Lecture 13
 Linear quadratic Lyapunov theory

- the Lyapunov equation
- Lyapunov stability conditions
- the Lyapunov operator and integral
- evaluating quadratic integrals
- analysis of ARE
- discrete-time results
- linearization theorem

The Lyapunov equation

the Lyapunov equation is

$$
A^{T} P+P A+Q=0
$$

where $A, P, Q \in \mathbf{R}^{n \times n}$, and P, Q are symmetric interpretation: for linear system $\dot{x}=A x$, if $V(z)=z^{T} P z$, then

$$
\dot{V}(z)=(A z)^{T} P z+z^{T} P(A z)=-z^{T} Q z
$$

i.e., if $z^{T} P z$ is the (generalized)energy, then $z^{T} Q z$ is the associated (generalized) dissipation
linear-quadratic Lyapunov theory: linear dynamics, quadratic Lyapunov function
we consider system $\dot{x}=A x$, with $\lambda_{1}, \ldots, \lambda_{n}$ the eigenvalues of A if $P>0$, then

- the sublevel sets are ellipsoids (and bounded)
- $V(z)=z^{T} P z=0 \Leftrightarrow z=0$
boundedness condition: if $P>0, Q \geq 0$ then
- all trajectories of $\dot{x}=A x$ are bounded (this means $\Re \lambda_{i} \leq 0$, and if $\Re \lambda_{i}=0$, then λ_{i} corresponds to a Jordan block of size one)
- the ellipsoids $\left\{z \mid z^{T} P z \leq a\right\}$ are invariant

Stability condition

if $P>0, Q>0$ then the system $\dot{x}=A x$ is (globally asymptotically) stable, i.e., $\Re \lambda_{i}<0$
to see this, note that

$$
\dot{V}(z)=-z^{T} Q z \leq-\lambda_{\min }(Q) z^{T} z \leq-\frac{\lambda_{\min }(Q)}{\lambda_{\max }(P)} z^{T} P z=-\alpha V(z)
$$

where $\alpha=\lambda_{\min }(Q) / \lambda_{\max }(P)>0$

An extension based on observability

(Lasalle's theorem for linear dynamics, quadratic function)
if $P>0, Q \geq 0$, and (Q, A) observable, then the system $\dot{x}=A x$ is (globally asymptotically) stable
to see this, we first note that all eigenvalues satisfy $\Re \lambda_{i} \leq 0$
now suppose that $v \neq 0, A v=\lambda v, \Re \lambda=0$
then $A \bar{v}=\bar{\lambda} \bar{v}=-\lambda \bar{v}$, so

$$
\left\|Q^{1 / 2} v\right\|^{2}=v^{*} Q v=-v^{*}\left(A^{T} P+P A\right) v=\lambda v^{*} P v-\lambda v^{*} P v=0
$$

which implies $Q^{1 / 2} v=0$, so $Q v=0$, contradicting observability (by PBH)
interpretation: observability condition means no trajectory can stay in the "zero dissipation" set $\left\{z \mid z^{T} Q z=0\right\}$

An instability condition

if $Q \geq 0$ and $P \nsupseteq 0$, then A is not stable to see this, note that $\dot{V} \leq 0$, so $V(x(t)) \leq V(x(0))$
since $P \nsupseteq 0$, there is a w with $V(w)<0$; trajectory starting at w does not converge to zero
in this case, the sublevel sets $\{z \mid V(z) \leq 0\}$ (which are unbounded) are invariant

The Lyapunov operator

the Lyapunov operator is given by

$$
\mathcal{L}(P)=A^{T} P+P A
$$

special case of Sylvester operator
\mathcal{L} is nonsingular if and only if A and $-A$ share no common eigenvalues, i.e., A does not have pair of eigenvalues which are negatives of each other

- if A is stable, Lyapunov operator is nonsingular
- if A has imaginary (nonzero, $i \omega$-axis) eigenvalue, then Lyapunov operator is singular
thus if A is stable, for any Q there is exactly one solution P of Lyapunov equation $A^{T} P+P A+Q=0$

