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Curiosity—our desire to know—is a fundamental drive in 
human behaviour, but its mechanisms are poorly under-
stood. A classical question concerns the curiosity motives. 
What drives individuals to become curious about some but 
not other sources of information?1 Here we show that curios-
ity about probabilistic events depends on multiple aspects 
of the distribution of these events. Participants (n = 257) 
performed a task in which they could demand advance infor-
mation about only one of two randomly selected monetary 
prizes that contributed to their income. Individuals differed 
markedly in the extent to which they requested information 
as a function of the ex ante uncertainty or ex ante value of 
an individual prize. This heterogeneity was not captured by 
theoretical models describing curiosity as a desire to learn 
about the total rewards of a situation2,3. Instead, it could 
be explained by an extended model that allowed for attri-
bute-specific anticipatory utility—the savouring of indi-
vidual components of the eventual reward—and postulates 
that this utility increased nonlinearly with the certainty of 
receiving the reward. Parameter values fitting individual 
choices were consistent for information about gains or 
losses, suggesting that attribute-specific anticipatory util-
ity captures fundamental heterogeneity in the determi-
nants of curiosity.

Following a wave of research that peaked in the late twentieth 
century and subsequently waned4, a resurgence of interest in the 
mechanisms of curiosity has been motivated by increased appre-
ciation of its importance for brain and cognitive function5–8. Many 
recent studies of curiosity rely on so-called non-instrumental para-
digms, in which participants can demand advance information 
about a future outcome (punishment or reward) but cannot take 
actions to exploit the information they sample. These studies have 
shown that humans and other animals have reliable preferences 
for non-instrumental information9–11, and these preferences are 
encoded in neural systems of reward and motivation12,13, and impact 
memory, attention and gaze5,14–16.

The robust demand for non-instrumental information revealed 
by these studies poses significant challenges to traditional deci-
sion theories, in which information value is defined in terms of 
reward gains. The theories allow for the fact that decision-makers 
make tradeoffs between exploration and exploitation by seeking 
to reduce uncertainty on immediate time scales to maximize the 
rewards they obtain on longer time scales17, but they cannot explain 
the desire to obtain information as a good in itself, independent 
of instrumental incentives. The prevalence of curiosity in behav-
iour therefore implies that decision-makers assign intrinsic value to 
some property (or properties) of internal states that are engendered 
by information.

Two prominent lines of work in decision theory provide poten-
tial answers about what these properties may be. One theoretical 
approach proposes that individuals prefer to hold more or less accu-
rate beliefs about future outcomes (have preferences over the timing 
of resolution of uncertainty) independent of their preferences over 
the outcomes themselves2. A different approach proposes instead 
that information choice reflects a utility that individuals derive from 
anticipation—the desire to feel good by anticipating (savouring) 
positive outcomes, but avoid the dread associated with anticipat-
ing negative outcomes. Anticipatory utility is also proposed to be 
distinct from the utility of the outcomes themselves, and has been 
formalized in models of economic utility18,19 and, more recently, in 
the reinforcement learning literature3.

To date, these two theories have not been empirically contrasted 
and it is not known which one better describes human curiosity.  
An outstanding question pertains to cases in which decision-makers  
must select between competing sources of information that are  
relevant to a situation. Such cases are the rule in natural behaviour, 
in which decision-makers contend with complex situations that 
have multiple relevant features (or attributes) and it is not feasible  
to become fully informed about all of the features. Although the 
question of information selection has been long recognized as 
being key for curiosity1, this question has been typically eschewed 
in laboratory settings, which have instead used tasks in which 
decision-makers receive rewards from a single source and have the 
opportunity to obtain perfect information about that sole source. 
It remains unknown to what extent current computational models 
and empirical studies capture how decision-makers choose which 
information to sample when they selectively interrogate a multi-
attribute situation.

To examine this question, we tested participants on a task in 
which they received probabilistic payoffs from two independent 
sources (two randomly drawn monetary prizes) but could request 
information about only one source. On each trial, participants were 
shown two distributions (lotteries), defined by a mean and variance, 
and were told that the computer will draw one prize from each dis-
tribution (randomly with uniform probability) and pay out the sum 
of the prizes (Fig. 1a). Participants were not by default informed 
about the precise value of the prizes that happened to be drawn, but 
were instead asked to choose one prize whose value they wished 
to reveal. In the example in Fig. 1a, the participant inquired about 
the left lottery and learned that the prize from that lottery was 
240 points, but remained ignorant of the precise value of the addi-
tional prize from the right lottery. At the end of the block, partici-
pants received a monetary payoff equal to the sum of the prizes they 
drew on one trial that was randomly selected from those they had 
played. Thus, the participants’ rewards were determined by chance, 
and the information they gathered was non-instrumental.

Diverse motives for human curiosity
Kenji Kobayashi   1*, Silvio Ravaioli2,3, Adrien Baranès4, Michael Woodford3 and 
Jacqueline Gottlieb1,4,5

NAtuRe HuMAN BeHAviouR | VOL 3 | JUNE 2019 | 587–595 | www.nature.com/nathumbehav 587

mailto:kenji.kobayashi@berkeley.edu
http://orcid.org/0000-0003-1867-8939
http://www.nature.com/nathumbehav


Letters Nature HumaN BeHaviour

We independently manipulated the expected value (EV) and 
variance (uncertainty) of the distributions generating the prizes to 
determine which factor more strongly influenced the participants’ 
choices (Methods). Importantly, this manipulation allowed us to 
differentiate between two potential motives for curiosity—the desire 
to reduce uncertainty about the total reward of the trial versus the 
desire to obtain information about an individual prize. As shown 
graphically in Fig. 1b, participants could expect that their residual 
uncertainty about the total reward after the information would be 
equal to the uncertainty of the unrevealed prize (Fig. 1b). Thus, 
their uncertainty about the sum of the prizes would be minimized if 
they inquired about the lottery with the larger ex ante uncertainty, 
regardless of the EV of this lottery. We show formally that both 
the theory of Kreps and Porteus2 and the reinforcement learning 
model of Iigaya et al.3 assume that the value of non-instrumental 
information depends strictly on the extent to which the information 
resolves uncertainty about the total future utility, and thus predict 
that curiosity in this task would be strictly a function of the uncer-
tainty of a lottery (Supplementary Notes 1 and 3).

