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ABSTRACT

It is shown that stationary sunspot equilibria exist near a deterministic
steady state of a stationary economy not subject to exogenous shocks, if and
only if there exists a continuum of (non-stationary) perfect foresight
equilibria converging asymptotically to that steady state. This allows us to
demonstrate the existence of stationary sunspot equilibria in a much wider
range of economic models than have been treated in the literature to date; in
particular, stationary overlapping generations exchange economies are treated
in some generality.

Demonstration of the above necessary and sufficient condition requires
consideration of a broader class of stationary stochastic processes than the
finite-state Markov processes assumed in most previous literature on
stationary sunspot equilibria. Our main technique is an implicit function
theorem for Banach spaces. This sort of local analysis establishes that
conclusions regarding the bounded solutions of linear rational expectations
models can be rigorously applied to nonlinear models as well, in the case of
small fluctuations around a deterministic steady state.



This paper preéents a necessary and sufficient condition for the
existence of stationary sunspot equilibria (s.s.e.) near a deterministic
Steady state of a stationary economy not subject to exogenous stochastic
shocks. Briefly, the condition is that there exist a continuum of non-
stationary deterministic equilibria converging asymptotically to the
deterministic steady state in question. The latter condition reduces to a
condition upon the derivatives of the functions used in defining perfect
foresight equilibrium, evaluated at the steady state. The result thus extends
a conclusion of Blanchard and Kahﬁ (1980) regarding a class of linear rational
expectations models. Previous examples of exact intertemporal equilibrium
models (hence involving nonlinear equilibrium conditions) in which such a
result was demonstrated, using techniques of less general applicability than
those introduced here, include the overlapping generétions examples studied by
Azariadis (1981), Farmer and Woodford (1984), and Guesnerie (1986), and the
cash—in—advance examplé of Woodford (1986a).1

This result allows conclusions about the existence of stationary sunspot
equilibria to be derived from existing results regarding the existence of
continua of convergent non-stationary deterministic (perfect foresight)
equilibria.? As a consequence, it is established that s.s.e. exist for many
more types of infinite horizon economies than the small number of examples
published to date might suggest. Several examples are given in section 3. 1In
particular, it is shown that S.s.e. can exist for a much broader class of
stationary overlapping generations economies than that considered by Azariadis
(1981), Azariadis and Guesnerie (1982, 1984), Spear (1984), Gﬁesnerie (1986),
and Grandmont (1986). On the other hand, s.s.e. can be shown not to exist for
other open sets of economies. The existence result contributes to the

development of a theory of speculative instability in infinite horizon




economies,3 while the (local) non-existence result is relevant for the
development of a theory of stabilization policy for the prevention of such
fluctuations.

Section 1 introduces notation and defines the class of stationary models
with which we are concerned. Section 2 states and proves the central result
concerning existence of s.s.e. near a steady state. Section 3 presents
examples of classes of stationary economies to which the result applies.
Finally, section 4 discusses issues raised by previous treatments of

stationary sunspot equilibria in the context of our results.

1. Stationary Rational Expectations Equilibria: Notation and Definitions

We wish to consider the existence, for a statianary infinite horizon
economic model, of equilibria in which endogénous state variables respond to
the realization of a "sunspot variable," i.e. (following Cass and Shell
(1983)), a random variable that conveys no information about technology,
preferences, or endowments, and so does not directly enter the equilibrium
conditions for the state variables. However, agents are assumed to be able to
observe the realizations of the variable, and to take it into account in
making their decisions if they choose to. If a rational expectations
equilibrium exists in which agents respond to such a variable, it is a
"sunspot equilibrium". Such equilibria may be considered to represent
situations in which speculation may be destabilzing, even when agents optimize
and have rational expectations.“ Our focus in this paper will be entirely
upon stationary sunspot equilibria, i.e., equilibria in which the endoéenous
variables follow a stationary stochastic process, as equilibria of that kind
are of particular interest as candidate models of the sort of repetitive

fluctuations associated with "business cycles".5



We accordingly restrict our attention to economies in which both the
equilibrium conditions and the exogenous "sunspot" process have a stationary
structure. Let us suppose that the sunspot variable each period is a random

variable u taking values in a set U with a sigma field =. We suppose

ta’
that U contains at least two points. Let U® denote the product of an

infinite sequence of copies of U, and let 3° be the product sigma field
t

(Loeve, 1977, p. 137). Elements u° = (u, u

er Yyyr --.) of U® represent

infinite histories of realizations of the sunspot variable, with the most
recent listed first. We can represent a stationary stochastic process for the
sunspot variable by a probability measure 1n: =° - (0, 1]. For any seﬁs
AeZ, Ses” define AS = {as e U°I a €A, s €35), where as denotes a
sequence whose first element is a, whose second e%gment is the first element
of s, and so on. Then the stationary character of‘the stochastic process is
reflected by the following assumption, asserting shift—invariance of the

measure .
(A.1) For any S € 3°, n(US) = =(S).

Since for any A€ 3, n(AS) =0 if #(S) = 0, the map w(A-): =° - [0, 1]
is m—continuous, and hence, by the Radon—Nikodym theorem (Loeve, 1977, p. 133),

a measurable function n(AI-): U° - [0, 1] exists, such that
7(aS) = [ x(Alu*ydr(u™?)

Here n(Alu”d) indicates the probability that u € A, given a history

t-1 t-1 @ t-1 s 2q s
u’ . For each u e U, w(-lu ) is a probability measure on (U,S). Thus
n defines a Markov process on U”, with a time invariant transition

function. However, starting with the measure =« on (U°,2°) implies a

stronger sense of stationarity for the sunspot process than if we were simply




to start with a Markov process on U®. In particular, it implies that the
conditional distribution for u,  given a history u’ converges to the same
invariant distribution (corresponding to the measure 7(-U®)) as t + o,
regardless of the value of u’.
Let us suppose that the endogenous state variables X, of the model we
are interested in take values in R®". Then we can represent stationary
Stochastic process for these variables, measurable with respect to the sunspot
process (at present, we assume that thére is no intrinsic uncertainty in the
model under consideration), by measurable functions from U° to R®°. Let E

denote the Banach space of essentially bounded, measurable functions

$: U° » R, with the L, norm

N 2

I'6 1 = ess suwp [¢w)].
uey

(See Dunford and Schwartz, 1958, seecs. III.1.11 and IV.2.19 for definition,
and sec. III1.6.14 for proof that it is a Banach space.) Such functions
represent stationary stochastic processes for X, , mnot only in that the
dependence of x° upon the history u  is time—invariant, but also in that
any such function ¢ induces a measure wi(-;¢) on the Borel subsets of ®°
(Loeve, 1977, p. 168), representing an asymptotic invariant distribution for
X, . (The induced measure is defined by n*(X;¢) = x({u® e Um|¢(ut) € X}) for
X a Borel subset of R®%.) It should also be noted that the class of such
functions allows for a very wide range of possible statistical properties
(serial correlation, etc.) for the variables X, for any given underlying
sunspot process u ; even if u is i.i.d., arbitrarily complex auto-
‘correlation functions for X, = ¢(ut) are possible.

The use of the L, topology deserves brief comment. This means that

when we speak of other stationary eqﬁilibria (i.e., elements ¢ € E) that are



"close" to the steady state (a constant function, taking the value x* for
all ut) we mean that X, = ¢(ut) remains within a neighborhood of x" for
all u, (except perhaps a set of measure zero); we do not consider random
variables to be "close" to the steady state that take values far from x"
with a positive probability, however small. One advantage of this is that for
the purpose of the local analysis undertaken here, we need not even define the
equilibrium conditions for the state variables X, outside a neighborhood of
X. In order to use an implicit function theorem for Banach spaces to
determine the existence or not of other nearby equilibria, we need an operator
defined on an open set in a Banach space of random variables. But if wé let
E(X) denote the set of functions in E such that ¢(ut) € X (a.e.), for x
an open subset of R", then under the L, norm topglogy, E(X) 1is an‘open
subset of E. Hence it is enough for the operator défining equilibrium to be
defined on E(X), which in tqrn only requires equilibrium conditions defined
for X, € X. Another advantage of this topology is that we are able to obtain
necessary and sufficient conditions for local uniqueness with a clear
interpretation; as is discussed below in section 4.cC, stationary sunspot
equilibria may exist "near" a steady state even when our necessary condition
does not hold, under a more inclusive definition of what count as "nearby"
stochastic processes for the endogenous variables.

Let E, denote the Banach space of essentially bounded, measurable
functions wv: U -+ §°, again with the L, norm, and let EI(X) denote the
open subset of functions v: U » X. We will use such functions to represent

the way in which agents in period t expect the value of X, to depend

1

upon the realization of u.. We need only consider expectations regarding

t+l”

the distribution of values that may be taken by X,,, that are of this form




in defining equilibrium, since in any rational expectations equilibrium agents
correctly expect the distribution of values for X, &lven by

X = ¢(uuﬂ,ut,...). For any ¢ € E, let ¢(-,ut) denote the section of ¢

at (-,u"), defined by
$Cu, 0 = $(u, ub)

Then ¢(-,ut) € E1 for all ut, since a section of a measurable function is
measurable (Loeve, 1977, p.135). Thus to every possible equilibrium
stochastic process ¢ € E, there corresponds a rational expectation function
$(-,u") € E .

