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Abstract

Top trading cycles (TTC) provides a method for assigning resources efficiently while

taking agents’ priorities into account. Although TTC favors agents with high priorities

in the assignment, we show in a canonical random preference/priority model that the

effect of priorities in TTC disappears as the market grows large, leading in the limit to

an assignment that entails virtually the same amount of justified envy as does Random

Serial Dictatorship, which completely ignores priorities.
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1 Introduction

In prioritized resource allocation, agents are assigned indivisible objects based on their prefer-

ences as well as their priorities for objects. Prioritized allocation accounts for many important

allocation problems, including assignment of students to public schools, of tenants to public

housing, and of human organs to transplant patients. The priorities of agents typically take

the form of priority ranks at each object,1 reflecting their “merits” or other public policy

consideration. In school assignment, for instance, a student’s standardized test score (in the

case of exam schools) or walk-zone or sibling attendance (in the case of regular schools) may

∗Department of Economics, Columbia University, USA. Email: yeonkooche@gmail.com.
†Department of Economics, Paris School of Economics, France. Email: tercieux@pse.ens.fr.
1Therefore, formally, agents’ priorities for an object can be treated equivalently as the object’s preference

ranking of the agents.
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determine one’s priority status. Pareto efficient allocation is a clear desideratum in any re-

source allocation problem, but it is also viewed as an important goal to respect participants’

priorities, or equivalently to eliminate justified envy—a situation in which an agent envies an-

other despite having a higher priority at the latter’s assignment (Balinski and Sönmez (1999)

and Abdulkadiroglu and Sonmez (2003)).2

If efficiency is the key objective,3 there are two commonly used methods for assignment:

Random Serial Dictatorship (RSD) and (prioritized) Top Trading Cycles (TTC) algorithm.

RSD randomly orders participants and let them pick their most preferred remaining objects at

their turns. TTC, introduced by Abdulkadiroglu and Sonmez (2003), has in each round agents

point to their most preferred objects and objects point to their highest priority agents, forms

“cycles” of agents and objects, and assigns the agents in the cycles the objects they point to.4

Both methods achieve Pareto efficiency, have been used in practice,5 and are strategy-proof;

i.e., no agents have incentives to misreport their preferences.

The key distinction of TTC in comparison with RSD is its use of agents’ priorities in

the allocation. Unlike RSD which completely ignores agents’ priorities, TTC explicitly favors

agents with high priorities in allocation. Specifically, at any round, if an agent has the highest

priority for his most preferred remaining object, then he is guaranteed to obtain that object

under TTC. And, if he indeed obtains that object, no priorities for that object can be violated,

or equivalently he cannot be justifiably envied by any other agents.6 This feature makes one

hopeful that TTC may do well in eliminating justified envy, at least among those that satisfy

Pareto efficiency and strategyproofness. Indeed, Abdulkadiroglu, Che, Pathak, Roth, and

Tercieux (2017) demonstrate that in one-to-one matching TTC is justified envy minimal within

the mechanisms satisfying the two properties—namely no other efficient and strategyproof

mechanism reduces the set of agents with justified envy.7 They further show that for each

2Respecting priorities is also part of stability requirement of Gale and Shapley (1962) and amounts to

elimination of justified envy.
3Efficiency is incompatible with respecting priorities (Roth (1982)). If the latter is the key objective,

then a Gale and Shapley’s agent-proposing deferred acceptance algorithm achieves that goal with the minimal

sacrifice of efficiency; i.e., it outputs an non-wasteful assignment that respects priorities and Pareto dominates

all other non-wasteful assignments respecting priorities.
4More detailed description will be given later. Note that the TTC we focus on differs from the well-known

Shapley-Scarf TTC, where the primitives involve ownership of objects but no priorities (see Shapley and Scarf

(1974)).
5RSD is used in school assignment and college dorm assignment. TTC was used until recently in New

Orleans school systems for assigning students to public high schools. A generalized version of TTC is also

used for kidney exchange among donor-patient pairs with incompatible donor kidneys (see Sonmez and Unver

(2011)).
6Anybody who envies that agent must be remaining at that round of TTC, so must have a lower priority

for that object.
7By contrast, the RSD is not justified envy minimal in the same sense.
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profile of preferences, TTC admits fewer incidences of justified envy on average than RSD,

when the average is taken over all possible profiles of priorities.8

Just “how well” does TTC do in respecting priorities? Namely what is the “quantitative”

significance of the benefit TTC yields in respecting priorities say over and above RSD? The

aforementioned characterization is silent on this question. A main contribution of this paper

is to demonstrate that, at least in a canonical environment, the answer to this question is in

the negative.

Consider one-to-one matching with n agents and n objects where the agents’ preferences

and their priorities for objects are drawn iid uniformly. We show that as the economy grows

large with n → ∞, the outcome of TTC in terms of the joint distribution of agents’ prefer-

ence ranks and their priorities becomes asymptotically equivalent to that under the RSD.9

This means, among other things, that TTC does virtually no better in respecting priorities

than does RSD. More precisely, the proportion of agents with justified envy (or those whose

priorities are respected) under TTC becomes indistinguishable from that under RSD, both

from the average and probabilistic senses when the market grows large.

The reason for this striking result is explained by the particular way in which TTC uses

agents’ priorities for allocating objects. If an object is assigned via a short cycle—or a cycle

in which an agent points to an object and the object points back to that agent—, then it is

in fact impossible that an agent’s priority for that object is violated. The matters are quite

different, however, if an object is assigned via a long cycle, or a cycle of length more than two.

In that case, the acquiring agent has no a priori reason to have a high priority for that object;

the only reason for the agent to have acquired that object is that he has a high priority for

“some other” object he has traded off. Indeed, any envy for an agent assigned via a long cycle

is likely to be “justified” with probability one half, just as with RSD. Our irrelevance follows

from the fact that as n → ∞, the proportion of objects assigned via short cycles vanishes in

probability. Of course, in most applications, the distribution of preferences and priorities is

not uniform iid. As we argue in Section 6, however, our result holds for fairly large classes of

distributions.

In practice, RSD is used widely in a variety of contexts such as public housing assignment,

college housing assignment, and many resource allocation problems without transfer. There

is a potential policy interest in replacing RSD with TTC in such contexts, on the ground that

8Without taking an average, this comparison between TTC and RSD fails. For instance, one can find

profiles of priorities and preferences for which TTC admits more (expected) incidences of justified envy than

does RSD. See Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017).
9The well-known equivalence result of Pathak and Sethuraman (2011) and Carroll (2014) (extending

Abdulkadiroglu and Sönmez (1998)) means that the marginal distribution of the ranks enjoyed by agents are

identical between the two mechanisms. As will be noted below, however, the joint distribution of agents’

preference ranks and their priorities are distinct in finite economies.
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TTC may protect individuals’ priorities better than RSD. A striking implication of our result

is that in a large market resembling our environment, one should not expect a switch to TTC

to make a significant difference.

