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Abstract
The ability to learn at different resolutions in time
may help overcome one of the main challenges in
deep reinforcement learning — sample efficiency.
Hierarchical agents that operate at different lev-
els of temporal abstraction can learn tasks more
quickly because they can divide the work of learn-
ing behaviors among multiple policies and can
also explore the environment at a higher level. In
this paper, we present a novel approach to hierar-
chical reinforcement learning called Hierarchical
Actor-Critic (HAC) that enables agents to learn to
break down problems involving continuous action
spaces into simpler subproblems belonging to dif-
ferent time scales. HAC has two key advantages
over most existing hierarchical learning methods:
(i) the potential for faster learning as agents learn
short policies at each level of the hierarchy and
(ii) an end-to-end approach. We demonstrate that
HAC significantly accelerates learning in a series
of tasks that require behavior over a relatively
long time horizon and involve sparse rewards.

1. Introduction
Despite major successes in both simulated and real-world
tasks, a key problem with many deep reinforcement learning
(RL) algorithms is that they are slow. Learning is particu-
larly slow when the rewards granted to agents are sparse.
One major reason for reinforcement learning’s poor sample
efficiency is that many existing algorithms force agents to
learn at the lowest level of temporal abstraction. For in-
stance, if a simulated robot agent is given a task involving
locomotion, the agent will need to learn the entire sequence
of joint torques to accomplish the task (Lillicrap et al., 2015)
instead of trying to break the problem down at a higher level.
Learning exclusively at low levels of abstraction slows down
learning for two key reasons. First, agents must learn longer
sequences of actions in order to achieve the desired behav-
ior. This is problematic because policies involving longer
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sequences of actions are more difficult to learn, particularly
when rewards are sparse. The process of propagating back
Q-values from the actions that produce the sparse reward to
the preceding actions takes longer. The issue of long-term
credit assignment also becomes more severe as the action-
value function needs to learn Q-values for a larger portion
of the state-action space. Second, learning at the lowest
level restrains exploration. Agents that can propose higher
level subgoals can more quickly determine the distant states
that are helpful in achieving certain behavior goals. A faster
exploration of the state space of the environment may speed
up the process of learning a robust policy.

Yet most existing hierarchical RL methods do not provide
an approach for breaking down tasks involving continuous
action spaces that guarantees shorter policies at each level
of abstraction and is end-to-end. Most current hierarchical
approaches only enable agents to learn at higher levels if the
action space is discrete (Dayan & Hinton, 1993) (Vezhnevets
et al., 2017). Further, many existing hierarchical learning
approaches do not implement hierarchical agents that equi-
tably divide up the work of learning a behavior among the
agent’s multiple policies. For instance, many approaches
choose to decompose problems into smaller state spaces
rather than into smaller time scales (Dayan & Hinton, 1993).
This can be problematic in continuous action space environ-
ments as a policy that acts within a small region of the state
space may need a lengthy sequence of actions to escape that
region. Most existing hierarchical approaches also require
non-trivial manual work including designing non-sparse re-
ward functions, preselecting the set of possible higher level
subgoals rather than learning them from experience, and
staggering the training of different policies (Sutton et al.,
1999) (Kulkarni et al., 2016).

In this paper, we introduce a novel approach to hierarchi-
cal reinforcement learning called Hierarchical Actor-Critic
(HAC). The algorithm enables agents to learn to divide tasks
involving continuous state and action spaces into simpler
problems belonging to different time scales. HAC achieves
this objective by implementing agents that learn multiple
policies in parallel. Each successive policy in the hierarchy
is responsible for learning how to break down problems
into subproblems with increasingly fine time resolutions.
Figure 1 should provide some intuition on how HAC agents
learn at different time scales. The figure shows an agent
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Figure 1. Example HAC Hierarchy. Agent in figure uses three
policies to learn a behavior. Each policy specializes in breaking
down problems into subproblems with finer time resolutions.