We consider stationary economies with equilibrium conditions of the
following form. Let x, be a vector of real-value@rendogenous state
variables, taking values in X, an open subset of R". Then we assume that
the period t state variables are determined by equilibrium conditions of the

form

(1.1) (X 10 Voops Meys X v, m) = 0

where f has the following properties:

(A.2) f: (X x E(X) x I(U))? » ®° 1is bounded, has continuous (Frechet)
derivatives with respect to each of the arguments (xvq’vvq; xt,vt),

and is a continuous function of (”v1;”t)'

Here II(U) denotes the space of countably additive probability measures on
U, endowed with the the topology generated by the norm of total variation
(Dunford and Schwartz, 1958, secs. III.1.4 and IV.2.16).

The measure n.., Yepresents agents' expectations at time ¢t-1 regarding

the distribution of values from which u, will be drawn, and the function



Ve, their expectations at time t-1 regarding the way in which X, will
depend upon the realization of u,; (Vvq’ "uﬂ) thus indicate agents’
expectations at time t-1 regarding the distribution of values for X . The
pair (ut,nt) represent the corresponding expectations at time ¢t regarding
period t+l. Because u, 1s a "sunspot" variable, it does not affect any
agent’s decision problem directly, but only insofar as it affects expectations

regarding future values of the endogenous variables X, . Accordingly, agents’

except through

actions in period t do not depend upon either v, or =g,

the distribution of values for X,,, 1implied by them; hence we also assume

1

the following.

(A.3) For v € EI(X), n € I(U), let n*(u) denote the measure on X
induced from # by the function . Then:;he function f depends
upon (Vvq' Nears Ve nt) only through the iﬁduced measures ”;q(yvq)
and n:(yt). That is, if n;(ul) = ";(Va) and nZ(uZ) - n:(uq),
then f(xl, Vis M Xy, v, nz) - f(xl, Vys 35 Xy, Vv, q“) for all
XX, e X.

In a rational expectation equilibrium, of course, agents will never have

expections ("vﬂ’ nt) except of the form (w(-lubq), w(-lut)), for some

e U®; but it is necessary to assume that f is defined for, and

history u
a continuous function of, measures of a broader class, in order to prove Lemma 2
of section 2.

The equilibrium conditions (1.1) are thus time invariant functions of
only the endogenous variables and expectations of future values of those
variables; it follows that the economy is not subject to any exogenous

shocks.6 (Only in this case, in general, is a deterministic steady state

equilibrium possible, near which to undertake our local analysis. But see




section 3.D.) Nonetheless, (l1.l) may have solutions in which X, responds to
the realization of u,, and hence is random.

Expectations in period t-1 are allowed to affect the determination of
temporary equilibrium in period t, in that actions taken in the previous
period (on the basis of those expectations) may affect the conditions for
equilibrium in the current period. Inclusion of the past expectations is thus
a substitute for increasing the number of state variables X, . It is shown in
section 3.A that a general stationary overlapping generations exchange economy
-- with an arbitrary finite number of goods per period and an arbitrary finite
number of agent types per generation -- yields equilibrium conditions of the
form (1.1), where X, is the vector of goods priées in period t. If the
expectations <Vv1’ ”tq) were not to be included ag arguments of £, one
would have to add to the set of state variable X, an additional vector of
variables for each agent type indicating the consumption choices of young
agents of that type (insofar as these affect the preferences of the same
agents when old) and the amount saved or borrowed by young agents of that
type.

Finally, it should be noted that in writing (1.1) we assume that all
agents have identical expectations in any given period. That is, we assume
that all agents have the same information set in each périod, i.e., each agent
observes the realization of u, in period t.

In the case of stochastic equilibria (i.e., sunspot equilibria), we

confine our attention to equilibria that are stationary, in the sense

discussed above.

Definition. A stationary rational expectations equilibrium (s.r.e.e.) is a

¢ € E(X) such that



(1.2) £, 6 ,u"™), a(-|utly; g(udy, $C-,u), x(-|uty)) = o0

for all u* e U°. a Ss.r.e.e. is a gteady state if ¢ 1is a constant:
Steady state

otherwise, it is a stationary sunspot equilibrium (s.s.e.).

As discussed above, the function ¢ indicates the equilibrium value of
X, for each possible history of sunspot realizations ub. In the present
paper, we are interested solely in the case of X an arbitrarily small

neighborhood of a steady state x".

Let us assume in addition that f satisfies the following condition.

(A.4) The dependence of f upon M.., 1s such that for fixed

(xbd’vbﬂ;xt’ut’nt)’ and for 7 a measure on U" satisfying (A.1),

- - . . t-
f(xbi,ubd,n(-lut1);xt,ut,nt) 1s a measurable function of u®!. The

same is true of the dependence of f upon 7, .

Under this assuﬁption, (1.2) may be written ¥(¢) = 0, where for any
¢ € E(X), W¥(¢) 1is defined by the left hand side of (1.2). Condition (A.4)
insures that W¥(¢) is measurable, so that ¥: E(X) - E. It follows from
(A.2) that ¥ has a continuous (Frechet) derivative. The properties of this
derivative map D¥ are crucial for the analysis of local uniqueness in
section 2. |

Our main result asserts a relationship between the existence of
stationary sunspot equilibria near a steady state and the existence of non-
stationary deterministic equilibria near it. Non-stationary deterministic
equilibria are defined as follows. For any x € R°, let X denote the
element of E1 such that i(u) =x for all ueU. (We will also use §

for the element of E such that Q(u') = x for all u’' e U“.) Then define




(1.3) F(x), x,, x5, %) = F(x, Xy M5 Xy, X.,om,)

1’

where because of (A.3) this expression is independent of (nl, nz).

It follows from the assumptions on f that F: X' > " is a ¢! function.

Definition. A perfect foresight equilibrium (p.f.e.) 1is a sequence (xtglﬂ

with X € X for all t, such that

(1.4) F(x X, X, X

t-1’ g T t+1)

for all t,

A steady state, i.e., a constant sequence X, = x" for all t, where x"
satisfies F(x*, x*, x*, x*) = 0, 1is one kind of'gff.e. We are interested
in whether or not there exist other (non-stationary) p.f.e. near a given
steady state, i.e., such that X, remains within a neighborhood of x" for
all t.

Under conditions that will be generically valid in applications of
interest, no such nearby non-stationary equilibria exist, when the
neighborhood of x" is made small enough; non-stationary p.f.e. may converge
to the steady state as t + o, or as t -+ -o, but must diverge from it in at
least one direction. However, robust examples of the following state of

affairs may exist.

Definition. Perfect foresight equilibrium is indeterminate near a steady

state if there exists a manifold of dimension greater than n of sequences

(x)?

o) g=g Satisfying (1.4) for t = 1, all of which converge to the steady

state as t = o,

-10-



In such a case, for a generic set of initial connditions in period t=0,
representing the determinants of equilibrium in period t=0 given a

particular history of the economy up until that period, and consistent with a

»
*

constant sequence X, =x for t 20, there will exist a continuum of
perfect foresight equilibria for periods t > 0, all consistent with the given
set of initial conditions and all remaining within an arbitrarily small

neighborhood of x* for all t > 0.’

It is indeterminacy of perfect

foresight equilibrium in this sense that turns out to be a necessary and

sufficient condition for s.s.e. to exist arbitrarily close to a steady state.
We assume that the derivatives of F satisfy the following regularity

conditions:

(A.5) At each steady state x*, Det DaF » 0, and the 2nx2n matrix

-(D,F)(D,F + D,F) -(D,F)'D.F

(1.5) M(x™) =
I 0

has no eigenvalues with modulus exactly equal to one.

Here all derivatives of F are evaluated at (x*, x*, x*, x*). Conditions
(A.5), which are quite standard,8 can be shown to hold for a generic
stationary overlapping generations economy. They imply that the steédy states
are hyperbolic fixed points (Hirsch and Smale, 1974, p. 187) of the dynamical
system defined by (1.4); this allows us to determine whether p.f.e. is
indeterminate near a steady state x solely by reference to the matrix

M(x").

Proposition. Perfect foresight equilibrium is indeterminate at a steady state

x" if and only if the number eigenvalues of M(x") with modulus less than

one is greater than n.°

-11-




Hence the relationship between indeterminacy of p.f.e. and the existence of
S.s.e. may be demonstrated by establishing a connection between the
eigenvalues of M(x") and the existence of s.s.e.

The existence of such a relationship depends upon a further regularity

condition upon the derivatives of F,

(A.6) For any steady state x", let W denote the stable subspace of
M(x"), i.e., the set of v € %% such that M(x)* - 0 as t -

and let K denote the kernel of the linear operator [DAF DsF]’

. * * v *
where the derivatives are evaluated at (x, x, x , X ). Then

-

dim W N K = max(dim W - n, 0)
This assumption is less familiar, as it does not pertain to the conditions’
defining perfect foresight equilibrium (only the sum D,F + D,F matters for
the definition of p.f.e., not either matrix separately). Howe?er; like (A.3),
it holds generally for the applications of interest to us. Condition (A.5)
guarantees that dim K = n. Then (A.6) asserts that the intersection of W
and K 1is transversal (Guillemin and Pollack, 1974, pp. 30-31) if
transversality is consistent with a nonempty intersection, and that it
consists only of a single point (the zero vector) if not. Hence it is obvious

that (A.6) should hold generically.

