A Brief History of Air Pollution
and Health

Mike He
Atmospheric and Climate Science for PH
October 22, 2019



Overview

« Background and Introduction

* Methods for Air Pollution Epidemiology
« Landmark Cohort Studies

* Exposure Assessment

» Health Impact Assessment



HE LANCE The Global Burden of Disease 2015

Breathing contaminates contributes to global burden of disease (GBD)

Number of attributable

deaths
Tobacco Smoking 6.4 mil.
Second Hand Smoke 0.9 mil.
PM, ¢ air pollution 4.2 mil.
Household air pollution from solid fuels qq 2.9 mil.
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Ambient Ozone ) A\-‘eq'ab‘ 0.2 mil.
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Examples of Catastrophic Air Pollution

* 1911 in London - 1,150 died from effects of coal smoke. The
term “smog” was coined to describe the mix of smoke and fog
that hung over London at the time

* 1948 in Donora, Pennsylvania - 20 died and over 6,000 were ill
from smog emitted from community’s steel mill, zinc smelter,
and sulfuric acid plant

* 1952 in London - Caused by a severe air inversion resulting in
a build up of SO, and PM. Over 4,000 deaths

* 1966 in New York City - 168 people died from air pollution



Clean Air Act

* Signed into law in 1963, amendments in in the 70s and 90s
* One of the most comprehensive air quality laws in the world
 Established the HAPs and CAPs

e HAPs: Hazardous Air Pollutants: a list of 170+ chemicals considered harmful to
human health

* CAPs: Criteria Air Pollutant: six high priority air pollutants with common point
sources (ozone, particulate matter, lead, carbon monoxide, sulfur oxides, and

nitrogen oxides)



Particulate Matter (PM)

» A complex air mixture of solid particles
anc{ lqumd droplets. Components
include:

 Acids (nitrates, sulfates)
» Organic chemicals

* Metals

» Soil, dust particles

« Common sources:

* Primary emissions: dust, fuel combustion,
motor vehicles, industrial processes, fires

« Secondary formation in the atmosphere
(chemistry!)
* PM is grouped into size-dependent
categories:
* Inhalable coarse particles (PM,,)
 Fine particles (PM, 5)
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Air Pollution Epidemiology

 Associations between exposures of air pollution and health
endpoints

* Methods are somewhat complex, but can be roughly divided
into two categories:
* Short-term (acute) effects
* Long-term (chronic) effects



Methods for Air Pollution Epidemiology

» Studies of short-term exposure (hours-days)
« Episode
* Population-based daily time-series
« Panel-based acute exposure
» Case-crossover

* Studies of long-term exposure (years-decades)
» Population-based cross-sectional
« Cohort-based mortality
« Cohort- and panel-based morbidity
« Case-control studies
 (Population based monthly/annual time-series)

* Intervention/natural experiment (months-years)
» Controlled experimental human and animal



Time-Series Epidemiology

 Usually addresses short-term, acute effects of air pollution

* Involves analysis of a series of daily observations of air
pollution and health data

* Widely used and economical approach, often utilizing readily-
available data

* Most air pollution epidemiology studies have followed this
design




Daily Time-Series Studies

Mgﬁcue&m% nnnInﬂqu & Cite This: Environ. Sci. Technol. 2018, 52, 11378-11386

pubs.acs.org/est

Fine Particle Constituents and Mortality: A Time-Series Study in

Beijing, China

Chen Chen,'® Dandan Xu,’ Mike Z. He,"® Yanwen Wangf Zonghao Dy, Yanjun Du,” Yan Q_i;ln,§

Dongsheng Ji,” and Tiantian Li*"
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doi: 10.1111/joim.12724

Acute effect of multiple ozone metrics on mortality by
season in 34 Chinese counties in 2013-2015

® (. Sun', W. Wang', C. Chen', ). Ban', D. Xu', P. Zhu', M. Z. He? & T. Li'