While our irrelevance result appears intuitive, its proof requires a deep and precise char-

acterization of how the TTC allocates objects in our random model. A crucial step is to

establish a Markov property: the number of objects assigned at any round of TTC follows a

simple Markov chain, with the number depending only on the number of agents and objects at

the beginning of that round in a well-specified manner. The Markov characterization allows

us to show that TTC algorithm terminates in the number of rounds which is sublinear in n.

With the expected number of objects assigned via short cycles further shown never to exceed

two per round, this implies that the proportion of objects assigned via short cycles vanishes

in probability, leading ultimately to the irrelevance claim stated above.

We view the Markov characterization of TTC as our second main contribution, of inde-

pendent value beyond the particular application explored in the current paper. It is of interest

since it can lead to a precise understanding of the outcome of TTC, in terms of the distribu-

tion of agents’ preference ranks and their realized priority ranks. While the former is known

from the analysis of RSD due to its equivalence,10 the current analysis may shed additional

light on the latter based on the Markov characterization.11

The current paper is related to several strands of literature. First, it is related to the liter-

ature studying the tradeoff between efficiency and elimination of justified envy particularly in

the school choice context. The tradeoff was first recognized by Roth (1982), and was confirmed

by Abdulkadiroglu and Sonmez (2003) in the school choice context, and by Abdulkadiroglu,

Pathak, and Roth (2009) in the context of weak priorities. Che and Tercieux (2015) argue

that the tradeoff remains significant under standard mechanisms (such as DA or TTC) even

in a large market if there is a sufficient correlation in agents’ preferences. Abdulkadiroglu,

Che, Pathak, Roth, and Tercieux (2017) show the sense in which TTC minimizes justified

envy/maximizes priority-respecting in the class of Pareto-efficient and strategyproof mech-

anisms in one-to-one matching setting. Together with the irrelevance result of the current

paper, this result yields the sense in which the irrelevance is driven by the Pareto efficiency

and strategyproofness rather than the feature of TTC itself.

Second, the irrelevance result is closely related to the equivalence among well-known

random allocations recognized by a number of authors (Knuth (1996), Abdulkadiroglu and

Sönmez (1998), Pathak and Sethuraman (2011), Carroll (2014), Bade (2016)). These authors

10See Knuth (1996) for the rank distribution of agents under RSD and see Pathak and Sethuraman (2011)

for the equivalence which generalizes that of Knuth (1996) and Abdulkadiroglu and Sönmez (1998).
11For instance, the distribution of realized priority ranks has not been known before. We provide a charac-

terization of the ranks that lead to the irrelevance result mentioned above, as well as the asymptotic instability

of TTC in the large market studied in Che and Tercieux (2015).
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show that a class of random allocations, including TTC and RSD, implement the identical

(probabilistic) assignment of agents to objects. However, they are silent on the joint dis-

tribution of agents’ preference ranks and their priorities under alternative mechanisms. As

illustrated, the joint distribution of allocation matters for the extent to which agents’ priori-

ties are respected and the extent to which agents justifiably envy others. As we will shortly

illustrate, the alternative mechanisms are not equivalent in this regard for a finite market.

Nevertheless, the equivalence is restored as the market grows large. Our result therefore can

be seen as the strengthening of equivalence (to include priority rank distribution), for the iid

preferences case.

Third, the Markov characterization of TTC is related closely to a similar Markov charac-

terization of the Shapley-Scarf TTC derived in Frieze and Pittel (1995).12 In the Shapley-Scarf

economy, the agents are endowed with property rights over objects, exactly one object for each

agent, and are allowed to trade their rights along cycles in successive rounds. Despite the

close resemblance, the two mechanisms are distinct. The associated (“pointing”) map from

objects to agents is always bijective in the Shapley-Scarf TTC but not in the prioritized TTC;

distinct objects typically point to the same agent. This difference leads to different proba-

bilistic structures in the associated composite map—agents pointing to objects which in turn

point to agents—in our random economy, and required different arguments albeit following

a similar approach. The concepts of random spanning forests and random composite maps

prove crucial in our analysis, which to our knowledge have never been applied in economics.

We believe they will constitute a useful tool in other economic applications.

The remainder of the paper is organized as follows. Section 2 illustrates the main irrele-

vance result in an example. Section 3 introduces the formal model and preliminary tools for

analysis. Section 4 provides the Markov characterization. Section 5 presents the irrelevance

result and its implications. Section 6 discusses robustness and limitation of our results; we

suggest in particular that the irrelevance result holds much more generally beyond the uniform

iid draws of preferences and priorities.

2 Example

Suppose there are two agents, 1 and 2, and two objects, a and b, where agents’ (ordinal)

preferences over objects and objects’ (ordinal) priorities over agents are all drawn iid uniformly.

12Another related work is Leshno and Lo (2017), which studies TTC in a large market but with a very

different asymptotics where the number of object types is finite while there are a continuum of copies/seats

for each object type has and a continuum of agents with finite preference types. This distinction makes the

analysis largely unrelated. Nevertheless, we discuss how our irrelevance result extends to this alternative

asymptotics (see Section 6).
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As noted earlier, both RSD and TTC allocate the agents efficiently. Further, the equivalence

result of Pathak and Sethuraman (2010) and Carroll (2014) means that for each realized

profile of preferences, the agents enjoy identical lotteries from both mechanisms. However,

this equivalence does not mean that the joint distribution of allocation is identical between

the two. In fact, their allocations differ in terms of the realized priorities and justified envy.

To see this, note first that TTC eliminates justified envy completely. When the agents

prefer distinct objects, then Pareto efficiency simply means that they get their preferred

objects, so no envy exists. Suppose therefore the agents prefer the same objects, say a. Under

TTC, both agents point to a in round 1, and a points to the agent with a higher priority for

a. This means that the higher priority agent obtains a. So envy toward that agent is never

justified.

The same is not true for RSD. Whenever both agents prefer the same object, again say a,

there is one half chance that the low priority agent gets the top serial order and claims a, in

which case the high priority agent has justified envy.

Indeed, the expected value of realized priority ranks differs between the two mechanisms.

Under RSD, the realized priority ranks are completely uniform random, so the expected value

of realized priority rank equals RANKRSD = 3/2(= 1
2
· 1 + 1

2
· 2). By contrast, under TTC,

the expected value of the realized priority ranks is lower, equalling RANKTTC = 11/8.13 The

superior performance of TTC relative to RSD in eliminating justified envy is a consequence of

Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017), and hence holds generally, regardless

of the market size.