2. Local Uniqueness of Stationary Equilibria

A
Let us suppose that there exists a steady state x" e X, i.e., that x
(the function taking always the value x') is a zero of ¥. We are interested

in whether this zero of ¥ 1is isolated in E, i.e., whether, for a neigh-

-12-



borhood N ¢ E of x" chosen sufficiently small, §* is the unique ¢ e N
such that ¥(4#) = 0. The basic results used to address such a question are

the following.

Inverse Function Theorem. (Berger, 1977, 3.1.5.) Let f be a ¢t mapping

defined in a neighborhood of some point X, of a Banach space X, with range
in a Banach space Y. Then if Df(xo) is a linear homeomorphism of X onto
Y, there exists a neighborhood U(xo) of X, such that X, is the unique

solution to f(x) = f(xo) in U(xo). Furthermore, there exists a unique

solution to f(x) = y in U(xo), for any Y sufficiently close to f(ko).

Implicit Function Theorem. (Berger, 1977, 3.1.10.)_ let X, Y, Z be Banach

spaces, and let f be a continuous mapping of a neighborhood of (%, ¥,) in
XXY into Z. Then if Dyf(xo, yo) exists, is cqntinuous in x, and is a
linear homeomorphism of Y onto Z, there is a unique continuous mapping

g: U+ Y, defined on some peighborhood U of x,, such that g(x,) = ¥, and

f(x,g(x)) = f(xo,yo) for all x e U.

Corollary. (Berger, 1977, 3.1.11.) 1If in addition to the hypothesis of the
implicit function theorem, Dxf exists and is continuous for (xX,y) near
(Xo’yo)' then the function g is continuously differentiable, and its
derivative is Dg(x) = -[D£(x,g(x))17'D_£(x,g(x)).

Evidently, local uniqueness of the s.r.e.e. =" depends upon whether
DW(Q*) is a linear homeomorphism (i.e., has a bounded invérse). The

following operators are useful in representing D¥ and its inverse.
Lemma 1. The linear operators A,B defined by

-13-



(2.1) A (u)

f¢(u£+l,ut)dn(uh+lfut) Lt

(2.2) B¢ (u®) $(u™)
for 4 € E both map E 1into itself. Both are also bounded (i.e.,

continuous) linear operators, since
(2.3) lag | =< | ¢
(2.4) ITBe |l =[]

for all ¢ € E.

Proof: As noted in section 1, ¢ € E implies that ¢(-,ut) € E1 (i.e., 1is
measurable and essentially bounded) for any choice of u®, so that the latter
function is integrable (Loeve, 1977, p. 121). Hence the expression on the
right hand side of (2.1) is well-defined. Property (2.3) follows immediately
from the definition, so A¢ is essentially bounded. It remains only to show
that A4 is measurable. Consider first the case of ‘¢ a simple function
(ibid., ﬁ. 107). 1In this case A¢ is a sum of the form ijjn(Sjl-), where
the sum is over a finite set, X, € R for each j, and Sj € B for each j.
As noted in section 1, w(SjI-) is measurable if Sj € B, hence a sum of such
functions is measurable as well. But then any non-negative measurable
function ¢ can be expressed as the limit of a non-decreasing_sequence of
non-negative simple functions (ibid., p. 109), and the integral of such a

function is defined as the limit of the integrals of the simple functions

-14-



(ibid., p. 119). Hence A¢ 1is in this case the limit of a sequence of
measurable functions, and so itself measurable (ibid., p. 114). Finally, any
measurable ¢ can be written as the sum of a non-negative measurable function
and a non-positive measurable functions (ibid., p.109); then A4 for such é
function is a sum of two measurable function, and so itself measurable.
Therefore A: E - E.

If ¢ is measurable and X c ®" 1is a Borel set, ¢—1(X) € =°. But then
(Bg) 1(X) = Ul N(X)] € =° as well, so that B¢ is also measurable.
Property (2.4) follows from (A.1)>and the definition of the L, norm. Hence

¢ essentially bounded implies B¢ essentially bounded, and B: E - E. Q.E.D.

We can now give an explicit representation for DV¥, evaluated at a

constant function.

Lemma 2. For any x € X,
(2.5) DU(x) = D,F-B + D,F-BA + DF + D F-A

where the derivatives of F are evaluated at (x, x, x, x), and the operators

A, B are defined in (2.1), (2.2).

Proof: It follows immediately from the definition of ¥ that D¥, evaluated
at some ¢ € E and applied to some ¥ € E, yields a function which,

evaluated at ut, is equal to
DE(4)P(u™) = DE-p(u™) + D Ep(-,uD) + D Fp(uty + DE-$(-,u")

where le, sz, Daf, and Dkf represent the derivatives of f with respect to

Xyyr Vyoyr X, and v, Trespectively (to use the notation for the arguments

-15-




given in (1.1)), evaluated at (4(u™), ¢(-,u*™), n(-|u®Y); (ut), 6(-,ub),
n(-]ut)). Furthermore, it follows immediately from the definition of F that
le and Daf’ evaluated at (x, X, n; X, X, nz), for any N, M, € II(U), are
equal to DlF and DaF respectively, evaluated at (x, x, X, X). It remains
only to demonstrate that sz and Dkf, evaluated at that same point, and

applied to some v € Fl, yield

Dfv = DF - [u(udy, (u)
(2.6) 2 2 1

Dfv = DF - [v(u)dn,(u)

in order to derive (2.5). Since both of the above relations hold for the same
reason, it suffices that we derive (2.6).
Consider first the case of v of the form v = yl,, where y € R",

S €, and IS_ is the indicator function

1 if ues
I,(w =

0 if ues

Condition (A.3) implies that f(x, X, 1, X, X + v, ”z) depends upon v

only through the induced measure r]*z(;{ + v), which measure assigns
probability nz(S) to the value x +y and probability 1 - nz(S) to the
value x. Thus f depends only upon y and 1,(S), and hence the same is

true of DAf-u. Because the derivative is a linear operator, one must have

(2.7) DE-v = G(n,(S))y

where G 1is a matrix-valued function. Because of (A.2), £ 1is a continuous

function of 17(S), and so G must be as well. Now consider § S2 € £ such

1’
that S1 U S2 = S, and write v, = yISj, j=1, 2. Since v = v, +v,,

one must have DAF'V = DAF-u + D4F'”z’ and hence

1

-16-



(2.8) Gny($)) = 6(n,(5)) + G(n,(3,))

Let us recall that f ig defined for arbitrary n, € I(U), not just n, of .
the form r(‘l ut) for some u® e U, Therefore (2.7) holds for arbitrary

n,- Hence, even if U consists of only two points, by varying n, it is
possible for nZ(S) to take any value in the interval [0, 1], and so ¢
must be defined on the entire interval. Condition (2.8) and continuity then

imply that G 1is a linear function. But when § = U, v = y, in which case

it follows from (1.3) that Dbf-u = DaFy. Hence G(1) = DAF, and so

DEv = D,F-yn,(S)

for any v of the form v = yig.
Thus (2.6) holds for v of this form. But any simple function » ié a
sum of functions of this kind, and, as 'D f must be a linear operator and so
is the integral, it follows that (2. 6) holds for any simple functlon One
then proceeds from simple functions to arbitrary measurable functions as in

the proof of Lemma 1. Hence (2.6) holds for any’ v € E Q.E.D.

1
A
Determining whether D¥(x") is a linear homeomorphism amounts to
determining whether, for an arbitrary ¢ € E, there exists a unique ¢ € E

satisfying DU-¢ = ¥. Lemma 2 implies that this amounts to a consideration of

the stationary solutions of the "linear rational expectations model™
(2.9) [D,F-B + D,F-BA + D,;F + D,F-Al¢ =

Accordingly, the same techniques used to address the issues of existence and
uniqueness of stationary solutions for linear models suffice to address the

issue of local uniqueness in the case of nonlinear models as well, near a

deterministic steady state.
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It is not surprising, then, that our main result is simply a local
version (for a slightly different class of models) of the necessary and
sufficient condition given by Blanchard and Kahn (1980) for the existence of
stationary sunspot equilibria as solutions to linear rational expectations
models. They show that a linear model of the form (2.9) has bounded solutions
in which "sunspot" variables matter if and only if the matrix M(x") defined

10
We show

in (A.5) has more than n eigenvalues of modulus less than one.
below that this is also exactly the case in which there exist stationary
sunspot equilibria arbitrarily close to a deterministic steady state at which
the derivatives in (2.9) are evaluated, in the case of a nonlinear model.

Following Blanchard and Kahn, we resolve (2.9) into three separate sets

of equations. First, applying the operator A to bqth sides of (2.9) yields
(2.10) [D.F + (D,F + D.F)-A + D,F-A%*]¢ = Ay

Here we use the fact that AB = I (the identity operator), and the fact that
A (like B) commutes with matrices. Applying the operator (I - BA) to both

sides of (2.9) yields
(2.11) (I - BA)[D,F + D,F-Al¢ = (I - BA)®

It is easily shown that (2.10) and (2.11) jointly imply (2.9); hence we may
replace (2.9) by the system (2.10) - (2.11).