From the !Chinese Center for Disease Control and Prevention, National Institute of Environmental Health Sciences, Beijing, China; and
?Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA




Poisson Regression

» Counts of independent and random occurrences classically modeled as
being generated by a Poisson distribution:

Prob (Y =r) = €M %‘,

* One form of a log-linear model
In A, = a+ B(woP, + W,P,y + WP, +...) +s1(t) + s?(temp,) + . . .

i How to construct How aggressive do you How to control for
Modeling ) the lag structure? fit ime? (harmonics vs weather? (smooths of
controversies (MA, PDL, etc.) GAMS, df, span, loess, temp & RH, synoptic

cubic spline, etc.) weather, efc.)

Also: How to combine or integrate information from multiple cities



% Change

Studies are not just daily!

Title: Short- and intermediate- term exposure to NO: and mortality: a multi-county
analysis in China

Authors: Mike Z. Hes, Patrick L. Kinney?, Tiantian Lic’, Chen Chenc¢, Qinghua Suns, Jie
Bans, Jiaonan Wangs, Siliang Lius, Jeff Goldsmithd, Marianthi-Anna Kioumourtzoglou®

% Change




Panel-Based Acute Exposure

 Panel study: a longitudinal study of a cohort of people with
multiple measures over time

* Different from a normal cohort study:
 Limited sampling with respect to exposure
* No guarantee of specific outcome (or lack of outcome)
* In fact, disease/outcome of interest are not specified

* They are just a group of people progressing through time towards
undetermined outcomes...

» Statistical analysis: mixed effect models



www.nature.com/pr RESEARCH

®
POPULATION STUDY ARTICLE
The association of ambient PM> 5 with school absence and
symptoms in schoolchildren: a panel study
Yi Zhang', Liangliang Cui?, Dandan Xu', Mike Z. He?, Jingwen Zhou?, Lianyu Han®, Xinwei Li* and Tiantian Li’
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Cohort-Based Mortality

» Address longer-term, more chronic effects

» Approach:

 Large populations in multiple cities enrolled and then followed for
many years to determine disease or mortality experience

« Must control for potential “spatial” confounders,
e.g., smoking, income, race, diet, occupation

« Assessment of confounders at individual level is an advantage over
cross-sectional, “ecologic” studies

* 5355



Cox Proportional Hazards Survival Model

» Cohort studies of ambient air pollution have commonly used a Cox model to relate
survival experience to exposure while simultaneously controlling for other well known

mortality risk factors.
 The model has the form:

A0 (1) = A0 (1) expl B X (1))

Hazard function
or instantaneous
probability of
death for the jth
subject in the [t
strata.

Baseline
hazard
function,
common to all
subjects within
a strata.

Regression equation that
modulates the baseline
hazard. The vector X,()
contains the risk factor
information related to the
hazard function by the
regression vector 3 which
can vary in time.



The New England
Journal of Medicine

©Copyright, 1993, by the Massachusetts Medical Society

Volume 329 DECEMBER 9, 1993 Number 24

AN ASSOCIATION BETWEEN AIR POLLUTION AND MORTALITY IN SIX U.S. CITIES

Doucras W. Dockery, Sc.D., C. Arpen Pore 111, Pu.D., Xipineg Xu, M.D., Pu.D.,
JouN D. SPENGLER, Pu.D., James H. WaRg, Pu.D., MarTHA E. FAy, M.P.H.,
BenjamIN G. FErris, Jr., M.D., AND Frank E. Speizer, M.D.



Harvard Six Cities Study

* 14-16 year prospective follow-up of 8,111 adults living in six
U.S. cities

* Monitoring of TSP PMaio, PM25, SO4, H+, SO2, NO2, Os

« Data analyzed using survival analysis, including Cox
Proportional Hazards Models

 Controlled for individual differences in: age, sex, smoking, BMI,
education, occupational exposure.




