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Decentralized Optimal Control of Distributed
Interdependent Automata With Priority Structure

Olaf Stursberg, Member, IEEE, and Christian Hillmann

Abstract— For distributed discrete-event systems (DESs),
which are specified by a set of coupled automata, the centralized
synthesis for a composed plant model is often undesired due to a
high computational effort and the need to subsequently split the
result into local controllers. This paper proposes modeling and
synthesis procedures to obtain optimal decentralized controllers
in state-feedback form for distributed DES. In particular, this
paper addresses the DES with priority structures, in which
subsystems with high priorities are supplied with the output of
subsystems with lower priority. If the subsystem dependencies
have linear or treelike structures, the synthesis of the subsystem
controllers can be accomplished separately. Any local controller
is computed by algebraic computations, it communicates with
controllers of adjacent subsystems, and it aims at transferring
the corresponding subsystem into goal states with a minimal sum
of transfer costs. As is shown for an example, the computational
effort can be significantly reduced compared with the synthesis
of centralized controllers following the composition of all
subsystem models.

Note to Practitioners—In industrial practice, controllers to
realize sequential procedures for processes such as multistep
production schemes are very often designed manually, i.e., the
designer selects a sequence of control actions based on an
intuition of what has to be triggered next in order to get to
a goal state. Such procedure (leading to controllers implemented
often on a PLC) is of combinatorial nature and thus typically
time-consuming and error-prone. To avoid several iterations over
testing and correcting the controllers, the algorithmic and model-
based synthesis is proposed as a reasonable alternative in this
paper: a distributed discrete process is first modeled by modular
discrete-event models, which explicitly account for the depen-
dencies among the process units. While it is often difficult for a
given process to manually select one out of many feasible control
strategies, the algorithms for control synthesis proposed in this
paper employ optimization to determine the behavior, which is
most favorable with respect to costs associated with the model.

Index Terms— Automata, decentralized control, discrete-event
systems (DESs), optimization, production automation, supervi-
sory control.

I. INTRODUCTION

THE common engineering principle of divide-and-conquer
is standard in automation of larger processes. For exam-

ple, the manual design and implementation of supervisory or
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sequential controllers are typically accomplished separately
for the logical units (subsystems or modules) of the overall
process. Modeling the process dynamics by discrete-event
systems (DESs) is also typically tractable only if subsystems
are modeled separately, and then coupled by appropriate
signals or variables [1]. The algorithmic and model-based
computation of DES controllers often follows a scheme of
first computing a composition of the subsystem models, then
generating a controller for the monolithic model, and finally
partitioning the controller according to hardware infrastructure
used for implementation [2]. For the reasons of computa-
tional efficiency (and also to render the step of partitioning
superfluous), the distributed computation of local subsystem
controllers is a reasonable alternative, as discussed already
in [3]. This paper follows the idea of decentralized control
synthesis and combines it to the principles of optimization
DES with particular structures.

The structures under consideration are motivated by the
dependencies among subsystems, which can be observed,
e.g., in industrial production processes with unidirectional
supply schemes. Consider the example of an assembly process
consisting of two machines, where the first machine assembles
parts which are produced by a second one. When designing a
discrete-event controller to establish the assembly procedure
for the first machine, the second one must deliver the required
parts at appropriate instances of time. The behavior and
control objectives of the second machine must thus be aligned
to the control strategy for the first. This also means that
the controller of the first machine is entitled to define (and
communicate) sequences of goal states to the controller of the
second machine. With respect to the overall control objectives,
the first machine can be identified as the one for which the
control goal has to be satified with high priority, while the
second machine can be classified as subordinated. One can
easily imagine priority schemes of similar type, which involve
more than two production units.

With respect to existing and relevant work on control
synthesis for the DES, the approach of supervisory control
theory (SCT) according to [4] is well established. In a
language-based setting, algorithms based on the SCT generate
controllers to formulate the set of behaviors, which is
permissible according to a given specification. A large number
of extensions of the SCT exist, including approaches to
decentralized control [5]–[7], hierarchical structures [8]–[10]
including consistency [11], communication aspects [12], [13],
concurrence [14], modularity [15], as well as the transfor-
mation into PLC programs [16]. The work in [17] addresses
the issue of reducing the computational complexity of the
synthesis task by defining tailored and relatively small modular
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abstractions. All of these approaches do not include the notion
of minimizing transition cost (and thus selecting one out of
several permitted behaviors), in opposite to the objective of
this paper.

The approaches reported in [18] and [19] (together with
preceding papers by the same authors) establish a theory of
optimal control for the DES within the framework of the
SCT. This is extended to time-varying DES and the notion
of near-optimal solutions computed online in [20]. The work
in [21] considers, in particular, so-called disabling costs and
proposes an approach to optimal supervisory control for this
setting. However, in contrast to what is reported here, the
aforementioned papers do not consider plant modularity and
decentralized control, i.e., they aim at optimizing permissible
languages for a centralized controller instance. Sadid et al. [22]
formulate a multiobjective optimization problem for decen-
tralized DES, in order to solve the problem of collision
avoidance of a set of autonomous vehicles. Opposed to the
work presented in the paper at hand, [22] uses evolutionary
algorithms to approximate the optimal solution, and it does not
consider dependency structures among subsystems. The latter
point also holds true for the work in [23], which addresses
the synthesis of optimal supervisors for cyclic processes (as
frequently occurring in manufacturing processing) with inter-
leaving tasks.

While the above listing of relevant work refers to finite-state
automata, another relevant class of techniques for obtaining
decentralized controllers for DES starts from Petri net models.
For example, the work reported in [24] and [25] proposes
different means to consider distributed structures of the plant,
and/or to produce controllers adhering to the principles of
decentralization, but optimizing behavior is not considered.
The approach in [26] combines the controller synthesis for
manufacturing systems with optimization, but rather optimizes
the use of resources than the costs associated with the transfer
into goal states. The work in [27] explicitly relates to the
design of distributed supervisors represented by Petri nets, but
does not use principles of optimal control.

In contrast to the aforementioned appoaches, this paper
follows the lines of algebraic controller computation as pro-
posed in [28]. The main idea there is to the transfer principles
of discrete-time linear time-invariant systems to the domain
of the DES, and, in particular, to model distributed and
hierarchical structures of the DES by algebraic descriptions.
These ideas were used in [29] to obtain online-reconfigured
feedback controllers, which account for the occurrence of
failures or changing goal specifications. As in [30], the work
in [29] employs DES models with a notion of transition
costs to enable an ordering of feasible solutions and thus the
computation of cost-optimal controllers. Both the approaches,
however, were formulated for monolithic systems only, but not
for a distributed setting of the DES.

In this paper, the algebraic computation of optimal state-
feedback controllers for distributed systems is addressed, and,
in particular, for linear and treelike dependence structures.
These structures allow computing local controllers of
subsystems separately, what may considerably reduce the
overall computational effort, compared with the synthesis

Fig. 1. Subsystem i as part of a larger structure. a©: control loop of
plant Pi and controller Ci . b©: unidirectional plant coupling. c©: controller
communication.

of centralized controllers. In addition, the scheme naturally
leads to a set of local controllers to be implemented on
separate hardware. In a preliminary version of this paper [31],
an algorithm for a linear structure of interacting the DES
was already proposed. This paper extends this work by an
algorithm for terminal (independent) subsystems, the proof
of optimality of the local controllers, and the consideration
of tree structures, where each subsystem may depend on the
output of several subsystems with lower priority.

