟ =
∫

J(x)̟(dx, du) is the steady-state mean
of J . If we enlarge the variable space to include functions
of two variables(x, u) then we obtain in (33) an LP that
characterizesH∗,

max γ−1〈1, G〉̟

s.t. c(x, u) + γ−1DuG (x) ≥ H(x, u)
H(x, u) ≥ G(x).

(33)

The variables in this LP are the pair of functions(G,H), with
G in the domain of the generator. The inequality constraints
in (33) can be interpreted as a relaxation of the identity (5).

Note that in this non-parameterized setting, the first in-
equality constraint in (33) can be taken to be an equality
constraint without loss of generality in any optimizer. The
following result, stated without proof, easily implies that an
optimizer(G∗, H∗) for (33) will satisfyγ−1G∗(x) = J∗(x)
for a.e.x [̟].

Lemma 2.2:The following are equivalent for a pair of
functionsG : X → R, H : X×U → R, with G in the domain
of the generator:
(i) DuG (x) = −γ(c(x, u)−H(x, u)) andG(x) ≤ H(x, u)

for each(x, u).
(ii) There exists a functionc− : X×U → R satisfyingc− ≤
c everywhere,

H(x, u) − c(x, u) = H−(x, u) − c−(x, u)

G(x) = H−(x), x ∈ X, u ∈ U,

with H−(x) := minu′ H−(x, u′), andH− the Q-function
associated withc−.

⊓⊔

These results suggest many approaches to approximating
H∗ within the affine family (31). Suppose that{(Gθ, Hθ) :

θ ∈ R
d} is a parameterized family of functions. Consider a

variant of the smoothed errorLθ,β defined in Sec. II-C,

Lθ,β = [βRβ − I]Gθ + γRβ(c−Hθ) (34)

Our goal is to maximize〈1, Gθ〉̟, subject toLθ,β(x, u) = 0
andH(x, u) ≥ G(x) for all x, u. We can construct a convex
loss-function by relaxing these constraints through a penalty
function. For fixedκ > 0 define,

EBell-LP(θ) = −〈1, Gθ〉̟ +
κ

2

(

‖(Gθ −Hθ)+‖
2
̟ + ‖Lθ,β‖2

)

(35)
The function ofθ given by(Gθ(x)−Hθ(x))2+ is convex for
eachx when the parameterization is affine. The loss-function
EBell-LP(θ) is also convex. We can define a steepest descent
or Newton algorithm to compute the valueθ∗ that achieves
its minimum. An on-line implementation is then created by
applying the adjoint formulae as in the previous algorithms.

E. Total cost criterion

Extension to the total cost criterion is straightforward. The
total cost value function is given by (2) withγ = 0, and in
this case the optimality equation becomes,

min
u

(

c(x, u) + DuJ
∗ (x)

)

= 0, x ∈ X.

Consequently, withH∗ defined in (5) we obtain a version of
the fixed point eq. (6),H∗(x) = minuH

∗(x, u) = 0. This
unfortunately does not provide a useful fixed point equation
for application of Q-learning techniques.

Consider the modified definition: For a given̺ > 0
redefineH∗ by,

H∗(x, u) = ̺−1J∗(x) + c(x, u) + DuJ
∗ (x) (36)

The fixed point equation obtained from the dynamic pro-
gramming equation is then

H∗(x) = min
u
H∗(x, u) = ̺−1J∗(x), x ∈ X.

SubstitutingJ∗ = ̺−1H∗ into (36) then gives,

DuH
∗ (x) = −̺[c(x, u) −H∗(x, u) +H∗(x)] (37)

Any of any of the algorithms introduced in this section can
be adapted to approximateH∗ by using (37) in place of (7).

III. E XTENSIONS TOMARKOV MODELS

We now describe briefly extension to Markov models. It is
assumed thatξ is itself Markovian, and that the joint process
(x, ξ) is Harris ergodic [11]. The resolvent is then defined
as in (27), with the inclusion of a conditional expectation

Rβg (x,w) =

∫ ∞

0

e−βt
Ex, w[g(x(t), ξ(t))] dt, (38)

conditional onx◦(0) = x and ξ◦(0) = w. The (extended)
generator for the joint process is virtuallydefinedby the
resolvent equation (28). Consequently, we can almost obtain
the expression (29) for the gradient of the Bellman error.
Unfortunately the development of Sec. II-C fails at one
crucial point.