In contrast with this prediction, participants showed both a sen-
sitivity to lottery uncertainty and a prominent bias to inspect the lot-
tery with the higher EV, as we describe in detail below. To capture 
these observations, we devised a computational model that allows 

information demand to be motivated not only by uncertainty about 
the total utility but also by a form of anticipatory utility, which we call 
attribute-specific anticipatory utility (Supplementary Notes 1 and 2). 
This model allows for the possibility that individuals derive utility 
from advance information about individual components of a total 
reward (that is, a direct effect of the information that is received). 
Specifically, our model postulates that the degree of savouring of 
rewards that one is already certain to receive is greater than the 
savouring of rewards that are only possible, but not certain, by a fac-
tor larger than the increase in probability (Supplementary Note 2).

Our model derivations showed that the weights of each motive 
can be recovered from the parameters of a simple psychometric 
choice function that plots the probability of inspecting the high-
variance lottery as a function of its EV relative to the EV of the low-
variance lottery (ΔEV) (equation (1) and Supplementary Note 1, 
equation (8)). We thus fitted choice functions using logistic regres-
sion and recovered the parameter wvar, which characterizes a par-
ticipant’s desire to reduce uncertainty about the total outcome (the 
vertical shift of the choice function), and parameter wΔEV, which 
characterizes a participant’s sensitivity to attribute-specific anticipa-
tory utility (the slope of the choice function).

Across the population, parameters wvar and wΔEV were both  
significantly larger than 0, indicating that people were strongly  
sensitive to both motives (Fig. 2). When sampling information  
about gains, parameter wvar was positive, indicating an overall prefe-
rence for the early resolution of uncertainty about the total outcome 
(Fig. 2a, ordinate; median = 1.53; mean = 1.99; s.e.m. = 0.13; Wilcoxon 
signed rank test, Z = 11.89; P < 0.001; r (the Z value divided by the 
square root of the number of participants) = 0.74; 95% confidence 
interval (CI) = 0.68–0.79; n = 257). Parameter wΔEV was also larger 
than 0, indicating that people were significantly motivated to view 
the higher-value individual prize, as predicted by attribute-specific 
anticipatory utility (Fig. 2a, abscissa; median = 3.32; mean = 3.57; 
s.e.m. = 0.26; Z = 11.55; P < 0.001; r = 0.72; 95% CI = 0.64–0.78).

Similarly, when participants sampled information about losses, 
they showed a preference for early resolution of uncertainty 
(Fig. 2b, ordinate; wvar median = 0.90; mean = 1.55; s.e.m. = 0.19; 
Z = 6.77; P < 0.001; r = 0.57; 95% CI = 0.42–0.66; n = 140) and for 
viewing the higher-value individual prize (Fig. 2b, abscissa; wΔEV 
median = 0.96; mean = 1.59; s.e.m. = 0.37; Z = 4.30; P < 0.001; 
r = 0.36; 95% CI = 0.20–0.50). The fact that the parameter wΔEV was 
positive shows that participants were primarily interested in the 
lottery that had the better outcome (smaller individual loss); that 
is, they were motivated to avoid dread from anticipating a negative 
outcome rather than to obtain information about the most salient 
outcome (the largest individual loss20). Because the more desirable 
lottery was lower on the screen in the loss condition (but higher on 
the screen in the gain condition), these results also rule out a trivial 
strategy of simply inquiring about the lottery at a fixed position in 
the visual field.

In the subset of participants who completed tasks in both gain 
and loss domains, the parameters wvar and wΔEV were highly corre-
lated, indicating that participants followed similar sampling strate-
gies for losses and gains (Fig. 2c,d; Spearman’s rho for wvar = 0.65; 
P < 0.001; rho for wΔEV = 0.49; P < 0.001; n = 140). However, we 
noticed that wΔEV in the loss condition was smaller than in the gain 
condition (Fig. 2d; Z = 4.48; P < 0.001; r = 0.38; 95% CI = 0.22–
0.52) and, in a subgroup of participants who performed the loss 
condition before the gain condition, wΔEV in the loss condition 
failed to reach statistical significance (Supplementary Table 1; 
median = 1.71 × 10−7; mean = 0.67; s.e.m. = 0.77; Z = 0.48; P = 0.63; 
r = 0.07; 95% CI = −0.25–0.36; n = 43). Thus, dread from anticipat-
ing a negative outcome may be more sensitive to contextual fac-
tors relative to savouring a positive outcome, but attribute-specific 
anticipatory utility related to savouring and dread share significant 
common variability.

210

300

Distributions

240 + ?

