probabllltles ,g)n
Splanning .« @9 .
. erepresentatlon(1 = ﬂ.?é,._;“l’”“ COS 402 - MaCh|ne
= N .
Ssup.oeg‘g’rlfemﬁ gbg_*g Learning and
. é‘ §ﬁ - H AS 8 Artificial Intelligence
« Z1nte 1
== seareh Fall 2016
o, » &Semanties L
<
O"S 8 COS 402: Artificial Intelligence =8 &3
y—f and Machine Learning C L

Lecture 20: Reinforcement Learning — part |
(function approximation)
Sanjeev Arora Elad Hazan

'3 PRINCETON
UNIVERSITY

Admin

* (programming) exercise MCMC —due today
e exercise on RL- announced hereby—duein 1 week

* Last lecture of the course: course summary + “ask us anything”, Prof. Arora + myself.
Exercise: submit a question the lecture before (graded)

* Asking questionsin class — everything is allowed, including “can you explain again” (especially
for RL material)

* Next class: Prof. Seung on deep learning

e Class after the next:Dr. Li (please submit questions)

Markov Decision Process

Markov Reward Process, definition:
* Tuple(S,P,R,A,y) where

e S =states, includingstart state

A = set of possible actions

P =transition matrix P%, = Pr[S;y1 = S'|S¢ = 5,4 = a]
R =reward function, R = E[R;11|S¢ = s, A = a

vy € [0,1] = discount factor

* Return

Gy = z Reyiy' !

[=1to o

e Goal: take actions to maximize expected return

Policies
The Markovian structure =» best action depends only on current state!

* Policy = mapping from state to distribution over actions
m:S - A(A), n(als) = Pr[A, = a|S; = 5]

* Given a policy, the MDP reduces to a Markov Reward Process

Reminders

START

Ep 10 - Rewarde77

Bellman optimality equations

* Bellman equation: v,(s) = max {g.(s,a)} implies Bellman optimality
equations: !

qg.(s,a) = R¥+ vy E P% max{q.(s’,a")}
al’l
S/

v,(s) = max {R? +y E P;;,v*(s’)}
a
S/

* |terative methods based on the Bellman equations: dynamic programming
* Policy iteration
* Value iteration

Policy iteration

Start: arbitrary
policy

Evaluate policy

Improve policy Compute final

policy

Value iteration

Start: state values
corresponding to
arbitrary policy

Improve values

Compute final

policy

Model-free RL

Thus far: assumed we know transition matrices, rewards, states, and they are not too large.
What if transitions/rewards are:
1. unknown

2. toomanyto keep in memory/ compute over
“model free” = we do not have the "model” = transition matrix P and reward vector R

e can estimate PandR from history, and use any of the methods we saw
(solving for estimate may not be optimal!)

Monte Carlo policy iteration/evaluation

Instead of computing, estimate v, (s) = E;[G|S; = s] byrandomwalk:

The first time state s is visited, update counter N(s) (increment every time it’s visited again)
Keep track of all rewards from this point onwards

Estimate of G, is sum of rewards / N(s).

Claim: this estimator has expectation G, (s), and converges to it by law of large numbers
Similarly can estimate value-action function q,(s,a) = E[G;|S; = s, A; = a]

e Whatdo we do with estimated values?

policy iteration requires rewards+transitions
Model-free policy improvement:
n(s) = argmax{q,(s,a)}
a

Temporal Difference learning

Similaridea, butinstead of long-horizon estimation, iteratively update by

v(s) = v™(s) + a(G, — v™(s))
=v7(s) + a(Reyp, +Yv™(s") — v™(s))

* More flexiblethan MClearning (don’t need to wait for estimates to converge)

* Similaridea appliesto state-actionfunction q(s,a)

* Never estimate the “model” (transition matrix and reward vector)

LARGE state space

of states may still be prohibitively large!
* Backgammon: 1020 states
* Chess: 1040 states

* Go: 1070 states
Previous methods still infeasible!