that uses three policies to accomplish some behavior. The
solid vertical lines represent the time resolutions of sub-
goals output by each policy. The more distance there is
between consecutive vertical lines, the more time the agent
has to achieve each subgoal. The low-level policy outputs
actual agent actions so the vertical lines for the low-level
policy can be interpreted as subgoals requiring one action.
In the figure, the high-level policy breaks down the end goal
into three subgoals with relatively large time resolutions.
The mid-level policy specializes in dividing each subgoal
from the high-level policy into three subgoals belonging to
shorter time scales. Finally, the low-level policy specializes
in decomposing each subgoal from the mid-level policy into
three agent actions, which represent the smallest time reso-
lution. A crucial benefit of having each policy specialize in
breaking down goals of particular time scale into subgoals
of a certain smaller time scale is that the policies that are
learned are limited in length. This is beneficial because
shorter policies can be learned more quickly than longer
ones. Further, having multiple policies that operate at dif-
ferent levels of temporal abstraction is helpful because it
enables high-level exploration, which can also accelerate
learning.

Hierarchical Actor-Critic helps agents learn a hierarchy of
policies similar to Figure 1 using a set of actor-critic net-
works. Each actor-critic network is responsible for learning
one of the policies within the hierarchy. The policies or
actor networks that are learned are goal-based, meaning that
they take as input the current state and a goal and output an

action. Each goal-based actor network learns limited length
policies that operate at different time resolutions due to a
critical feature of the algorithm — time limits. Each actor
network has only a certain number of actions to achieve its
higher level input goal. Section 3 explains how time limits
enable each actor network to specialize in a different time
scale.

Another key advantage of HAC is that it provides an end-to-
end hierarchical learning approach. HAC learns to separate
goals into subgoals using just the agent’s experience and
the algorithm only requires sparse reward functions. The
hierarchical policies are also learned in parallel and do not
need to be learned in different phases.

For this paper, we ran a series of experiments compar-
ing the performance of agents that did and did not use
the Hierarchical Actor-Critic algorithm. The tasks exam-
ined include pendulum, reacher, cartpole, and pick-and-
place environments. In each task, agents that used Hierar-
chical Actor-Critic significantly outperformed those that
did not. In some tasks, the use of Hierarchical Actor-
Critic appears to be the difference between consistently
solving a task and rarely solving a task. A video show-
ing the results of our experiments is available at https:
//www.youtube.com/watch?v=m3EYeBpGepo.

2. Background
Hierarchical Actor-Critic builds off three techniques from
the reinforcement learning literature: (i) the Deep Determin-
istic Policy Gradient (DDPG) learning algorithm (Lillicrap
et al., 2015), (ii) Universal Value Function Approximators
(UVFA) (Schaul et al., 2015), and (iii) Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017).

DDPG serves as the key learning infrastructure within Hier-
archical Actor-Critic. DDPG is an actor-critic algorithm and
thus uses two neural networks to enable agents to learn from
experience. The actor network learns a deterministic policy
that maps from states to actions π : S → A. The critic
network approximates the Q-function or the action-value
function of the current policy Qπ(st, at) = E[Rt|st, at],
in which Rt is the discounted sum of future rewards∑∞
i=t γ

i−tri. Thus, the critic network maps from (state,
action) pairs to expected long-term reward Q : S ×A→ R.
In order to learn a near-optimal policy that results in large
expected long-term reward, DDPG follows a cyclical pro-
cess composed of two steps: (i) policy evaluation and (ii)
policy improvement. In the policy evaluation phase, the
agent first interacts with the environment for a period of
time using a noisy policy π(s) + N(0, 1), in which N(·)
is some normal distribution. The transitions experienced
are stored as (st, at, rt, st+1) tuples in a replay buffer. The
agent then updates its approximation of the Q-function of
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the current policy by performing mini-batch gradient de-
scent on the loss function L = (Q(st, at)− yt)2, in which
the target yt is the Bellman estimate of the Q-function
yt = rt + γQ(st+1, π(st+1)). In the policy improvement
phase, the agent modifies its policy based on the updated
approximation of the action-value function. The actor func-
tion is trained by moving its parameters in the direction of
the gradient of Q w.r.t. the actors parameters.