Inquiry and informationa

b After revealing
high-variance lottery

After revealing
low-variance lottery

Fig. 1 | the task. a, The choice screen on each trial depicted two lotteries 
that differed in their variance (represented by the length of dark grey bar) 
and EV (midpoint of the bar, marked by the blue line and numerical value). 
The lighter grey background rectangle indicated the total range of points 
possible in the experiment (0–500 points, constant in all trials, shown here 
not to scale). After indicating their choice of which lottery to observe, the 
participants received immediate feedback about the precise prize that 
had been drawn from the chosen lottery in the form of a horizontal red bar 
and a numerical value displayed at the top of the screen (right, illustrating 
the case in which the participant inquired about the left lottery). Larger 
numbers (at higher positions on the screen) indicated larger values of gains 
or losses. In this example, the lottery on the right had the higher potential 
gain on average in the gain domain version but the higher potential loss 
in the loss domain version. b, The reduction of uncertainty about the total 
outcome depends on the variance, but not EV, of the inspected lottery. 
After revealing the value of a prize from the high-variance lottery (left), the 
decision-maker’s remaining uncertainty (red arrows) is lower than when the 
prize of low-variance lottery is revealed (right). The remaining uncertainty 
does not depend on the revealed prize (height of the horizontal red line); 
hence, nor does it depend on the EV of the inspected lottery.
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Despite the clear trends at the population level, behaviour 
showed considerable individual variability. To illustrate this vari-
ability, we plotted each participant’s fitted choice function in  
the gain condition in Fig. 3a and in the loss condition in Fig. 3b  
(grouping individuals based on the significance and sign of  
wΔEV and wvar, evaluated at the individual level by non-parametric 
permutations, for ease of visualization without implying distinct 
behavioural categories).

A minority of participants showed information demand that 
was independent of ΔEV (wΔEV did not significantly deviate from 
0; P > 0.05), as would be predicted by the Kreps and Porteus2 and 
Iigaya et al.3 theories (Fig. 3, top row). Of this subgroup, the vast 
majority preferred the early resolution of uncertainty (wvar > 0; 
P < 0.05; orange), only one participant preferred late resolution in 
the gain domain (wvar < 0; P < 0.05; dark cyan) and a few others were 
indifferent between early and late resolution (wvar did not signifi-
cantly deviate from 0; P > 0.05; grey).

However, the majority of participants showed significant sen-
sitivity to attribute-specific anticipatory utility (Fig. 3, second to 
fourth rows). Most participants in this subgroup preferred viewing 
the high-EV lottery, consistent with a desire to savour the higher-
value individual prize (positive slopes; wΔEV > 0; P < 0.05; red, 
pink and blue). The influence of ΔEV was often accompanied by 
variable degrees of interest in the high-uncertainty lottery, show-
ing that individual participants could be sensitive to both motives 
(red: wvar > 0; P < 0.05; pink: wvar did not significantly deviate from 
0; P > 0.05; blue: wvar < 0; P < 0.05). Interestingly, no participant was 
preferentially interested in lotteries that had both a lower variance 
and lower EV; there are no curves that decline as a function of ΔEV 
(wΔEV < 0) and intercept the x axis at negative values (wvar < 0) in Fig. 3  

and, correspondingly, there are no points in the lower left quadrant 
in Fig. 2a,b.

In summary, whether sampling information about gains or 
losses, people are motivated by attribute-specific anticipatory util-
ity—the desire to savour (or avoid the dread of) individual compo-
nents of their outcomes—and this motive can coexist with a desire 
to reduce uncertainty about the total outcome.

We conducted several analyses to establish that these findings 
are robust and not explained by spurious factors related to the task 
design or instructions. First, the results were replicated in several 
groups of participants who performed the task in a different order 
and were tested in two laboratory settings, as well as online, showing 
that they were highly robust with respect to the experimental setting 
(Supplementary Table 1).

Second, while one might suppose that the relative strength 
of the two motives would depend on the absolute values of the  
lotteries, parameter estimates were highly consistent between  
trials in which the EV of the high-variance lottery was higher or 
lower than the median, suggesting that individual strategies were 
robust across absolute values in the range used in our paradigm 
(Supplementary Fig. 1).

Third, one might be concerned that because our participants 
did not receive operant incentives for their choices, they may have 
adopted spurious or arbitrary choice strategies. This possibility is 
refuted by the fact that most participants had at least one significant 
coefficient, meaning that they based their strategy consistently on 
ΔEV or uncertainty; very few participants were insensitive to both 
factors (14/257 for gains and 16/140 for losses; grey in Figs. 2 and 3), 
as would be predicted by a random strategy. As additional verifica-
tion of this claim, we analysed choice reaction times, reasoning that 
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if participants carefully considered their choices, they should show 
the longest reaction times when the decision alternatives had the 
highest subjective similarity (that is, at the midpoint of the psycho-
metric function for those who were sensitive to ΔEV; equation (2)). 
Reaction times were well fit by the model predictions, confirming 
that participants spent longer reaching decisions that had higher dif-
ficulty, consistent with a deliberative strategy (Fig. 4a,b; second row 
(participants with wΔEV > 0 and wvar > 0): coefficient of choice dif-
ficulty on reaction time in gain = 1.68; 95% CI = 1.46–1.91; coeffi-
cient in loss = 2.25; 95% CI = 1.77–2.73; third row (participants with 
wΔEV > 0 and wvar = NS): coefficient in gain = 3.36; 95% CI = 2.98–
3.75; coefficient in loss = 3.09; 95% CI = 2.41–3.78; fourth row 
(participants with wΔEV > 0 and wvar < 0): coefficient in gain = 3.09; 
95% CI = 2.60–3.58; coefficient in loss = 2.49; 95% CI = 2.05–2.93; 
fifth row (participants with wΔEV < 0 and wvar > 0): coefficient in 
gain = 1.54; 95% CI = 1.00–2.07; coefficient in loss = 1.42; 95% 
CI = 1.00–1.83; all: P < 0.001).

Fourth, we considered another concern: that participants who were 
positively sensitive to ΔEV may have misunderstood the instructions 
and erroneously believed that their choices determined their payoffs 
in the two-lottery task. This possibility is unlikely given that par-
ticipants explicitly confirmed their understanding in the instruction 
phase (Methods), and anticipatory utility was evident even in partici-
pants who performed the observing task only before other instrumen-
tal (incentivized) conditions (Supplementary Table 1, laboratory II).