Harvard Six Cities Study
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The Journal of the American Medical Association

Lung Cancer, Cardiopulmonary Mortality,
and Long-term Exposure
to Fine Particulate Air Pollution

C. Arden Pope 111, PhD

Richard T. Burnett, PhD)

Michael J. Thun, MD

Eugenia E. Calle, PhD

Daniel Krewski, PhD

Kazuhiko Ito. PhD

George D. Thurston, SeD

Context Associations have been found between day-to-day particulate ai
and increased risk of various adverse health outcomes, including cardiopulmc
tality. However, studies of health effects of long-term particulate air pollt
been less conclusive. \

Objective To assess the relationship between long-terﬁw exposure to fir
late air pollution and all-cause, lung cancer, and cardiopulmonary mortalit

Design, Setting, and Participants Vital status and cause of death data
lected by the American Cancer Society as part of the Cancer Prevention Il stu
going prospective mortality study, which enrolled approximately 1.2 million adu
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Table 2. Adjusted Mortality Relative Risk (RR) Associated With a 10-pg/m?® Change in Fine

Particles Measuring Less Than 2.5 pm in Diameter

Adjusted RR (95% CI)*

Cause of Mortality 1979-1983 1999-2000 Average

All-cause 1.04 (1.01-1.08) 1.06 (1.02-1.10) 1.06 (1.02-1.11)
Cardiopulmonary 1.06 (1.02-1.10) 1.08 (1.02-1.14) 1.09 (1.03-1.16)
Lung cancer 1.08 (1.01-1.16) 1.13 (1.04-1.22) 1.14 (1.04-1.23)
All other cause 1.01 (0.97-1.05) 1.01 (0.97-1.06) 1.01 (0.95-1.06)

*Estimated and adjusted based on the baseline random-effects Cox proportional hazards model, controlling for age,
sex, race, smoking, education, marital status, body mass, alcohol consumption, occupational exposure, and diet.

Cl indicates confidence interval.
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Figure 8-9. Natural logarithm of relative risk for total and cause-specific mortality per

10 pg/m’ PM, 5 (approximately the excess relative risk as a fraction), with
smoothed concentration-response functions. Based on Pope et al. (2002) mean
curve (solid line) with pointwise 95% confidence intervals (dashed lines).




The NEW ENGLAND
JOURNAL o MEDICINE

ESTABLISHED IN 1812 JUNE 29, 2017 VOL. 376 NO. 26

Air Pollution and Mortality in the Medicare Population

Qian Di, M.S., Yan Wang, M.S., Antonella Zanobetti, Ph.D., Yun Wang, Ph.D., Petros Koutrakis, Ph.D.,
Christine Choirat, Ph.D., Francesca Dominici, Ph.D., and Joel D. Schwartz, Ph.D

* All of Medicare from 2000-2012
« 60,925,443 Medicare beneficiaries

* 460,310,521 person-years of follow-
up
« HR =1.08

A Exposure to PM, ¢

1.10+
1.084
1.06+

1.04 4

Hazard Ratio

1.02

1.00- ==

B Exposure to Ozone
1.020+
1.015+
1.0104

1.0054

Hazard Ratio

1.000+

0,995

PM, 5 (ug/m’)

Ozone (ppb)




Harvard Six-Cities Study
Dockery et al. New England
Journal of Medicine (NEJM), 1993

ACS CPS-II Cohort Study

N

#| Pope, et al. Am ] Respir Crit
Care Med (AJRCCM), 1995

L

Independent Re-analyses of Harvard Six-Cities and ACS CPS-Il Studies
Krewski et al. HEI Special Report, 2000; J Tox Enviro Health, Special Issue, 2003

#3-yr reanalysis by a team of 31 independent researchers with oversight from a 9-member expert panel
and peer review by a special panel of the HEI Health Review Committee.