This paper is organized such that Section II first introduces
the modeling of subsystems and dependencies, the task of
optimizing transfer costs for subsystems, and an algorithm
for controller synthesis of independent subsystems. Section III
focuses on linear system structures, presents a corresponding
synthesis algorithm, and discusses the computational effort.
While Section IV extends the consideration to treelike system
structures, Section V illustrates the procedure for an example
from the domain of assembly processes and demonstrates the
computational complexity, and Section VI concludes this paper
with a discussion.

II. MODELING AND CONTROL OF A DES SUBSYSTEM

The objective of this paper is to investigate the controller
synthesis for distributed DESs, in which several subsystems
are interconnected by particular, directed dependencies. Before
the overall system structure is introduced, this section first
describes the model and the control task for a single subsys-
tem. Consider Fig. 1 as illustration of such a subsystem with
index i , consisting of a plant model Pi and a controller Ci .
Both form a local control loop, which can be subject to
coupling among subsystems on the plant level, as well as
communication between controllers. The subsequent sections
will clarify that the unidirectional coupling among subsystems,
as shown in Fig. 1, prepares the priority structures envisaged
in this paper.

A. Subsystem Definition

The plant Pi is modeled as deterministic finite-state automa-
ton according to Definition 1.

Definition 1: The subsystem model Pi = (T , Ui , Xi ,
Y i , W i , f i , gi ) consists of an ordered time domain T =
{0, 1, 2, . . .} ⊂ N ∪ {0} with k ∈ T referring to an event time,
and finite sets of discrete inputs νi

k ∈ Ui = {1, . . . , mi } ⊂ N,
discrete states ξ i

k ∈ Xi = {1, . . . , ni } ⊂ N, and discrete

outputs yi
k ∈ Y i = {1, . . . , qi } ⊂ N. A deterministic state

transition function is denoted by f i : Xi × Ui → Xi , a
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dependence matrix by W i ∈ {0, 1, . . . , q ′}mi×ni , and an output
function of Moore-type by gi : X → Y i . �

The state, input, and output sets mentioned previously are
specified as ordered index sets to ease notation—obviously,
any index may represent a symbolic identifier of the respective
quantity, as e.g., a name aligned to the physical state encoded
by ξ i

k .
Including the dependence matrix W i into the definition of

Pi is motivated by modeling that the state transitions of Pi

may be dependent on another subsystem, say exemplarily
Pi+1. For a ∈ {1, . . . , mi } and b ∈ {1, . . . , ni }, the entry
W i (a, b) = yi+1 > 0 models that for Pi , the discrete
transition out of state b ∈ Xi and triggered by the input
a ∈ Ui depends on the output yi+1 ∈ Y i+1 of the subsystem
Pi+1. The value W i (a, b) = 0 encodes, in contrast, that the
same state transition is not dependent on an output of Pi+1.
Admissible behavior of Pi is defined as follows.

Definition 2: Given Pi according to Definition 1, an initial
state ξ i

0 ∈ Xi , and an input sequence φi
u := {νi

0, ν
i
1, . . .}

with νi
k ∈ Ui ∪ {0}, the elements of an admissible run

φi
x := {ξ i

0, ξ
i
1, . . .} and a corresponding output sequence

φi
y := {yi

0, yi
1, . . .} follow for k ∈ T from:

ξ i
k+1 =

⎧
⎪⎨

⎪⎩

ξ i
k , if νi

k = 0

f i
(
ξ i

k , ν
i
k

)
, if νi

k ∈ Ui , W
(
νi

k, ξ
i
k

) = 0

f i
(
ξ i

k , ν
i
k

)
, if νi

k ∈ Ui , W i
(
νi

k , ξ
i
k

) ∈ Y i+1

(1)

yi
k+1 = gi(ξ i

k+1

)
. �

(2)
In (1), the case νi

k = 0 models that no input is supplied in
step k and the state remains unchanged, while the second and
third cases encode state transitions, which are triggered by
an input and are independent of Pi+1, or dependent on it,
respectively.

As the objective of this paper is to present techniques to
synthesize optimal state-feedback controllers for the DES, the
following parts simplify the notation by abstracting from the
presence of plant outputs.

Assumption 1: Any event of a subsystem Pi , i ∈ {1, . . . , z}
is assumed to be observable, the state ξ i

k to be fully mea-
surable, and the output function gi to be defined as identity
function. �

This assumption implies Xi = Y i such that any occurence
of yi

k in Definitions 1 and 2 can be expressed in terms of xi
k .

With respect to the dependence of Pi on the subsystem Pi+1,
the third case in (1) changes to W i (νi

k, ξ
i
k) ∈ Xi+1, i.e., the

dynamics of Pi depends on the state of the linked subsystem.
Coupling the states of Pi+1 to state transitions of Pi

obviously requires to relate the time domains of the two
subsystems. Assumption 2 establishes this relation in the
sense that the subsystems (including their controllers) operate
synchronously.

Assumption 2: The dynamics of Pi , i ∈ {1, . . . , z}, and that
of all subsystems to which Pi is coupled according to (1) are
defined on the same time domain T , i.e., k ∈ T is identical at
any time for all of these subsystems, which thus iterate their
states synchronously. �

This assumption is motivated by the typical situation that
the cycle times of communication and control hardware are by
orders of magnitude smaller than the average time between
plant events (as modeled by f i ). If one abstracts from the
cycles without plant events and includes only indices into T
for times at which at least one Pi changes the state, the
assumption is justifiable.

B. Algebraic Model Formulation

This paper proposes algorithms for controller synthesis,
which bear similarity to procedures for computing (optimal)
state-feedback controllers for linear discrete-time continuous-
valued systems using dynamic proagramming. As an alter-
native option to the often used language-based model, we
propose an algebraic system representation, which enables
a synthesis procedure based on algebraic matrix operations
(to be implemented, e.g., in MATLAB), which lead to a
straighforward implementation of the local controllers, and
for which an extension to hybrid controllers is possible. The
following definitions to represent the dynamics of Pi extend
the descriptions proposed in [29] for monolithic DES to the
case of distributed system structures.

Definition 3: Let Pi be given according to Definition 1. For
any state ξ i

k ∈ Xi , define a state vector xi
k ∈ {0, 1}ni×1 such

that

xi
k, j = 1, and xi

k,p = 0 ∀ p 	= j, p ∈ {1, . . . , ni } (3)

if and only if ξ i
k = j ∈ {1, . . . , ni } is the active state of Pi

in k. A state transition matrix Fi
l ∈ {0, 1}ni×ni is introduced

for any input l ∈ Ui , such that for any pair h, j ∈ Xi applies

Fi
l ( j, h) =

{
1, if j = f i (h, l)

0, otherwise.
(4)

By requiring that Fi
l ( j, j) = 1 if Fl(p, j) = 0 for all p 	= j ,

p ∈ {1, . . . , ni }, a self-loop for the state with index j
is provided, if no outgoing state transition exists
for l ∈ Ui . �

The value Fi
l ( j, h) = 1 is to be interpreted such that Pi

can be transitioned from state ξ i
k = h into state ξ i

k = j if the
input l is applied. Since f i was defined to be deterministic
in Definition 1,

∑ni
j=1 Fi

l ( j, h) = 1 applies for all h ∈
{1, . . . , ni } and l ∈ Ui . The possible additional dependence
of the transition on the state of subsystem Pi+1 is considered
within the following algebraic definition of a run of Pi .