As a further evaluation, we examined behaviour on the willing-
ness-to-pay (WTP) task, in which the participants chose a single 
lottery that would contribute to their payoffs, and could trade off 
points in exchange for advance information about the prize drawn 
from that lottery (Methods). We reasoned that, if participants erro-
neously believed that their preference for the low-EV lottery would 
reduce their payoffs on the observing task (as was the case in the 
WTP task), they should show similar points of subjective equality 
(PSEs; the point at which the choice probability is 0.5) in both tasks. 
PSEs on the WTP task were significantly negative across the popu-
lation, confirming that participants were willing to pay to obtain 
information (Supplementary Fig. 2; median = −26.8; Z = 2.17; 
P = 0.030; r = 0.23; 95% CI = 0.02–0.42; n = 90). However, this will-
ingness to pay for information was quite small, although statistically 
significant, and the PSEs in the two-lottery task were much more 
negative relative to those in the WTP task (Supplementary Fig. 2; 
Z = 5.53; P < 0.001; r = 0.58; 95% CI = 0.40–0.70; median PSE in the 
observing tasks = −1.26). Therefore, participants understood the 
differences between tasks and were much more willing to express 
their interest in the uncertain prize in the observing task, in which 
there was no monetary cost to demanding information.

Lastly, we considered the possibility that participants adopted 
mixed strategies, choosing consistently with the task in some trials 
but falling back on an instrumental strategy on others. Quantitative 
model comparisons showed that such a mixed strategy model 
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provided a better fit relative to the original model for only a handful 
of participants (Supplementary Note 4; 14/257 for the gain domain 
and 7/140 for the loss domain), and a reanalysis of the data exclud-
ing these participants produced equivalent results at the population 
level (Supplementary Table 1).

Having established the robustness of our findings, we performed 
two additional analyses to determine whether information seek-
ing on this task was related to other behavioural metrics. First, we 
examined whether individual variations in sensitivity to uncertainty 
and anticipatory utility were correlated with corresponding effects 
of ΔEV and uncertainty in the conventional risk-taking paradigm 
(Methods). Participants showed much larger effects of uncer-
tainty in the observing task relative to the risk task, and conversely, 
showed larger effects of ΔEV in risk taking relative to observing 
(Supplementary Fig. 3), supporting the conclusion that they distin-
guished between instrumental and non-instrumental contingen-
cies. Moreover, parameter estimates were uncorrelated across the 
tasks, except for a mild correlation in the sensitivity to uncertainty 
in the gain domain (Supplementary Fig. 3), suggesting that people 
adopted largely distinct task-specific strategies.

Second, we administered to a subset of participants question-
naires assessing behavioural traits including avoidance/approach 
behaviours (behavioural inhibition system (BIS) and behavioural 
approach system (BAS) scores21), anticipatory and consum matory 
aspects of pleasure22, obsessive–compulsive traits23, anxiety24,  
depression25, curiosity/sensation seeking26,27 and real-world  

domain-specific risk taking (DOSPERT)28. An automatic variable 
selection procedure using Lasso regularization (Methods) showed 
that none of these scales (or demographic data related to age, gender 
and education) was associated with the sensitivity to uncertainty or 
ΔEV in the gain domain, nor with the sensitivity to uncertainty in 
the loss domain. However, the sensitivity to ΔEV in the loss domain 
did show several relationships, including negative association with 
the BIS score, positive association with the BAS score, negative 
association with real-world risk-taking tendency, and tendencies to 
be larger in men relative to women and in undergraduate relative 
to graduate students (Supplementary Table 2). This suggests that 
dread may be motivated by an approach to positive items (rather 
than worry about negative outcomes) and may be associated with 
risk-avoidant attitudes. However, while these factors emerged in the 
variable selection procedure, they only showed mild correlations 
in individual analyses (Supplementary Fig. 4), suggesting that they 
explain limited variation of behaviour in our task.

We showed that the interest in non-instrumental information 
is shaped by two motives related, respectively, to holding accurate 
beliefs about the total future utility and learning about individual 
attributes of a situation. These motives can be computationally dis-
tinguished, but they jointly shape non-instrumental information 
demand, combining with different strengths in different individuals 
to produce heterogeneous strategies. Our findings thus go beyond 
recent accounts that tend to portray curiosity as a homogeneous 
process (for example, ref. 7) and instead show that it entails consid-
erable heterogeneity.

As in previous studies of non-instrumental information demand, 
our task is clearly distinguished from the exploration–exploitation 
literature by the absence of instrumental incentives. In an explora-
tion–exploitation scenario, the decision-makers seek to maximize 
operant gains, and exploration is a priori considered as motivated 
by reward maximization on longer time scales. In our task, in con-
trast, participants had no control over the rewards they obtained 
and could not exploit the information they sampled on any time 
scale. Because of this feature, models of exploration and exploita-
tion (such as traditional models of economic choice) predict that 
behaviour in our task would be random with no consistent demand 
for non-instrumental information, and cannot account for our find-
ings that the vast majority of participants have non-random, well-
defined informational strategies.

Our conclusion that many participants made observing deci-
sions as though they were seeking to reduce uncertainty about their 
total reward is consistent with recent empirical findings by van 
Lieshout et al.29, as well as with theoretical frameworks such as the 
free-energy principle30 and models of non-instrumental informa-
tion demand2,3. However, our data show that participants had an 
additional, distinct drive to reduce their uncertainty about specific 
components of their total reward, requiring an extension of these 
theoretical models.