It is also useful to rewrite (2.10) in the form

(D,,F)‘lAw}

(2.12) AE = M(x")¢ + [
0
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where

(We can invert DQF because of (A.5). Also note that, by an abuse of
notation, the same letter A 1is used both for an operator mapping R"-valued
functions into ®"-valued functions, and for the operator mapping R*-valued
functions into R*-valued functions.) Finally, (A.5) guarantees that a

direct-sum decomposition of M(x*) is possible, M(x*) - C'{IC, where J is

I, 0
J ) ‘[ 1 J
0 J,

and where J, 1is a matrix whose eigenvalues all have modulus less than one,

block diagonal

and J, 1is a matrix whose eigenvalues all have modulus greater than one.

(For example, we may put M(x*) in real canonical form. See Hirseh and

Smale, 1974, pp. 129-130.) Note that J1 is kxk, and J2 is (2n-k) x (2n-k),
where k = dim W, i.e., the number of eigenvalues of M(x*) with modulus less

than one. If we write

] (D,F) lay A
0, 0 A,

where 01, Al are ﬁk-valued functions and 02, A are

: 2n-k
2 R

-valued

functions, then (2.12) decomposes into the two sets of equations

(2.13) Aj, = Jé, + A

(2.14) Aﬂz - ngz + 2,
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It is also useful to rewrite (2.11) as an equation for 61 and 02 instead

of ¢. If we write

[D,F DFICT" = [N, NI
then (2.11) becomes

(I - BAY(N§, + N,0.) = (I - BAY
Substituting (2.13), this may be rewritten
(2.15) N(I-JB)8 = (I-BA(¥ -NF) +NBx

Accordingly, (2.9) may be replaced by the three separate sets of equations
(2.13), (2.14) and (2.15).
The following lemma is crucial in indicating the number of independent

restrictions represented by (2.15).
Lemma 3. Assumption (A.6) implies that rank N1 = min(n, k).

Proof: The stable subspace W consists of all vectors y € ®*™ of the form

-l

where e € ®*. If Ne =0, y also belongs to K. Therefore
dim ker N1 = dim (W N K). By (A.6), this equals max (k-n,0). Then rank

N1 =k - dim ker N1 = min (n, k). Q.E.D.

Lemma 3 indicates the role of (A.6) in our analysis. It is also further

clarifies the likehood that (A.6) should hold generically for applications of
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interest, since the rank of a generic matrix is equal to the minimum of the
number of its rows and the number of its columns.
The following lemma is useful in computing the solutions of linear

rational expectations models.

Lemma 4. Let H be a matrix all of whose eigenvalues have modulus less than

one. Then 2;;0 ”H"” < o,

Proof: H can be written as the sum of a semisimple matrix S and a
nilpotent matrix N, that commute with one another (Hirsch and Smale, 1974, p.
116). Then there exists a finite integer k such that N* = 0, and for any

j = k-1,

N A

H =~ (s +N)d

- zh=0 [j] gd=hyh
- ) s

The triangle inequality then implies (for all jz0

I s =2(9) ||s||~*'h||N||h

< ISIP%';., = s

Now for P(j) any finite order polynomial in j, and for any u > 1, there
exist a finite K such that P(j) < Kp‘j for all j = 0. 1If p <1l 1is the

maximum modulus among the eigenvalues of H, then there exists a metric for
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which |[S]| = p, and it is possible to choose 1 < u < p' and K < «» such

that
.h
J

o T IS NI < wd

K
for all j = 0. Then [H'| < K(pp)?, and I, IH] < — <= q.E.D.
l-pu

The following result illustrates the application of Lemma 4 to the

solution of linear rational expectations models.

Lemma 5. Let E" denote the Banach space of essentially bounded measurable
functions 4: U° - R®, again with the L, norm topology, for m any

2n-k

positive integer. Then for any given A, € E7 7, (2.14) has a unique solution

6, € E®*, given by 8, = T,,, where the operator T, is defined by

- _s® “1\d+1, 4
T, Ej-o (3, A

Proof: Since all eigenvalues of J, have modulus greater than one, J;l
exists and all its eigenvalues have modulus less than one. Lemma & (together
with (2.3)) then implies that T2 is well defined and maps EZ®*  into

itself, since, by the triangle inequality
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Iz,

272l S z:=0”(J;1)j+lAjA2”
SR [C AL VO
= 20T Al
<
whenever ”Azﬂ < «. One may verify by substitution that b, = T,

satisfies (2.14). Finally, let 02 be any solution to (2.14). Then

‘ J - J -
- TZAZ) - J2(0 - T A)). 1t follows that A (02 - TzAz) Jz(ﬂ2 T A,

Al 2 2" 2 272

2
and so that (J;l)jA‘i(ﬁ2 - TA) = (02 - T,A), for all positive integers j.
By Lemma 4, there must exist a J such that ."(J:ﬁa" < 1. Then, if

g Az" > 0, we must have (again using (2.3))

2 " T
lo, - Tl = aghyiadc, - T,A)
< lal, - T,A) |
< o, - Tl

which is a contradiction. Therefore "02 - TZAZH = 0, and b, = TA,.

Thus T,A, 1is the unique essentially bounded solution. Q.E.D.

Using this sequence of preliminary lemmas, we may now present our main

result.

Theorem 1. A steady state x' is a locally unique s.r.e.e. (i.e., there

exists a neighborhood N c R of x" such that there exists no other
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‘s.r.e.e. with ¢(ut) € N for almost all ut) if and only if the number of
eigenvalues of M(x*) with modulus less than one is no greater than n. If
the number of such eigenvalues exceeds n, then there exist stationary sunspot
equilibria arbitrarily close to the steady state (i.e., for anyvneighborhood
N of x*, there exist s.s.e. with ¢(ut) € N for almost all ut). Thus
S§.s.e. exist arbitrarily close to a steady state if and only if perfect

foresight equilibrium is indeterminate at the steady state.

Proof: The last sentence follows from the characterization of the
indeterminacy of p.f.e. in section 1. We consider in turn the three possible
cases: dim W exactly equal to, less than, or greater than n, respectively.

(1) Suppose'that M(x") has exactly n eigenvalues with modulus less
than one (and, because of (A.5), exactly n with modulus greater than one).
That is, suppose that dim W = k = n. In this case we show that DW(;*) is
a linear homeomorphism. The inverse function theorem then implies that 2"
is a locally unique s.r.e.e.

D¥ is a linear homeomorphism if and only if (2.9) has a unique solution
¢ € E for every % € E. As detailed above, (2.9) is equivalent to (2.13),
(2.14) and (2.15). By Lemma 5, the unique‘solution to (2.14) is 92 = TZAZ.

Substituting this into (2.15), and making use of the fact that Nl is

invertible (by Lemma 3, since k = n), we obtain

(2.16) 6, - 3,80, = N'[(I - BAY($ - N,T,\)] + BA

The unique 6, € E satisfying (2.16) is b, = T.¥, where

@ dnd 1
T = [ JBY[BA + (I - BA) N'(¥ - N,T A )]

Y



Since all eigenvalues of J1 have modulus less than one, Lemma 4 (together
with (2.4)) implies that T1 is well defined and maps E into itself, and

that “Tl” < =, so that T, 1is continuous as well. One may verify by

substitution that 01 = Tl¢ satisfies (2.16). Finally, let 01 be any
solution to (2.16). Thgn (01 - le) = JlB(ﬁ1 - Tl¢), and similarly
(01 - Tl¢) = Jlij(ﬁ1 - Tl¢) for any positive integer j. As in the proof
of Lemma 5, Lemma 4 and (2.4) imply a contradiction unless ”81 - T1¢” = 0,
so that 01 = T1¢.

Furthermore, any solution to (2.16) also satisfies (2.13). For
application of the operator A to both sides of (2.16) yields exactly (2.13),

since AB = I. Accordingly, the unique ¢ € E satisfying (2.13), (2.14), and

(2.15) is given by

T %
4 - [0110‘1[1 }
2

TZA

Thus one constructs the inverse map [DW]'I. As T1 and T2 have  been shown
to be continuous linear operators, [Dw]-l_ is as well. Therefore the inverse
function theorem applies.

(ii) Qonsider instead the case k = dim W < n. Again 02 - TZAZ is the
unique solution to (2.14). Select k equations from the set of n equations
(2.15), so that the corresponding k rows of N1 form an invertible matrix
ﬁl. (Lemma 3 guarantees that such a selection is possible.) These k

equations can be put in the form (2.16), where N1 is replaced by ﬁl, N2
is replaced by the corresponding k rows of N,, and ¥ is replaced by the
corresponding k elements of . Then a unique solution is obtained as

above. Accordingly, if one neglects the remaining n-k equations of (2.15),

A
the inverse function theorem implies that x" is a locally unique s.r.e.e.
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A fortiori, there exist no other nearby solutions of the complete set of
equilibrium conditions.

(iii) Consider now the case k = dim W > n, 1in which perfect
foresight equilibrium is indeterminate near a steady state. Again g, = T,A,
is the unique solution to (2.14).