Definition 4: For Pi , let F i = {Fi
1, . . . , Fi

mi
} denote the

set of state transition matrices as introduced before. Given
an initial vector xi

0 ∈ {0, 1}ni×1 with
∑ni

j=1 xi
0, j = 1 and

an input sequence φu = (νi
0, ν

i
1, ν

i
2, . . .) as in Definition 2,

a run φi
x = (xi

0, xi
1, xi

2, . . .) of Pi over T is admissible, if it
satisfies

xi
k+1 =

⎧
⎪⎨

⎪⎩

xi
k, if νi

k = 0

Fi
j · xi

k, if νi
k ∈ Ui , W

(
νi

k, ξ
i
k

) = 0

Fi
j · xi

k, if νi
k ∈ Ui , W i

(
νi

k, ξ
i
k

) ∈ Xi+1.

(5)

�
For control of the distributed system structures to be dis-

cussed later, it is important that a subsystem of lower priority
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can deliver the outputs (or states, respectively) on which a
coupled plant relies. For example, a particular state of Pi+1 is
necessary for the progress of Pi , if W i (νi

k, ξ
i
k) ∈ Xi+1 encodes

dependence. If one wants to model that a subsystem is able
to deliver any signal that may be required by another, a
conservative approach is to imply that any state ξ i ∈ Xi can be
transferred into any other ξ̂ i ∈ Xi by at least one finite input
sequence. For this purpose, an accumulated state transition
matrix over all inputs Fi and a reachability matrix Ri are
defined

Fi =
mi∑

l=1

Fi
l , Ri :=

ni∑

p=1

(
Fi

)p
. (6)

The first matrix encodes with Fi ( j, h) = 1 that the transition
from ξ i

k = h to ξ i
k = j is possible with at least one input.

In addition, to this one-step reachability, Ri formalizes the
possibility of transferring Pi between an arbitrary pair of
states. Note that the computations of Fi and Ri use Boolean
arithmetic.1 If the dependence conditions are satisfied, a value
Ri ( j, h) = 1 models that state j is reachable from state h by at
least one input sequence in at most ni state transitions. Similar,
as described for monolithic systems, in [29], the subsystem Pi

can be classified as completely controllable, if Ri = 1ni ×ni .

C. Local Transition Costs and Control Task

The general objective of this paper is to establish discrete-
event state-feedback controllers, which optimally drive the
subsystems into a designated goal state. This section defines
the underlying performance measure and the control task, both
still confined to one subsystem. Performance is introduced by
minimizing the costs of transferring the system between initial
and goal state. For this purpose, transition costs π(ξ i

k, ξ
i
k+1, ν

i
k)

are defined for any transition ξ i
k+1 = f i (ξ i

k, ν
i
k) specified for

Pi through the state transition function (or the set of state
transition matrices F i , respectively). Possible interpretations
of such transition costs are the time, the control effort, and/or
the energy required to steer Pi from ξ i

k to ξ i
k+1 by the use

of the control input νi
k (i.e., π can encode state and control

costs).
Definition 5: For any input j ∈ Ui of the subsystem

Pi , the transition cost matrix �i
j ∈ R

ni ×ni≥0 is defined such
that �i

j (q, p) = π(p, q, j) is the cost of the transition
f i (p, j) = q . The value �i

j (q, p) = ∞ is assigned if the
transition is infeasible for input j (i.e., Fi

j (q, p) = 0), and
self-loops do not incur costs: �i

j (p, p) = 0 for all p ∈ Xi ,
j ∈ Ui .

The matrix of minimum transition costs

�i := {
q, p ∈ X i : min

j∈U i
�i

j (q, p)
}

(7)

contains in any entry �i (q, p) the minimum cost of the state
transition f i (p, j) = q over all j ∈ Ui values. The associated

1For a ∈ {0, 1}, b ∈ {0, 1}, let: 1) a+b = 0 if and only if (a = 0)∧(b = 0),
and a + b = 1 otherwise and 2) a · b = 1 if and only if (a = 1) ∧ (b = 1),
and a · b = 0 otherwise.

matrix

�i
U i := {

q, p ∈ X i : �i
U i = 0 if Fi (p, q) = 0, and:

�i
U i (q, p) = argmin

j∈U i
�i

j (q, p) if Fi (p, q) = 1
}

(8)

of best inputs encodes with the element �i
U i (q, p) the index

of the input minimizing the transition costs if the transition is
feasible, and zero otherwise.

Finally, the matrix �i
opt denotes the minimal transfer costs

for Pi , such that �i
opt(q, p) specifies the minimal costs for

transferring the subsystem from the state ξ i = p into ξ i = q
over all possible input sequences defined for Pi , which realize
an admissible run from p to q . �

Note that determining the latter matrix �i
opt involves to

compute cost-optimal runs—the following statement formal-
izes this computation as the control task to be solved for an
independent subsystem Pi .

Problem 1: Let a subsystem Pi be given as independent of
other subsystems in the sense that W i = 0mi×ni , and let ξ i

F
denote the goal state. The task is to compute a state-feedback
controller, which realizes for any arbitrary initialization
ξ i

0 ∈ Xi an input sequence φi
u = (νi

0, . . . , νdi −1) that leads to
an admissible run φi

ξ = (ξ i
0, . . . , ξ

A
di ) such that the following

hold.

1) The final state is the goal ξ i
di = ξ i

F .
2) The state-feedback control law has the structure

νi
k = ui · K i · xi

k ∈ Ui (9)

with a row vector ui = [1, 2, . . . , mi ] of all input indices
in Ui and the controller matrix K i ∈ {0, 1}mi×ni .

3) The costs of φi
x are minimal over all admissible runs to

transfer Pi from ξ i
0 to ξ i

F

�i
opt

(
ξ i

F , ξ i
0

) := min
φi

u

di
∑

j=1

�ν i
j−1

(
ξ i

j , ξ
i
j−1

)
. (10)

�
As is usual for state-feedback controllers of continuous

systems, the law (9) should be interpreted such that for a given
current state xi

k , the product ui · K i selects the control input νi
k

to be applied, in order to trigger the next state transition.
Note that the selection of K i according to the solution of
(10) produces the ξ i

F th row of the matrix �i
opt, and establishes

an optimal controller for Pi with goal state ξ i
F .

D. Synthesis Algorithm for Independent Subsystems

In order to solve problem 1, the algorithm in Fig. 2 com-
putes the controller matrix K i and the part of �i

opt referring
to the goal state ξ i

F . It can be seen as a modified Dijkstra-
algorithm, which explores the state transition structure of Pi

backward starting from ξ i
F (i.e., following the principles of

dynamic programming). Lines 2–4 contain the initialization
of K i , of an auxiliary vector V , and an auxiliary vector G.
V (q) = 1 denotes that state ξ i = q still has to be explored,
and G(q) stores the final minimum costs for the transfer from
q to ξ i

F . The loop in lines 5–10 initializes another auxiliary
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Fig. 2. Computation of K i and �i
opt(ξ

i
F , :) for an independent subsystem.

vector H for the predecessor states of ξ i
F . Here, H (q) denotes

the lowest cost found so far for the transfer from ξ i = q
to ξ i

F . The loop also sets the entries of K i for these states
to the indices of the inputs, which lead to cost minimal
transitions into ξ i

F . The main loop from line 11 to line 24 first
determines the node still to be explored, which momentarily
has the smallest temporary cost to reach ξ i

F . For this node
(with index l), the cost value is final [thus mapped into G(l)].
For the predecessors of state l, it is checked whether a new best
path into ξ i

F is found via state l. If so, the cost value H (q) is
updated, as is the entry of K i , which corresponds to the input
to be applied in state q to obtain minimal costs.