Nevertheless, the magnitude of the superior performance by TTC over RSD—the focus of

the current paper—diminishes as the market grows. Suppose that the number of agents and

objects equal n ≥ 2, and the agents’ preferences and their priorities for objects are drawn

iid uniformly. Panel (a) of Figure 1 plots the total incidences of justified envy among the

incidences of envy under RSD and TTC, across different market sizes.14 Panel (b) of Figure 1

13This can be seen as follows. When the agents prefer different objects, which occurs with probability 1/2,

the agents obtained their preferred objects, so their priority ranks are completely (uniform) random just like

RSD. When both agents prefer the same object (which occurs with probability 1/2), that object is assigned to

the top-priority agent, and the other object is assigned uniform randomly in terms of the realized priority. In

sum, an object has probability 1/4 of being the commonly preferred item, in which case it is assigned to a top

priority agent, and has probability 3/4 of not being the commonly preferred item in which case the priority

rank realized is the same as under RSD, i.e., 3/2 on average.

RANKTTC = 1
4 · 1 + 3

4 ·
3
2 = 11/8.

14More precisely, we sum across all agents the number of individuals that they justifiably envy and divide

this by the total number of envies—not necessarily justifiable—experienced by the agents. Hence, the current

measure reflects the “intensity” of justified envy experienced by the agents, instead of just counting the
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plots the expected value of realized (normalized) priority ranks under the two mechanisms.15
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Figure 1: Difference between TTC and RSD.
Note: The horizontal axis indicates the size of the market, i.e., the number of agents/objects. The figures plot

averages over 100 (uniform iid) draws of agents’ preferences and objects’ priorities.

In keeping with Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017), both quantities

are higher under RSD than under TTC. However, the differences between the two mechanisms

diminishes as the market grows large. Ultimately, the difference between the two mechanisms

is traced to the use of agents’ priorities (or objects’ ranking of agents) in organizing short cycles

(i.e., cycles in which an agent points to an object and the object points directly back to him).

The difference is large with n = 2 due to the importance of short cycles. Figure 1 illustrates

that as the market grows large, the proportion of objects assigned via short cycles decreases.

And this implies that the use of priorities under TTC becomes increasingly irrelevant as the

market grows large.

proportion of agents with the justified envy. Of course, we could use this latter measure or the fraction of

blocking pairs out of all pairs. While the results are similar in terms of these other measures, the current

measure is more informative, since the fraction of blocking pairs converges to zero even for RSD (when the

number of objects equals that of the agents) and the fraction of agents with justified envy converges to one

even for TTC. The measure is also more favorable to TTC and thus stacks the deck against irrelevance, as

will become clear in Section 6.
15That is, for each mechanism, we take the average (across objects) of the priority ranks enjoyed by the

objects and divide it by the number of agents for normalization.
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3 Model

We consider a market with a set I of agents and a set O of objects. We do not require

|I| = |O|, so the market could be unbalanced. A matching is a map µ : I → O ∪ {ø} such

that i 6= i′ means that either µ(i) 6= µ(i′) or µ(i) = µ(i′) = ø, where ø means being unmatched.

In Section 5, we will consider a large market, and for that purpose, we will assume |I| =

|O| = n and consider the outcome as n → ∞. The preference Pi of agent i ∈ I is a strict

ranking, or a permutation, of O. The agents’ priorities for object o ∈ O, denoted by �o,
is a strict ranking, or a permutation, of I. As mentioned earlier, one can equivalently view

agents’ priorities for object o as its preference ranking of them, although this will not be part

of welfare consideration. We assume that all entities on each side are acceptable to those on

the other side.16 Let (P,�) := (Pi,�o)i∈I,o∈O be a profile of agents’ preferences and their

priorities. Throughout, we shall consider a random market (I, O, P̃ , �̃) in which the profile

(P̃ , �̃) is drawn iid uniformly.

There are at least two ways to interpret random preferences and priorities in a real-world

context such as school choice. One can think of a cohort of applicants for schools in each year

as a result of random drawing of student types. What we are studying is then the properties of

TTC that are likely to hold for such a cohort with a high probability as the market grows large.

While the uniform iid assumption may not seem realistic given this interpretation, we explain

in Section 6 how our results extend beyond the uniform iid case. Another interpretation is to

view the randomness as an analytical device for taking an average. For instance, the random

market approach will allow us to consider average of performance measures such as justified

envy over all possible profiles of students’ preferences and priorities.

In the case of RSD, there is an additional randomness due to the use of random lottery,

which is a feature of the mechanism itself. To accommodate this, we define ω to be a state

which consists of a profile (P,�) of preferences on both sides as well as a random serial order

θ, a permutation of I. A mechanism is then a mapping from each state to a matching.

Given our random economy, randomness may arise from the random preferences/priorities or

the random serial order θ, as is the case with RSD.

Fix a realized state ω = (P,�, θ). RSD and TTC are defined as follows:

� RSD: At step 1, the agent θ(1) at the top order of θ claims object at the top of his

preference Pθ(1), and exits the market. At step t ≥ 2, the agent θ(t) at the t-th serial order

of θ claims the most preferred object among those remaining at t according to Pθ(t). This

algorithm terminates, and all the agents are fully assigned, at step n. The RSD mechanism

selects a matching via this algorithm for all possible profiles of agents’ preferences and their

16This is for convenience. Our result holds more generally if the number of acceptable partners grow linearly

in n.
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priorities. Note that RSD only uses (P, θ) but ignores �.

� TTC: In Round t = 1 each individual i ∈ I points to his most preferred object according

to Pi. Each object o ∈ O points to the individual who has the highest priority for that object

according to �o. Since the number of individuals and objects are finite, the directed graph

thus obtained has at least one cycle. Every individual who belongs to a cycle is assigned the

object he points to. All assigned individuals and objects are then removed. In round t ≥ 2,

the same procedure is taken among the agents and objects remaining at the beginning of

that round. The algorithm terminates when all individuals or all objects have been assigned;

otherwise, it proceeds to Round t + 1. This mechanism terminates in finite rounds, since

there is a finite set of agents, and at least one individual is removed at the end of each round.

The TTC mechanism selects a matching via this algorithm for all possible profiles of agents’

preferences and their priorities. Note that TTC uses both P and � (and ignores θ).