Now let us add to the set of equilibrium conditions U(p) = 0 an

auxiliary set of k-n conditions of the form
(2.17) (T - BA)QH1 - pz = 0

where Q 1is a (k-n) xk matrix, u is a scalar, and z » 0 1is some element
of Z, the Banach space of bounded measurable functions z: U” -+ R** yith the
property Az = 0. (Such a z may be obtained by sqpting' z = (I - BA)y for
some y € Ekm; Z represents the innovation in the stationary stochastic

process y.) Furthermore, let us choose Q so that the kxk matrix

Q

has full rank. (Lemma 3 guarantees that such a Q may be chosen.)
Conditions (2.17) together with the equilibrium conditions define a map
-5”: E(X) » ExZ. The map 3; is just the product of the map ¥: E(X) + E
. defined by (1.2) and the linear map @u: E(X) + Z defined by
¢“(¢) = (I - BA)QH1 - Bz. Since Q“ is a bounded linear map, it is
continuous and has a continuous derivative. Hence ﬁu has a continuous
derivative,
Consider first the case u = 0. Then ¢ = X" solves @0(¢) = 0. One

can show furthermore that this solution is locally isolated, using the inverse

function theorem, by showing that Dﬁo has a bounded inverse. The proof is
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A
as in case (i) above. But the mere fact that x* is a locally isolated zero
of @0 does not mean that it must be a locally isolated zero of ¥, since

¥, contains the auxiliary conditions ®, as well.
Let us consider now the zeroes of ﬁﬂ, for u varying over some open

interval J c R, containing a neighborhood of zero. We can define a map

T: E(X) XxJ + Ex 2 by U(¢,u) = @ﬁ(¢). Furthermore, ¥ 1is continuous

in both arguments, and D¢§ eXists and is a continuous function of u. (In

fact, it does not even depend upon u, since D¢§ = DI x D¢¢“, ¥ does not

depend upon 4, and

A

D2, = (I - BA)Q[I 0]C .

does not depend upon # either.) 1If, as just asserted, DEO(Q*) is a
linear homeomorphism, then D¢§(§*,O) is a linear homeomorphism as well,
and it follows from the implicit function theorem that there exists a
neighborhood H of zero in J, a neighborhood N of x* in X, and a
continuous function ¢: H - E(N) such that $(p) is the unique zero of
ﬁu in E(N) for each p € H, and such tha; $(0) = Q*.

But note that a zero of 3“ for any u 1is a zero of ¥. Hence each of
the set of functions Z(p), for u € H, represents a stationary rational
expectations equilibrium. Furthermore, for any 4 = 0, and any x € X,
ﬁ;(g) # 0, since z = 0 by assumption. ‘Hence for each u = 0, $(p) is
not a constant function, i.e., it is a stationary sunspot equilibrium. Thus
there exists a continuum of S.s.e. Furthermore, because $ is a continuous
function of u, for =0 in a sﬁfficiently small neighborhood of zero,
E(p) remains almost always within an arbitrarily small neighborhood of «x".

Thus we can show that there exist s.s.e. arbitrarily close to the steady

state in this case. It remains only to prove that Dﬁo has a bounded

-27-




inverse, as asserted above. We do this constructively, by exhibiting the

unique, essentially bounded, measurable function ¢ that solves (2.9) and
(2.18) (I - BA)QY, = ¥y

for arbitrary (¥,y) € E x Z. Again one can replace (2.9) by (2.13), (2.14)
and (2.15). Again 02 = TZAZ is the unique solution to'(2.l4). Adjoining

conditions (2.18) to (2.15) yields

(2.19) Nl(I - JlB)ﬁ1 = (I - BA)(Y - NT,A) + NlBA1 +y

where ﬁl is defined above, and where

- N, :
N2 = B
N [¥]
P =
10
—~ ’-O ]
vy =
Y]

where in each case the upper block has n rows and the lower block n-k
rows. Since we have chosen Q so that Det ﬁl % 0, (2.19) can be put in a

form analogous to (2.16). The unique solution can be shown to be

- .5 dpd . Flg 0w F-17
6, 2. J 0 BUBA, + (T - BA) RF - W10, + N5

using the same argument as in case (i), and again this solution can be shown

to satisfy (2.13) as well. Thus the above solution for § together with

11
b, = T,A,, define the inverse operator [Dﬁo]ﬂ. As before the operator is

easily shown to be bounded. Q.E.D.
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In fact it is possible to analyze local uniqueness of S.r.e.e. using
these techniques without relying upon Lemma 3 (and hence without assumption
(A.6)), at the cost of some additional complexity. Consider again, for
example, the case k = n, Assumption (A.6) requires in this case that
KNnW = {0}); but suppose instead that KnNnWwis an m-dimensional linear
subspace, for some m > 0. Then there exists an m-dimensional space of

vectors f € R° such that f'N. = 0. Hence (2.15) implies
(2.20) (I - BA)(f'y - f'NZTZAZ) = 0

for all £ in this space, where we have again substituted the solution.

92 = TZAZ' to (2.14). Conditions (2.20) are a set of n linear restrictions
upon #%; thus D¥ does not map E onto itself, but rather onto a linear
subspace Y of E, consisting of the € E that saﬁisfy (2.20). This,
however, is no obstacle to the application of the inverse function theorem.

We wish to know whether there is a unique solution $ € E, for a given ¥ in
y. If so, Y would be homeomorphic to E, and one would again be able to
prove that the steady state is a 1ocally isolated s.r.e.e. But in fact there

is not a unique solution ¢, as can be shown using the method of case (iii)

above. let the equations
A A A »
I - BA)(Nlﬁ1 +N4,)) = (I - BA)p

represent a selection of n-m linearly independent conditions from among the
n conditions (2.11); because of (2.20), these n-m equations contain the
entire content of (2.11). Then adjoin to these an auxiliary set of conditions

of the form (2.17), where Q is an mxn matrix chosen so that
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gain one can show that there exists a bounded solution ¢ for each choice of
4, and that even when % =0, ¢ = 0 for # = 0, so that there are multiple
solutions. As in case (iii) above, this implies the existence of s.s.e.
arbitrarily close to the steady state, despite the fact that perfect foresight
equilibrium is locally determinateé near that same steady state.

More generally, reasoning of this sort allows one to show that, if-all of
our previous assumptions hold, with the possible exception of (A.6),
stationary sunspot equilibria exist arbitrarily close to a steady state if and
only if dim (WN K) > 0. If (A.6) does not hold, ;né can have dim (WnNn K) >0
even when k < n, and it is in these cases that s.s.e. exist near a steady
state even though p.f.e. is determinate. Since (AL6) seems likely to hold
generically in all applicatiéns of interest, we have excluded this case in the
statement of Theorem 1.

It is important to note that both the case k > n and the case k <n
can occur for robust examples of stationary economies. For example, in the
case of the stationary overlapping generations economies treated in section
3.A below, one can show that there exists an open set of economies in which k
takes any value betwenn 1 and 2n. Thus Theorem 1 establishes that peither
local uniqueness of s.r.e.e. nor local indeterminacy is a generic property of
stationary economic models.

The methods used to prove Theorem 1 also immediately yield additional
results concerning local uniqueness of s.r.e.e. in the case of sufficiently

small exogenous shocks to the economic fundamentals. Consider, for example, a
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one-parameter family of stationary economic models, each defined by a set of

equilibrium conditions of the form

' . C Wty
(2'21) f‘y(xt‘l’ Vt‘l’ ’7t_1, xt’ Vt' rlt; U.) - 0

where f has continuous derivatives with respect to <xv1’
4 parameter vy taking values in an open interval T c R. Let us suppose
futhermore that f7 has no dependence upon u® only for vy = 0. Thus for

v = 0, f7 represents a model in which the stochastic process u,_ represents
some shock to economic "fundamentals" (e.g., an endowment shock), rather than
a "sunspot" variable. However, as Y approaches zero, the shock to |
fundamentals is made progressively smaller, until, in the limit, it becomes a
sunspot‘variable. We can then prove the folloﬁing %bout S.r.e.e. near a

steady state of the economy not subject to exogenous shocks, for economies in

the family with v near zero.

Theorem 2. Consider a smooth one-parameter family of stationary economies of

the form (2.21), where the economy corresponding to vy = 0 is not subject to
exogenous shocks, and has a steady state equilibriﬁm x" with all the
properties assumed in Theorem 1, but where‘the exogenoué shocks u, affect the
equilibrium conditions directly if v = 0. 1If perfect foresight equilibrium
is indeterminate at the steady state of the v =0 economy, then in the case
of sufficiently small exogenous shocks (i.e., vy = 0 sufficiently small) one
will have both

(1) a continuum of s.r.e.e. near the steady state of the ¥ = 0 economy,

in all of which the endogenous variables depend only upon the history

of the exogenous shocks, and
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(ii) a continuum of s.r.e.e. near the steady state of the ¥y=20 ecbnomy

in which the endogenous variables respond to the realizations of a
stationary sunspot process, as well as to the exogenous shocks that
affect the equilibrium conditions directly.

On the other hand, if dim W =n at the steady state of the v = 0 economy,

there exists a unique s.r.e.e. near that steady state for any perturbed

economy with vy sufficiently small, and that s.r.e.e. does not involve

response to any sunspot variables. If dim W< n, no s.r.e.e. exists close

to the steady state of the v =0 economy, for any of the economies with

small v »# 0, 1in the case of generic perturbation of the ¥ = 0 economy.