Theorem 1: Given a plant Pi for which problem 1 has to
be solved. Then, for any state ξ i

0 ∈ Xi , ξ i
0 	= ξ i

F , Algorithm 1

computes K i such that Pi is transferred into ξ i
F with minimal

costs.
Proof: Assume that a controller K̄ i existed, which trans-

fers Pi from ξ i
0 into ξ i

F with lower costs than K i , i.e., leading
to �̄i (ξ i

F , ξ i
0) < �i

opt(ξ
i
F , ξ i

0). Let φ̄i
u and φ̄i

ξ denote the
optimal input sequence and run obtained by K̄ i , while φi

u and
φi

ξ correspond to the controller K i . Then, there must exist a
state ξ i

k ∈ φ̄i
ξ , ξ i

k ∈ φi
ξ with ξ i

k 	= ξ i
F , for which K̄ i (:, ξ i

k) 	=
K i (:, ξ i

k). The controller K̄ i triggers the transition into a state
ξ̄ i

k+1 	= ξ i
k+1 with input ν̄i

k ∈ φ̄i
k , leading to cost-to-go of

π i (ξ̄ i
k , ξ̄

i
k+1)+�i

opt(ξ
i
F , ξ̄ i

k+1), while K i leads by νi
k ∈ φi

k to a
successor ξ i

k+1 and costs �i
opt(ξ

i
F , ξ i

k). The above-mentioned

assumption requires that π i (ξ̄ i
k , ξ̄

i
k+1) + �i

opt(ξ
i
F , ξ̄ i

k+1) <

�i
opt(ξ

i
F , ξ i

k). However, when the algorithm iterates the loop

Fig. 3. Distributed system structure consisting of z feedback loops (Pi , Ci )
and with linear dependence. a©: any subsystem Pi (i 	= z) depends on outputs
of Pi+1. b©: any controller Ci (i ∈ {2, . . . , z − 1}) communicates with the
neighboring controllers Ci−1 and Ci+1. c©: any pair (Pi , Ci ) exchanges
local state and input information.

in line 11 to line 24 with l = ξ i
k+1 and q = ξ i

k , it only
assigns the value 1 to the j th row of K (:, q) with j = νi

k , if
G(l) + �i (l, q) = �i

opt(ξ
i
F , ξ i

k) + π i (ξ i
k , ξ

i
k+1) is lower than

a previously determined value H (q). In addition, if K (:, q)
is not rendered in any subsequent iteration, there cannot
exist a state ξ̄ i

k , for which π i (ξ̄ i
k, ξ̄

i
k+1) + �i

opt(ξ
i
F , ξ̄ i

k+1) <

�i
opt(ξ

i
F , ξ i

k). Thus, there does not exist a strategy φ̄i
u and a

controller K̄ i , which steers Pi from ξ i
0 into ξ i

F with lower costs
than �i

opt(ξ
i
F , ξ i

0), and the lemma follows from contradiction
of the above-mentioned assumption.

If the algorithm is run once for any ξ i ∈ Xi chosen as
the goal state ξ i

F , the complete matrix of minimal transfer
costs �i

opt is obtained for Pi .
Note that this algorithm can also be used for

centralized controller synthesis of a distributed system with
dependence: if two subsystems P1 = (T, U1, X1, Y 1, W 1,
f 1, g1) and P2 = (T, U2, X2, Y 2, 0m2×n2 , f 2, g2)
according to Section II-A and with P1 depending
on P2 are composed, the result is an automaton
P12 = {T, U1 ∪U2, X1 × X2, Y 1 ×Y 2, 0(m1+m2)×(n1·n2), f 12}
of the same type with g12 : (X1 × X2) → (Y 1 × Y 2) and
f 12 : (X1 × X2)× (U1 ∪U2) → (X1 × X2). The fact that the
dependence matrix is a zero matrix shows that P12 is indepen-
dent, meaning that only the first two lines of (1) are relevant,
and that Algorithm 1 is applicable to P12. This application will
be used in Section V to compare the computational complexity
with the proposed procedure of the following sections.

A result similar to the one in Theorem 1 was already derived
in [19] for a different system representation and for the more
general case of systems with uncontrollable events. Since the
focus of this paper is to provide solutions for distributed
systems (rather than robustness against uncontrollable events),
the scope of this paper is restricted to deterministic state
transitions.

III. CONTROL OF DISTRIBUTED SYSTEMS

WITH LINEAR STRUCTURE

We now extend the consideration to distributed systems
with several interconnected subsystems of the type Pi as
introduced before. This section investigates the optimal con-
trol of processes consisting of z subsystems according to
P = {P1, . . . , Pi , . . . , Pz}, which are interconnected in
a linear structure as shown in Fig. 3. Any subsystem Pi

forms a control loop with an assigned local controller Ci ,
both interacting as explained already by means of Fig. 1.
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The dependence structure among the control loops adds the
following. First, a state transition of Pi (for i ∈ {1, . . . , z−1})
may depend on a particular output provided by Pi+1. Then,
the controller Ci (for i ∈ {2, . . . , z − 1}) communicates with
Ci−1 and Ci+1. This communication is necessary to obtain the
information which output has to be sent from Pi to Pi−1, and
which output Pi requires from Pi+1 for further execution.
For this configuration, we say that Pi has higher priority
than Pi+1. The following describes how the control task and
the synthesis algorithm have to be extended to consider the
subsystem interaction for this structure.

A. Task of Distributed Controller Synthesis

In contrast to the case of independent subsystems as in
Section II-D, the distributed setting now involves to handle
dependence matrices W i different from zero matrices. Further-
more, control objectives (in particular costs) are formulated for
the set of subsystems, i.e., the Ci values are not only tailored
to local goals, but also consider the overall performance of P .
Except the more general case for W i , the subsystem modeling
remains the same as in Section II.

As mentioned in Section I, the motivation for considering
the linear structure in Fig. 3 is to model plants in which
Pi+1 supplies Pi with material, or where Pi+1 acomplishes
a task for Pi , i ∈ {1, . . . , z − 1}. This interpretation motivates
Assumption 3.

Assumption 3: Any subsystem Pi ∈ P , i ∈ {2, . . . , z} is
completely controllable: Ri = 1ni×ni . �

This assumption is justifiable in the sense that a process
in which a unit cannot deliver the output required in another
unit has to be characterized as not properly engineered. The
same reasoning justifies the definition of deterministic state
transition functions f i .

In the dependence structure of P according to Fig. 3,
the state transitions of Pi are only affected by the current
plant state of Pi+1, but not any subsystem with higher index.
To considerably simplify the notation for the following part,
we restrict the presentation to only two subsystems indicated
by i = 1 and i = 2. For P2, the principles for indepen-
dent subsystems as covered in Section II-D obviously apply.
Section III-C will later show that the extension to chains with
more than two subsystems is possible straightforwardly.