#Included full data access that insured the privacy and confidentiality of research participants.
#Re-analyses include data audits, full replication and validation, and extensive sensitivity analyses.

h 4 v
Extended analyses of Extended analyses of ACS CPS-Il study
Harvard Six-Cities study Pope et al. JAMA, 2002; Pope et al. Circulation, 2004; Jerrett et al.
Laden et al. AJRCCM, 2006 Epidemiology, 2005; Krewski et al. HEI Rep. 2009; Jerrett et al. NEJM,
Schwartz et al. EHP, 2008 2009; Smith et al. Lancet, 2009; Turner et al. AJRCCM, 2011; Jerrett
Lepeule et al. EHP, 2012 et al. AIRCCM, 2013; Turner et al. AJE 2014; Pope et al. Circ. Res, 2015;
Thurston et al. EHP 2016; Jerrett et al. EHP, 2017

Replicative studies in many other cohorts:
German Women: Gehring et al. Epi, 2006
Women'’s Health Initiative: Miller et al. NEJM, 2007
Netherlands: Beelen et al. EHF, 2008

U.S. Medicare: Zeger et al. EHP, 2008

Nurses Health Study: Puett et al. EHF, 2009
Health Professionals: Puett et al. EHFP, 2011

U.S. Truckers: Hart et al. AJRCCM, 2011
California Teachers: Lipsett et al. AJRCCM, 2011
Vancouver: Gan et al. EHP, 2011

China: Cao et al. ] Hazard Mater. 2011

China: Zhang et al. PLoS One, 2012

Canadian: Crouse et al. EHP, 2012

New Zealand: Hales et al. ] Epi Com Health, 2012
Rome: Cesaroni et al. EHP, 2013

National English: Carey et al. AJIRCCM, 2013

22 European: Beelen et al Lancet, 2014

Ag. Health Study: Weichenthal et al. EHP 2014
Canadian Women : Villeneuve et al. Epi. 2015
CanCHEC (Canadian): Crouse et al. EHP 2015
Nurses Health: Hart et al. Environ Health 2015
Elderly Hong Kong: Wong et al. EHP 2015
Taiwan: Tseng et al. BMC Public Health 2015
Dutch (DUELS): Fischer et al. EHP 2015

France: Bentayeb et al. Environ Int. 2015
Canadian Com. Health: Pinault et al. EH 2016
U.S. Medicare: Kioumourtzoglou et al. EHP, 2016

NIH-AARP Diet and Health: Thurston et al. EHP, 2016

U.S. Medicare: Di et al. NEJM, 2017

Chinese Male: Yin et al. EHP, 2017

U.S. NHIS: Pope et al. AQ&AH 2017

U.5. NHIS: Parker et al. Circulation 2018 .......
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AUGUST 22, 2019 VOL. 381 NO. 8

ESTABLISHED IN 1812

Ambient Particulate Air Pollution and Daily Mortality in 652 Cities

C. Liu, R. Chen, F. Sera, A.M. Vicedo-Cabrera, Y. Guo, S. Tong, M.S.Z.5. Coelho, P.H.N. Saldiva, E. Lavigne,

P. Matus, N. Valdes Ortega, S. Osorio Garcia, M. Pascal, M. Stafoggia, M. Scortichini, M. Hashizume, Y. Honda,
M. Hurtado-Diaz, J. Cruz, B. Nunes, J.P. Teixeira, H. Kim, A. Tobias, C. [fiiguez, B. Forsberg, C. Astrém,
M.S. Ragettli, Y.-L. Guo, B.-Y. Chen, M.L. Bell, C.Y. Wright, N. Scovronick, R.M. Garland, A. Milojevic, J. Kysely,
A, Urban, H. Orru, E. Indermitte, J.J.K. Jaakkola, N.R.I. Ryti, K. Katsouyanni, A. Analitis, A, Zanobetti, |. Schwartz,
J. Chen, T. Wu, A. Cohen, A. Gasparrini, and H. Kan
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Figure 3. Pooled Concentration-Response Curves.