Proof: If dim W = n, then DWO is a linear homeomorphism (as shown in the
proof of Theorem 1). The implicit function theorem then implies the existence
of a unique s.r.e.e. (i.e., zero of Wv) in a neighborhood of the steady state,
for each v 1in a certain neighborhood of zero. Since the proof guarantees
the existence.of a unique solution regardless of the number of "sunspot"
variables that are included (along with the exogenous shocks that directly

affect the equilibrium conditions) in the set of random variables u the

.
unique solution must depend only upon the minimum set of exogenous variables
u, that it is possible to include without changing the equilibrium conditions
(2.21), i.e., only upon the exogenous shocks and not upon any sunspot
variables.

If dim W < n, then, as shown above, [DWO(Q*)I1¢ does not exist for
most ¥ € E; one has to drop some of the conditions in the set DW0-¢ =13 in
order for an inverse to exist. Suppose that again these conditions afe

dropped; then the implicit function theorem implies the existence of a unique

solution near the steady state to the reduced set of equilibrium conditions,
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for each v 1in a neighborhood of zero. Let that solution be denoted &(v).
Then let g7(¢) = 0 be one of the equilibrium conditions that was dropped,
where g, E - R. It is evident that for a generic one-parameter family of
economies, one will have Dvgv(z(y))lv=0 # 0, so that g7($(7)) = 0 for
any v »# 0 in a neighborhood of zero. Accordingly, no s.r.e.e. exists near
the steady state for vy = 0 in that neighborhood.

Finally, if dim W > n, then, as in proof of Theorem 1, one can adjoin to
the equilibrium conditions an additional set of conditions, indexed by a
parameter u; let the augmented sét of equilibrium conditions be written
§W(¢) = 0. When the additional conditions are chosen as in the proof of
Theorem 1, §* is a zero of ﬁoo' and Dﬁoo(g*) is a linear
homeomorphism. The implicit function theorem in th;; case implies the
existence of a unique ¢ close to §* satisf&ing 3ﬂx¢) = 0, for each
choice of (vy,u) close enough to (0,0). But then, for each 4 = 0 close
enough to zero, there exists a continuum of S.r.e.e. near the steady state,
corresponding to alternative values of .p. If the auxiliary conditions do not
explicitly involve any sunspot variables, then none of these s.r.e.e are
sunspot equilibria — each equilibrium represents the endogenous state
variables as a measurable function of the history of exogenous shocks. On the
other hand, if the auxiliary conditions do involve sunspot variables for all
# % 0, as in the proof of Theorem 1, then the s.r.e.e. corresponding to u = 0
will be s.s.e. Thus both continua of stétionary equilibria, in which no
sunspot variables matter, and continua of stationary sunspot equilibria exist

near the steady state for v = 0 close enough to zero. Q.E.D.

Hence s.r.e.e. need not be locally unique, even if one rules out sunspot

equilibria from consideration. The sorts of economic structures for which

-33-



this occurs (in the case of an economy subject to only small exogenous shocks,
and when one is interested in equilibria involving only small fluctuations)
are exactly those for which p.f.e. is indeterminate in the absence of the
exXogenous shocks. Furthermore, even when none of the equilibria are sunspot
equilibria, the existence of a multipliciﬁy of s.r.e.e. of this sort can be
regarded as indicating a type of instability. For consider the equilibria
corresponding to a given choice of pu = 0, for y varying in a neighborhood
of zero. As v -+ 0, the amplitude of the fluctuations, as measured, say, by
ess sup [g(u®) - f¢dw|, remains bbunded away from zero. Accordingly, for
sufficiently small Y, oneé must regard the equilibrium fluctuations (iﬁ this
particular equilibrium) as being disproportionate to the size of the shock to
fundamentals that occurs, even though it is not a sunspot equilibrium. Cases
of "over-response" to real shocks of this sort are likely more interesting
examples of instability resulting frbm self-fulfilling expectations than the
pure sunspot case;!! the significance of examples of sunspot equilibria is
simply that they provide a particularly dramatic demonstration that "over-
response” to shocks may be consistent with rational expectations equilibrium.
The condition given in Theorem 2 for existence of a unique s.r.e.e. near
the steady state of the economy not subjecﬁ to shocks, in the case of small
exogenous shocks, is also of no small interest. Deterministic models in which
dim W = n  at the unique steady state often arise in economic dynamics; for
example, Levhari and Liviatan (1972) and Scheinkman (1976) show that optimal
growth models haﬁe this property (under relatively ordinary assumptions
regarding preferences and technologies), in the case of a sufficiently low
rate of time preference. (Cases in which stationary overlapping generations
economies have this property are discussed in section 3.A.) Theorem 2 implies

that it is possible to introduce small stochastic shocks into such models and

-34-




have a unique s.r.e.e. continue to exist near the steady state of the
deterministic model. Furthermore, the stochastic properties of that s.r.e.e.
are well approximated (in the case of sufficiently small shocks) by the

solution to the "linear rational expectations model"
Ak e Ade
Dy (x)-(¢ - x') = D ¥ (x) -y

Thus Theorem 2 allows a rigor&us application to a wide variety of exact,
nonlinear models of the techniques for solving and estimating linear rational
eXpectations models that are widely used by macroeconomists, but that have
heretofore only been known to be applicable to rigorously grounded models in
the case of extremely special functional forms, such as the linear-quadratic

objective functions assumed by Hansen and Sargent (];980).12

3. Applications

In this section we provide examples of stationary economic models that
yield equilibrium conditions of the form (1.1), and hence to whicﬁ the results

of section 2 apply.

A. Stationary Overlagging Generations Exchange Economies

Azariadis (1981) shows that stationary sunspot equilibria can exist in a
stationary overlapping generations économy in which fiat money is used as a
store of value. However, his methﬁd of proving existence of s.s.e. cannot be
extended to models in which any predetermined variables exist, as the two-
state s.s.e. assumed by his method cannot exist in such models. (See section
4.B for further discussion.) Hence it cannot treat overlapping generations
models with more than one agent type per generation (in which case the demands

of the old in a given period depend ﬁpon the distribution of money balances
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across different agents) or with more than one good per period and preferences
that are not additively separable between periods (in which case the demands
of the old depend upon their consumption in youth). Theorem 1, however,
allows us to establish that s.s.e. can exist in models of those kinds as well.

In this section we generalize the model considered by Azariadis,
Guesnerie, Grandmont, and Spear to allow for an arbitrary finite number of
goods per period, and an arbitrary number of agent types per generation with
arbitrary smooth preferences. As in their model, we assume that all agents
live for two consecutive periods, that all goods are perishable, that there is
no production, and that fiat money is the sole asset. The class of economies
with which we are concerned is thus that treated by Grandmont and Hildenbrand
(1974), except that here endowments are non-stochaséac, and demand functions
are differentiable (atbleast in a neighborhood of the deterministic steady
state of interest). Conditions for the existence of multiple perfect
foresight equilibria near a steady state in such models have been_derived by
Kehoe and Levine (1984, 1985) and Kehoe et al. (1986).

Let there be n perishable cénsumption goods each period; and let each
generation consist of H agent types, indexed h = l,...,H. (Generalization
to infinite sets of agents types is trivial.) Each agent h has a von
Neumann-Morgenstern utility function u®, defined over pairs of
n-vectors (y,z) evYé x Z", Here y denotes the vector of excess demands in
the first period of life (i.e., consumption demand in excess of endowment,
with a negative quantity denoting excess supply), and z the vector of net
excess demand in the second period of life; Y" vand Z® are subsets of R°.

We assume the following properties for uP:

(B.1) ¥ YPxzZP s R is c?; Du®* > 0 and D™ is negative
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definite, for all (y,2).

Because fiat money is the only asset, the budget constraint for an agent of

type h born in period t is

’ h ’
(3.1 Py’ Yy ¥ Py Z2+1 =0

where p, € Bi+ is the vector of money prices of goods in period t. This
represents an independent budget constraint for each possible realization of
Peyy Ztu, is chosen only in period t+l, after P,,, has been realized.
There is no requirement that money holdings ffom the first to the second
period of life (equal to -pt'y:) need be non-negative; agents may borrow, but
only by ﬁromising to pay a fixed nominal amount, independent of the
realization of any period t+1 random wvariables. ;(The treatment below is
applicable even to a case in which aggregate outside assets are negative.)

Kehoe and Levine (1984) establish that under standard boundary conditions
on preferences, there exists a monetary steady state, i.e., a constant price
vector ‘é*, and constant excess demands (yh*, zh*), for
h=1,..., H,. such that (yh*,zh*) represent optimal consumption demands for
an agent of type h given constant prices .p", and such that Ziq(yp*+zh*) = 0,
(The steady state does not, however, necessarily involve a positive quantity
of outside assets; this would require in addition that Zill p*'zh* > 0.)

As we are concerned here only with equilibria that remain near such a
steady state, we need only define demand functions for prices in soﬁe compact
set K C Rz+ containing a neighborhood of p*. For any agent type h, let
Y and Z® be compact sets containing neighborhoods of yh' and zM
réspectively. Then the excess demand function in old age zh(y, P, puq) can

be defined as the z € Z' that maximizes uh(y,z) subject to (3.1). By a
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h

standard result,13 z is well defined and is a ¢C*

function on Y® x K x K,
at least if the sets Y' and K are chosen small enough while Zz" is chosen
large enough so that the maximizing value is never on a boundary of Z".