Universal Value Function Approximators is a second idea
that is critical to HAC. UVFA extends the action-value func-
tion to incorporate goals. The Q-function now represents
the expected long-term reward of taking an action given
the current state and goal Qπ(st, at, gt) = E[Rt|st, at, gt].
Each goal has its own reward function rg(st, at, st+1) and
discount function γg(s). γg(s) = 0 when the agent is in a
state that achieves the prescribed goal as the current state
can be viewed as a terminating one. Goals are critical to
HAC because goals are often hierarchical and can be broken
down into subgoals. Goals are also useful because they can
be used easily with sparse and binary reward functions.

Hindsight Experience Replay is another component from
the reinforcement learning literature that is integral to Hi-
erarchical Actor-Critic. HER helps agents learn goal-based
policies more quickly when sparse reward functions are
used. The idea behind HER is that even though an agent
may have failed to achieve its given goal in an episode, the
agent did learn a sequence of actions to achieve a differ-
ent objective in hindsight — the state in which the agent
finished. Learning how to achieve different goals in the
goal space should help the agent better determine how to
achieve the original goal. Hindsight Experience Replay is
implemented by creating a separate copy of the transitions
(st, at, rt, st+1, g) that occurred in an episode and replacing
(i) the original goal with the goal achieved in hindsight and
(ii) the original reward with the appropriate value given the
new goal.

3. Hierarchical Actor-Critic
We introduce a new hierarchical RL approach called Hierar-
chical Actor-Critic. The algorithm helps agents learn long
time horizon tasks involving continuous action spaces and
sparse rewards more quickly by enabling agents to learn to
break down those tasks into easier subtasks belonging to
different time scales. HAC directly addresses the issue of
lengthy policies that hinder many existing non-hierarchical
and hierarchical approaches as HAC agents learn limited
policies at each level of temporal abstraction. The approach
is also end-to-end as it learns subgoal policies at different
levels of temporal abstraction on its own and in parallel and
only requires sparse reward functions.

Neural 
Network

State Subgoal

Action

Neural 
Network

State Goal

Low-Level 
Actor

High-Level 
Actor

Figure 2. Hierarchical policy with 1 subgoal layer

3.1. Architecture

The objective of the algorithm is to learn a hierarchical
policy like the one shown in Figure 2. The hierarchical
policy is composed of multiple goal-based policies or actor
networks. Each actor network takes as input the current
state and higher level goal and outputs an action belonging
to a particular time scale. For the subgoal actor networks,
such as the bottom network in Figure 2, this action is a
proposed subgoal. The proposed subgoal is a desired future
state or set of future states for the agent. For the actor
network operating at the lowest level of abstraction, such
as the top network in Figure 2, the action is the agent’s
actual output. In our experiments, we trained agents that
used hierarchical policies composed of two and three actor
networks. Additional layers can be easily added.

Each actor network has its own critic network and replay
buffer to learn a near-optimal policy. The actor networks
from Figure 2 are shown connected to their respective critic
networks in Figure 3. Each critic network approximates
the Q-function for its associated policy Qπi(st, at, gt) =
E[Rt|st, at, gt] using the Bellman equation as a target yt =
rg+γgQ

πi(st+1, πi(st+1), gt). rg is sparse and binary and
is granted when the agent has reached a state within a certain
distance of the goal. As described in (Schaul et al., 2015),
γg = 0 when the prescribed goal has been achieved as a
terminating state has been reached.

3.2. Temporal Abstraction via Limited Policies

Each actor network within the hierarchical policy learns a
limited length policy as a result of time limits. Actor net-
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Figure 3. Actor-Critic networks for hierarchical policy with 1 sub-
goal layer.

works can only take a certain number of actions to achieve
their higher level goal. For the lowest level actor network,
this means it can only execute a certain number of actual
agent actions to achieve a subgoal. For higher level subgoal
actor networks, the policy limit means the network must
achieve its higher level goal within a maximum number
of subgoals. The policy length limit for actor network i is
controlled by a hyper parameter Ti. In our experiments, we
generally used the same value for Ti for each actor network
within the hierarchical policy. This limit thus restricts each
actor network to only learning how to achieve goals that can
be accomplished within a certain number of actions, which
shortens the goal-based policy that is learned.