Solving the Lyapunov equation

$$
A^{T} P+P A+Q=0
$$

we are given A and Q and want to find P
if Lyapunov equation is solved as a set of $n(n+1) / 2$ equations in $n(n+1) / 2$ variables, cost is $O\left(n^{6}\right)$ operations
fast methods, that exploit the special structure of the linear equations, can solve Lyapunov equation with cost $O\left(n^{3}\right)$
based on first reducing A to Schur or upper Hessenberg form

The Lyapunov integral

if A is stable there is an explicit formula for solution of Lyapunov equation:

$$
P=\int_{0}^{\infty} e^{t A^{T}} Q e^{t A} d t
$$

to see this, we note that

$$
\begin{aligned}
A^{T} P+P A & =\int_{0}^{\infty}\left(A^{T} e^{t A^{T}} Q e^{t A}+e^{t A^{T}} Q e^{t A} A\right) d t \\
& =\int_{0}^{\infty}\left(\frac{d}{d t} e^{t A^{T}} Q e^{t A}\right) d t \\
& =\left.e^{t A^{T}} Q e^{t A}\right|_{0} ^{\infty} \\
& =-Q
\end{aligned}
$$

Interpretation as cost-to-go

if A is stable, and P is (unique) solution of $A^{T} P+P A+Q=0$, then

$$
\begin{aligned}
V(z) & =z^{T} P z \\
& =z^{T}\left(\int_{0}^{\infty} e^{t A^{T}} Q e^{t A} d t\right) z \\
& =\int_{0}^{\infty} x(t)^{T} Q x(t) d t
\end{aligned}
$$

where $\dot{x}=A x, x(0)=z$
thus $V(z)$ is cost-to-go from point z (with no input) and integral quadratic cost function with matrix Q
if A is stable and $Q>0$, then for each $t, e^{t A^{T}} Q e^{t A}>0$, so

$$
P=\int_{0}^{\infty} e^{t A^{T}} Q e^{t A} d t>0
$$

meaning: if A is stable,

- we can choose any positive definite quadratic form $z^{T} Q z$ as the dissipation, i.e., $-\dot{V}=z^{T} Q z$
- then solve a set of linear equations to find the (unique) quadratic form $V(z)=z^{T} P z$
- V will be positive definite, so it is a Lyapunov function that proves A is stable
in particular: a linear system is stable if and only if there is a quadratic Lyapunov function that proves it
generalization: if A stable, $Q \geq 0$, and (Q, A) observable, then $P>0$ to see this, the Lyapunov integral shows $P \geq 0$
if $P z=0$, then

$$
0=z^{T} P z=z^{T}\left(\int_{0}^{\infty} e^{t A^{T}} Q e^{t A} d t\right) z=\int_{0}^{\infty}\left\|Q^{1 / 2} e^{t A} z\right\|^{2} d t
$$

so we conclude $Q^{1 / 2} e^{t A} z=0$ for all $t \geq 0$
this implies that $Q z=0, Q A z=0, \ldots, Q A^{n-1} z=0$, contradicting (Q, A) observable

Monotonicity of Lyapunov operator inverse

suppose $A^{T} P_{i}+P_{i} A+Q_{i}=0, i=1,2$
if $Q_{1} \geq Q_{2}$, then for all $t, e^{t A^{T}} Q_{1} e^{t A} \geq e^{t A^{T}} Q_{2} e^{t A}$
if A is stable, we have

$$
P_{1}=\int_{0}^{\infty} e^{t A^{T}} Q_{1} e^{t A} d t \geq \int_{0}^{\infty} e^{t A^{T}} Q_{2} e^{t A} d t=P_{2}
$$

in other words: if A is stable then

$$
Q_{1} \geq Q_{2} \Longrightarrow \mathcal{L}^{-1}\left(Q_{1}\right) \geq \mathcal{L}^{-1}\left(Q_{2}\right)
$$

i.e., inverse Lyapunov operator is monotonic, or preserves matrix inequality, when A is stable
(question: is \mathcal{L} monotonic?)