Function Approximation:approximate the state space (and all model parameters) with a more compact one!
* Reduction in # of states (computation and space)

* More importantly: generalization to unseen states!

Types of (value / action-value) function approximation:
* Linear
* Neural network

* Decision tree

Function approximation

Findingoptimal 8 > knowledge of value for ALL states!

vg(s) = 01x,(s) + 0,x(s) + ...+ 0,x,,(s) =07 x(s)

1040 states are mapped to linear function over n “important”
features, i.e.

1. Numberof white pieces — black pieces
2. Distance between kings
3. Etc

Learning a value function over n parameters: supervised learning!

Recall 1st part of coruse: sample complexity, computational complexity,...

Function approximation —computing value function

Natural objective: MSE between approximationand true value per state, i.e.

f(O) = En(vn(s) — 779(5))2

Minimizing f(6)?

Stochasticgradient descent!!
Or41 =0 —Vf(6;)

Consider linear approximation: vg(s) = 8" x(s), then algorithm becomes:

Or41 = 0; — 1 Ex(vg(s) — VG(S)) X x(s)

TD algorithm:

Ors1 =0 =1 (Reg1 + v 07 x(s") + 87 x(s)) x x(s)

How to improve the policy?

Apply same idea for state-action function, i.e. linear approximation: gg(s,a) = 8" x(s, a) fora
state-action vector x(s,a). Optimize MSE of state-action error:

f(0) = En(Qn(S: a) — qe(s, a))z

TD algorithm:
01 =6, — 1 (Rt+1 + yrrba,\X{HTx(s’, a)} — 0T x(s, a)) X x(s,a)

Off-policy vs. on-policy: for on need to add exploration (e.g. instead of greedy a’ choice, choose with
small probability an action atrandom).

Policy gradient + function approximation

\ Improve policy \

Start: (approximate)
state values

corresponding to
arbitrary polic

Return
final policy

Policy gradient algorithm for approximate MDP

Parametrized policy, g (s), for example, could be the max action accordingto g functions:

mo(s) = maxqe(s, a)

(many times — soft approximation to max to ensure smoothness)

Q-functions can be linear/ deep nets, etc.

Plan: gradient descent on the parameter 8 to optimize policy directly.

NOT the same as Q-learning w. value approximation! (not tryingto optimize g function).
How do we compute gradient?

We can compute: f(8) = Ep,[v™ (s1)]

(by evaluatingreturn, running policy)

gradient descent without a gradient

The derivative of a function f(x):R —» R

ey e FOH8)—f(x—6)
f'(x) = lim =5

- f(x+8y)-y

Idea: can sample unbiased coin, and return gradient estimator by single evaluation of the function!

Canyou see how to continue?

radient descent without a gradient
8 8 &7 .

Stokes’ theoremfor f(x): R4 » R, let § < 1 be very small, \ Jroar= [fcue-as 1
' STOKED /

VF(x) = VEjpj<1[f(x + 8) = 5 Epy=1 [f G + 8v) - v]

|Idea: can sample function at a single point x + dv, and estimate the

gradient for stochasticgradient descent! 3

(or, almost equivalently, do the previous slide for each coordinate)

Policy gradient without a gradient

Parametrized policy, g (s), for example, could be the max action according to g functions:

mg(s) = maxqg(s,a)
a

(many times — soft approximation to max to ensure smoothness)

Update using gradient descent:
Orr1 =0 —nVf(6)

Where the gradient estimator is obtained by:

%Emzl[f(Ht +6v) - v]

for f(0) = En, [v™ (s1)]
(by evaluating return, running policy)

Summary

* Model free algorithms for solving MDPs
* Q-function (state-action)andvalue function estimation via MCMC
e Same via temporal difference
e Q-function optimization viatemporaldifference (or MCMC)

* Function approximation idea — generalization and efficiency
* Gradientdescent approximation to estimate value/Q functions
e gradientdescent to optimize the optimal Q-function directly

 Policy gradient method
e Gradientdescent withouta gradientidea