With respect to the controllability assumption for single sub-
systems, the following implication for the pair of P1 and P2

is possible.
Proposition 2: Let P = {P1, P2} be a pair of two

connected subsystems for which an admissible run is a
sequence of state pairs (ξ1

k , ξ2
k ) according to Definition 2

with W 1(ν1
k , ξ1

k ) ∈ X2 and W 2 = 0m2×n2 . The structure
is completely controllable if P1 and P2 on their own are
completely controllable according to Assumption 3. �

Proof: Since the transitions of P2 are independent of the
current state of P1, and since subsystem P2 is completely
controllable, a sequence φ2

u of inputs exists to transfer P2

from an arbitrary initial state ξ2
0 into ξ2

F . Thus, P2 is able to
deliver any arbitrary output sequence φ2

y (and thus admissible
run φ2

x ) to subsystem P1, i.e., any condition formulated for P1

Fig. 4. Online-execution for one state transition of P1 including the provision
of ξ2

k by P2. The numbers indicate the order of information processing.

in terms of the dependence matrix W 1 is satisfiable by P2.
Since P1 itself is completely controllable as well, a sequence
of inputs φ1

u exists which transfers P1 into an arbitrary goal
state ξ1

F .

The problem to be considered for the pair of subsystems
can now be stated as follows.

Problem 2: For the two subsystems P1 and P2, let the
goal states ξ1

F and ξ2
F be defined. The control task is to

compute two local feedback control laws, which generate for
any initialization ξ1

0 ∈ X1 and ξ2
0 ∈ X2 the input sequences

φ1
u = (ν1

0 , . . . , νd1
1−1) and φ2

u = (ν2
0 , . . . , νd2

2 −1), such that the
following hold.

1) The admissible runs φ1
x = (ξ1

0 , . . . , ξ1
d1

1
) with ξ1

d1
1

= ξ1
F

and φ2
x = (ξ2

0 , . . . , ξ2
d2

2
) with ξ2

d2
2

= ξ2
F are obtained.

2) φ1
u and φ2

u follow from controllers of the following type:
ν1

k = u1 · K 1(ξ2
k ) · x1

k ∈ U1, ν2
k = u2 · K 2 · x2

k ∈ U2

(11)

with vectors u1 and u2, and matrix K 2 as in problem 1,
and K 1(ξ2

k ) ∈ {0, 1}m1×n1 for ξ2
k ∈ X2.

3) The global path costs are minimal

Jg =
d1

1∑

k=1

�ν1
k−1

(
ξ1

k , ξ1
k−1

) +
d2

2∑

k=1

�ν2
k−1

(
ξ2

k , ξ2
k−1

)
. (12)

�
Thus, the solution is targeted to provide local con-

trollers C1 and C2 for P1 and P2, such that the latter
are driven from an arbitrarily chosen initial state into the
respective local goal state, while the sum of the transfer costs
for both control loops is as small as possible. As in problem 1,
the controllers are of a state-feedback type, where K 2 is
independent of P1, but the controller matrices K 1(ξ2

k ) depend
on the current state ξ2

k of subsystem P2. Thus, C2 comprises
n2 matrices, and the matrix set is denoted by K1.

Before the algorithmic solution to problem 2 is presented,
the interactions of the two control loops during online execu-
tion are clarified by means of Fig. 4: when C1 receives the
information from P1 that state ξ1

k is reached 1©, C1 sends
the request to C2 that P2 has to reach ξ2

F as a temporary
goal state 2©. This state is encoded in K 1 in order to realize
a cost-optimal path of P1 into its goal state ξ1

F . Then, C2

realizes a path of P2 into ξ2
F 3©. If the path comprises

more than one transition, the pair (P1, C1) waits in state ξ1
k

until P2 has reached ξ2
F (the index k ′ in Fig. 4 is meant to

indicate that (P2, C2) evolve, while (P1, C1) wait in step k).
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Fig. 5. Information flow within the offline synthesis of K 1 and K 2.

When P2 attains ξ2
F , C2 communicates to C1 that the

requested state is reached 4©. Eventually, the control input ν1
k

supplied by C1 together with ξ2
F send by P2 triggers the state

transition in P1 5©.

B. Synthesis Algorithm for Two Subsystems

The offline determination of the distributed con-
trollers C1 and C2 consists of two phases, for which
the information flow is shown in Fig. 5: in step 1©, the
matrix K 2 of the controller C2 is computed for any output
(or state ξ2

k , respectively) that the subsystem with higher
priority, i.e., the pair (P1, C1), may request during online
execution. If any state of P2 may be requested, the result
of the synthesis of C2 has to be the full matrix �2

opt of
optimal transfer costs for any pair of initial and goal states
in X2. Then, controller matrix K 2(ξ2

F ) is required for a
possible ξ2

F , leading to a controller set K2. To obtain �2
opt

and the controllers in K2, Algorithm 1 can be used for the
relevant goal states ξ2

F , since P2 is independent of P1. For
the states of P2, which may never be requested by (P1, C1),
the corresponding rows of �2

opt may simply be set to ∞1×n2 ,
and the respective control matrices need not to be computed.

The more intricate synthesis task is that of obtaining K 1

(see step 2© in Fig. 5). This task builds on �2
opt and is

the subject of the following description. The algorithm for
solution, which is shown in Fig. 6, employs the dynamic pro-
gramming principle [32]. It may be understood as a version of
the Bellman–Ford algorithm (see [33]) with reversed transition
through the graph of P1, and with additional consideration of
the dependence on the states of P2 as well as the costs incurred
by this subsystem.

The input data of Algorithm 2 comprises the matrices of
transition costs �1

ν of P1 for all ν ∈ U1, the dependence
matrix W 1, the matrix �2

opt of optimal path costs for P2, and
a pair of goal states ξ1

F and ξ2
F . The last entry in this list of

inputs means that P2 has to reach a specified goal state, after
it has provided the necessary symbols to P1. (If P2 only has
to supply P1 but the final state is not important, line 3 of the
algorithm is simply changed to H0(ξ

1
F , :) = 01×n2 ).

In lines 2–5, the controller matrices K 1(ξ2) are initialized
to zero matrices for all ξ2 ∈ X2, and the auxiliary matrix H0
is initialized to ∞ for any entry, except the one referring to the
pair of goal states. Similar to vector H (q) in Algorithm 1, the
matrix Ha ∈ R

n1×n2≥0 (with iteration counter a) is iteratively
updated with the temporary lowest costs to realize the tran-
sition into (ξ1

F , ξ2
F ). Upon termination of the algorithm, the

element Ha( j, l) contains the minimized costs for transferring
P1 and P2 from the state pair j ∈ X1 and l ∈ X2 to the

Fig. 6. Computation of the control matrix K 1(ξ2
k ) to transfer P1 and P2

to the goal states with minimized total costs.

specified pair of goal states. The transfer requires at most
a · n2 steps, since, in the worst case, P1 has to wait for n2
steps until the relevant dependence condition of the respective
step is satisfied. This is due to the fact that the number
of state transitions to transfer the completely controllable
subsystem P2 between two arbitrary states is at most n2.