Evaluating quadratic integrals

suppose $\dot{x}=A x$ is stable, and define

$$
J=\int_{0}^{\infty} x(t)^{T} Q x(t) d t
$$

to find J, we solve Lyapunov equation $A^{T} P+P A+Q=0$ for P then, $J=x(0)^{T} P x(0)$
in other words: we can evaluate quadratic integral exactly, by solving a set of linear equations, without even computing a matrix exponential

Controllability and observability Grammians

for A stable, the controllability Grammian of (A, B) is defined as

$$
W_{c}=\int_{0}^{\infty} e^{t A} B B^{T} e^{t A^{T}} d t
$$

and the observability Grammian of (C, A) is

$$
W_{o}=\int_{0}^{\infty} e^{t A^{T}} C^{T} C e^{t A} d t
$$

these Grammians can be computed by solving the Lyapunov equations

$$
A W_{c}+W_{c} A^{T}+B B^{T}=0, \quad A^{T} W_{o}+W_{o} A+C^{T} C=0
$$

we always have $W_{c} \geq 0, W_{o} \geq 0$;
$W_{c}>0$ if and only if (A, B) is controllable, and $W_{o}>0$ if and only if (C, A) is observable

Evaluating a state feedback gain

consider

$$
\dot{x}=A x+B u, \quad y=C x, \quad u=K x, \quad x(0)=x_{0}
$$

with closed-loop system $\dot{x}=(A+B K) x$ stable
to evaluate the quadratic integral performance measures

$$
J_{u}=\int_{0}^{\infty} u(t)^{T} u(t) d t, \quad J_{y}=\int_{0}^{\infty} y(t)^{T} y(t) d t
$$

we solve Lyapunov equations

$$
\begin{aligned}
& (A+B K)^{T} P_{u}+P_{u}(A+B K)+K^{T} K=0 \\
& (A+B K)^{T} P_{y}+P_{y}(A+B K)+C^{T} C=0
\end{aligned}
$$

then we have $J_{u}=x_{0}^{T} P_{u} x_{0}, J_{y}=x_{0}^{T} P_{y} x_{0}$

Lyapunov analysis of ARE

write ARE (with $Q \geq 0, R>0$)

$$
A^{T} P+P A+Q-P B R^{-1} B^{T} P=0
$$

as

$$
(A+B K)^{T} P+P(A+B K)+\left(Q+K^{T} R K\right)=0
$$

with $K=-R^{-1} B^{T} P$
we conclude: if $A+B K$ stable, then $P \geq 0\left(\right.$ since $\left.Q+K^{T} R K \geq 0\right)$
i.e., any stabilizing solution of ARE is PSD
if also (Q, A) is observable, then we conclude $P>0$
to see this, we need to show that $\left(Q+K^{T} R K, A+B K\right)$ is observable if not, there is $v \neq 0$ s.t.

$$
(A+B K) v=\lambda v, \quad\left(Q+K^{T} R K\right) v=0
$$

which implies

$$
v^{*}\left(Q+K^{T} R K\right) v=v^{*} Q v+v^{*} K^{T} R K v=\left\|Q^{1 / 2} v\right\|^{2}+\left\|R^{1 / 2} K v\right\|^{2}=0
$$

so $Q v=0, K v=0$

$$
(A+B K) v=A v=\lambda v, \quad Q v=0
$$

which contradicts (Q, A) observable
the same argument shows that if $P>0$ and (Q, A) is observable, then $A+B K$ is stable

Monotonic norm convergence

suppose that $A+A^{T}<0$, i.e., (symmetric part of) A is negative definite can express as $A^{T} P+P A+Q=0$, with $P=I, Q>0$ meaning: $x^{T} P x=\|x\|^{2}$ decreases along every nonzero trajectory, i.e.,

- $\|x(t)\|$ is always decreasing monotonically to 0
- $x(t)$ is always moving towards origin
this implies A is stable, but the converse is false: for a stable system, we need not have $A+A^{T}<0$
(for a stable system with $A+A^{T} \nless 0,\|x(t)\|$ converges to zero, but not monotonically)
for a stable system we can always change coordinates so we have monotonic norm convergence
let P denote the solution of $A^{T} P+P A+I=0$
take $T=P^{-1 / 2}$
in new coordinates A becomes $\tilde{A}=T^{-1} A T$,

$$
\begin{aligned}
\tilde{A}+\tilde{A}^{T} & =P^{1 / 2} A P^{-1 / 2}+P^{-1 / 2} A^{T} P^{1 / 2} \\
& =P^{-1 / 2}\left(P A+A^{T} P\right) P^{-1 / 2} \\
& =-P^{-1}<0
\end{aligned}
$$

in new coordinates, convergence is obvious because $\|x(t)\|$ is always decreasing