lad

Shown are the p concentration-resp curves for the associations of 2-day moving average concentrations of PMyg (Panel A)
and PM; 5 (Panel B) with daily all-cause mortality. The y axis represents the percentage difference from the pooled mean effect (as de-
rived from the entire range of PM concentrations at each location) on mortality. Zero on the y axis represents the pooled mean effect,
and the portion of the curve below zero denotes a smaller estimate than the mean effect. The dashed lines represent the air-quality
guidelines or standards for 24-hour average concentrations of PM)g or PM; s according to the World Health Organization Air Quality
Guidelines (WHO AQG), WHO Interim Target 1 (IT-1), WHO Interim Target 2 (IT-2), WHO Interim Target 3 (IT-3), European Union Air
Quality Directive (EU AQD), U.S. National Ambient Air Quality Standard (NAAQS), and China Air Quality Standard (AQS).

Table 1. Percentage Change in All-Cause Mortality per 10-ug-per-Cubic-Meter Increase in 2-Day Moving Average

Concentrations of Inhalable Particulate Matter (PM,;) and Fine Particulate Matter (PM; 5).*

Country or Region

Australia
Brazil
Canada
Chile

China
Colombia
Czech Republic
Estonia
Finland
France
Greece

Italy

Japan
Mexico
Portugal
South Africa
South Korea
Spain
Sweden
Switzerland
Taiwan
Thailand
United Kingdom
United States
Total

Cities with
Available
Data

no.

3

1

13
4
272

128

18
47

19
15
100
598

PMyp

Pooled Estimate

% (95% Cl)
1.32 (0.22 to 2.44)
1.22 (0.97 to 1.47)
0.76 (0.25 to 1.27)
0.33 (0.14 to 0.53)
0.28 {0.22 to 0.34)
0.03 (-0.34 t0 0.39)
0.40 (~0.02 to 0.82)
0.46 (~0.69 to 1.63)
0.07 (~0.51 to 0.65)
0.46 (-0.15 to 1.07)
0.53 (0.17 to 0.90)
0.65 (0.26 to 1.04)
1.05 (0.78 to 1.31)
0.67 (0.48 to 0.86)
0.11 (~0.27 to 0.49)
0.41 (0.14 to 0.68)
0.42 (0.27 to 0.58)
0.87 (0.60to 1.15)
0.20 (~1.03 to 1.44)
0.47 (-0.36 to 1.31)
0.25 (~0.03 to 0.53)
0.61 (0.24 to 0.99)
0.06 (~0.36 to 0.48)
0.79 (0.60 to 0.98)
0.4 (0.39 to 0.50)

Cities with
Available
Data

Ao.

3

0
25
4
272

(=R = = =]

47

0o O W ok e

107
499

PMys

Pooled Estimate

% (95% Cl)
1.42 (-0.12 to 2.99)
MA
1.70 (1.17 t0 2.23)
0.27 (-0.68 to 1.23)
0.41 (03210 0.50)
MA
MA
0.23 (~4.24 to 4.90)
0.14 (-0.55 t0 0.83)
MA
2.54 (1.28 to 3.83)
NA
1.42 (1.05 to 1.81)
1.29 (0.21 t0 2.39)
0.03 (-1.14to 1.21)
0.80 (0.16 to 1.44)
NA
1.96 (1.18 to 2.75)
0.08 (~1.44 to 1.62)
0.79 (-0.96 to 2.58)
0.62 (-0.39 to 1.64)
NA
NA
1.58 (1.28 to 1.88)
0.68 (0.59 to 0.77)




Exposure Assessment

« We need air pollution measurements for air pollution epi
 How do we measure air pollutant concentrations?
 Historically, we used monitoring data



AQS Monitors in the United States (PM, :)

https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors



https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors

AQS Monitors in New York State (PM,
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https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors

Prediction Models

* |Increasing use of prediction models to reduce exposure measurement error
and include populations in areas without monitors

* Models predict both spatial and temporal changes in air pollution

 |nitially, models were “simple”
« Land use regression models
* Generalized additive mixed models

* More recently, more sophisticated models
« Fuse remote sensing data, predictions from chemical transport models, etc.