The first step of the main loop of the algorithm (line 7)
copies the cost matrix of the previous iteration to Ha. Any
iteration a checks then which entries of Ha can be reduced
over the possible combinations of discrete states k ∈ X1,
discrete inputs m ∈ U1, and discrete states l ∈ X2 (loop
beginning in lines 8, 9, and 11). Concretely, the cost for a
transition of P1 from state k to state j triggered by the input
m is computed and compared with the best cost computed
so far. For this transition, two cases have to be considered
(lines 12 and 20): P1 requires that P2 is currently in a
specific discrete state [W 1(m, k) > 0], or the transition from
k to j by input m is independent of the current state of P2

(W 1(m, k) = 0).
For the first case, the discrete state r = W 1(m, k) ∈ X2 of

P2 is determined, which is required for the transition of P1.
Subsequently, the cost incurred by the transition is determined
as �1

m( j, k) + �2
opt(r, l). This value adds the local transition
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cost �1
m( j, k) to the optimal transition cost �2

opt(r, l) assigned
to the state transfer in P2, necessary to satisfy the dependence
condition of the considered transition of P1. If this transition
leads to a cost reduction for the momentarily investigated
combination of states k of P1 and l of P2, i.e., if

Ha−1( j, r) + �1
m( j, k) + �2

opt(r, l) < Ha(k, l) (13)

applies, the value of Ha(k, l) is updated to the new and lower
value (line 16). In this case, the entries of the controller matrix
are updated by replacing a possibly existing nonzero entry
of K 1(l) for the currently investigated state by zero, and
by setting the entry K 1(l)(m, k), which corresponds to the
momentarily investigated pair of state k and input m, to 1
(lines 17 and 18).

The procedure for the case of W 1(m, k) = 0 is very similar:
since W 1(m, k) = 0 encodes that the currently investigated
transition of P1 is independent of the current state of P2,
only the local transition costs of P1 are determined, and
Ha is checked for a cost reduction. If the costs are lowered,
the value of Ha(k, l) and the controller matrix are updated
(lines 22–24).

The algorithm terminates at the end of a while-iteration if
Ha = Ha−1 applies, i.e., if no further cost reduction can be
determined. Since the longest path without cycles between two
arbitrary states of P1 does at most contain n1 states and since
cycles can only increase costs, the number of iterations of the
while-loop is also limited to n1.

The key benefit of Algorithm 2 can now be stated.
Theorem 3: Let problem 1 for P = {P1, P2} be given,

while P satisfies Proposition 2. Then, Algorithm 2 computes
the control matrices K1 to transfer P1 from an arbitrary initial
state ξ1

0 ∈ X1, ξ1
0 	= ξ1

F into ξ1
F with minimally possible

value of the costs in (12), provided K 2 was computed by
Algorithm 1.

Proof: First, Proposition 2 guarantees that (P2, C2) is
able to deliver any symbol r (according to line 13) that is
required by P1. Given Theorem 1, Algorithm 1 provides �2

opt
such that this matrix encodes the least possible path costs for
any transfer between a pair of states in P2. Hence, whenever
Algorithm 2 considers a state transition of P1, which depends
on P2, the last term of Hsum in line 13 uses the least possible
cost necessary for P2 to provide the symbol r and to reach
the goal state. This minimizes the second sum of (12).

Furthermore, Proposition 2 also ensures that K 1(l),
l ∈ {1, . . . , n2} exists to obtain an admissible run of P1 from
any ξ1

0 into ξ1
F . That this run is cost minimal, which follows

from the following reasoning (compared with that of the proof
of Algorithm 1): Whenever the matrix K 1(l) is updated in
line 17/18 or 23/24 to a value 1 in row m and column k, the
cost sum for the path from state j into ξ1

F plus the cost for
the transition from state k into l upon input m, plus the cost
�2

opt(r, l) for dependent transitions, is smaller than the costs
determined before to transfer from state k to ξ1

F . Since the
loops run over all states and inputs of P1 until no entry of
Ha is further reduced, Ha(k) contains upon termination, the
minimum costs to transfer P1 from k to ξ1

F are obtained. Thus,
the set K1 = {K 1(1), . . . , K 1(n2)} produces for any pair of

states (ξ1
0 , ξ1

F ) the path, which minimizes the first sum of (12),
and hence also the minimal global path costs.

C. Effort Estimation and Extensions

The computational effort for determining the con-
trollers C1 and C2 for P = {P1, P2} is now considered
in order to assess the scalability of the controller synthesis
with the size of the state and input sets of the subsystems.
The computations for the independent subsystem according to
Algorithm 1, i.e., of �2

opt and K 2, are (for given inputs) of the
order O(n2

2m2 + n3
2). The first term refers to the computation

of K 2 (of dimension m2 · n2) for at most n2 repetitions of the
while-loop, and the second term to computing l at most for
n2 times. For the determination of K1 = {K 1(1), . . . , K 1(n2)}
using Algorithm 2, the computational effort grows (for given
inputs) according to O(n2

1m1n2). This effort follows from
updating Ha at most n1 · n2 times, and from the fact that the
loops over m and l are embedded into the iteration to construct
the matrices K 1(l). Hence, the overall computational effort of
the synthesis is of the order O(n2

2m2 + n2
1m1n2 + n3

2).
An alternative to the proposed procedure of computing

C2 and C1 sequentially is a centralized design consisting of
four steps: First, the parallel composition of P1 and P2 is
computed, leading to a larger model according to Definition 1
with state space of size n1 · n2. This step together with the
determination of the corresponding transition cost matrices
requires an effort of the order O(n1n2m1m2). The second
step involves the computation of the matrices of optimal one-
step transition costs with effort O(n2

1n2
2m1m2). The third step

determines the controller matrix K for the composed system,
for which the procedure in Section II-D can be employed.
(Note that the composed model is independent.) The controller
synthesis incurs an effort of the order O(n2

1n2
2). In order to

obtain local controllers, the controller matrices K 1 and K 2

are extracted from K , which leads to costs of O(n1n2). In
total, the effort for this alternative option to compute the local
control laws can be summarized to be of order O(n2

1n2
2m1m2).

The difference in absolute terms will be reported for an
example in Section V.

With respect to possible extensions of Algorithm 2,
it should be mentioned first that the algorithm in Fig. 6
is formulated for the case of one specified pair of goal
states ξ1

F and ξ2
F . However, the algorithm succeeds as well

in computing the set of controller matrices K1 for arbitrary
sets of goal states by setting the value 0 to all corresponding
entries of H0. For the example of two pairs of goal states
(ξ1

F,1, ξ
2
F,1) and (ξ1

F,2, ξ
2
F,2), respectively, the matrix elements

H0(ξ
1
F,1, ξ

2
F,1) and H0(ξ

1
F,2, ξ

2
F,2) are set to zero, while the

remaining elements are set to ∞.
As already mentioned, the proposed synthesis procedure is

also applicable for systems P with more than z = 2 subsys-
tems, but the computations require slight modifications: while
for z = 2, the computation of K 1 requires the matrix �2

opt, the

case for z = 3 with P = {P1, P2, P3} requires a matrix �B,C
opt

when determining K 1. The matrix �B,C
opt contains the optimal

path costs for any combination of initial states ξ2
0 and ξ3

0 and
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Fig. 7. Distributed system with tree structure where the feedback loop
(P1, C1) depends on the loops of the subsystems (P2, C2) to (Pz, Cz) (each
of which may depend on further subordinated subsystems).

goal states ξ2
F and ξ3

F with ξ2
0 , ξ3

F ∈ X2 and ξ3
0 , ξ3

F ∈ X3.
In addition, the controller matrix K 1 depends on the current
state ξ2

k of P2 and the current state ξ3
k of P3. Thus, the

matrix H0 ∈ R
n1×n2×n3 has three dimensions, such that the

algorithm has to comprise a further for-loop over the states
in X3 = {13, . . . , n3

3}.