Discrete-time results

all linear quadratic Lyapunov results have discrete-time counterparts the discrete-time Lyapunov equation is

$$
A^{T} P A-P+Q=0
$$

meaning: if $x_{t+1}=A x_{t}$ and $V(z)=z^{T} P z$, then $\Delta V(z)=-z^{T} Q z$

- if $P>0$ and $Q>0$, then A is (discrete-time) stable (i.e., $\left|\lambda_{i}\right|<1$)
- if $P>0$ and $Q \geq 0$, then all trajectories are bounded (i.e., $\left|\lambda_{i}\right| \leq 1 ;\left|\lambda_{i}\right|=1$ only for 1×1 Jordan blocks)
- if $P>0, Q \geq 0$, and (Q, A) observable, then A is stable
- if $P \ngtr 0$ and $Q \geq 0$, then A is not stable

Discrete-time Lyapunov operator

the discrete-time Lyapunov operator is given by $\mathcal{L}(P)=A^{T} P A-P$
\mathcal{L} is nonsingular if and only if, for all $i, j, \lambda_{i} \lambda_{j} \neq 1$ (roughly speaking, if and only if A and A^{-1} share no eigenvalues)
if A is stable, then \mathcal{L} is nonsingular; in fact

$$
P=\sum_{t=0}^{\infty}\left(A^{T}\right)^{t} Q A^{t}
$$

is the unique solution of Lyapunov equation $A^{T} P A-P+Q=0$ the discrete-time Lyapunov equation can be solved quickly (i.e., $O\left(n^{3}\right)$) and can be used to evaluate infinite sums of quadratic functions, etc.

Converse theorems

suppose $x_{t+1}=A x_{t}$ is stable, $A^{T} P A-P+Q=0$

- if $Q>0$ then $P>0$
- if $Q \geq 0$ and (Q, A) observable, then $P>0$
in particular, a discrete-time linear system is stable if and only if there is a quadratic Lyapunov function that proves it

Monotonic norm convergence

suppose $A^{T} P A-P+Q=0$, with $P=I$ and $Q>0$
this means $A^{T} A<I$, i.e., $\|A\|<1$
meaning: $\left\|x_{t}\right\|$ decreases on every nonzero trajectory; indeed, $\left\|x_{t+1}\right\| \leq\|A\|\left\|x_{t}\right\|<\left\|x_{t}\right\|$
when $\|A\|<1$,

- stability is obvious, since $\left\|x_{t}\right\| \leq\|A\|^{t}\left\|x_{0}\right\|$
- system is called contractive since norm is reduced at each step
the converse is false: system can be stable without $\|A\|<1$
now suppose A is stable, and let P satisfy $A^{T} P A-P+I=0$
take $T=P^{-1 / 2}$
in new coordinates A becomes $\tilde{A}=T^{-1} A T$, so

$$
\begin{aligned}
\tilde{A}^{T} \tilde{A} & =P^{-1 / 2} A^{T} P A P^{-1 / 2} \\
& =P^{-1 / 2}(P-I) P^{-1 / 2} \\
& =I-P^{-1}<I
\end{aligned}
$$

i.e., $\|\tilde{A}\|<1$
so for a stable system, we can change coordinates so the system is contractive

Lyapunov's linearization theorem

we consider nonlinear time-invariant system $\dot{x}=f(x)$, where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$
suppose x_{e} is an equilibrium point, i.e., $f\left(x_{e}\right)=0$, and let $A=D f\left(x_{e}\right) \in \mathbf{R}^{n \times n}$
the linearized system, near x_{e}, is $\delta x=A \delta x$

linearization theorem:

- if the linearized system is stable, i.e., $\Re \lambda_{i}(A)<0$ for $i=1, \ldots, n$, then the nonlinear system is locally asymptotically stable
- if for some $i, \Re \lambda_{i}(A)>0$, then the nonlinear system is not locally asymptotically stable
stability of the linearized system determines the local stability of the nonlinear system, except when all eigenvalues are in the closed left halfplane, and at least one is on the imaginary axis
examples like $\dot{x}=x^{3}$ (which is not LAS) and $\dot{x}=-x^{3}$ (which is LAS) show the theorem cannot, in general, be tightened

examples:

eigenvalues of $D f\left(x_{e}\right)$	conclusion about $\dot{x}=f(x)$
$-3,-0.1 \pm 4 i,-0.2 \pm i$	LAS near x_{e}
$-3,-0.1 \pm 4 i, 0.2 \pm i$	not LAS near x_{e}
$-3,-0.1 \pm 4 i, \pm i$	no conclusion