In order to show that the demand function in youth is also

differentiable, we use the following result.

Lemma 6. Let g: K-+ R have a continuous first derivative, where K c ®® is

a compact set. Then the function G: El(K) X II(U) = R defined by
(3.2) Gv,n) = [ gv(u))dn(u)

i1s a continuous function of 75 and depends upon 5 in such a way that
G(v, w(-lut)) is a measurable function of u®. Furthermore, G has a

(Frechet) derivative with respect to v, givén by
(3.3) DG-p = [ Dg(v(u))p(u)dn(u)

for any pu € E .. This derivative is continuous in both arguments of G.

Proof: Because g is continuous on a compact set K, it is bounded and
hence integrable; therefore the integral in (3.2) is well defined. For any
n, n' € I(U), it follows ffom the definition of the norm of total wvariation

that

lev,n') - Gv,m| = |lg| lIn’-nl

and so for g a bounded function, G must be a continuous function of 7.
The proof that G(v, w(-lut)) is measurable proceeds in the same manner as

the proof that A¢(u®) 1is measurable in Lemma 1.
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Since Dg 1is also continuous on K, the integral in (3.3) is also well
defined. The proof that DG is a continuous function of g proceeds as in
the case of G itseif. The uniform continuity theorem implies that for any
€ > 0, there exists a § > 0 such that for all X, x' € X%, |x'-x| < §
implies |Dg(x') - Dg(x)| < e¢. Then for any sequence {v’}) of elements of
E, if v3 » v, then for any 6 > 0, there exists an N such that for all
j >N, |uj(u) - u(u)l < 6 for almost every wu, from which it follows that

IDg(uj(u)) - Dg(u(u))l < ¢ for almost every u. Therefore, for any ¢ > 0,

there exists an N such that for all j >N,

|[IDg(v?(w)) - Dg(v(w))p(u)dn(u)]
[Ipg(I(w)) - Dgw(u)) | |w(u) [dn(w

e [luwy|dn(u) % ¢ |uf

[D,GG) - - D G(w)-ul

A

A

Thus uv? - v implies ”DVG(uj) - DyG(u)" -+ 0, and D”G is a continuous
function of wv.

In order to establish that the operator defined in (3.3) is indeed the
derivative of G, we must show that for any sequence {uj}, if - v, then

for any € > 0, there exist an N such that for all j > N,
IG(vj,q) - G(v,n) - DuG(u)(u'j - v)I < € "Vj-V"

As above, for any € > 0, there is a § > 0 such that |x'-x| < é implies
]Dg(x') - Dg(x)l < €. By the mean value theorem, for any x, X' ¢ X, there
exists an §, such that each coordinate of «x lies between the corresponding

coordinates of x and X', and such that g(x') - g(x) = Dg(ﬁ)-(x'-x).
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If [x'-x| <&, it follows that |§-x| < 6§ as well, so that

lg(x') - g(x) - Dg(x)(x’-x)| | [Dg(x) - Dg(x)]-(x'-x)]

| Dg(x) - Dg(x)||x’-x]|

A

< € Ix’-xl

But for any § > 0, there exists N such that for all j > N,

luj(u) - u(u)l < é for almost all u, which then implies that
lg () - glvw) - D (w) - (Iw) - v < ¢ [icu) - v(u) |
for almost all u. But this implies that for all j > N,

|60 m) -6 (v, n)-D G(w) - (1i-v) |

|18 () -g(v (W) -Dgw (W) (W3 (u) -v () Jdn (u) |

= Jla0 (@) -g(v(w) -Dglw(u)) (v (u) - (u)) | dn(w)
< e [l - v(u)|dyp(u)
< e -y

which is just (3.4). ~ Q.E.D.

Now let us define

DIy, Z(y, p,» P,p))

Ah(y’ Py» pt+1) i
P
t+1

for j any one of the n goods, where Diuh denotes the derivative of u®
with respect to the j""h component of z. It follows from the first order
conditions for optimization by an old agent that the right hand side is

independent of which good k| is'chosen. Let us then define

(y, P.» Ppy) = Dyuh(y, zMy, P,» Ppy)) - ANy, P.» Pyy,)P,
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It follows from the stated properties of u' and z" that V' is a ¢!

function of all three arguments. Finally, define

WNy; P, v, n) = [NP(y, b, v(w))dn(u)

h

Lemma 6 implies that w": Y® x K x El(K) x II(U) - ®R® is a continuous function

of 17 such that wh(y; P, v, w(-lut)) is measurable with respect to u®.
Lemma 6 also implies that w" has a continuous derivative with respect to v,

Finally, W depends upon (v, p) only through the induced probability

* . - . - -
measure n (v), since we might equivalently have written

VN P, v, ) = [V, B, p')dn (uip’))

A young agent of type h, facing a vector of current goods prices p and
having expectations (v, n) of the distribution of pbssible goods prices in
the following period, chooses an excess demand y € Y® to maximize
fhp(y, zh(y, P, V?u)))dq(u). Let the solution to this problem be denoted
yh(p;»u, n). For prices (and expected prices) close enough to the  steady
state price vector p, yh is completely characterized by the first order

conditions
h hn _h
(3.6) f[Dyu +DuDz']dp = 0

where the arguments of Dyuh and Dzuh are (y, zh(y, P, v(u))) and the
arguments of D'yzh are (y, p, v(u)). It follows from (3.5) that

Dzu.hDyzh - Ahu(u)’Dyzh. Furthermore, since (3.1) always holds with equality,

P,'Y + P2y, P, p,) = O

for all (y, Py» pz), differentiation of which with respect to y vyields
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pz'Dyzh(y’ Pp» P) = -p;
Therefore (3.6) may be written

(3.7) w(y; p, v, m) = 0
Then yh(p; v, n) solves (3.7).

We know that wh(yh*; p*, 5*, n) = 0 for arbitrary n e H(U)f As
noted above, ' has a continuous derivative with respect to y. It is

easily shown that for any a e R®°,

a'D W' (y";p",p . n)a
- a’Dzwuha + (p*'[D:zuh]-lp*)_l(a'Djzuh[Dzzzuh]'1p* -a'p)? < 0

where the derivatives of u® are evaluated at (yﬁ*,;zh*). Thus
D;f%yh*;p*,ﬁ*,n) is a negative definite matrix, given (B.1), and hence non-
singular. The implicit function theorem then implies that for P a
sufficiently small neighborhood of p’, there exists a unique function
yh(p;u,n) that solves (3.7) and maps P X El(P) X II(U) into a neighborhood of
yh*. Furthermore, yh inherits the following properties of w®: it is
continuous in (p; v, n), depends upon (v, p) only through the induced
measure n*&u), and depends upon % in such a way that yh(p,u,w(-lut)) is
a measurable function of u®. Finally, because w" also has continuous
derivatives with respect to P and v, the corollary to the implicit function
theorem imblies that yh has continuous derivatives with respect to p and
v as well,

A goods price vector P, € P then constitutes a temporary equilibrium,

given expectations (ut, nt) € E1(P) X II(U) and previous period'’s prices and

expectations (p, ., u _, n ) e PxE (P) xI(U), if and only if
t-1 -1 Tg-1 1
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H h . H h
-8 Hay (g v n) + B2 ey v, 1)) By, B = 0.

Let the left hand side of (3.8) be denoted f(p,_,: Ye-1r Meoys Pes Voo 0,) .

Equations (3.8) represent a set of equilibrium conditions of the form (1.1)

and it follows from the discussion above of the properties of yh and z"

that £ satisfies (A.2), (A.3), and (A.4).
Assumption (A.5), however, is not satisfied. For the demand functions

are all homogenous degree zero in prices, i.e.,
h
z(y, APy, AP = z(y, P, P,)
YUOR; Av, ) = ¥p; v, n)

for any X > 0. This implies that F(Apl, Apz, Ap,, Aph) - F(pl, P,» Pyr P,)

for any A > 0, which in turn implies
*
[D,F + D,F + D,F + DFlp = 0

by Euler’'s theorem, where the derivatives of F are evaluated at

@, ", P, p"). This in turn implies that

wol]- ]

so that M(p") has an eigenvalue equal to 1.
This difficulty can be avoided in the following manner. Equations (3.8),
together with the fact that the budget constraints (2.1) always hold with

equality, imply that in any equilibrium

b - ) b
zi-l pt. zt‘. =1 Pt+1 zt+1

This conserved quantity is in fact M, the constant quantity of fiat money in

existence, since all savings must be held in the form of money. Thus we have
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s h
(3.9) Z§=1 p,'z, = M

for all t. Using this relation, one can eliminate one of the demand
functions from (3.8). Let it be the aggregate demand of the ’old for the n*f
good. Then if ;h, z°, p denote the vectors yh, z", p with the n™
components deleted, and yhn and p" denote the nu’components of yh and

P, equations (3.8) may be replaced by the following system of n equilibrium

conditions each period:
(3.10a) §€;1§h(pt; Ve "t) + z€=1Eh(yh(pt-1’ Ve-1 nt—l)’ Peoyo pt) -0
(3.100) = y™(p,; v, m) + M - B PGG, v, n,)1/pf = 0

Equations (3.10) imply both (3.8) and (3.9). For mditiplication of (3.10a) on

the left by ?t', (3.10b) by p}, and summing yields

,.h
S Py Yo = M

which in turn implies (3.9) for period t+1; and (3.10b) and (3.9)vtogether
imply the n*! equation of (3.8).