As noted, both RSD and TTC mechanisms are Pareto efficient; that is, for each profile

P of agents’ preferences, the matching produced by either mechanism cannot be improved

upon by a different matching that makes all agents weakly better off and some strictly better

off. Note that Pareto efficiency is defined only taking the agents’ welfare into account. Next,

both mechanisms are strategyproof, meaning that it is a dominant strategy for each agent

to report truthfully.17

In fact, the two mechanisms are identical from the agents’ perspectives. The two random

matching mechanisms induced for each profile P of agents’ preferences give rise to an identical

lottery for each agent (Pathak and Sethuraman (2010); Carroll (2014)). As noted in Section

2, the equivalence does not extend to the allocation from the perspective of the objects. To

obtain more precise comparison of the mechanisms in this regard, we need to understand the

probabilistic structure of allocation in TTC.

4 Markov Chain Property of TTC

Our first main result is a Markov chain characterization of TTC: the numbers of agents and

objects that are assigned in each round of TTC follow a simple Markov chain depending only

on the numbers of agents and objects at the beginning of that round, according to well-defined

transition probabilities. The theorem is stated in a general setting with possible imbalance

between the number of agents and objects.

Theorem 1. Suppose any round of TTC begins with n agents and o objects remaining in the

market. Then, the probability that there are m ≤ min{o, n} agents assigned at the end of that

17By reporting truthfully about one’s preferences, each agent obtains a lottery that stochastically dominates

another lottery he could obtain by misreporting his preferences.
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round is

pn,o;m =

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m).

Thus, denoting ni and oi the number of individuals and objects remaining in the market at

any round i, the random sequence {(n1, o1), (n2, o2), ...} is a Markov chain.

Proof. See Appendix A.

The Markov property stated in Theorem 1 is neither obvious nor anticipated, for the

TTC algorithm in each round depends sensitively on the history of all preceding rounds. In

particular, although the types (i.e., preferences and priorities) of agents are random in the

first round, the types of the agents remaining in the subsequent rounds are no longer random,

for they remain for “reasons.” In particular, the “selection” of the remaining types makes

them non-uniform,18 and this makes the probabilistic method difficult to apply.19

The crucial analysis is to study the behavior of the so-called random spanning forests

induced by TTC. The spanning forest at each round consists of vertices with outgoing edges

of degree one and the vertices without any outgoing edges (“roots”). The former vertices are

the agents and objects that pointed in the last round to those that did not form cycles and

thus remain in the current round; clearly they must continue to point to the same parties in

the current round. The roots are the agents and objects that pointed in the previous round

to those that formed cycles and were thus removed at the end of that round; they must now

randomly “repoint” to new parties. New cycles would emerge from this random repointing. It

is easy to see that the resulting sequence of random spanning forests follows a Markov chain.

The main analysis, and this comprises the bulk of the proof, is to prove that this Markov

chain, when projected to the numbers n of agents and o of objects at each round, gives rise to

a simpler Markov chain in (n, o). In addition, we compute transition probabilities, as stated

in Theorem 1. Given the closed form solution for transition probabilities, we can further

derive the expectation and the variance of the number of agents matched at each round (see

Supplementary Appendix S.2).

18To see this more precisely, suppose there are three individuals, 1, 2 and 3, and three objects, o1, o2 and

o3. Per our assumption, the joint distribution of agents’ preferences and priorities is uniform iid. Now consider

a possible history say where agent 1 is assigned object o1 in round 1 of TTC. At the beginning of round 2,

the joint distribution of the preferences and priorities of the remaining agents 2 and 3 with regard to the

remaining objects o2 and o3 is no longer uniform. Specifically, the probability that agent 2 prefers o2 to o3
is strictly less than 1/2 conditional on her having a higher priority than agent 3 at o2; the simple intuition is

that the mismatched pointing between 2 and o2 is weighted heavily in the conditioning as a possible reason

for their remaining in the market. The precise calculation is available from the authors.
19In particular, the principle of deferred decisions—a standard method which views each agent as drawing

preferences of the remaining objects at random in each round instead of having drawn preferences for objects

in the beginning—does not apply in our context.
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These characterizations prove useful for studying the completion time of TTC, i.e., the

number of rounds it takes for the TTC algorithm to complete. Specifically, our characterization

implies that if there remain n agents and n objects at the beginning of a round, an order
√
n

of agents and objects are matched on average in that round. Using this fact, we can show

that the completion time for TTC is sublinear in n.20,21

Proposition 1. Let T denote the number of rounds required for TTC to conclude. Then,
T
n

p−→ 0.

Proof. See Supplementary Material S.5.

The sublinear completion time is important for our purpose since we can later bound

the expected number of short cycles per round. Combined with this bound, the sublinear

completion time will eventually imply that short cycles become “rare” as the market grows

large.

5 The Asymptotic Irrelevance of Priorities in TTC

We are now in a position to establish the asymptotic irrelevance of priorities in TTC. For this

purpose, we consider a sequence of random markets with n agents and n objects. We then

show that the normalized priority ranks—the priority ranks divided by n—enjoyed by all

objects under TTC converge to uniform distribution over [0, 1]n, the outcome under RSD,

independently of the preference ranks enjoyed by all agents.

To this end, we begin with the observation that if an object is assigned via a long cycle, it

is not informative about the priority of the agent obtaining that object. To be more precise,

fix an object o and let Ro and R∗o denote respectively the priority rank at o of the agent who

obtains o and the priority rank of the agent whom o points to at the round that it is assigned,

20The argument is roughly as follows. The fact that an order
√
n of agents are cleared on average starting

from n agents and objects means that with strictly positive probability (bounded away from zero), a very

small number of objects (less than δn for an arbitrariliy small δ > 0) remain after order
√
n of rounds, as

n → ∞. This result further implies that with probability arbitrarily close to one the completion time is less

than αn, for any α > 0 arbitrarily small, as n→∞.

21It is known that the Shapley-Scarf TTC takes about
√
n rounds (more precisely,

√
8
πn−

3
π log(n) +O(1))

to complete (see Theorem 1 of Frieze and Pittel (1995)). In general, one would expect our TTC to take longer

to complete than Shapley-Scarf TTC. The reason is that, unlike our TTC, distinct objects always point to

distinct agents in each round of Shapley-Scarf TTC (due to the bijective ownership structure), and this will

lead to more cycles being formed in each round. Indeed, we show in the Supplementary Appendix S.3 that the

number of rounds required for our TTC stochastically dominates the number of rounds required for Shapley-

Scarf TTC. Nevertheless, Proposition 1 shows that, while slower than Shapley-Scarf TTC, the completion

time of (prioritized) TTC is still sublinear.
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respectively. Then, we can show that Ro is uniform random among {R∗o + 1, ..., n} conditional

on Ro > R∗o (i.e., o being assigned via a long cycle). This follows from the fact that if an object

o is assigned via a long cycle, then permuting the priority ranks at o of all agents remaining at

that round (except for the agent o points to), including the agent receiving o, does not change

the outcome of TTC. Since every such permutation is equally likely, the assignment of object

o is uniform over remaining agents; and so his priority rank is uniform over {R∗o + 1, ..., n}.
The formal argument is provided in the Supplementary Appendix S.6.1.

