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simultaneous imaging of action potentials in neuronal ensembles. This chapter describes “bulk”

loading of brain slices with acetoxymethyl (AM) ester calcium indicators in order to monitor
action potential activity in large populations of neurons simultaneously. The imaging of calcium
influx into neurons provides an indirect, but accurate, measure of action potential generation in indi-
vidual neurons. Single-cell resolution and thus the easy identification of every active cell is the key
advantage of the technique.

Starting with Yuste and Katz (1991), this method has been successfully applied throughout the cen-
tral nervous system including neocortex (e.g., Mao et al. 2001; Cossart et al. 2003), hippocampus (e.g.
Tanaka et al. 2002), the cerebellum (e.g., Ghozland et al. 2002), striatum (e.g., Mao and Wang 2003),
and spinal cord (e.g., Voitenko et al. 1999), utilizing either acute slices, cultured slices, or cultured dis-
sociated neurons. Recently, the technique has also been applied in vivo to mouse neocortex (Stosiek
et al. 2003).

The understanding of neuronal circuits has been, and will continue to be, greatly advanced by the

Cell-permeant Calcium Indicators

Different AM ester calcium indicators under sim-
ilar experimental conditions have different load-
ing efficacies. Ranked from best loading to worst:
mag-fura-2>fura-2>indo-1>Calcium  Green-
1>fluo-4>Oregon-Green BAPTA-1>Calcium
Orange>Calcium Crimson. Several of the indica-
tors are also ranked below by their efficacy as
detectors of action potentials: fluo-4>fura-

2>mag-fura-2. The majority of our experimental
procedures use fura-2. However, the methods
described below can be used for any of the listed
indicators.

Microscopy

Both single-photon and two-photon excitation of
calcium indicators can be utilized to monitor cal-
cium changes in large populations of neurons.
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PROCEDURE A

Loading Embryonic and Neonatal Acute Cortical Slices

1.

PROCEDURE B

Dissolve 50 ug of fura-2AM (Molecular Probes) in 48 pl of DMSO<!> and 2 pl of Pluronic F-127
(Molecular Probes) for a final concentration of 1 mM.

Note: Because the solubility of calcium AM indicators is rather poor, vortex the solution for 10-15 min
prior to use.

. Load the slices in oxygenated artificial cerebral spinal fluid (ACSF) and add enough fura-2AM

solution for a final concentration of 10 um fura-2AM, for 30—60 min.

. Remove slices from loading chamber and place into incubation chamber containing oxygenated

ACSE. Imaging may begin after a 30-min recovery period.

Caution: See Appendix 3 for appropriate handling of materials marked with <I>.

Loading Juvenile and Adult Acute Cortical Slices

1. Prepare 1 mM fura-2 AM as indicated above (Al).

Place slices in loading chamber containing 2.5 ml of oxygenated ACSE.

3. Pipette 5-10 ul of fura-2AM solution on top of each slice.

PROCEDURE C

Note: This results in a high initial concentration of fura-2AM. The concentration decreases as the fura-
2AM diffuses away from the site of application, resulting in a final concentration in the entire chamber

of ~10-20 pm.

Load slices in the dark for 20—-30 min at 35-37°C with 95% O,/5% CO, lightly ventilated into the
chamber.

Note: As a rule of thumb, the loading time should be 10 min, plus as many minutes as the age of the ani-
mal in postnatal days.

Remove slices from the loading chamber and place into incubation chamber containing oxy-
genated ACSF for wash. The wash occurs through simple diffusion. Imaging may begin after a 30-
min recovery period.

Focal Loading-Slice Painting

Although local neural connections are maintained in the procedure described above (see Kozloski et
al. 2001), long axonal projections, such as thalamocortical axons in thalamocortical slice preparations
(Agmon and Connors 1991), may be compromised. A modification of Procedure A can be used to cir-
cumvent this problem and can also be used in vivo (Stosiek et al. 2003).

1.

Dissolve 50 pg of fura-2AM (Molecular Probes) in 13 pul of DMSO<!> and 2 pul of Pluronic
F-127<!> (Molecular Probes), achieving a final concentration of 3.3 mm. Vortex the solution for
10-15 min.

. Deposit the slices into the first loading chamber containing 2 ml of ACSE, ventilated with 95%

0,/5% CO,, and place onto microscope stage.

Fill a fire-polished pipette (tip diameter ~30 um) with 7.5 ul of fura-2AM.

4. Insert the filled pipette into a standard patch-clamp electrode holder, with tubing attached, and,

using a micromanipulator, place the pipette tip 100-200 um above the surface of the slice. Apply
5-10 psi positive pressure to the pipette. Slowly (1-2 ul in 1 min) move the pipette across the sur-
face of the slice using the manipulator, covering the area of interest with the dissolved fura-2AM.
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5. Move the slices to the second loading chamber containing 2.5 ml of ACSF and the remaining 7.5
ul of fura-2AM.