An important comparison is between our study and the model 
proposed by Iigaya et al.3 under the reinforcement learning frame-
work, and is of particular interest in neuroscience research. Iigaya 
et al. consider situations in which the decision-maker can request 
advance information about the availability of a probabilistic 
reward, and propose that decision-makers are motivated to obtain 
information because they derive positive (negative) utility from 
the positive (negative) reward prediction errors produced by the 
information. Importantly, the model considers situations in which 
the information refers to a single utility-relevant outcome and 
its utility depends on the (recursive) total value of that outcome. 
Because of this assumption, their model predicts that the decision-
makers’ inquiries would be invariably directed to the high-variance  
lottery in our experimental paradigm, as information about  
this lottery produces the largest reward prediction errors, and 
hence the strongest anticipatory utility (Supplementary Note 3). 
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show the population average of z-scored reaction times for each group 
(error bars represent s.e.m.). In all groups, reaction times were longer  
with more difficult choices (lines: model fits of equation (2)); the 
coefficient of the choice difficulty term was always positive (second  
row, gain: F(1, 1,141) = 209.93; coefficient = 1.68; 95% CI = 1.46–1.91;  
loss: F(1, 214) = 86.13; coefficient = 2.25; 95% CI = 1.77–2.73; third row, 
gain: F(1, 403) = 295.35; coefficient = 3.36; 95% CI = 2.98–3.75; loss:  
F(1, 250) = 79.97; coefficient = 3.09; 95% CI = 2.41–3.78; fourth row,  
gain: F(1, 115) = 154.25; coefficient = 3.09; 95% CI = 2.60–3.58; loss:  
F(1, 169) = 125.11; coefficient = 2.49; 95% CI = 2.05–2.93; fifth row, gain:  
F(1, 115) = 31.98; coefficient = 1.54; 95% CI = 1.00–2.07; loss: F(1, 214) = 44.65;  
coefficient = 1.42; 95% CI = 1.00–1.83; all: P < 0.001).
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The assumption of recursivity adopted by Iigaya et. al. is common 
with Kreps and Porteus’s model2 and is attractive on computational 
grounds, as it ensures tractability and the temporal consistency of 
predicted choice behaviour.

However, the pervasive influence of ΔEV evident in our data 
suggests that this assumption is too restrictive to account for curios-
ity. To explain the influence of ΔEV in our task, we postulated that, 
in addition to being curious about the total reward, decision-mak-
ers may independently savour information about individual com-
ponents of that reward. Moreover, the degree of savouring increases 
nonlinearly (as a convex function) with the anticipated probability 
of the outcome, so that rewards that are more certain to be obtained 
are savoured more than those that are more uncertain, by a factor  
greater than the increase in probability itself (Supplementary  
Note 2). Because of this assumption, the total utility from savouring 
does not necessarily depend simply on the distribution of the total 
reward from all sources that will be received, as is generally assumed 
in recursive models. This minimal modification of previous models 
suffices to explain the effects of ΔEV in our data.

Our model makes novel predictions that can be tested in future 
investigations. First, future empirical studies can provide addi-
tional tests of our prediction that information demand has a non-
linear sensitivity to probability (rather than depending only on 
the EV of a possibly nonlinear function of the final total reward; 
Supplementary Note 2). Second, a particularly interesting question 
is whether attribute-specific anticipatory utility influences instru-
mental information demand. The need to investigate complex situ-
ations is not restricted to curiosity, but is characteristic of many 
instrumental decisions (for example, an investor handling a multi-
asset portfolio or a consumer shopping for a car). Emerging evi-
dence suggests that people are not always optimal in their strategies 
for gathering instrumental information, but have attentional and 
learning biases towards irrelevant items31,32 or fail to acquire the 
information that provides the most efficient reduction in uncer-
tainty33–35. It is of considerable interest to determine the extent to 
which these inefficiencies may be explained by attribute-specific 
anticipatory utility.

While our participants’ anticipatory utility was correlated in the 
domain of gains and losses, our results leave open the possibility 
that savouring and dread have important dissociations. Whereas 
savouring was highly robust in several groups of participants, dread 
was weaker and more sensitive to context. This is consistent with 
previous findings suggesting that dread shows higher variability. 
For instance, humans have been reported to attend preferentially 
to more salient (worse) outcomes20—a tendency opposite to the 
one we find—but also to avoid medical information in proportion 
to its potential seriousness19, consistent with the present results. 
Moreover, dread was a notable exception among the parameters 
we measured in that it showed a weak association with personality 
measures of the tendency to approach rewards and risk-avoidant 
attitudes. Thus, the mechanisms of dread and their dependence on 
context and personality traits may be important questions for future 
investigations.

From a mechanistic perspective, our results imply that mental 
activity (that is, attention, memory or belief updating) is recruited 
by pathways that signal value or uncertainty independent of instru-
mental incentives. Neural investigations have identified correlates 
of value and uncertainty associated with both instrumental36,37 and 
non-instrumental valuation38–41, and it will be important to under-
stand better how these systems are functionally related42. Recent 
studies have shown that exploration becomes more sophisticated 
with age43,44, raising the interesting question of whether a simi-
lar finding applies to anticipatory utility, that is, whether younger 
individuals show a stronger influence of (potentially simpler) attri-
bute-specific anticipatory utility while the (potentially more sophis-
ticated) interest in total utility becomes stronger with age.

Methods
Participants. We collected data from 298 participants, of whom 129 were recruited 
from the Columbia University community and tested in two cohorts in the 
laboratory (laboratory I: individual testing; n = 40; laboratory II: group testing; 
n = 89). The remaining 169 performed the task on the online platform Amazon 
Turk. Laboratory I included 22 women and 18 men. Laboratory II included 
47 women and 42 men whose ages were in the range 18–48 years (median: 22 years; 
mean: 23.0 years). Information on the gender of Amazon Turk participants and 
the age of laboratory I and Amazon Turk participants was not collected. Task 
instructions and contingencies were programmed in MATLAB PsychToolbox with 
a 24-inch monitor for laboratory participants, and on Python/Amazon psiTurk 
for Amazon Turk participants. All participants provided informed consent. All 
of the procedures were approved by the Institutional Review Board of Columbia 
University.