The combination of time limits and Hindsight Experience
Replay enables each actor network to specialize in different
time resolutions. Actor networks learn to operate at differ-
ent time scales largely as a result of hindsight learning, in
which the agent learns how to achieve the goal states the
agent actually reached during an episode with the help of
HER. The following example should provide some clarity.
Consider an agent using a two layer hierarchical policy with
T0 = T1 = 10, meaning that the agent must achieve each
subgoal in no more than 10 agent actions and achieve the
end goal in no more than 10 subgoals. Even in the worst
case scenario in which the agent fails after 100 agent actions
to achieve any of the 10 subgoals and the end goal, the agent
will still be able to learn how it could have divided up the
task of achieving the final state into problems belonging

to different time scales. In order to achieve the last state
reached on the 100th action, the agent could have chosen
every 10th state to be a subgoal state. This is a valid break-
down because the end goal is reached in no more than 10
subgoals and each subgoal is achieved in no more than 10
actions by the agent. From this breakdown, the higher level
network’s replay buffer receives a sequence of 10 transitions
showing how it can use subgoals belonging to larger time
resolutions to achieve the hindsight end goal. Similarly,
the low-level network’s replay buffer receives 10 sequences
of 10 transitions each showing how it can use actions be-
longing to the smallest time scale to achieve each of the
10 subgoals. Over the course of many episodes, each actor
network learns to achieve goals with actions belonging to
its respective time scale. Thus, time limits are critical for
helping each actor network specialize in a different time
resolution because they provide a simple way to divide up a
sequence of actions that achieved some goal into multiple
sequences belonging to different time scales.

Learning limited policies at different time resolutions
presents significant benefits as well as new challenges for
the agent. The key benefit is that it should be easier to
learn multiple shorter policies in parallel than one long pol-
icy. Credit assignment is less of a problem as the critic
function for each policy only needs to learn Q-values for a
more limited region of the state-action-goal space. Learning
is faster because reinforcement learning agents essentially
learn from end to beginning when sparse rewards are used.
This backwards learning process occurs more quickly if the
policy requires fewer actions. However, the use of limited
policies also results in a significant new dilemma — sub-
goal actor networks now have conflicting missions. Subgoal
actor networks need to learn a policy that can simultane-
ously (i) achieve its higher level goal in as few actions (i.e.,
subgoals) as possible but also (ii) output subgoals that can
be achieved by the lower-level actor network in a limited
number of steps. Producing subgoals that are too ambitious
may not be achievable by lower level layers as they special-
ize in limited policies. Overly ambitious subgoals could
thus result in the failure of the higher level actor network
to achieve its own goal. To simultaneously solve both of
its conflicting objectives, the upper and lower level layers
need to coordinate as the upper level needs to understand
the types of subgoals the lower level can accomplish.

We take two steps to incentivize subgoal actor network i to
output subgoals that can be achieved by actor network i− 1
in no more than Ti−1 actions. First, as in the example dis-
cussed above, all experience transitions passed to the replay
buffers of subgoal actor networks contain actions (i.e. sub-
goals) that were actually achieved by the succeeding, lower
level actor network within the maximum number of actions.
Second, HAC penalizes proposed subgoals that were not
achieved. A certain percentage of the time defined by a hy-
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Algorithm 1 Hierarchical Actor-Critic
Initialize Actor-Critic networks [(π0, Q0), . . . , (πn, Qn)]
Initialize Replay Buffers (R0, . . . , Rn)
for episode = 1 to M do

Sample actual goal, G, and initial state, s0
for tn = 1 to Tn do

Testing Boolean B ← {0, 1}
Sample layer n subgoal from πn
gtn ← πn(s(tn), G) +B ·N(0, 1)

. . .
for t0 = 1 to T0 do

Sample action from π0
at0 ← π0(s(t0), g1) +B ·N(0, 1)

ProcessTrans(st0 ,at0 ,rt0+1,st0+1,gt1 )
if gt1 , ..., G achieved or t0 = T0 then