6. Load the slices in the dark for 20-30 min (as a rule of thumb, 10 min plus the age of the animal
in days) at 35-37°C with 95% O,/5% CO, lightly ventilated into the chamber.

7. Remove the slices from the loading chamber and transfer them to an incubation chamber con-
taining oxygenated ACSF for wash. Imaging may begin after a 30-min recovery period.

Imaging of Calcium AM Indicators

Two-photon imaging of calcium indicators allows highly sensitive detection of changes in neuronal
calcium concentration with relatively little bleaching and photodamage. However, the simultaneous
imaging of large populations of neurons is necessarily slow. Epifluorescent imaging of calcium indi-
cators is sufficient to detect changes in neuronal calcium concentration and has the advantage that,
using a fast camera, the detection of changes can be of higher temporal resolution than in the two-
photon system. However, fluorescent imaging of bulk-loaded slices is subject to rapid bleaching and
is also prone to high background fluorescence. Finally, in our experience, spinning disk confocals,
together with fast cameras, can be used to image thousands of neurons simultaneously, without sig-
nificant photobleaching and with good signal-to-noise ratios, over long periods of time.

EXAMPLE OF APPLICATION

Figure 1 illustrates the two-photon imaging of fura-2 and the utilization of fura-2 as an indicator of
neuronal activity. Figure 1A illustrates thousands of loaded neurons in a neocortical slice imaged
using a two-photon microscope. Figure 1B reveals the correlation between neuronal activity and a
change in fluorescence as detected by epifluorescence. The fluorescence of fura-2 decreases in the
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FIGURE 1. High-resolution calcium imaging of neuronal activity. (A) Two-photon image of transverse section
of mouse neocortex loaded with fura-2AM. Bar, 250 pum. Note how thousands of neurons can be adequately visu-
alized. Courtesy of Dr. Hajime Hirase. (B) Correspondence between action potentials and somatic fluorescence
change. (i) Whole-cell recording of a burst of action potentials in response to a single intracellular depolarizing
current step (150 pA, 200 msec). (ii) Normalized fluorescence change for the recorded neuron imaged with a
cooled CCD camera (Micromax, Princeton Instruments). Recording pipette contained 50 pm of fura pen-
tapotassium salt (comparable to the intracellular concentration of fura following bulk loading). Although indi-
vidual action potentials cannot be resolved, onset of neuronal activity is accurately imaged.
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presence of calcium, thus the negative fluorescent change in Figure 1B(ii). As illustrated, even one-
photon imaging of fura-2 is sufficient to detect and resolve action potential generation in a single neu-
ron within a field of hundreds or thousands of loaded cells. Because of the rapid time course for the
onset of its response, fura-2 lends itself to the elucidation of network dynamics when simultaneously
imaging large populations of neurons.

ADVANTAGES AND LIMITATIONS '

The use of calcium AM ester indicators provides a very robust method of imaging activity in large
populations of neurons simultaneously. In our experience, voltage-sensitive dyes are insufficient for
the detection of activity in an individual neuron within a population of neurons such as a cortical
slice. Their nonspecific staining pattern and poor signal strength currently make optical recording
with single-cell resolution unfeasible in cortical slices (Yuste et al. 1997). Calcium indicators (Tsien
1989) that can be bulk-loaded into brain slices using their AM ester derivatives (Yuste and Katz 1991)
act as very good, albeit indirect, measures of action potential generation (Smetters et al. 1999). These
still provide the best means of imaging activity in large populations of neurons when single-cell res-
olution is desirable. ‘
The limitations of the technique are due to the properties of the dyes themselves. Calcium indica- 1
tors, being charged molecules, do not easily cross the cell membrane and need, therefore, to be micro-
injected. To circumvent this problem, AM ester derivatives of the indicators were synthesized (Tsien
1981). The AM esters mask negative charges, making the indicator molecules more lipophilic and
membrane-permeant, thus allowing them to enter the cell. Once inside the cell, cytoplasmic esterases
hydrolyze the acetyl ester linkage, releasing formaldehyde and free indicator, which then accumulates
intracellularly as it is once again charged. However, the dependence on intracellular enzymatic cleav-
age makes this process cell-dependent. This can result in differential loading efficiency in different
neurons. In addition, the increased hydrophobicity of the AM ester derivatives of the indicators can
cause problems in delivering sufficient amounts to their targets. This problem becomes significant in
adult preparations, where the slice painting method appears to be the best loading strategy. Finally, -
although the time constant for the onset of quenching indicator fluorescence in neurons is rapid, the
offset is proportionally slow due to saturation of the dye. Thus, although the calcium indicators are
excellent measures for the onset of activity, they do not provide adequate temporal resolution to
detect single action potentials during a burst of action potentials. £
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