A. Causal smoothing fails for Bellman error

The final term in (29) was obtained from the partial
fraction representationR†

βRβ = (2β)−1(R†
β +Rβ) stated in

Proposition 2.1. In the probabilistic setting the adjoint of the
generator is not simply the negative, and this representation
fails. To obtain a convex program to define an optimal ap-
proximation we return to the original Q-learning formalism.

B. Galerkin relaxation

Our goal is to findHθ so that the Bellman error (9) is
zero, or nearly so. Suppose that instead we insist that its
projection on a subspace is zero.

Let ϕ denote ad-dimensional function onX × W, and
chooseθ so that the projection onto the span of{ϕi} is
zero:

0 = 〈Lθ,β, ϕi〉̟, 1 ≤ i ≤ d. (39)

The starting point of the Q-learning formalism is to interpret
this as a stationary point for the ODE,

d
dt
θ = −〈Lθ,β, ϕ〉̟

Under general conditions, this ODE is locally asymptotically
stable [9]. In particular, it is assumed in [9] that the param-
eterization is linear, and thatϕ ≡ ψ. The ODE is known
to be globally asymptotically stable when these conditions
hold, and in addition{ψi} consists of indicator functions of
sets that form a partition ofX × U [1].

A consistent algorithm is obtained by applying the convex
characterization of Sec. II-D. The optimal discounted cost
remains a solution to (33) under general conditions on the
Markov model.

Let Lθ,β denote the smoothed error defined in (34).
Exactly as in (35) we obtain a convex program through the
introduction of penalty functions:

EBell-G(θ) = −〈1, Gθ〉̟ +
κ

2
‖(Gθ −Hθ)+‖

2
̟

+
κ

2

d
∑

i=1

(

〈Lθ,β, ϕi〉̟
)2

(40)

whereκ > 0 is fixed. We can define a steepest descent or
Newton algorithm to compute the valueθ∗ that achieves its
minimum. This can be translated to form a stochastic approx-
imation algorithm using standard techniques, along with the
introduction of the adjoint to create a causal algorithm.

IV. EXAMPLES

The examples considered here are all taken to be the
special case of (22) with a cost quadratic inu.

A. Local approximation for a nonlinear system

The following simple example is borrowed from [8]:

d
dt
x = −x3 + u, c(x, u) = 1

2x
2 + 1

2u
2 (41)

The HJB equation (22) and the formula (23) giveφ∗(x) =
−∇J∗ (x) and

min
u

{ 1
2x

2 + 1
2u

2 + (−x3 + u)∇J∗(x)} = γJ∗(x).

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Optimal policy

Fig. 1: Comparison of the optimal policy and the policy obtained fromHθ
∗

based on SDQ(γ) for the scalar example (41). Also shown is a density plot
of the stationary distribution̟ . The approximation is most accurate where
the density has largest mass.

0.01

0.02

0.03

0.04

0.05

0.06

−1 0 1
−1

0

1

Optimal policy

Fig. 2: The same experiment used to obtain Fig. 1 was performed, except
that the control input amplitude was increased. This resulted in a stationary
distribution ̟ with broader support. It is evident that the approximating
policy more nearly matches the optimal policy near|x| ∼ 1 in this case.

On substitutingu = φ∗(x) into the HJB equation we obtain
1
2x

2 − 1
2 (∇J∗(x))2 − x3∇J∗(x) = γJ∗(x). In the special

caseγ = 0 this can be solved:

∇J∗(x) = −x3 +
√

x6 + x2

For non-zeroγ we don’t have an explicit solution to the HJB
equation, but the order of growth can be estimated to give,

∇J∗(x) ≈

{

O(x) x ∼ 0
1
2x

+ o(1
x
) x ∼ ∞

The Q-function is equal to the sumH∗(x, u) = c(x, u) +
∇J∗(x)(−x3 + u). The following two dimensional parame-
terization is consistent with these asymptotic expressions:

Hθ(x, u) = c(x, u) + θxx2 + θxu x

1 + 2x2
u.

The SDQ(β)-learning algorithm was run withβ = γ = 0.1
and the input

u(t) = A(sin(t) + sin(πt) + sin(et)),

whereA is the amplitude of the input. Input trajectories with
two amplitudes were applied:A = 0.2 andA = 1. In either
case, the parametersθx, θxu converge to a steady-state value.
For A = 0.2, Fig. 1 compares the optimal policy

φθ∗

(x) = −θxu x

1 + 2x2
,

evaluated at the steady state value of parameters withφ∗(x),
the analytically obtained optimal policy atγ = 0. Fig. 2
depicts the same comparison forA = 1. The figures show
that the approximation is consistent on the support of the
stationary distribution̟ .