Experimental design. All participants completed a single testing session divided 
into blocks of 90 trials, with each block representing 1 task. Our focus was on 
the two-lottery observing task, which was run in two versions to test preferences 
for information about either monetary gains or monetary losses. In addition, 
participants completed two control tasks designed to test their willingness to 
pay for information (WTP task) and their risk sensitivity (risk task). Finally, 
participants in laboratory II also completed personality questionnaires.

Two-lottery observing task, gain domain. On each trial, participants were presented 
with two lotteries that differed in their EV and variance (the range of points they 
provided), and were instructed that: (1) each lottery could deliver five discrete 
amounts evenly distributed across its range; (2) the computer will randomly draw 
one of the available amounts from each lottery; and (3) it will calculate the trial’s 
payoff as the sum of the draws. While both prizes were relevant to the trial’s payoff, 
participants were asked to choose one prize whose value they wished to reveal 
immediately, while remaining ignorant about the prize from the remaining draw. 
The participants’ choice did not affect the trial’s payoff, which was determined 
strictly by the sum of the random draws.

The two lotteries presented on each trial were depicted visually, as shown 
in Fig. 1a, by means of two dark grey bars whose midpoint indicated the lottery 
EV (also marked by a line and numerical value in blue), and whose length 
indicated the lottery range. The dark bars were superimposed on scale bars with 
a lighter background—two rectangles that were positioned symmetrically to the 
right and left of the screen centre, and whose length indicated a constant range 
(0–500 points). On declaring their observing decision, participants were shown the 
precise prize that had been drawn from the chosen lottery by means of a red bar 
and a numerical value written in white letters above the screen centre. The prize 
from the non-chosen lottery was not revealed, and a question mark was displayed 
to emphasize the fact that this prize was nevertheless added to the earnings.

On each trial, one lottery had a high variance and the other had a low variance 
equal to, respectively, 1,800 and 200 points in laboratory I (corresponding to ranges 
of 120 and 40 points), and 3,200 and 800 points in laboratory II and Amazon Turk 
(corresponding to ranges of 160 and 80 points).

In addition, the relative EV of the two lotteries (ΔEV, the EV of the high-
variance lottery minus the EV of the low-variance lottery) was drawn randomly 
with uniform probability from a set of 9 possible values (−90, −70, −20, −5, 
0, 5, 20, 70 and 90 points). A random value was then added to both lotteries, 
jittering the total EVs without altering the relative variance or ΔEV. Thus, the 
EVs of the high-variance lotteries were uniformly distributed between 101–
399 points in laboratory I and 171–330 points in laboratory II and Amazon Turk. 
The locations of high-variance and low-variance lotteries (left or right) were 
randomized across trials.

Two-lottery observing task, loss domain. This experiment was identical to that for 
the gain domain, except that participants received an endowment of 1,500 points 
at the beginning of the block and were instructed that this endowment would be 
reduced by the sum of random draws. The sequence of events in a trial, number 
of trials per block, method of calculating the bonus, and variance and EV of the 
lotteries were identical to those in the gain domain.

Importantly, the visual depiction of the lotteries was also identical (Fig. 1a). 
Whereas in the gain domain, a higher location on the screen indicated a better 
outcome (higher possible gain), it indicated a worse outcome (higher possible 
loss) in the loss domain, allowing us to avoid possible confounds related to upper/
lower visual field preference. To clarify to participants that the lotteries yielded not 
gains but losses in this task, the displayed numbers (lotteries’ EVs, scale labels and 
revealed prizes) were preceded by a minus sign (−).

WTP task. The WTP task tested the extent to which participants were willing to 
pay for advance information about a monetary outcome. Participants were given 
two lotteries on each trial and selected a single lottery from which they wished 
their prize to be drawn. Therefore, in contrast with the observing task, in the WTP 
task, the participants’ payoffs were contingent on their choices. The two lotteries 
had equal variance (of 3,200 points), but differed independently in their EV and 
the availability of information. One lottery provided immediate information about 
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the precise prize that had been drawn, while the other did not, and informativeness 
was signalled by lottery colour (green or purple, counterbalanced across 
participants). By manipulating information availability independent of ΔEV, we 
could estimate the price participants were willing to pay to obtain information.

The visual displays and procedures were similar to those in the two-lottery 
task. Values of ΔEV were drawn from the set of −40, −20, −5, −2, 0, 2, 5, 20 
and 40 points—a smaller range relative to the two-lottery task to allow for the 
possibility that the willingness to pay would be small45. As in the two-lottery 
paradigm, EVs of respective lotteries were jittered across trials and the EV of  
the informative lottery followed a uniform distribution ranging between 121  
and 380 points.

The risk task (gain and loss domains). This conventional risk-taking paradigm was 
used to verify that participants responded to incentives. Participants received a 
risky option and a safe option on each trial, and were asked to select from which 
they wished to receive a payoff. The risky lottery had a variance of 1,800 points in 
laboratories I and II and 3,200 on Amazon Turk (corresponding to ranges of 120 
and 160 points, respectively) and the safe option had a single possible outcome  
(0 variance and range). As in the WTP task, participants received a payoff equal to 
a single random draw from the lottery of their choice. To avoid confounding risk 
and informational preferences, participants did not receive immediate feedback 
about the outcome of each trial. The visual displays and procedures, as well as 
the levels of EV and ΔEV (the EV of the risky lottery minus the safe value), were 
identical to those on the corresponding two-lottery observing tasks.