Given this observation, our irrelevance result would follow if one shows that (i) TTC

allocates virtually all objects via long cycles rather than short cycles and that (ii) for virtually

all o, the R∗o/n→ 0, so that the normalized priority rank Ro/n converges to U [0, 1], just like

RSD, for almost all objects assigned via long cycles.

Formally, let Ô := {o ∈ O|Ro > R∗o} denote the set of all objects assigned via long cycles

and let

Õ := {o ∈ O|R∗o ≤ log1+ε(n)},

denote the set of objects that point to top log1+ε(n)-ranked agent at the time of assignment

(where ε is an arbitrary strictly positive number). We first prove that their intersection

Ō := Ô ∩ Õ eventually comprises the entire proportion of the objects as n→∞.

Lemma 1.
|Ō|
n

p−→ 1 as n→∞.

Proof. It suffices to prove that
|Ô|
n

p−→ 1 and
|Õ|
n

p−→ 1. We first prove the former.

Corollary S1 of our Supplementary Appendix proves that at each round of TTC, irrespective

of the history, the expected number of objects matched via short cycles is smaller than 2.

Thus, denoting by ôt the number of objects involved in short cycles at Step t of TTC, we

must have E[ôt |T = t′ ] ≤ 2 for any t ≤ t′. Hence,

1

n
E[|Ô|] = 1− 1

n
E

[
T∑
t=1

ôt

]

= 1− 1

n
ET

[
E

[
T∑
t=1

ôt |T

]]

≥ 1− 2ET
[
T

n

]
→ 1,

where the convergence result comes from Proposition 1. Since 1
n
E[|Ô|]→ 1 implies

|Ô|
n

p−→ 1,

we are done.

We next prove that
|Õ|
n

p−→ 1. To this end, we define a new mechanism TTC∗, which

operates exactly like TTC, except that, in each round, objects in each cycle are assigned to

12



the agents that the objects point to (rather than the other way around). Clearly, in each round

of TTC∗, the same cycles as those in the corresponding round of TTC are formed, and the

same associated set of agents and objects are assigned and removed. One crucial difference,

though, is that the assignment is Pareto efficient from the perspective of objects. Proposition

1 of Che and Tercieux (2018), applied to the object side, then implies the result.

We are almost ready for the main theorem. In the sequel, if W is a random variable defined

on {1, ..., n} then we let W̄ := 1
n
W . Denote by On := {o1, ..., on} and In := {i1, ..., in} respec-

tively the set of objects and the set of individuals in an n-economy. Let {Vo1 , ..., Von , Vi1 , ..., Vin}
be a sequence of collections of 2n random variables, each taking values in [0, 1]. We need to

define a notion of convergence for a (random) vector whose length increases as n→∞:

Definition 1. A random vector {W̄o1 , ..., W̄on , W̄i1 , ..., W̄in} converges in distribution to

{Vo1 , ..., Von , Vi1 , ..., Vin} as n → ∞ if for any integer K, any x ∈ [0, 1]K and any sequence

{yn} with values in [0, 1]n, we have

lim
n→∞

|F n(x, yn)−Gn(x, yn)| = 0

where F n is the cdf of {W̄o1 , ..., W̄oK , W̄i1 , ..., W̄in} while Gn is the cdf of {Vo1 , ..., VoK , Vi1 , ..., Vin}.

From now on, let {R̄o1 , ..., R̄on , R̄i1 , ..., R̄in} denote the normalized priority and preference

ranks under TTC. Since RSD ignores priorities, Pathak and Sethuraman (2011)’s equivalence

result implies that the distribution of (normalized) ranks enjoyed by objects and agents under

RSD is exactly {Ūo1 , ..., Ūon , R̄i1 , ..., R̄in}, where Ūo1 , ..., Ūon denotes a collection of iid random

variables each being U{1, ..., n}/n.

Recall our observation that any object assigned via long cycles is uniform-randomly as-

signed across individuals whom the object ranks below R∗o (i.e., ranks larger than R∗o). This

in turn means that the rank enjoyed by each object o ∈ Ō is stochastically dominated by

the uniform distribution across {
⌈
log1+ε(n)

⌉
+ 1, ..., n}. In addition, the rank enjoyed by each

object in Ō stochastically dominates the uniform distribution from {1, ..., n}. This is true

independently of the distribution of the ranks enjoyed by the agents and the ranks enjoyed

by the other objects in the set Ō. This is proved in Proposition S2 of the supplementary

material. Since log1+ε(n)/n → 0 as n → ∞, this proposition and Lemma 1 imply that the

joint distribution of (normalized) ranks converges to the iid uniform distribution as n→∞.

The main theorem now follows: under TTC, the limit distribution of ranks enjoyed by the

objects as n→∞ is uniform just like RSD.

Theorem 2 (Irrelevance). (a) The profile {R̄o1 , ..., R̄on , R̄i1 , ..., R̄in} of normalized priority

and preference ranks under TTC converges in distribution to {Ūo1 , ..., Ūon , R̄i1 , ..., R̄in}
as n→∞;
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(b) For any x ∈ [0, 1], 1
n

∑
o∈O 1{R̄o≤x}

p−→ x.

Part (a) strengthens the well-known equivalence between TTC and RSD to the joint distri-

bution of preference and priority: the joint distribution under TTC converges in distribution

to the joint distribution of ranks of RSD. Part (b) establishes irrelevance of priorities in TTC,

showing that the empirical distribution of the priority ranks under TTC converges in distri-

bution to a collection of iid uniform random variables over [0, 1].

Our result also has natural implications when comparing TTC and RSD in terms of justified

envy. Indeed, the next result shows that relative to the size of the market, the incidences of

justified envy under TTC and RSD become indistinguishable.

Corollary 1. Fix a pair (i, o). The probability that i has a higher priority for o than

its recipient under TTC converges to 1/2—the same as that under RSD. Consequently, the

difference between the probability that (i, o) blocks TTC and the probability that (i, o) blocks

RSD goes to 0, and the difference in expected fraction of blocking pairs under TTC and RSD

converges to 0.22

Proof. See Appendix S.7.