B. Linear systems

When (22) is linear andc(x, u) = 1
2x

TQx + 1
2u

TRu

quadratic, then we take the parameterization

Hθ(x, u) = c(x, u) + 1
2

dx
∑

i=1

θx
ix

TEix+

dxu
∑

j=1

θx
jx

TF iu (42)

where the matrices{Ei, F i} are pre-specified. We also
denote the Q-function using the following matrix adaptation
of (24),

Hθ(x, u) = c(x, u) + xTEθx+ xTF θu (43)

The minimum (26) becomes

Hθ(x) = 1
2x

T

(

Q+ Eθ − F θT
R−1F θ

)

x.

The policy (11) is given by the linear state feedback law,

φθ(x) = −R−1F θx (44)

In the remainder of this example, we summarize the results
of the SDQ(γ)-learning for a two dimensional state space
model with a single input,

ẋ =

(

0 1

−1 − 1

)

x+

(

0

1

)

u,

Q =
(

1 0
0 1

)

, R = 1 andγ = 0.1. The Q-function in (43) has
the parametrization:

Eθ =

(

θx
1 θx

3

θx
3 θ

x
2

)

, F θ =

(

θxu
1

θxu
2

)

.

Fig. 3 shows results from SDQ(γ)-learning for these param-
eters. Two input trajectories were applied: The first was a
sum of sinusoids with irrationally related frequencies, and the
second equal to the sum of the first and a (scaled) pulse train.
These inputs are illustrated on the left. The introduction of
impulses speeded convergence of parameters significantly.
The Bellman error converged to zerovery quickly using
either input.

Optimal values

Smooth input

Smooth + impulsive input

x 10
4

Input

0 50

0

0.5

-0.5

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

Fig. 3: Sample paths of estimates of the matrixF ∗ for a linear model.

C. Distributed control of multi-agent systems

Q-learning is a natural candidate for applications in dis-
tributed control. We illustrate this with results obtainedfor
the large-population cost-coupled LQG problemintroduced
in [7].

The model consists ofn non-homogeneous autonomous
agents. Theith-agent is modeled as a scalar linear system

d
dt
xi = aixi + biui, (45)

where xi and ui denote the state and the control of the
ith-agent, respectively. The agents are coupled through their
respective quadratic cost functions,

ci(xi, ui) = (xi − z)2 + u2
i , 1 ≤ i ≤ n,

where z is the mean,z = n−1(x1 + · · · + xn). For the
discounted cost LQ problem, the authors introduce a state
aggregation procedure whereby each agent solves the optimal
control problem using its own state and the average state of
all agents, referred to as themass(see Eq. (4.6)-(4.9) in [7]).

The formulation in [7] suggests that each agent can
learn an approximately optimal policy using Q-learning. The
“state” of the ith-agent is taken to be[xi, z] and the Q-
function for the LQ problem is defined according to the
matrix parametrization (43). As with the previous example,
each agent has three parameters (Eθ) that are coefficients of
the basis functions{x2

i , z
2, xiz}, and two parameters (F θ)

that are coefficients of the basis functions{xiui, zui}.
We carried out numerical simulations with five agents

described by (45) with
[

{ai}
{bi}

]

=

[

−0.1 −0.09 −0.03 −0.10 −0.09
1.0 0.66 1.11 −0.75 0.013

]

Apart from the first agent, the parameters for the other agents
were picked randomly.

0 1 2 3 4 5 6 7 8 9 10
x 10

40 1 2 3 4 5 6 7 8 9 10

−0.06

0

0.06

0

1

-1

Agent 5 is barely controllableAgent 4

(i
n

d
iv

id
u

a
l s

ta
te

)

(e
n

se
m

b
le

 s
ta

te
)

Fig. 4: Sample paths of estimates of(ki
x, ki

z) for i = 4 and 5, using the
SDQ-learning algorithm. The dashed lines show the asymptotically optimal
values obtained in [7].

Five applications of the Q-learning algorithm were run
in parallel. Each of the five inputsui were taken to be
sinusoidal, with irrationally related frequencies. Fig. 4
depicts the evolution of estimates of the two components of
the local optimal gain (44) for two of the five agents (i = 4
and 5), expressedui = −ki

xxi − ki
zz. Also shown are the

gains introduced in [7] that were found to be asymptotically
optimal for largen. For all but one of the five agents, the
limiting values of the estimates of(ki

x, k
i
z) were close to

those predicted in [7]. The first plot shows typical behavior
of the algorithm.