* More robust methods for higher predictive accuracy (e.g. random forests, neural
networks, ensembles)

« Higher spatial and temporal resolution



How do these models work?

« Mathematical representations of the planet

e Starts with the basics:
* Thermodynamics
 Blackbody radiation
« Atmospheric chemistry
» Cloud microphysics

« Each adds his/her own “sophisticated” parts into the mix...



GFDL CM3 Modular Ocean Model version 4 (MOM4) &
Sea Ice Model

Forcing

Solar Radiation
Volcanic Aerosols
WMGGs (CO,, CHy, N,O)
ODSs (CFC-11, CFC-12,
CFC-113, HCFC-22)

Atmospheric Dynamics & Physics
~ Radiation, Convection (includes wet deposition
of tropospheric species), Clouds, Vertical

diffusion, and Gravity waves

Atmospheric Chemistry 86 km

CH,, N,O, ODSs (as
model lower boundary
condition)

Stratosphere
0, HO,, NO,, Cl,, Bry, and Polar Clouds

..................................

Troposphere !

Gases (0, CO, CH, NO, VOCs)
Aerosols (sulfate, carbonaceous, mineral |
dust, sea salt, SOA) i

..................................

Short-lived

Pollutant Emissions

(anthropogenic, ships, EAerosoI-CIoud . Dry Deposition '
biomass burning, natural, | Interactions | beeeeooooooooo '
& aircraft) . 0 km

Land Model version 3
(soil physics, canopy physics, vegetation
dynamics, disturbance and land use)




The Community Multiscale Air Quality
Model (CMAQ)

« Atmospheric dispersion model developed

by US EPA

* Goal is to address regional air pollution
problems

« 12x12 km? grids




Fused Air Quality Surface Using
Downscaling (FAQSD)

« Combines AQS (monitor) and CMAQ (modeled) outputs

» Uses a Bayesian space-time downscaler model to “fuse” the
two sets of data

« 12x12 km? grids



CDC Wide-ranging Online Data for
Epidemiologic Research (CDC WONDER

CDCA-ZIND

¢ Database Of pUbliC health CDCWONDER FAQ Help ContactUs WONDER Search
information provided by CDC o

WONDER online databases utilize a rich ad-hoc query system for the analysis of public health data.
Reports and other query systems are also available.

* Included are daily PM, - =2 e e

WONDER Info ® WONDER Online Databases @ Reports and References

. .
D re ] Ct] O I I S - » AIDS Public Use Data Prevention Guidelines (Archive)
~ About CDCWONDER » Births

Scientific Data and Documentation (Archive)

» Cancer Statistics
o —— Environment ® Other Query Systems
at is 2

[ ] [ ] [ ]
I l ' I » Heat Wave Days May-September » Healthy People 2010 (Archive)
. ] S S a e ] e - e r] Ve a Frequently Asked Questions » Daily_Air Temperatures & Heat Index » NNDSS Annual Tables
_ » Daily Land Surface Temperatures » NNDSS Weekly Tables
Data Use Restrictions » Daily Fine Particulate Matter » 122 Cities Weekly Mortality_(Archive

spatially interpolated ground- i

Mortality

Citations Underlying Cause of Death

pased PM, : using linear e

What's New? » US-Mexico Border Area Mortality
at's New?