6 Discussion

The preceding irrelevance result suggests that the ability by TTC to use priorities to eliminate

justified envy is increasingly limited as the market grows large. However, one may not interpret

this as a design flaw of TTC. Recall from Abdulkadiroglu, Che, Pathak, Roth, and Tercieux

(2017) that TTC is justified envy minimal. In light of this result, the vanishing role of priorities

should instead be interpreted as a consequence of Pareto efficiency and strategyproofness;

namely, these two requirements prove too strong to leave any scope for priorities to play

a significant role in a large market.23 Also, as we argue below, there are circumstances in

which the role of priorities may not vanish even in a large market, although our asymptotic

irrelevance result is robust in several ways.

6.1 Correlated preferences:

If agents’ preferences are perfectly correlated, then TTC completely eliminates justified envy.

Plainly, all objects would be assigned via short cycles in this case, so the resulting assignment

22The fraction of blocking pair corresponds to the total number of blocking pairs divided by the total

number of possible pairs |I| × |O|.
23Indeed, in our environment, one can find a non-strategyproof Pareto-efficient mechanism, e.g., Boston

mechanism, that admits significantly less justified envy than RSD even in a large market.
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would be stable (as well as efficient). By contrast, RSD would entail a significant amount

of justified envy even in the limit. But this is an extreme case that is unlikely to hold in

any real setting. A more interesting case is when the preferences are not perfectly correlated.

Suppose for instance that agents’ preferences are represented by a cardinal utility function,

ui(o) = uo + ξio, where uo is a common utility from object o common for all agents and ξio is

an idiosyncratic utility from o drawn iid for each agent i. Suppose further the support of both

shocks are bounded. Our asymptotic irrelevance result appears to hold in this environment.24

For instance, Figure 2 shows that asymptotic irrelevance extends to the case of correlated

preferences where the uo and ξio are each distributed from U [0, 1].
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Figure 2: Incidences of justified envy among incidences of envy.
Note: The horizontal axis indicates the number of agents/objects. The figure plots the average proportions

across 100 draws of (uo, ξio, ηio) from U [0, 1]3, where ηio is priority score of agent i at o.

24To see this analytically, consider a simpler case in which the support of common utility is finite and

sufficiently far apart from each other that the objects are effectively “tiered”: all agents prefer top tier objects

(with the highest value of uo), and they all prefer the second tier objects next, and so on. In this case, the

TTC are effectively partitioned into multiple stages: in stage 1, all agents point to objects in tier 1, and once

all tier 1 objects are assigned, stage 2 begins in which the remaining agents point to tier 2 objects, and they

are assigned, etc. Since agents’ priorities at each object is iid, each stage can be separated as a distinct TTC

market, for which our asymptotic irrelevance result would apply.
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6.2 Many-to-one matching:

Our model has considered an one-to-one matching environment. While one-to-one matching

serves as a good baseline model, many real-world situations involve many-to-one matchings.

School choice or housing allocation typically involves multiple seats or multiple identical units

available for assignment. Our result of asymptotic irrelevance appears to hold for many-to-

one matching setting as long as the number of copies per object type grows sufficiently slowly

compared with the number of object types.25 This can be seen in Figure 3 below, where the

number of object types increases linearly with n, the number of agents, while the number of

copies per object type is fixed at 20. (Preferences and priorities are still drawn iid uniformly.)
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Figure 3: Incidences of justified envy among incidences of envy.
Note: The horizontal axis indicates the number n of agents. The number of objects is equal to n/20. The

figures plot averages over 100 (uniform iid) draws of agents’ preferences and objects’ priorities.

At the same time, there is a sense in which the irrelevance result does not extend to

the other commonly used asymptotics, in which the number of copies per object type grows

25Such asymptotics, which one may call a “small school” model, has been adopted by a number of authors,

such as Kojima and Pathak (2009), Ashlagi, Kanoria, and Leshno (2017), Che and Tercieux (2018) and Che

and Tercieux (2015), fits well settings such as medical matching (where about 20,000 doctors apply to about

3,000-4,000 hospitals), and NYC public high school matching in which the number of programs (about 800)

exceeds the number of students admitted by each program (about 100).
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sufficiently fast compared with the number of object types.26 To see this, suppose the number

of object types is fixed at some finite number but the number of agents and the number of

copies for each object type grows large. In that case, the proportion of agents that are assigned

via short cycles under TTC does not vanish even in probability. Indeed, Panel (a) of Figure

4 shows that the differences between the two mechanisms do not shrink as the market grows

large, in terms of the total incidences of justified envy. Our asymptotic result does extend,

however, if one considers alternative measures, such as the number of agents with justified

envy among those with envy.27 Panel (b) of Figure 4 illustrates that the convergence holds.28
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(a) Incidences of justified envy among incidences of envy. (b) Agents with justified envy among those with envy.

Figure 4: Difference between TTC and RSD
Note: The horizontal axis indicates the size of the market, i.e., the number of agents. The number of objects is

fixed to 10. The figures plot averages over 100 (uniform iid) draws of agents’ preferences and objects’ priorities.

Ultimately, our contribution clarifies the circumstances in which the effect of priorities in

TTC disappears and those in which TTC can be expected to perform better than RSD.

26Such asymptotics, which one may call a “large school” model, has been adopted by many authors such

as Abdulkadiroglu, Che, and Yasuda (2015), Azevedo and Leshno (2016), Che, Kim, and Kojima (2013) and

Leshno and Lo (2017), and fits well with the school choice in many US cities in which a handful of schools

admit each hundreds of students.
27More precisely, we count the number of agents with justified envy and divide this by the number of

agents with envy (not necessarily justifiable). In short, the measure (a) reflects the intensity of justified envy

by counting all incidences of justified envy, whereas (b) only counts the number of agents who have justified

envy, irrespective of how many agents they justifiably envy.
28Our convergence also holds for the fraction of blocking pairs.
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A Proof of Theorem 1

Given the nature of conditioning mentioned earlier, it is crucial for our purpose to keep track

of the agents and objects that can draw their partners at random and those who cannot

in each round of TTC. This requires us to investigate the probabilistic structure known as

random rooted forests.

To begin, consider any two finite sets I and O, with cardinalities |I| = n, |O| = o. A

bipartite digragh G = (I ∪ O,E) consists of vertices I and O on two separate sides and

directed edges E ⊂ (I×O)∪ (O× I), comprising ordered pairs of the form (i, o) or (o, i) (cor-

responding to edge originating from i and pointing to o and an edge from o to i, respectively).

A rooted tree is a bipartite digraph where all vertices have out-degree 1 except the root
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which has out-degree 0.29 A rooted forest is a bipartite graph which consists of a collection

of disjoint rooted trees. A spanning rooted forest over I∪O is a forest comprising vertices

I ∪O. From now on, a spanning forest will be understood as being over I ∪O.