Proof of linearization theorem

let's assume $x_{e}=0$, and express the nonlinear differential equation as

$$
\dot{x}=A x+g(x)
$$

where $\|g(x)\| \leq K\|x\|^{2}$
suppose that A is stable, and let P be unique solution of Lyapunov equation

$$
A^{T} P+P A+I=0
$$

the Lyapunov function $V(z)=z^{T} P z$ proves stability of the linearized system; we'll use it to prove local asymptotic stability of the nonlinear system

$$
\begin{aligned}
\dot{V}(z) & =2 z^{T} P(A z+g(z)) \\
& =z^{T}\left(A^{T} P+P A\right) z+2 z^{T} P g(z) \\
& =-z^{T} z+2 z^{T} P g(z) \\
& \leq-\|z\|^{2}+2\|z\|\|P\|\|g(z)\| \\
& \leq-\|z\|^{2}+2 K\|P\|\|z\|^{3} \\
& =-\|z\|^{2}(1-2 K\|P\|\|z\|)
\end{aligned}
$$

so for $\|z\| \leq 1 /(4 K\|P\|)$,

$$
\dot{V}(z) \leq-\frac{1}{2}\|z\|^{2} \leq-\frac{1}{2 \lambda_{\max }(P)} z^{T} P z=-\frac{1}{2\|P\|} z^{T} P z
$$

finally, using

$$
\|z\|^{2} \leq \frac{1}{\lambda_{\min }(P)} z^{T} P z
$$

we have

$$
V(z) \leq \frac{\lambda_{\min }(P)}{16 K^{2}\|P\|^{2}} \Longrightarrow\|z\| \leq \frac{1}{4 K\|P\|} \Longrightarrow \dot{V}(z) \leq-\frac{1}{2\|P\|} V(z)
$$

and we're done
comments:

- proof actually constructs an ellipsoid inside basin of attraction of $x_{e}=0$, and a bound on exponential rate of convergence
- choice of $Q=I$ was arbitrary; can get better estimates using other $Q \mathrm{~s}$, better bounds on g, tighter bounding arguments ...

Integral quadratic performance

consider $\dot{x}=f(x), x(0)=x_{0}$
we are interested in the integral quadratic performance measure

$$
J\left(x_{0}\right)=\int_{0}^{\infty} x(t)^{T} Q x(t) d t
$$

for any fixed x_{0} we can find this (approximately) by simulation and numerical integration
(we'll assume the integral exists; we do not require $Q \geq 0$)

Lyapunov bounds on integral quadratic performance

suppose there is a function $V: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that

- $V(z) \geq 0$ for all z
- $\dot{V}(z) \leq-z^{T} Q z$ for all z
then we have $J\left(x_{0}\right) \leq V\left(x_{0}\right)$, i.e., the Lyapunov function V serves as an upper bound on the integral quadratic cost
(since Q need not be PSD, we might not have $\dot{V} \leq 0$; so we cannot conclude that trajectories are bounded)
to show this, we note that

$$
V(x(T))-V(x(0))=\int_{0}^{T} \dot{V}(x(t)) d t \leq-\int_{0}^{T} x(t)^{T} Q x(t) d t
$$

and so

$$
\int_{0}^{T} x(t)^{T} Q x(t) d t \leq V(x(0))-V(x(T)) \leq V(x(0))
$$

since this holds for arbitrary T, we conclude

$$
\int_{0}^{\infty} x(t)^{T} Q x(t) d t \leq V(x(0))
$$

Integral quadratic performance for linear systems

for a stable linear system, with $Q \geq 0$, the Lyapunov bound is sharp, i.e., there exists a V such that

- $V(z) \geq 0$ for all z
- $\dot{V}(z) \leq-z^{T} Q z$ for all z
and for which $V\left(x_{0}\right)=J\left(x_{0}\right)$ for all x_{0}
(take $V(z)=z^{T} P z$, where P is solution of $A^{T} P+P A+Q=0$)