Perform HER on layer 0 transitions
break

end if
end for

. . .
ProcessTrans(stn ,gtn ,rtn+1,stn+1,G)
if G achieved or tn = Tn then

Perform HER on layer n transitions
break

end if
end for
Update Actor-Critic Networks

end for

per parameter, agents will test subgoals by not adding noise
to the subgoals and actions prescribed by its hierarchical
policy. Noise needs to be removed when testing subgoals
because an agent may miss a subgoal due to noise added to
lower level actions. Subgoals that cannot be achieved with
the agent’s current, noise-free policy will be penalized. In
our experiments, if layer i proposed a subgoal that was not
achieved, layer i received a reward of −Ti. In addition, we
set γg = 0 when a subgoal is missed during testing as the
Q-value of a missed proposed subgoal should not depend on
the Q-value of a different state. If γg = 0, then the reward
for proposing the subgoal must be −Ti or less. Otherwise,
proposing the missed subgoal may have a larger Q-value
than some subgoals that do efficiently guide the agent to
the goal, and the subgoal actor network may not update
its policy as a result. We observed that the extra penalty
for proposing a missed subgoal works as intended as the
subgoal layer would adjust to proposing more conservative
subgoals that the lower-level layer can achieve.

3.3. Algorithm

The main part of the HAC algorithm, shown in Algorithm 1,
is concerned with ensuring the correct experience transitions

Algorithm 2 Transition Processing
Function ProcessTrans(sti ,ati ,rti+1,sti+1,gti+1

)
if subgoal layer and ati not achieved then
Ri ← (sti , g

′
ti , rti+1, sti+1, gti+1

)
if Testing then
Ri ← (sti , ati ,−Ti, sti+1, gti+1)

end if
else
Ri ← (sti , ati , rti+1, sti+1, gti+1

)
if subgoal layer then

Store HER trans (sti , g
′
ti , TBD, sti+1, TBD)

else
Store HER trans (sti , ati , TBD, sti+1, TBD)

end if
end function

are passed to each actor network’s replay buffer. In order
to learn policies of a certain length, actor networks need
to be passed sequences of transitions of the same length.
Also, as discussed above, in order for each subgoal actor
network to learn to output effective subgoals that belong to
its respective time resolution, certain transitions need to be
passed to each actor network.

HAC proceeds as follows. The initial state and end goal
are passed to the actor network n, which then triggers the
passing of a series of subgoals from higher level actor net-
works to lower level actor networks. If the agent is in a
subgoal testing phase, noise will not be added to these sub-
goals. The cascade of subgoals terminates when the last
subgoal is passed to the lowest level actor function, which
is located in the innermost for loop. The lowest level actor
then has T0 attempts to try to achieve the provided sub-
goal. After each action by the lowest level actor network,
two copies of transitions are created as a result of the call
to the ProcessTrans function shown in Algorithm 2. The
first transition (st0 , at0 , rt0+1, st0+1, gt1) is placed in replay
buffer R0. This transition indicates whether the action at0
taken in state st0 was able to achieve goal gt1 . The sec-
ond transition (st0 , at0 , TBD, st0+1, TBD) awaits further
processing during Hindsight Experience Replay. Once the
lowest level actor has run out of T0 attempts or achieves
any of the higher-level goals gt1 ,...,G, Hindsight Experience
Replay is executed. During HER, a few random transitions
are selected to serve as hindsight goals. As a result, for the
selected transition and all preceding transitions, the TBD
goal component is replaced with g′t1 = f(st1+1), in which
f(·) is a function that transforms an array from the state
space to the the goal space. g′t1 can thus be interpreted as
the subgoal achieved in hindsight. The TBD reward com-
ponent is then replaced with its appropriate value given the
updated goal. The purpose of these HER transitions is thus
to help the agents learn the sequences of actions that were
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used to achieve hindsight goals, even though these hindsight
goals may be different than the original target goals. After
HER is executed for the lowest level actor network, control
is then passed to the preceding higher level actor network.

The completion of the innermost for loop consists of 1
subgoal action for actor network 1. Different transitions
will be created depending on (i) whether its original pro-
posed subgoal gt1 was achieved by actor network 0 and
(ii) whether the agent is currently in a testing phase. If
the proposed subgoal was not achieved, the transition
(st1 , g

′
t1 , rt1+1, st1+1, gt2) is passed to replay buffer R1.