A.1 Markov Properties of Spanning Rooted Forests Induced by

TTC

We begin by noting that TTC induces a random sequence of spanning rooted forests. Indeed,

one could see the beginning of the first round of TTC as a situation where we have the trivial

forest consisting of |I|+|O| roots, or isolated vertices without edges. In the example of Section

4, there are 6 separate trees: {1}, {2}, {3}, {a}, {b}, {c}. Within this step, each vertex in I

randomly points to a vertex in O and each vertex in O randomly points to a vertex in I.

Assume that agents 1 and 3 point to c, and agent 2 points to a, and all objects point to 3.

Note that once we delete the realized cycles (3− c in the example), we again get a spanning

rooted forest. So we can again view the graph at the beginning of the second round of TTC as

a spanning rooted forest, where the roots consist of those agents and objects that had pointed

to the entities that were cleared via cycles. In the above example, the spanning rooted forest

in the beginning of Round 2 has three rooted trees: {1}, {2→ b}, {a}. Here again objects that

are roots randomly point to a remaining individual and individuals that are roots randomly

point to a remaining object. Once cycles are cleared we again obtain a forest and the process

goes on like this.

Formally, the random sequence of forests, F1, F2, ...., is defined as follows. First, we let

F1 be a trivial unique forest consisting of |I| + |O| trees with isolated vertices, forming their

own roots. For any i = 2, ..., we first create a random directed edge from each root of Fi−1

to a vertex on the other side, and then delete the resulting cycles (these are the agents and

objects assigned in round i− 1) and Fi is defined to be the resulting rooted forest. Note that

this random sequence of spanning rooted forests is a Markov chain.

For any rooted forest Fi, let Ni = Ii ∪Oi be its vertex set and ki = (kIi , k
O
i ) be the vector

denoting the numbers of roots on both sides, and use (Ni, ki) to summarize this information.

And let FNi,ki denote the set of all rooted forests having Ni as the vertex set and ki as the

vector of its root numbers.

Given Ni, ki and Ni+1, ki+1, for each forest F ∈ FNi+1,ki+1
, one can compute the number of

possible pairs (F ′, φ) that could have given rise to F , where F ′ ∈ FNi,ki and φ maps the roots

29Sometimes, a tree is defined as an acyclic undirected connected graph. In such a case, a tree is rooted

when we name one of its vertex a “root.” Starting from such a rooted tree, if all edges now have a direction

leading toward the root, then the out-degree of any vertex (except the root) is 1. So the two definitions are

actually equivalent.
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of F ′ in Ii to its vertices in Oi as well as the roots of F ′ in Oi to its vertices in Ii. In words,

such a pair (F ′, φ) corresponds to a set Ni of agents and objects remaining at the beginning of

round i of TTC, of which kIi agents of Ii and kOi objects have lost their favorite parties (and

thus they must repoint to new partners in Ni under TTC in round i), and the way in which

they repoint to the new partners under TTC in round i causes the new forest F to emerge at

the beginning of round i + 1 of TTC (after cycles are cleared). There are typically multiple

such pairs (F ′, φ) that could give rise to F . Let β(Ii, Oi, k
I
i , k

O
i ; Ii+1, Oi+1, k

I
i+1, k

O
i+1) denote

the number of pairs (F ′, φ), F ′ ∈ FNi,ki , causing F to arise.

The first important observation we make is that β does not depend on the particular

F ∈ FNi+1,ki+1
. That is, its dependence on sets (Ii, Oi, ; Ii+1, Oi+1) is only through their

cardinalities—specifically, |Ii|, |Oi|, ki, ki+1, |Ii+1|, and |Oi+1|, or equivalently |Ii|, |Oi|, ki,
ki+1, and |Ni| − |Ni+1|.

In order to show that this number does not depend on the particular F ∈ FNi+1,ki+1
, let

us, for any given F ∈ FNi+1,ki+1
, construct all such pairs. To build any such pair (F ′, φ), one

can simply choose a quadruplet (a, b, c, d) of four non-negative integers with a + c = kIi and

b+ d = kOi and proceed by,

(i) choosing c old roots from Ii+1, and similarly, d old roots from Oi+1,

(ii) choosing a old roots from Ii\Ii+1 and similarly, b old roots from Oi\Oi+1,

(iii) choosing a partition into cycles of Ni\Ni+1, each cycle of which contains at least one old

root from (ii),30

(iv) choosing a mapping of the kIi+1 + kOi+1 new roots to Ni\Ni+1.31

Clearly, the number of pairs (F ′, φ), F ′ ∈ FNi,ki , satisfying the above restrictions depends

only on |Ii|, |Oi|, ki, ki+1, and |Ni| − |Ni+1|.32 Accordingly, we now write this number as

β(|Ii|, |Oi|, ki; |Ni|−|Ni+1|, ki+1). (We derive β explicitly in Section S.1.1 of the supplementary

material.)

With this observation in hand, we can prove the following result.

Lemma 2. Given (Nj, kj), j = 1, ..., i, every (rooted) forest of FNi,ki is equally likely.

30Within round i of TTC, one cannot have a cycle creating only with vertices that are not roots in the forest

obtained at the beginning of round i. This is due to the simple fact that a forest is an acyclic graph. Thus,

each cycle creating must contain at least one old root. Given that, by definition, these roots are eliminated

from the set of available nodes in round i+ 1, these old roots that each cycle must contain must be from (ii).
31Since, by definition, any root in F ∈ FNi+1,ki+1

does not point, this means that, in the previous round,

this node was pointing to another node which was eliminated at the end of that round.
32Recall that by definition of TTC, whenever a cycle creates, the same number of individuals and objects

must be eliminated in this cycle. Hence, |Oi| − |Oi+1| = |Ii| − |Ii+1| and |Ni| − |Ni+1| = 2(|Ii| − |Ii+1|).
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Proof. We prove this result by induction on i. Since for i = 1, by construction, the

trivial forest is the unique forest which can occur, this is trivially true for i = 1. Fix i ≥ 1,

and assume our statement is true for i. Let us show that it holds for i+ 1.

Fix Ni = Ii ∪ Oi ⊃ Ni+1 = Ii+1 ∪ Oi+1, and ki and ki+1. For each forest F ∈ FNi+1,ki+1
,

we consider a possible pair (F ′, φ) that could have given rise to F , where F ′ ∈ FNi,ki and φ

maps the roots of F ′ in Ii to its vertices in Oi as well as the roots of F ′ in Oi to its vertices

in Ii. As we already argued, each forest F ∈ FNi+1,ki+1
arises from the same number of such

pairs—i.e., that the number of pairs (F ′, φ), F ′ ∈ FNi,ki , causing F to arise does not depend

on the particular F ∈ FNi+1,ki+1
.

