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Lecture 13

Linear quadratic Lyapunov theory

• the Lyapunov equation

• Lyapunov stability conditions

• the Lyapunov operator and integral

• evaluating quadratic integrals

• analysis of ARE

• discrete-time results

• linearization theorem

13–1



The Lyapunov equation

the Lyapunov equation is

ATP + PA + Q = 0

where A, P, Q ∈ Rn×n, and P, Q are symmetric

interpretation: for linear system ẋ = Ax, if V (z) = zTPz, then

V̇ (z) = (Az)TPz + zTP (Az) = −zTQz

i.e., if zTPz is the (generalized)energy, then zTQz is the associated
(generalized) dissipation

linear-quadratic Lyapunov theory: linear dynamics, quadratic Lyapunov
function
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we consider system ẋ = Ax, with λ1, . . . , λn the eigenvalues of A

if P > 0, then

• the sublevel sets are ellipsoids (and bounded)

• V (z) = zTPz = 0 ⇔ z = 0

boundedness condition: if P > 0, Q ≥ 0 then

• all trajectories of ẋ = Ax are bounded
(this means ℜλi ≤ 0, and if ℜλi = 0, then λi corresponds to a Jordan
block of size one)

• the ellipsoids {z | zTPz ≤ a} are invariant
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Stability condition

if P > 0, Q > 0 then the system ẋ = Ax is (globally asymptotically)
stable, i.e., ℜλi < 0

to see this, note that

V̇ (z) = −zTQz ≤ −λmin(Q)zTz ≤ −
λmin(Q)

λmax(P )
zTPz = −αV (z)

where α = λmin(Q)/λmax(P ) > 0
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An extension based on observability

(Lasalle’s theorem for linear dynamics, quadratic function)

if P > 0, Q ≥ 0, and (Q,A) observable, then the system ẋ = Ax is
(globally asymptotically) stable

to see this, we first note that all eigenvalues satisfy ℜλi ≤ 0

now suppose that v 6= 0, Av = λv, ℜλ = 0

then Av̄ = λ̄v̄ = −λv̄, so

∥

∥

∥
Q1/2v

∥

∥

∥

2

= v∗Qv = −v∗
(

ATP + PA
)

v = λv∗Pv − λv∗Pv = 0

which implies Q1/2v = 0, so Qv = 0, contradicting observability (by PBH)

interpretation: observability condition means no trajectory can stay in the
“zero dissipation” set {z | zTQz = 0}
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An instability condition

if Q ≥ 0 and P 6≥ 0, then A is not stable

to see this, note that V̇ ≤ 0, so V (x(t)) ≤ V (x(0))

since P 6≥ 0, there is a w with V (w) < 0; trajectory starting at w does not
converge to zero

in this case, the sublevel sets {z | V (z) ≤ 0} (which are unbounded) are
invariant
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The Lyapunov operator

the Lyapunov operator is given by

L(P ) = ATP + PA

special case of Sylvester operator

L is nonsingular if and only if A and −A share no common eigenvalues,
i.e., A does not have pair of eigenvalues which are negatives of each other

• if A is stable, Lyapunov operator is nonsingular

• if A has imaginary (nonzero, iω-axis) eigenvalue, then Lyapunov
operator is singular

thus if A is stable, for any Q there is exactly one solution P of Lyapunov
equation ATP + PA + Q = 0

Linear quadratic Lyapunov theory 13–7



Solving the Lyapunov equation

ATP + PA + Q = 0

we are given A and Q and want to find P

if Lyapunov equation is solved as a set of n(n + 1)/2 equations in
n(n + 1)/2 variables, cost is O(n6) operations

fast methods, that exploit the special structure of the linear equations, can
solve Lyapunov equation with cost O(n3)

based on first reducing A to Schur or upper Hessenberg form
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The Lyapunov integral

if A is stable there is an explicit formula for solution of Lyapunov equation:

P =

∫

∞

0

etAT
QetA dt

to see this, we note that

ATP + PA =

∫

∞

0

(

ATetAT
QetA + etAT

QetAA
)

dt

=

∫

∞

0

(

d

dt
etAT

QetA

)

dt

= etAT
QetA

∣

∣

∣

∞

0

= −Q
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Interpretation as cost-to-go

if A is stable, and P is (unique) solution of ATP + PA + Q = 0, then

V (z) = zTPz

= zT

(
∫

∞

0

etAT
QetA dt

)

z

=

∫

∞

0

x(t)TQx(t) dt

where ẋ = Ax, x(0) = z

thus V (z) is cost-to-go from point z (with no input) and integral
quadratic cost function with matrix Q
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if A is stable and Q > 0, then for each t, etAT
QetA > 0, so

P =

∫

∞

0

etAT
QetA dt > 0

meaning: if A is stable,

• we can choose any positive definite quadratic form zTQz as the
dissipation, i.e., −V̇ = zTQz

• then solve a set of linear equations to find the (unique) quadratic form
V (z) = zTPz

• V will be positive definite, so it is a Lyapunov function that proves A is
stable

in particular: a linear system is stable if and only if there is a quadratic

Lyapunov function that proves it
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generalization: if A stable, Q ≥ 0, and (Q, A) observable, then P > 0

to see this, the Lyapunov integral shows P ≥ 0

if Pz = 0, then

0 = zTPz = zT

(
∫

∞

0

etAT
QetA dt

)

z =

∫

∞

0

∥

∥

∥
Q1/2etAz

∥

∥

∥

2

dt

so we conclude Q1/2etAz = 0 for all t ≥ 0

this implies that Qz = 0, QAz = 0, . . . , QAn−1z = 0, contradicting
(Q,A) observable
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Monotonicity of Lyapunov operator inverse

suppose ATPi + PiA + Qi = 0, i = 1, 2

if Q1 ≥ Q2, then for all t, etAT
Q1e

tA ≥ etAT
Q2e

tA

if A is stable, we have

P1 =

∫

∞

0

etAT
Q1e

tA dt ≥

∫

∞

0

etAT
Q2e

tA dt = P2

in other words: if A is stable then

Q1 ≥ Q2 =⇒ L−1(Q1) ≥ L−1(Q2)

i.e., inverse Lyapunov operator is monotonic, or preserves matrix
inequality, when A is stable

(question: is L monotonic?)
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Evaluating quadratic integrals

suppose ẋ = Ax is stable, and define

J =

∫

∞

0

x(t)TQx(t) dt

to find J , we solve Lyapunov equation ATP + PA + Q = 0 for P

then, J = x(0)TPx(0)

in other words: we can evaluate quadratic integral exactly, by solving a set
of linear equations, without even computing a matrix exponential
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Controllability and observability Grammians

for A stable, the controllability Grammian of (A, B) is defined as

Wc =

∫

∞

0

etABBTetAT
dt

and the observability Grammian of (C, A) is

Wo =

∫

∞

0

etAT
CTCetA dt

these Grammians can be computed by solving the Lyapunov equations

AWc + WcA
T + BBT = 0, ATWo + WoA + CTC = 0

we always have Wc ≥ 0, Wo ≥ 0;
Wc > 0 if and only if (A, B) is controllable, and
Wo > 0 if and only if (C, A) is observable
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Evaluating a state feedback gain

consider

ẋ = Ax + Bu, y = Cx, u = Kx, x(0) = x0

with closed-loop system ẋ = (A + BK)x stable

to evaluate the quadratic integral performance measures

Ju =

∫

∞

0

u(t)Tu(t) dt, Jy =

∫

∞

0

y(t)Ty(t) dt

we solve Lyapunov equations

(A + BK)TPu + Pu(A + BK) + KTK = 0

(A + BK)TPy + Py(A + BK) + CTC = 0

then we have Ju = xT
0 Pux0, Jy = xT

0 Pyx0
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Lyapunov analysis of ARE

write ARE (with Q ≥ 0, R > 0)

ATP + PA + Q − PBR−1BTP = 0

as
(A + BK)TP + P (A + BK) + (Q + KTRK) = 0

with K = −R−1BTP

we conclude: if A + BK stable, then P ≥ 0 (since Q + KTRK ≥ 0)

i.e., any stabilizing solution of ARE is PSD

if also (Q,A) is observable, then we conclude P > 0

to see this, we need to show that (Q + KTRK, A + BK) is observable

if not, there is v 6= 0 s.t.