This transition indicates whether the subgoal achieved in
hindsight, g′t1 , was able to achieve the higher level goal
gt2 . If the proposed subgoal was missed and the agent is
currently testing subgoals, the actor network 1 is penalized
with the transition (st1 , gt1 ,−T1, st1+1, gt2). On the other
hand, if subgoal gt1 was achieved by actor network 0, the
transition (st1 , gt1 , rt1+1, st1+1, gt2) is passed to R1. Fi-
nally, an additional transition (st1 , g

′
t1 , TBD, sti+1, TBD)

is created for Hindsight Experience Replay. Actor network 1
then proposes a second subgoal for actor network 0 and the
process begins again. The key insight here is that the second
component or the ”action” component in every transition
passed to the subgoal actor networks identifies a subgoal
that has been achieved by the lower level actor network in
no more than Ti−1 steps, except for the transitions that pe-
nalize bad subgoals. As a result, each subgoal actor network
learns to output actions that both belong to a a particular
time resolution and are helpful towards achieving the actor
network’s higher level goal.

After interacting with the environment for one or more
episodes and filling its replay buffers with transitions, the
agent now learns from the experience by updating its actor-
critic functions. Mini-batch gradient descent is performed
on the critic network to push the Q-function closer to the
Bellman estimates. Next, the parameters of the actor func-
tion θi are moved in the direction of the gradient of the
Q-function w.r.t θi. For the lowest level actor network, up-
dating its actor-critic network should enable the actor to find
more efficient routes to achieving its shorter term goals. For
each subgoal actor-critic layer, updating its actor-critic net-
work means finding a better way to balance its conflicting
objectives of finding the sequence of subgoals that can (i)
most quickly solve the higher level goal and (ii) be achieved
in no more than Ti−1 steps by the succeeding actor layer.

4. Experiments
We evaluated the Hierarchical Actor-Critic approach on a
total of 5 tasks: Pendulum-Climb, Pendulum-Balance, UR5
Reacher, Cartpole, and 1-Object Pick-and-Place. In each
environment, we compared the performance of agents using
0, 1, and 2 subgoal layers. Agents using 0 subgoal layers

were thereby only using DDPG and HER. A video showing
the results of our experiments is available at https://
www.youtube.com/watch?v=m3EYeBpGepo.

4.1. Environments

We assessed HAC on the following 5 tasks. Each of these
simulations was built using the Mujoco physics engine
(Todorov et al., 2012).

1. Pendulum - Climb
The goal of this task is for the agent to swing the pen-
dulum to its maximum height, marked by a yellow
cube. The agent only needs to touch the yellow sphere
located at the peak and does not need to try to balance
the pole. We found that an efficient policy could solve
this task in around 100 low-level actions.

2. Pendulum - Balance
The goal for this environment is to balance the pen-
dulum at its peak near the yellow sphere. Thus, to
achieve the goal the pole must be located near the peak
and have angular velocity near 0. Figure 4 shows a
few frames from a successful episode. We found that
an efficient policy could solve this task in around 150
low-level actions.

3. UR5 Reacher
The goal of this task is for the agent to learn to move to
a randomly designated point, marked by a yellow cube.
The agent in this task is a simulated UR5, a 6 DOF
robotic arm. To make the task require a longer time
horizon, the goal location is always in the quadrant in
front and opposite the starting location of the gripper.
We found that an efficient policy could solve this task
in around 60 individual actions.

4. Cartpole Swingup
The goal for this task is to swing the pole up to the
yellow cube. In order to achieve the goal, the angular
velocity of the pole must also be near 0 and the position
of the cart must be below the yellow cube. We found
that an efficient policy could solve this task in around
170 low-level actions.

5. 1-Object Pick-and-Place
The idea for this task was to assess how Hierarchical
Actor-Critic would perform in a task with natural hier-
archy. The objective in this task is to pick up the blue
rod and move it to the yellow rod. The agent is a 2
joint robot worm. Our more efficient agents can solve
this task in around 110 steps.

States, Actions, Rewards
The state space in all environments include joints positions
and joint velocities. The actions are joint torques. Further,
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Figure 4. Three frames from a successful episode of the Pendulum - Balance task. The agent learns to reach the goal (touch the yellow
sphere) by breaking down the task into subgoals (touch the purple spheres).