» Multiple cause of death (Detailed
Mortality)
» Infant Deaths (Linked Birth/Infant Death
Records)
» Fetal Deaths

° 1OX1 O ka gr-i dS ) e Tutarelosis nformation System
* Available from 2003-2011




Statistical Satellite-Based PM, - (Emory)

* Model developed by Yang Liu’s group
at Emory University

» Statistical model that combines
satellite aerosol optical depth (AOD),
land use, traffic, and meteorological
data using machine learning (random
forest algorithm)

« 1x1 km? grids




Prediction Models in Health Studies

« Many groups are developing these models for exposure assessment in
epidemiologic studies
* To date, most health studies use predictions from a single model to assign
exposures
« PM, s and Mortality (Kloog, Epidemiology, 2013)
* Long-Term Ozone and Mortality (Turner et al, AJRCCM, 2016)
« Air Pollution and Mortality in the Medicare Population (Di et al, NEJM, 2018)



Prediction Models in Health Studies

« Results of these papers are used to inform regulations

« But...are these models telling the same story?
Exposure measurement error?
« Are variations in space (e.g. urban vs. rural) different by prediction model?
How about in time (e.g. seasons?)



One Story, Five Ways

* PM, s and cardiovascular admissions over NY State, 2002-2012
» Five exposure datasets

« Goal: assess sensitivity of health effect estimates on the choice of different
prediction models for exposure assessment



Methods

« EXxposure assessment

» Five daily county-average PM, ; datasets: AQS, CMAQ, AQS + CMAQ Fused, CDC WONDER,
Emory model

* Meteorological data from NASA

« Qutcome assessment: daily inpatient cardiovascular admissions from NYS
DOH

« On average, 7 admissions per day per county

 Statistical analysis: Poisson regression models
» Indicator variables for counties and day of week

« Temperature (3 df), relative humidity (3 df), and long-term and seasonal trends (4 df
per year)



Results

AQS

AQS
CMAQ

Fused

CDC

Emory
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Conclusions

» Significant, positive associations between PM, - and cardiovascular
admissions for all (but one) model

« Some fluctuation in effect estimates depending on analysis type
« Differences could be due to measurement error
 However, conclusion remains the same!

« Effect modification:

« Spatial: higher estimates in more urban areas

« Temporal: generally higher estimates in fall/winter, but some differences
across models



HE LANCE The Global Burden of Disease 2015

Breathing contaminates contributes to global burden of disease (GBD)

Number of attributable

deaths
Tobacco Smoking 6.4 mil.
Second Hand Smoke 0.9 mil.
PM, ¢ air pollution 4.2 mil.
Household air pollution from solid fuels qq 2.9 mil.

\\
Ambient Ozone ) A\-‘eq'ab‘ 0.2 mil.
e\ Y
g eV®
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Health Impact Assessments

* Mortality estimate from the following equation:

M =M, X P x (1— e (RFXC)
Where

M = change in the number of deaths
M, = baseline mortality rate
P = population

CRF = concentration-response function (slope of the log-linear relationship between
concentration and mortality)

C = change in air pollution concentration



LETTER

Mid-21st century ozone air quality and health burden in China under
emissions scenarios and climate change

D M Westervelt' @, C'T Ma’, M ZHe*, AM Fiore", P L Kinney”, M-A Kioumourtzoglou®, S Wang’, ] Xing’,
D Ding’ and G Correa’

4. Ozone-related mortality over China ___(2)2010 Population

— .

Using the difference in our model simulations for
2050 versus 2015 in the CLE, MFR, and CLIM scenario
and concentration-response factors from a recent
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long-term ozone mortality study (Turner et al 2016),
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we calculate the change in annual premature mortality L b oL
due to future ozone in China. Mortality calculations (c) ADeaths 2050CLE
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Figure 4. (a) 2010 baseline population in China, (b) change in premature deaths between 2015 and 2050 due to climate change alone
(2050CLIM scenario) (c) change in premature deaths between 2015 and 2050 due to CLE scenario (2050CLE, includes climate
change), and (d) change in premature deaths between 2015 and 2050 due to MFR scenario (2050MFR, includes climate change). Units




Global estimates of mortality associated with long-
term exposure to outdoor fine particulate matter