IV. CONTROL OF DISTRIBUTED SYSTEMS

WITH TREE STRUCTURE

Another class of dependence structures, which is amenable
to separate the controller synthesis for the subsystems, is that
of treelike coupling (see Fig. 7). The subsystem P1 depends
on a set of subsystems P2 to Pz , which itself may depend on
one or more subsystems. The interpretation of this structure is
that P1 (the root of the tree) is the subsystem of highest prior-
ity in the sense that it sends out requests to and is supplied by
P2 to Pz . This requires that the dependence matrix W 1 has to
be extended to comprise outputs (or states respectively) of the
interconnected plant subsystems. According to Definition 1,
a dependence matrix of a subsystem Pi depending on one
subsystem Pi+1 was defined so far by W i (a, b) ∈ {0} ∪ Y i+1

for a ∈ Ui , b ∈ Xi . For the configuration shown in Fig. 7,
i.e., P1 depending on the outputs of P2 to Pz , the definition
of W 1 is changed to

W 1(a, b) ∈
⎡

⎢
⎣

{0} ∪ Y 2

...
{0} ∪ Y z

⎤

⎥
⎦, a ∈ Ui , b ∈ Xi .

Thus, each element of the matrix maps into a vector of length
z − 1. For j ∈ {2, . . . , z}, the j th element W 1

j (a, b) of the
vector encodes whether the state transition of P1 out of state
a and triggered by the input b is independent of P j [then
W 1

j (a, b) = 0], or which output y j ∈ Y j of P j is necessary
for the transition. In order to execute the transition, all subsys-
tems P j with W 1

j (a, b) 	= 0 must have supplied the specified
output to enable the state transition. If the subsystems P j

themselves would depend on more than one subsystem, their
dependence matrices would again be adopted correspondingly.
Thus, arbitrary tree structures can be obtained. Except the

modification of the dependence matrices, the plant modeling
remains the same as in Section II.

For simplifying the description, the further discussion of the
controller synthesis is tailored to the case P = {P2, P2, P3},
where P1 depends on the outputs of P2 and P3. (The
procedure can straightforwardly be extended to more than two
supplying subsystems, i.e., z > 3. Also, the consideration of
further layers of the tree, e.g., the dashed blocks on the right
of Fig. 7, is possible by recursing from the right.)

Assume that P2 and P3 are independent and completely
reachable, and that the corresponding controllers C2 and C3

have been synthesized according to the procedure of
Section II-D. Furthermore, assume that R1 = 1n1×n1 . Then,
with the same reasoning as in the proof of Proposition 2, P is
completely reachable. The task of computing the controller C1

for P1 can then be stated as follows.
Problem 3: Let the distributed system P = {P1, P2, P3}

be given with goal states ξ1
F , ξ2

F , and ξ3
F . For P2 and P3, let

the control matrices K 2 and K 3 and the matrices of minimum
state transfer costs �2

opt and �3
opt be computed by Algorithm 1.

The task is to compute a set of control matrices
K1 = {K 1(1), . . . , K 1(q)} for q ∈ X2 × X3 such that for
arbitrary initialization ξ1

0 ∈ X1, ξ2
0 ∈ X2, and ξ3

0 ∈ X3, the
following holds true. The controllers {K1, K 2, K 3} determine
input sequences φ1

u = (ν1
0 , . . . , νd1−1), φ2

u = (ν2
0 , . . . , νd2−1),

and φ3
u = (ν3

0 , . . . , νd3−1) such that the following hold.

1) The admissible runs φ1
x = (ξ1

0 , . . . , ξ1
d1) with ξ1

d1 = ξ1
F

and φ2
x = (ξ2

0 , . . . , ξ2
d2) with ξ2

d2 = ξ2
F , and φ3

x =
(ξ2

0 , . . . , ξ2
d3) with ξ2

d3 = ξ3
F are obtained (where the

upper bounds di of the indices indicate the length of
the runs).

2) φ1
u is obtained from the control law

ν1
k = u1 · K 1(ξq) · x1

k ∈ U1 (14)

with the vector u1 = [1 · · · m1] and K 1(q) ∈
{0, 1}m1×n1 for q ∈ X2 × X3.

3) The following global path costs are minimal:

Jg =
d1

1∑

k=1

�ν1
k−1

(
ξ1

k , ξ1
k−1

) +
d2

2∑

k=1

�ν2
k−1

(
ξ2

k , ξ2
k−1

)

+
d3

3∑

k=1

�ν3
k−1

(
ξ3

k , ξ3
k−1

)
. (15)

�
This problem can be solved by an algorithm, which is

obtained as a modification of Algorithm 2 with respect to con-
sidering the extended dependence structure (14). In the interest
of space, Fig. 8 shows only the main part of Algorithm 2,
which is modified compared with Algorithm 2, i.e., the
lines 3–24 replace the lines 11–27 of Algorithm 2.
In Algorithm 2, Ha is a 3-D matrix for storing the best costs
found so far (similar to the case of three subsystems in linear
structure, as mentioned at the end of Section III-C). The
three indices of Ha( j, l, p) refer to the states of the three
subsystems: j ∈ X1, l ∈ X2, p ∈ X3. The shown part of
Algorithm 3 loops over the states of P2 and P3, and the
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Fig. 8. Part of the synthesis algorithm if P1 depends on P2 and P3.

update of the controller matrix K 1 in line 21 as well as the
update of Ha in line 22 is bound to the condition that a
new best path from the state triple (k, l, p) into (ξ1

F , ξ2
F , ξ3

F )
is found (line 19). The cost value �pre is an auxiliary
variable, which is set depending on the condition whether the
respective transition out of state ξ1 = k is depending on the
state of P2, and/or on the state of P3, or is independent of
the latter two subsystems (r1 = r2 = 0).

The fact that Algorithm 3 determines the set of con-
troller matrices K 1(ξ2, ξ3) such that the transfer costs into
(ξ1

F , ξ2
F , ξ3

F ) are minimal can be shown by similar arguments
as in the proofs for Theorems 1 and 3; this is omitted here for
brevity.

V. ILLUSTRATIVE EXAMPLE

This section reports on the application of the synthesis
scheme to a section of a larger manufacturing process, which
complies with the structure considered in Section III-A. This
system consists of two linearly dependent machines, where P2

represents a bending machine that can produce parts of two
different shapes and different colors. These parts are further
processed in a mounting machine, which fixes the parts to
base plates according to two different product specifications,
both requiring different tools within the machine. While this
process (sketched in Fig. 9) is small, it is a typical section
of production chain and is suitable to illustrate the synthesis
procedure.

Fig. 10 shows the transition graph of P2 containing the
discrete states, discrete inputs, and costs of the transitions
representing the bending process. Starting from an initial state
ξ2 = 12, two different shapes (represented by ξ = 22 and
ξ = 32, respectively) can be produced. The notation of the
state transition from ξ2 = 12 to ξ2 = 22 encodes that this

Fig. 9. Scheme of the production process.