Table 1. Environment subgoal and goal descriptions

TASK SUBGOAL GOAL

PENDULUM-CLIMB θxy θxy
PENDULUM-BALANCE θxy, θ̇ θxy, θ̇
UR5 REACHER θeffectorxyz θeffectorxyz

CARTPOLE θxy, θ̇ θxy, θ̇
PICK-AND-PLACE θxy θxy

each network within the stack has its own sparse reward
function. In our experiment, a reward of -1 was granted if
an actor network took an action that did not complete its
goal and a reward of 0 if the action was successful. Also,
a larger negative reward was issued for subgoal networks
that proposed a subgoal that the lower level layers could not
achieve. Rewards are granted by a layer if the agent has
moved within a certain distance of the layer’s goal. Further,
the rewards granted by each network are independent of
each other. For instance, an agent may miss the low-level
subgoal but achieve a high-level subgoal. In this case, the
transition passed to the low-level replay buffer will still list
the negative reward for taking that action given the current
state and subgoal because the action was unsuccessful.

Goals and Subgoals
Table 1 shows the subgoals and end goals for each task. θxy
and θ̇ represent Cartesian joint positions and joint velocities,
respectively. The subgoals in our experiments were essen-
tially desired future states that the agent learns to achieve
along the way to reaching the end goal. For some of our
experiments, we used a lower dimensional version of the
state as the subgoal.

The end goal shown in the last column of Table 1 depends
on the behavior the user would like the agent to learn. The
more specific the desired behavior, the more similar the end
goal should be to the state. For instance, in our Pendulum
- Climb task, the agent just needed to learn to swing up to
the peak in as few actions as possible. The agent did not
need to try to balance the pole. Thus, for this task the end
goal was 2-dimensional and includes the (x,y) coordinates
of maximum height of the pendulum. On the other hand,

in the Pendulum - Balance task, the agent needed to both
swing the pole to its peak and maintain a near 0 angular
velocity when the pole was upright. Thus, the goal for this
task was 3-dimensional and included the (x,y) coordinates
of maximum height of the pendulum and the desired angular
velocity of 0.

4.2. Results

The accompanying video and Figure 4.1 show the results
of our experiments. In Figure 4.1, each chart plots the
percentage of goals achieved by agents using 0, 1, and 2
subgoal layers in each testing period. Testing periods are
separated by about 300 episodes and each testing period
consists of 64 episodes. Each plot represents the average
performance over 7-10 runs of each task. Agents learn each
task from scratch and thus begin with no pre-training. In
episode 0, agents are thereby using random policies.

The key result from our work is that the use of Hierarchi-
cal Actor-Critic resulted in a substantial improvement in
performance. In all 5 environments, agents that used HAC
learned a robust policy significantly faster. Indeed, for many
tasks, agents that used no subgoal layers were not able to
consistently solve the task.

The video and the frames in Figure 4 also demonstrate that
the algorithm is working as intended – the agents are learn-
ing how to break problems down into easier subproblems.
In the Pendulum - Balance environment, the subgoals rep-
resented by purple spheres show that the agent has learned
that if it wants to balance the pole upright it first needs to
swing back and forth. In the UR5 Reacher environment,
if the goal location marked by the yellow cube is far away
from an agent using 2 subgoal layers, the agent will often
put the high-level subgoal marker, the green cube, about
halfway to the end goal. The low-level subgoals, marked
by the purple cubes, then appear to guide agent toward the
high-level subgoal. This indicates the agent has learned how
to effectively separate high-level goals into easier low-level
goals. Similar hierarchical behavior is evident in the pick-
and-place environments. In the 1-Object Pick-and-Place,
the high-level subgoal, represented by the green sphere and
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Figure 5. The above plots compare the performance of agents that use the baseline DDPG+HER method with 0 subgoal layers (blue), and
our HAC method with 1 (red) and 2 (yellow) subgoal layers, for each of the five tasks. Performance is measured by the percentage of end
goals achieved in each testing period, which consists of 64 episodes.

rod, will often appear in the vicinity of the blue rod when
the blue rod has not yet been picked up. Once the blue rod
has been attached, the high-level subgoal moves to the yel-
low rod. The low-level subgoal, represented by the purple
sphere and rod, again guide the agent to the green high-level
subgoal.