In the sole case where the results appear inconsistent, the
magnitude of the optimal control gain is nearly zero. This is
because agent 5 is “nearly uncontrollable” withb5 = 0.013.

V. CONCLUSIONS

The reader might now ask, should Watkin’s algorithm be
called H-learning? Or, perhaps D-Q learning? (recall that
the Q-function first appeared in the differential dynamic
programming framework of Jacobson and Mayne [8]). We
leave this decision to the author of the algorithm.

There are many avenues open for future research. We list
just a few here:

(i) The algorithm can be refined in many ways. State
weighting can be introduced as in LP approaches [5], or
TD learning [10]. Variance reduction techniques might be
employed for Markovian models [10].

(ii) The distributed control may be considered by selecting
suitable basis. Consider for example the basis in Sec. IV-
C based on structure for a limiting model with an infinite
number of agents (see also [12], [10]).

(iii) Finite dimensional parameterizations of Q-learningin-
vite extensions to the POMDP models and the output
feedback case for deterministic models.

ACKNOWLEDGMENT Financial support from the National
Science Foundation (ECS-0523620 and CMS 05-56352) and
ITMANET DARPA RK 2006-07284 is gratefully acknowl-
edged. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF or DARPA.

REFERENCES

[1] D.P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming.
Atena Scientific, Cambridge, Mass, 1996.

[2] V. S. Borkar and S. P. Meyn. The O.D.E. method for convergence of
stochastic approximation and reinforcement learning.SIAM J. Control
Optim., 38(2):447–469, 2000.

[3] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for
temporal difference learning.Mach. Learn., 22(1-3):33–57, 1996.

[4] S.J. Bradtke, B.E. Ydstie, and A.G. Barto. Adaptive linear quadratic
control using policy iteration. InProc. of the 1994 American Control
Conference, volume 3, pages 3475–3479, 1994.

[5] D. P. Pucci de Farias and B. Van Roy. A cost-shaping linearprogram
for average-cost approximate dynamic programming with performance
guarantees.Math. Oper. Res., 31(3):597–620, 2006.

[6] J. Han and B. Van Roy. Control of diffusions via linear program-
ming. To appear in a volume on stochastic programming in honor
of George Dantzig, edited by Gerd Infanger. Preprint available at
http://www.stanford.edu/˜bvr/, 2009.

[7] M. Huang, P. E. Caines, and R. P. Malhame. Large-population
cost-coupled LQG problems with nonuniform agents: Individual-mass
behavior and decentralizedε-Nash equilibria. IEEE Trans. Auto.
Control, 52(9):1560–1571, 2007.

[8] D. H. Jacobson and D. Q. Mayne.Differential dynamic programming.
American Elsevier Pub. Co., New York, NY, 1970.

[9] F. S. Melo, S. Meyn, and M. Isabel Ribeiro. An analysis of
reinforcement learning with function approximation.Proc. of ICML,
pages 664–671, 2008.

[10] S. P. Meyn. Control Techniques for Complex Networks. Cambridge
University Press, Cambridge, 2007.

[11] S. P. Meyn and R. L. Tweedie.Markov Chains and Stochastic Stability.
Springer-Verlag, London, 1993. 2nd Edition to appear, CUP 2009.

[12] C.C. Moallemi, S. Kumar, and B. Van Roy. Approximate anddata-
driven dynamic programming for queueing networks, 2008.

[13] Y. Tassa and T. Erez. Least squares solutions of the HJB equation
with neural network value-function approximators.IEEE Trans. on
Neural Networks, 18(4):1031–1041, 2007.

[14] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference
learning with function approximation.IEEE Trans. Auto. Control,
42(5):674–690, 1997.

[15] D. Vrabie, M. Abu-Khalaf, F.L. Lewis, and Y. Wang. Continuous-
time ADP for linear systems with partially unknown dynamics. In
Proc. IEEE International Symposium on Approximate DynamicPro-
gramming and Reinforcement Learning, pages 247–253, April 2007.

[16] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F.L. Lewis. Adaptive
optimal control for continuous-time linear systems based on policy
iteration. Automatica, 45(2):477 – 484, 2009.

[17] C. J. C. H. Watkins and P. Dayan.Q-learning. Machine Learning,
8(3-4):279–292, 1992.