Fig. 10. Graph of the bending and coloring machine P2 with state
identifiers ξ2

k specified within circles. The transitions are labeled by a

pair (v2
k , π(ξ2

k , ξ2
k+1, ν2

k )), consisting of the discrete input ν2
k and the local

transition costs π(ξ2
k , ξ2

k+1, ν2
k ). No self-loop transitions are shown for

simplification.

Fig. 11. Graph of the mounting machine P1 with state identifiers ξ1
k

again specified within circles. The transition labeling in terms of triples
(ν1

k , π(ξ1
k , ξ1

k+1, ν1
k ), W1(m, k)) includes the discrete input ν1

k , the transition

costs π(ξ1
k , ξ1

k+1 , ν1
k ), and the entry of the dependence matrix W1. Again,

self-loop transitions are not shown.

transition is triggered by the local input ν2 = 12 and entails
costs of 2. Note that after the first bending process, it is
possible to reshape the two types to the respective other type
with additional effort. Subsequently, a coloring step within
P2 leads to the final products: ξ2 = 42 represents a red
product, and ξ2 = 52 represents a blue product. Any time
when P2 reaches one of the states 42 or 52, the production
cycle of this unit is completed by returning to the state 12

through the input 72 (incurring costs of 1). This is simply
achieved by specifying an intermediate goal ξF 2 = 12 for P2.

The other machine is modeled as P1 and depends on the
supply by P2. Depending on a given product specification, it
mounts two or three of the parts supplied by P2 to a base
plate. The two considered product specifications are that two
blue parts are mounted to the plate, or that in addition, one red
part is added. Fig. 11 contains the transition graph to model
the possible mounting sequences, and it shows for P1 the
discrete states, the discrete inputs, the costs of state transitions,
and the dependence conditions. The mounting process can be
understood as follows: from the initial state ξ1 = 11, a bent
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blue part or a bent red product is mounted to the base plate,
leading to ξ1 = 21 or ξ1 = 31, respectively. Since no buffer
is provided in between the two machines, it is important that
the machine modeled by P2 produces a part only if this is
required currently by the machine represented by P1. The state
transitions are here denoted such that, e.g., the transition from
ξ1 = 11 to ξ1 = 21 encodes that this transition is triggered by
the local input ν1 = 11, entails costs of 2, and requires that
machine P2 is currently in state 52. The following transitions
model the additional mounting of a one blue part (leading to
the first product modeled by state 42) or fixing one red part
and one more blue part (in different orders), leading to the
state denoted by state 71. As the tool change entails additional
costs, the transition costs from 51 to 71 is higher compared
with the transition from 61 to 71. Note that all inputs, which
do not change the discrete state have zero costs, and that P1

can return to the initial state from the states 41 and 71.
Based on the transition graphs, the dependence matrix W 1

can be specified, and the matrix �2
opt of optimal transfer costs

is obtained from Algorithm 1

W 1 =

⎡

⎢
⎢
⎣

5 5 0 0 0 5 0
4 0 0 0 0 0 0
0 0 5 0 5 0 0
0 4 0 4 0 0 0

⎤

⎥
⎥
⎦

�2
opt =

⎡

⎢
⎢
⎢
⎢
⎣

0 4 5 1 1
2 0 1 3 3
3 3 0 4 4
5 3 4 0 6
7 7 4 8 0

⎤

⎥
⎥
⎥
⎥
⎦

.

The controller matrix for P2 follows from the same algo-
rithm, and is obtained for the example of ξ2

F = ξ2
4 to:

K 2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This matrix should be interpreted according to (9) such that,
e.g., for state 22 (corresponding to the second column), the
input ν1 = 5 (referring to the fifth row) has to be applied.

Subsequently, Algorithm 2 can be used to compute the
controller matrices K 1(ξ2

k ) for the pair of reference states
ξ1

F = 71 and ξ2
F = 12. For the example of ξ2

k = 22,
the result is

K 1(22) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 1 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Now consider that the current states are ξ1
k = 21 and ξ2

k = 22,
when the goal specification ξ1

F = 71 is supplied to the system.
For the subsystem P1 alone, the path 21 → 41 → 71 incurs
the lowest costs of 11. Nevertheless, the controller C1 chooses
the input sequence (ν1

k = 41, ν1
k = 31), which triggers the path

21 → 51 → 71 for P1 and 22 → 42 → 12 → 32 → 52 → 12

for P2. The reason is that the total costs sum up to 24 for
the latter pair of path, while the pair 21 → 41 → 71 and
22 → 32 → 52 → 12 → 22 → 42 → 12 leads to total costs
of 25.

The time for the computation of this control law with
an implementation of Algorithm 2 in MATLAB is 5 ms
(Intel CoreT M i5 CPU @ 2.67 GHz × 4). For comparison,
the solution with parallel composition of P1 and P2 and
subsequent computation of a centralized controller (as
sketched in Section II-D) requires 0.31 s for the same
example. Thus, the effort for a centralized design is already
by a factor of 60 higher for this small example, compared with
the proposed algorithms. As one can see from the discussion
in Section III-C, similar ratios can be expected for growing
n1, m1, and m2, while the gap can be expected to decrease
for growing n2.

VI. CONCLUSION

For different configurations of distributed DESs, this paper
has proposed synthesis algorithms, which establish distributed
controllers in state-feedback form. The local controllers pro-
vided for the subsystems are determined to realize the transfer
of the subsystems into goal states from arbitrary inital states,
i.e., not tailored only to a specific transfer from one initial
into a goal state (as often the case for manually designed
sequential controllers). In addition, if the algorithms are run
with new goal states ξ i

F , the adaptation to new specifications is
easily achieved. In contrast to most other synthesis algorithms
for the DES, the proposed procedures consider costs of state
transitions and optimize the behavior of the distributed DES
plant. The underlying principle is that of dynamic program-
ming, which is common for systems with continuous-valued
states.

A possible alternative approach would be to compose the
finite-state machine of the subsystems to a single model, and
to run the optimization for it. In contrast, to reduce the compu-
tational effort for the optimization, the algorithms advocated in
this paper retain the distributed plant structure, and apply the
optimization separately to the subsystems. For the considered
priority structures of the plant, namely linear and treelike
dependencies, the effort can be significantly reduced compared
with the approach of parallel composition and optimization
of a monolithic model. The reason for the effort reduction
is that by working through the chain or tree of subsystems,
while starting from those with lowest priority, the one-sided
dependencies enable separate computation. In addition, the
absence of cycles avoids the reiteration of already computed
local controllers.

The local controllers are immediately obtained in decom-
posed form, i.e., the extraction from centralized controllers
is not necessary. The transfer of the state-feedback con-
trollers into the typical standard languages for implementing
sequential controllers is a simple task and can be automated.
The algebraic formulation of the plant dynamics and the
control laws has proved useful in implementing several steps
of the synthesis algorithms. One may argue that the vari-
ous matrices (Fi , K i , �i

opt, etc.) quickly grow in size for
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larger ni and mi . It should be noted, however, that typically
many of these matrices are sparse, i.e., particular and efficient
representations and algebraic routines for sparse matrices can
be used to further speed up the computations.

Current investigations comprise the exploration of
efficient synthesis algorithms for distributed structures
with bidirectional dependencies between subsystems.
In addition, extensions to nondeterministic behavior (including
uncontrollable state transitions) are matter of current research.
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