Richard Burnett®, Hong Chen®®, Mieczystaw Szxszkowicz"", Neal Fann®, Bryan Hubbell®, C. Arden Pope III¢,

Joshua S. Apte’, Michael Brauer?, Aaron Cohen", Scott Weichenthal®, Jay Coggins®, Qian Di', Bert Brunekreef™,
Joseph Frostad”, Stephen S. Lim", Haidong Kan®, Katherine D. Walker", George D. Thurston®, Richard B. Hayes®,
Chris C. Lim", Michelle C. Turner®, Michael Jerrett', Daniel Krewski, Susan M. Gapstur¥, W. Ryan Diver, Bart Ostro",
Debbie Goldberg®, Daniel L. Crouse”, Randall V. Martin?, Paul Peters®**>“, Lauren Pinault®®, Michael Tjepkema®,
Aaron van Donkelaar?, Paul J. Villeneuve®, Anthony B. Miller®®, Peng Yin®, Maigeng Zhou", Lijun Wang",

Nicole A. H. Janssen??, Marten Marra??, Richard W. Atkinson™", Hilda Tsang”, Thuan Quoc Thach?, John B. Cannon®,
Ryan T. Allen®, Jaime E. Hart**, Francine Laden*, Giulia Cesaroni", Francesco Forastiere", Gudrun Weinmayr™™,
Andrea Jaensch™™, Gabriele Nagel™™, Hans Concin™, and Joseph V. Spadaro®®

Table 1. Population-weighted average 2015 PM; s concentrations by country groupings, excess deaths (in thousands) for a 100% and

G)- 20% reduction in exposure based on GEMM NCD+LRI, GEMM 5-COD, and IER
A Sm Ratio: GEMM 5-
Ratio: |IER to GEMM COD to GEMM
Region Rollback, %  PMj;s exposure, pg/m*  GEMM NCD+LRI  GEMM 5-COD IER NCD+LRI NCD+LRI
Canada, USA 100 79 213 121 95 0.45 0.57
o © 20 42 28 20 0.48 0.68
'_.: e ] Caribbean 100 20.2 39 28 17 0.44 0.70
m 20 6 5 2 0.32 091
Latin America 100 17.5 365 228 152 0.42 0.63
m 20 58 a7 19 0.33 0.81
Africa 100 36.1 691 517 280 0.41 0.75
U < A 20 m 102 34 0.31 0.92
. ™ Western Europe 100 13.4 439 245 176 0.40 0.56
m 20 70 50 34 0.34 07
Eastern Europe 100 23.2 208 154 99 0.48 0.74
N 20 32 28 10 0.32 0.88
m Russia and EIT* 100 218 457 402 257 0.56 0.88
c\! i 20 70 72 26 0.37 1.03
I 2 Middle East 100 62.0 428 318 166 0.39 0.74
20 65 56 15 0.24 0.86
China 100 57.5 2,470 1,946 1,110 0.45 0.79
20 409 368 122 0.30 0.90
India 100 74.0 2,219 1,867 1,022 0.46 0.84
O_ - 20 359 329 108 0.30 0.92
— l y ' y ] Asia (other) 100 39.1 1,367 1,053 620 0.45 0.77
20 216 203 69 0.32 0.94

40 60 80 Oceania 100 8.0 18 1 7 041 0.60

20 4 3 2 0.58 0.69

20
PM2 5 = g/m3 Global 100 437 8,915 6,889 4,002 045 0.58
. u‘ 20 1,443 452 0.31

1,283 0.89




Take-Home Messages

« Air pollution remains a major problem today, in both
developed and developing countries

* There are numerous methods in the air pollution
epidemiologist’s toolbox: key is to know when to use what

» The PM, -health association is very robust, and likely causal

 Prediction models are being used as the exposure in air
pollution epi studies to reduce exposure measurement error

A strong health impact assessment relies on all of the above,
and more




Questions’