The number of such pairs is given by β(|Ii|, |Oi|, ki; |Ni| − |Ni+1|, ki+1). Let φi = (φIi , φ
O
i )

where φIi is the random mapping from the roots of Fi in Ii to Oi and φOi is the random mapping

from the roots of Fi in Oi to Ii. Let φ = (φI , φO) be a generic mapping of that sort. Since,

conditional on Fi = F ′, the mappings φIi and φOi are uniform, we get

Pr(Fi+1 = F |Fi = F ′) =
1

|Oi|k
I
i

1

|Ii|k
O
i

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ). (1)

Therefore, we obtain

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

=
∑

F ′∈FNi,ki

Pr(Fi+1 = F, Fi = F ′|(N1, k1), ..., (Ni, ki))

=
∑

F ′∈FNi,ki

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki), Fi = F ′) Pr(Fi = F ′|(N1, k1), ...., (Ni, ki))

=
1

|FNi,ki |
∑

F ′∈FNi,ki

Pr(Fi+1 = F |Fi = F ′)

=
1

|FNi,ki |
∑

F ′∈FNi,ki

1

|Oi|k
I
i

1

|Ii|k
O
i

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

∑
F ′∈FNi,ki

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

β(|Ii|, |Oi|, ki; |Ni| − |Ni+1|, ki+1), (2)

where the third equality follows from the Markov property of {Fj} and the induction hypoth-

esis, the fourth follows from (1), and the last follows from the definition of β and from the

fact that the conditional probability in the sum of the penultimate line is 1 or 0, depending

upon whether the forest F arises from the pair (F
′
, φ) or not. Note that this probability is
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independent of F ∈ FNi+1,ki+1
. Hence,

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki), (Ni+1, ki+1))

=
Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

Pr(Fi+1 ∈ FNi+1,ki+1
|(N1, k1), ..., (Ni, ki))

=
Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))∑

F̃∈FNi+1,ki+1
Pr(Fi+1 = F̃ |(N1, k1), ..., (Ni, ki))

=
1

|FNi+1,ki+1
|
,

which proves that, given (Nj, kj), j = 1, ..., i + 1, every rooted forest of FNi+1,ki+1
is equally

likely.

The next lemma then follows easily.

Lemma 3. Random sequence (Ni, ki) forms a Markov chain.

Proof. By (2) we must have

Pr((Ni+1, ki+1)|(N1, k1), ...., (Ni, ki)) =
∑

F∈FNi+1,ki+1

Pr(Fi+1 = F |(N1, k1), ...., (Ni, ki))

=
∑

F∈FNi+1,ki+1

1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

β(|Ii|, |Oi|, ki; |Ni+1| − |Ni|, ki+1).

Observing that the conditional probability depends only on (Ni+1, ki+1) and (Ni, ki), the

Markov chain property is established.

The proof of Lemma 3 reveals in fact that the conditional probability of (Ni+1, ki+1) de-

pends on Ni only through its cardinalities (|Ii|, |Oi|), leading to the following conclusion. Let

ni := |Ii| and oi := |Oi|.

Corollary 2. Random sequence {(ni, oi, kIi , kOi )} forms a Markov chain.

Proof. See Supplementary Appendix S.1.3.

A.2 Proof of Theorem 1

We first compute the probability of transition from (ni, oi, k
I
i , k

O
i ) to (ni+1, oi+1, k

I
i+1, k

O
i+1) such

that kIi+1 = λI and kOi+1 = λO:

P(n, o, kIi , k
O
i ;m,λI , λO)

:= Pr
{
ni − ni+1 = oi − oi+1 = m, kIi+1 = λI , kOi+1 = λO | ni = n, oi = o, kIi , k

O
i

}
.

This will be computed as a fraction Θ
Υ
. The denominator Υ counts the number of rooted

forests in the bipartite digraph with kIi roots in Ii and kOi roots in Oi, multiplied by the
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ways in which kIi roots of Ii could point to Oi and kOi roots of Oi could point to Ii.
33 We let

f(n, o, kIi , k
O
i ) denote the number of rooted forests in a bipartite digraph (with n and o vertices

on both sides) containing kIi and kOi roots on both sides. Thus, since there are ok
I
i nk

O
i ways in

which kIi roots in Ii point to Oi and kOi roots in Oi could point to Ii, Υ = ok
I
i nk

O
i f(n, o, kIi , k

O
i ).

The numerator Θ counts the number of ways in which m agents are chosen from Ii and m

objects are chosen from Oi to form a bipartite bijection each cycle of which contains at least

one of kIi +kOi old roots, and for each such choice, the number of ways in which the remaining

vertices form a spanning rooted forest and the λI roots in Ii+1 point to objects in Oi\Oi+1 and

λO roots in Oi+1 point to agents in Ii \ Ii+1. To compute this, recall β(n, o, kIi , k
O
i ;m,λI , λO),

denotes, for any F with n−m agents and o−m objects and roots λI and λO on both sides,

the total number of pairs (F ′, φ) that could have given rise to F , where F ′ has n agents and

o objects with (kIi , k
O
i ) roots and φ maps the roots to the remaining vertices.

The numerator Θ is now computed as Θ =
(
n
m

)(
o
m

)
f(n−m, o−m,λI , λO)β(n, o, kIi , k

O
i ;m,λI , λO).

In Section S.1.1 of the supplementary material, we explicitly compute β(n, o, kIi , k
O
i ;m,λI , λO),

then, collecting terms, we show in the Supplementary Appendix S.1.4 that

P(n, o, kIi , k
O
i ;m,λI , λO) =

Θ

Υ
=

1

onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλI+λOf(n−m, o−m,λI , λO).

A key observation is that this expression does not depend on (kIi , k
O
i ), which, together with

Corollary 2, implies that (ni, oi) forms a Markov chain.

Its transition probability can be derived by summing the expression over all possible

(λI , λO)’s:

pn,o;m :=
∑

0≤λI≤n−m,0≤λO≤o−m

P(n, o, kIi , k
O
i ;m,λI , λO).

which is equal to the formula stated in the lemma
(

m
(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m) as

shown in Supplementary Appendix S.1.4.

33Given that we have ni = n individuals, oi = o objects and kIi roots in Ii and kOi roots in Oi at the

beginning of step i under TTC, one may think of this as the total number of possible bipartite digraph one

may obtain via TTC at the end of step i when we let kIi roots in Ii point to their remaining most favorite

object and kOi roots in Oi point to their remaining most favorite individual.
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