We also observed that for most trials in each task except
for the pick-and-place task, agents using 2 subgoal layers
learned significantly faster than agents using 1 subgoal layer.
Agent using 2 subgoal layers learn an extra policy but each
of the three policies specialize in learning shorter policies
than the 2 policies learned by agents using 1 subgoal layer.
This result further supports the main premise of the algo-
rithm — hierarchical agents that learn more shorter policies
in parallel can outperform agents learning fewer longer poli-
cies.

5. Related Work
Hierarchical RL is a topic of ongoing research (Sutton et al.,
1999), (Dayan & Hinton, 1993), (Vezhnevets et al., 2017),
(Dietterich, 1998). One popular hierarchical reinforcement
learning approach is feudal reinforcement learning (Dayan
& Hinton, 1993). In feudal reinforcement learning, the
state space is divided into increasingly small regions at each
level of abstraction. Dayan and Hinton (Dayan & Hinton,
1993) present a grid world example, in which a maze is
continually divided into quarters at each level. Each level
has a set of managers that are in charge of providing goals
and rewards to the 4 sub-managers below. Sub-managers

need to learn to complete their goals by learning how to give
tasks to their own sub-managers. Dayan and Hinton (Dayan
& Hinton, 1993) show that a feudal structure outperforms
a non-hierarchical Q-learning approach. A key difference
between HAC and feudal reinforcement learning is that the
latter breaks down problems along the spatial dimension
instead of the temporal dimension. This is problematic
for two reasons. First, it is unclear how the state space
would be divided for high-dimensional and continuous state
spaces. Second, even if there was a way to divide a high-
dimensional continuous state space, the feudal approach
does not guarantee the hierarchical policies learned will
each be short. There may be some small region of the
continuous state space that is difficult to maneuver and may
require many actions from a manager. HAC, on the other
hand, motivates its actor networks to learn shorter policies,
which can accelerate learning.

Another popular framework in hierarchical reinforcement
learning is the options framework (Sutton et al., 1999). This
approach generally uses a hierarchy of two layers to enable
agents to break problems down. The low-level layer consists
of multiple options, each of which is a policy that can solve a
specific task. The high-level layer is responsible for learning
the sequence of these specific policies that can achieve a
task. HAC uses a different approach to breaking problems
down. Instead of having the high-level policy select one
of many specific low-level policies, the high-level network
provides a subgoal to a single low-level network, which
is trained to achieve a variety of subgoals as it learns a
goal-based policy. Using one low-level goal-based policy
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network instead of several non-goal-based policies should
provide some efficiency advantages because learning how
to achieve one subgoal will often help in learning how to
achieve different subgoals. For instance, in a pick-and-place
task, learning how pick up and drop off an object in a certain
location should help the agent learn to pick up and drop off
the object in a different target location.

Kulkarni et al.(Kulkarni et al., 2016) proposed an approach
with some similarities to both the options framework and
HAC. The algorithm, named hierarchical-DQN (h-DQN),
aims to help agents solve tasks in environments with discrete
action spaces. Agents implemented with h-DQN break
down tasks using two value functions. The high-level layer
attempts to learn a sequence of subgoals that can accomplish
a task. The low-level layer attempts to learn a sequence
of individual actions that can achieve the provided subgoal.
The low-level layer thus learns a goal-based policy and value
functions similar to HAC. However, unlike the Hierarchical
Actor-Critic method, h-DQN does not enable agents to learn
the sequence of high-level subgoals from scratch while using
only sparse reward functions. In the papers Montezumas
Revenge example, the agent was provided with the set of the
possible subgoals, which included objects in the game such
as doors, ladders, and keys. The agent was then responsible
for learning the order these items needed to be reached. An
external reward function was also used to help the agent
more quickly find the order of these subgoals. One key
reason Hierarchical Actor-Critic does not need aids like sets
of subgoals or manually-engineered reward functions is the
use of Hindsight Experience Replay. With HER, as long as
the agent can occasionally achieve goals that are nearby the
intended goal, the agent should have a chance to learn the
desired behavior.

6. Conclusion
We introduced a new technique called Hierarchical Actor-
Critic that uses temporal abstraction to break down complex
problems into easier subproblems. Our results indicate that
only using one policy to learn a challenging behavior in an
environment with sparse rewards can be problematic. A
better approach may be to learn a set of policies operating at
different time resolutions that work together to learn some
behavior.
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