(A + BK)v = λv, (Q + KTRK)v = 0
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which implies

v∗(Q + KTRK)v = v∗Qv + v∗KTRKv = ‖Q1/2v‖2 + ‖R1/2Kv‖2 = 0

so Qv = 0, Kv = 0

(A + BK)v = Av = λv, Qv = 0

which contradicts (Q,A) observable

the same argument shows that if P > 0 and (Q, A) is observable, then
A + BK is stable
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Monotonic norm convergence

suppose that A + AT < 0, i.e., (symmetric part of) A is negative definite

can express as ATP + PA + Q = 0, with P = I, Q > 0

meaning: xTPx = ‖x‖2 decreases along every nonzero trajectory, i.e.,

• ‖x(t)‖ is always decreasing monotonically to 0

• x(t) is always moving towards origin

this implies A is stable, but the converse is false: for a stable system, we
need not have A + AT < 0

(for a stable system with A + AT 6< 0, ‖x(t)‖ converges to zero, but not
monotonically)
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for a stable system we can always change coordinates so we have
monotonic norm convergence

let P denote the solution of ATP + PA + I = 0

take T = P−1/2

in new coordinates A becomes Ã = T−1AT ,

Ã + ÃT = P 1/2AP−1/2 + P−1/2ATP 1/2

= P−1/2
(

PA + ATP
)

P−1/2

= −P−1 < 0

in new coordinates, convergence is obvious because ‖x(t)‖ is always
decreasing
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Discrete-time results

all linear quadratic Lyapunov results have discrete-time counterparts

the discrete-time Lyapunov equation is

ATPA − P + Q = 0

meaning: if xt+1 = Axt and V (z) = zTPz, then ∆V (z) = −zTQz

• if P > 0 and Q > 0, then A is (discrete-time) stable (i.e., |λi| < 1)

• if P > 0 and Q ≥ 0, then all trajectories are bounded
(i.e., |λi| ≤ 1; |λi| = 1 only for 1 × 1 Jordan blocks)

• if P > 0, Q ≥ 0, and (Q, A) observable, then A is stable

• if P 6> 0 and Q ≥ 0, then A is not stable
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Discrete-time Lyapunov operator

the discrete-time Lyapunov operator is given by L(P ) = ATPA − P

L is nonsingular if and only if, for all i, j, λiλj 6= 1
(roughly speaking, if and only if A and A−1 share no eigenvalues)

if A is stable, then L is nonsingular; in fact

P =

∞
∑

t=0

(AT )tQAt

is the unique solution of Lyapunov equation ATPA − P + Q = 0

the discrete-time Lyapunov equation can be solved quickly (i.e., O(n3))
and can be used to evaluate infinite sums of quadratic functions, etc.
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Converse theorems

suppose xt+1 = Axt is stable, ATPA − P + Q = 0

• if Q > 0 then P > 0

• if Q ≥ 0 and (Q,A) observable, then P > 0

in particular, a discrete-time linear system is stable if and only if there is a
quadratic Lyapunov function that proves it
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Monotonic norm convergence

suppose ATPA − P + Q = 0, with P = I and Q > 0

this means ATA < I, i.e., ‖A‖ < 1

meaning: ‖xt‖ decreases on every nonzero trajectory; indeed,
‖xt+1‖ ≤ ‖A‖‖xt‖ < ‖xt‖

when ‖A‖ < 1,

• stability is obvious, since ‖xt‖ ≤ ‖A‖t‖x0‖

• system is called contractive since norm is reduced at each step

the converse is false: system can be stable without ‖A‖ < 1
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now suppose A is stable, and let P satisfy ATPA − P + I = 0

take T = P−1/2

in new coordinates A becomes Ã = T−1AT , so

ÃT Ã = P−1/2ATPAP−1/2

= P−1/2(P − I)P−1/2

= I − P−1 < I

i.e., ‖Ã‖ < 1

so for a stable system, we can change coordinates so the system is
contractive
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Lyapunov’s linearization theorem

we consider nonlinear time-invariant system ẋ = f(x), where f : Rn → Rn

suppose xe is an equilibrium point, i.e., f(xe) = 0, and let
A = Df(xe) ∈ Rn×n

the linearized system, near xe, is ˙δx = Aδx

linearization theorem:

• if the linearized system is stable, i.e., ℜλi(A) < 0 for i = 1, . . . , n, then
the nonlinear system is locally asymptotically stable

• if for some i, ℜλi(A) > 0, then the nonlinear system is not locally
asymptotically stable
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stability of the linearized system determines the local stability of the
nonlinear system, except when all eigenvalues are in the closed left
halfplane, and at least one is on the imaginary axis

examples like ẋ = x3 (which is not LAS) and ẋ = −x3 (which is LAS)
show the theorem cannot, in general, be tightened

examples:

eigenvalues of Df(xe) conclusion about ẋ = f(x)
−3, − 0.1 ± 4i, − 0.2 ± i LAS near xe

−3, − 0.1 ± 4i, 0.2 ± i not LAS near xe

−3, − 0.1 ± 4i, ± i no conclusion
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Proof of linearization theorem

let’s assume xe = 0, and express the nonlinear differential equation as

ẋ = Ax + g(x)

where ‖g(x)‖ ≤ K‖x‖2

suppose that A is stable, and let P be unique solution of Lyapunov
equation

ATP + PA + I = 0

the Lyapunov function V (z) = zTPz proves stability of the linearized
system; we’ll use it to prove local asymptotic stability of the nonlinear
system
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V̇ (z) = 2zTP (Az + g(z))

= zT (ATP + PA)z + 2zTPg(z)

= −zTz + 2zTPg(z)

≤ −‖z‖2 + 2‖z‖‖P‖‖g(z)‖

≤ −‖z‖2 + 2K‖P‖‖z‖3

= −‖z‖2(1 − 2K‖P‖‖z‖)

so for ‖z‖ ≤ 1/(4K‖P‖),

V̇ (z) ≤ −
1

2
‖z‖2 ≤ −

1

2λmax(P )
zTPz = −

1

2‖P‖
zTPz
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finally, using

‖z‖2 ≤
1

λmin(P )
zTPz

we have

V (z) ≤
λmin(P )

16K2‖P‖2
=⇒ ‖z‖ ≤

1

4K‖P‖
=⇒ V̇ (z) ≤ −

1

2‖P‖
V (z)

and we’re done

comments:

• proof actually constructs an ellipsoid inside basin of attraction of
xe = 0, and a bound on exponential rate of convergence

• choice of Q = I was arbitrary; can get better estimates using other Qs,
better bounds on g, tighter bounding arguments . . .
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Integral quadratic performance

consider ẋ = f(x), x(0) = x0

we are interested in the integral quadratic performance measure

J(x0) =

∫

∞

0

x(t)TQx(t) dt

for any fixed x0 we can find this (approximately) by simulation and
numerical integration

(we’ll assume the integral exists; we do not require Q ≥ 0)
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Lyapunov bounds on integral quadratic performance

suppose there is a function V : Rn → R such that

• V (z) ≥ 0 for all z

• V̇ (z) ≤ −zTQz for all z

then we have J(x0) ≤ V (x0), i.e., the Lyapunov function V serves as an
upper bound on the integral quadratic cost

(since Q need not be PSD, we might not have V̇ ≤ 0; so we cannot
conclude that trajectories are bounded)
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to show this, we note that

V (x(T )) − V (x(0)) =

∫ T

0

V̇ (x(t)) dt ≤ −

∫ T

0

x(t)TQx(t) dt

and so

∫ T

0

x(t)TQx(t) dt ≤ V (x(0)) − V (x(T )) ≤ V (x(0))

since this holds for arbitrary T , we conclude

∫

∞

0

x(t)TQx(t) dt ≤ V (x(0))
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Integral quadratic performance for linear systems

for a stable linear system, with Q ≥ 0, the Lyapunov bound is sharp, i.e.,
there exists a V such that

• V (z) ≥ 0 for all z

• V̇ (z) ≤ −zTQz for all z

and for which V (x0) = J(x0) for all x0

(take V (z) = zTPz, where P is solution of ATP + PA + Q = 0)
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