Personality questionnaires. For participants in laboratory II, we explored the 
association between the information-seeking behaviour and personality traits 
by collecting their responses to personality questionnaires (see the main text for 
adopted measures), as well as their age, gender, the degree they were pursuing and 
the field of their major (all laboratory II participants were Columbia University 
students). This information was collected after the participants completed the 
behavioural tasks and took between 15 and 30 min to complete.

General procedures, instructions and payment. Of the 298 participants who 
completed the two-lottery observing task, 139 completed it only in the gain domain 
(40 in laboratory I and 99 on Amazon Turk). These participants also completed the 
WTP and risk tasks in the gain domain. The remaining 159 participants completed 
the observing task in both the gain and loss domains (70 on Amazon Turk and 89 
in laboratory II) and also completed the risk task in both domains. We deployed 
tasks in the different orders across groups, such that we could verify that our effects 
were not caused by the order of testing (Supplementary Table 1). Data collection 
and analysis were not performed blind to the conditions of the experiments.

The tasks were administered in trial blocks separated by a brief pause. For each 
block, participants were instructed to hold their right hand steady on the keyboard 
with the index and middle fingers positioned, respectively, above the left and right 
arrow keys and, after the onset of the lottery display, to indicate which lottery they 
wished to play or observe by pressing the corresponding key (left or right). There 
was no time pressure for making the selection. The participant’s response was 
followed by a feedback screen displaying the requested information (either the 
value of the realized prize or a ‘?’ depending on the participant’s choices and the 
task), a second screen indicating the trial progression (for example, ‘12/90 trials’) 
and the onset of the following trial. The feedback and trial progression screens 
lasted 1 s for all trial types in all tasks.

Instructions and payment. The experimenter provided each participant with 
a general explanation at the start of a session and additional task-specific 
instructions at the start of each trial block.

Participants were informed that they would receive a base payment for 
completing the experiment (US$12 h−1 for laboratory I and laboratory II; US$1 
for Amazon Turk), as well as a bonus at the end of each block, which was equal 
to the outcome of one trial randomly selected from those that had been played in 
that block. Participants were instructed that the dollar amount of the bonus would 
be proportional to the point value of the selected trials (500 points were worth 
US$1; the participants who completed the observing task in the loss domain were 
specifically informed of the conversion rate in the instructions). At the end of each 
block, participants saw a display screen reporting the dollar values of the bonus on 
the current block and the total bonus earned so far in the session.

An important concern was that participants may incorrectly understand the 
instructions—specifically, the fact that their choices influenced their payoffs only 
in the WTP and risk tasks, but not in the observing paradigms. To prevent this 
possibility, during the instruction phase we made it very clear to the participants 
that their outcomes on the observing task would be determined purely by chance, 
and that they would receive the prizes drawn from both lotteries regardless of 
their observing decision. Furthermore, for laboratory participants, we confirmed 
that they understood the instructions during debriefing at the end of the session 
(laboratory I) or by comprehension quizzes before the task (laboratory II). Since we 
could not deliver the instructions in person for Amazon Turk participants, we tried 
to minimize the possibility of confusion between tasks and domains by presenting 
the more customary risk task first and the observing tasks later in the session, 

and the loss domain tasks (including the observing and risk task) were conducted 
after those for gains. The task order was reversed for the laboratory II participants, 
allowing us to verify that our population-level inference does not depend on these 
specific task orders (Supplementary Table 1).

Sample sizes. We had little a priori basis for determining the sample size. Therefore, 
we chose to test a relatively large number of participants (n = 298) to allow for 
potential individual variation. In addition, since an important part of our analysis 
was at the individual level, we collected a generous number of trials from each 
participant (90 trials for fitting two-parameter psychometric curves). All of the 
sample sizes were predetermined and not altered based on the results.

Data analysis. Pre-processing. We discarded the data from participants who 
did not respond to monetary incentives (that is, those who were insensitive to 
ΔEV in either the WTP task or the risk task (formally, these were individuals 
who had a wΔEV parameter that was not significantly greater than 0 (P > 0.05); 
see below, equation (1))). Based on these criteria, we discarded the data from 22 
of the 139 participants who completed the observing task in the gain domains 
(1/40 in laboratory I and 21/99 on Amazon Turk) and 19 of the 159 participants 
who completed it for both gains and losses (16/70 on Amazon Turk and 3/89 in 
laboratory II). Thus, the analysis focuses on 257 participants who completed the 
observing task in the gain domain (39 in laboratory I, 86 in laboratory II and 132 
on Amazon Turk), of whom 140 also performed the task in the loss domain (86 in 
laboratory II and 54 on Amazon Turk).

Note that these exclusion criteria are independent of our inference on 
participants’ behaviour in the observing task. The rationale behind this exclusion is 
that, if participants did not show sensitivity to monetary incentives, this probably 
reflected inattention to the task, making it difficult to interpret their observing 
behaviour. Indeed, we had to exclude a sizable proportion of Amazon Turk 
participants, suggesting that these participants were motivated to finish the task 
quickly without paying attention to instructions.

Choice modelling. We used maximum-likelihood estimation to fit individual 
participants’ choices with a two-parameter logit model:

=
+ − + ⋅ ΔΔ

P
w w

(choice) 1
1 exp( ( EV)) (1)

0 EV

in which w0 and wΔEV are free (estimated) parameters, P(choice) is the probability of 
choosing one of the options, and ΔEV is the difference between the EVs of the two 
lotteries (standardized to the range of −1 to 1 for the parameter estimation).

In the observing task, P(choice) was defined as the probability of observing 
the high-variance lottery, and ΔEV as the EV of the high-variance lottery minus 
the EV of the low-variance lottery. As described in Supplementary Note 1, the 
parameter wΔEV (the slope of the psychometric function; Fig. 3) indexes the 
propensity to observe based on attribute-specific anticipatory utility, with positive 
values indicating preferences for advance information about the more desirable 
outcome. More precisely, as explained in Supplementary Note 2, a positive value 
indicates that positive rewards that one is certain to receive are savoured more 
than those that remain mere possibilities. In contrast, w0 (the vertical shift of the 
psychometric function) indexes the propensity to observe based on uncertainty 
reduction, with positive and negative values indicating, respectively, a preference 
for the early or late resolution of uncertainty. Thus, for the observing paradigm, we 
refer to w0 as wvar.

For the WTP task, we modelled P(choice) as the probability of choosing the 
informative lottery, and ΔEV as the EV of the informative lottery minus the EV 
of the uninformative lottery. Therefore, wΔEV indexes the propensity to choose the 
lottery with higher EV, and w0 indexes the propensity to choose the informative 
lottery. For the risk task, P(choice) was the probability of choosing the risky 
lottery, and ΔEV was the EV of the risky lottery minus the value of the safe option. 
Therefore, wΔEV indexes the propensity to choose the option with higher EV or safe 
value, and w0 indexes the propensity of risk taking.

Estimating the two parameters in equation (1) amounts to conventional logistic 
regression. Preliminary analyses showed that ridge logistic regression improved the 
model fit compared with unregularized logistic regression, as evaluated by within-
participant cross-validation, provided that the regularization term λ was in the 
range 0.001–0.1, with little difference within this range. The parameter estimates 
reported in the main text are under regularization with λ = 0.01.

To evaluate the statistical significance of individual parameters, we constructed  
null-hypothesis distributions by randomly shuffling the trial labels for 1,000 iterations, 
separately for w0 and wΔEV (for w0, the variance labels were shuffled within trials 
while maintaining absolute values of ΔEV; for wΔEV, the ΔEV labels were shuffled 
across trials). Individual parameters were evaluated against these null distributions 
(two-sided test, α = 0.05).

Population-level statistical inference used a two-sided Wilcoxon signed rank 
test unless otherwise noted. We report Z statistics and the corresponding effect 
size measure, r46. The 95% CI of the effect size r was obtained by non-parametric 
bootstrap (random sampling of participants with replacement; 1,000 iterations) and 
the bias-corrected and accelerated method47.
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The PSE, indicating the ΔEV at which the participant was indifferent  
between the two alternatives, was calculated based on the fitted logistic functions 
(equation (1)). The 95% CI of the PSE was obtained by non-parametric bootstrap 
(random resampling of trials with replacement; 1,000 iterations) and the  
bias-corrected and accelerated method47.

Reaction time analysis. Trials in two-lottery observing tasks in which the reaction 
time was shorter than 0.2 s or longer than 5 s, or was more than 2 standard 
deviations above each participant’s mean, were discarded and not analysed further. 
The remaining values were Z scored for each participant and aggregated across 
participants.

To examine the relationship between choice preferences and reaction time, we 
adopted a prediction from the standard drift diffusion model (DDM) given the 
choice parameters estimated in equation (1)48. The DDM predicts a quantitative 
relationship between reaction time and choice difficulty. Specifically, the reaction 
time for different levels of ΔEV is predicted to follow τ = ∕( )tanh DVi i

DV
2

i , where 

DVi is the decision variable used in equation (1), = + ⋅ ΔΔw wDV EVi ivar EV , and i 
indexes the level of ΔEV. To test this prediction, for each subgroup classified based 
on the significance and sign of the parameters of individual observing behaviours, 
we first estimated the group-level parameters wvar and wΔEV from the choices 
averaged over participants using the same procedure as the individual-level model 
fit. We then fit the normalized reaction time as a linear function of τi, namely:

τ ε= + +A tRT (2)ij i ij0

where j indexes the individual participant and A indexes the extent to which 
reaction times were sensitive to choice difficulty. The free parameters A and t0 
were estimated by least-squares regression, and the significance of A was evaluated 
under the assumption of asymptotic normal distribution. Note that we adopted 
this approach merely to conveniently capture the relationship between ΔEV and 
reaction time; we do not claim a mechanistic account of decision-making described 
by the DDM.

Personality questionnaires. Linear regression modelling was conducted to examine 
whether personality measures would predict parameter estimates of individual 
observing behaviour (wvar and wΔEV, in gain and loss domains, respectively). Since 
we have a relatively large number of predictors (nine personality questionnaires 
and four demographic variables, namely age, gender (female versus male; 
all participants self-reported their gender as one of these two), education 
(undergraduate versus graduate students) and field (coded as quantitative 
versus non-quantitative by an author))), we deployed the automatic feature 
selection procedure using Lasso regularization (the lasso function in MATLAB), 
which determined the regularization level by tenfold cross-validation. At the 
automatically selected levels of regularization, for wΔEV in the gain domain and 
wvar (in both gain and loss domains), none of the predictors survived. For wΔEV 
in the loss domain, BIS, BAS, DOSPERT, gender and education were selected 
(Supplementary Table 2).

Since we found that wΔEV in the loss domain failed to reach significance at 
the population level among participants who completed the observing task in the 
loss domain before the gain domain (Supplementary Table 1; see main text), we 
examined the interaction between the personality measures selected above and the 
task order in an additional linear regression (without regularization). None of the 
interaction terms was significant, confirming that the original regression was not 
confounded by the task order (Supplementary Table 3).

Lastly, to explore which submeasures of BAS and DOSPERT drive  
the association, we ran another linear regression, replacing the BAS and  
DOSPERT main scores with their submeasure scores, without regularization  
(Supplementary Table 4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Requests for the data can be sent via email to the corresponding author.

Code availability
Requests for the code used for all analyses can be sent via email to the 
corresponding author.
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