Let us write g(pbi, Vig» Moyt Dy v, ”t) for the n functions on the
left hand side of (3.10), and let G be formed from g in the way that F
is formed from f in (1.3). Furthermore, let M[G] denote the matrix formed
from derivatives of G in the way that the matrix M(p") (henceforth to be
called M[F]) is formed from derivatives of F. Then g, like f, satisfies
assumptions (A.2), (A.3), and (A.4). Because equation (3.10b) is not

t

homogeneous in prices (unlike the n®® equation of (3.8)), M[G] need not

have an eigenvalue equal to one. However, as noted above

P3'G(Pys Py Py B = By R yMp: B, M) + M

bl



As the right hand side of this does not depend upon P, or p,, one obtains

p,'D,G = P,'D,G = 0, from which it follows that
[p*'DaG-p*’DaG] M[(G] = O

Accordingly, one eigenvalue of M[G] 1is zero. It can be shown that the other
2n-1 eigenvalues are identical to the 2n-1 eigenvalues of M[F] other than
one.

At this point we may make use of the analysis of Kehoe and Levine (1984)
of the derivatives of F at such‘a steady state. Kehoe and Levine show,
first, that Det DF % 0 generically. Since D,G = D,F, equations (3.16)
satisfy the first clause of assumption (A.5), that Det D4G » 0. Hence M[G]
is well defined in the generic case. Kehoe and Lev%pe also show that,
generically, M[F] has only one eigenvalue of modulﬁs equal to one (the one
due to homogeneity of the demandvfunctions). Accordingly, M[G] has no
eigenvalues of ﬁddulus one in the generic case, and (A.5) is generically valid
for equilibrium conditions (3.10).

The method of analysis employed by Kehoe and Levine can also be used to
demonstrate that (A.6) holds generically (and likewise (A.7), discussed in
section 4.A below). For the result of Debreu (1974) implies that any C*
perturbation of the aggregate perfect foresight demand functions that
continues to satisfy homogeneity and Walras' Law represents demand behavior
that can be generated by optimizing agents (assuming H = 2n). Since
homogeneity and Walras’ Law do not require the intersection of W and K to
be larger than that specified in (A.6), in the case of any economy for which
(A.6) happens not to hold, it is always possible to construct an arbitrarily

small perturbation of the demand functions such that (A.6) does hold.
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Thus, in the generic case, a stationary overlapping generations exchange
economy satisfying (B.l) gives rise to a set of equilibrium conditions (3.10)
satisfying all the assumptions of section 1. Accordingly Theorem 1 applies.

We then obtain the following result.

Proposition. For any number n of goods per period, and for an arbitrary
number H = 2n of agent types per generation, there exists an open set of
stationary overlapping generations exchange economies satisfying (B.1l), for
each of which there exists a deterministic monetary steady state near which
there exist an infinite huﬁber of stationary sunspot equilibria. On the other

hand, there also exists an open set of such economies for each of which there

-

exists a steady state near which there no s.s.e.

This result follows immediately (using Theorem 1) from the results of
Kehoe and Levine (1984, 1985). They show, for arbitrary n and H = 2n, that
for each integer k betweén 1 and 2n, there exists an‘open set of
economies with a steady state at which dim W = k. (Note that dim W= 1,
because one eigenvalue of M[G] 4is zero.) Hence there is necessarily an open
set for which dim W = n, regardless of the size of n.

Theorem 1 can also be used to derive more specific results relating the
existence or not of s.s.e. near a steady state to properties of the demand

functions. For example, the following general result is established.

Proposition. Suppose that the perfect foresight demand functions exhibit the
property of gross substitutability. That is, suppose that if (p, p,) =
(p,", p,’), and p; = p’; (respectively, P, - p'g) for some j €

{1,...,n}, then
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H g ' =t
e VP B M) = T Y0, B, )
(respectively,

h,_h = h ' = ’ '
bt 2 V(P Pye My By B 2 B YR B, M), By, p,) ),

with strict inequality if (p,, p,) * (pl', P,"). Then no stationary sunspot
equilibria exist near any monetary steady state with M > 0, whereas there

exist an infinite number of s.s.e. near any monetary steady state with M < 0.

This result follows immediately from the result of Kehoe et al. (1986),
who show that dim W= n at any steady state with M > 0, and that
dim W = n + 1 at any steady state with M < 0.

A similar analysis is possible of non-monetary;overlapping generation
economies. In this case the typical steady state (i.e., equilibrium with a
stationary deterministic allocation of resources) does not involve a constant
price level; instead, prices in terms of the unit of account may either grow
or comtract at a constant rate. This requires, however,-only a trival
modification.of the notation introduced above. Again one finds an open set of
economies for which s.s.e. exist near a steady state, and an open set for
which there is a steady state near which there are no s.s.e. In the non-
monetary case, gross substitutability implies that no $.s.e. exist near any

steady state. These results again follow from the perfect foresight analysis

of these economies by Kehoe and Levine (1984, 1985) and Kehoe et al. (1986).

B. An Overlapping Generations Model with Capital

Theorem 1 can also be used to show the existence of stationary sunspot

equilibria in overlapping generations models with assets other than fiat
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money. Here we present a simple example, the perfect foresight equilibria of
which are analyzed by Reichlin (1986).

Suppose that (as in Azariadis (1981)), agents supply labor in the first
period of life and consume in the second, and all agents born in period t
wish to maximize the expected‘value of u(cuﬂ) - v(nt); where Cio1 is
consumption by the old in period t+1, n, is labor supply by the young in
period t, u and v are g2 functions, and u' > 0, u" <0, vi >0, v" >0
for all values of their arguments. Finally, let the ¢! Ffunctions U and V
be defined by U(c) = cu’'(c), V(n) = vn’'(v), and let U’'(e) > 0 for all c,
so that demands exhibit gross substitutability. Then in the case of a one-
sector fixed-coefficients production technology, in which one unit of capital
Plus m units of labor yield a > 1 units of produced good (which may be
consumed immediately or used as capital in the.following period), a rational
expectations equilibrium is a stochastic process for the per capita capital

stock k, ~ satisfying the equilibrium condition
(3.12) Jlucak, - v, (@) - V(mk,_)ldn (u) = 0

where v, indicates the way in which k ., will depend upon the realization of
U, - This equilibrium condition is of the form (1.1) and satisfieg all the
assumptions of section 1, by Lemma 6.

Reichlin shows that there is a unique steady state capital stock k* for
any such economy. He shows that for arbitrary preferences of this sort and
arbitrary m > 0, there exists an a" > 1 such that for any a € (1,a*),
there exists a continuum of p-f.e. converging to the steady state (i.e.,

dim W = 2). Theorem 1 then implies that stationary sunspot equilibria exist
near the steady state in this case.!® Likewise, Reichlin shows that dim W = 0
if a > a", and so there exist no s.s.e. near the steady state in this case.

This example indicates that gross substitutability does not rule out s.s.e.
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near a steady state in the case of a non-monetary overlapping generations

economy, if production is introduced.

C. A Monetary Economy with Infinite Lived Agents

Theorem 1 also applies to many stationary economies with infinite lived
agents. As an example, we consider the monetary model of Lucas and Stokey
(1984), but assume that both endowments and the money supply are constant. In
this model, there are two consumption goods each period, a "cash good",
purchases of which are subject to a cash-in-advance constraint, and a "credit
good", purchases of which are not. Each agent has an endowment producing one
unit of either good, one unit of endowment producing one unit of either good.
Each agent seeks to maximize the expected value of ;2:_0 ﬂt'U(clt,czr‘),

where 0 < g8 <1, ¢,, 1s consumption in period t of the cash good, c,, 1is
consumption of the credit good, and U is a strictly increasing, strictly
concave utility funetion, twice continuously differentiable. The budget

constraints of a representative agent in period t are then

<
ptclt - Mt

M,sM + p.ly - €1t "~ th]

where M, represents money holdings at the beginning of period t, and P,

the price of goods in period t. In equilibrium, the demands of the
representative agent must be such that ¢, * ¢, =Yy and M, =M in every
period, where M is the constant money supply.

Lucas and Stokey show that a rational expectations equilibrium

corresponds to a stochastic process for the variable v = c, D, U(e that

t 1t72 lt’CZt)

satisfies
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(3.13) v, = Blh(v (w)dn, (w)

t

where h 1is a function defined by Lucas and Stokey in terms of the utility
function U (we supress the argument y as endowments are here assumed to be

constant),15 and v indicates the way in which v

. is expected to depend

L+l

upon  u (Compare equation (3.7) of Lucas and Stokey.) Given a stochastic

r
process for v, that satisfies (3.13), it is possible to uniquely reconstruct

stochastic processes for ¢ ¢,, and p,, so that the equilibrium is

) 167 T2t

completely specified. The shadow prices associated with the various
constraints may also be uniquely determined; for example, it can be shown that
the cash-in-advance constraint binds in period t if and only if v, 1is less
than a critical value V.

The existence of a steady state, i.e., a v’ > 0° such that v = ﬂh(v*), is
easily established under sﬁandard boundary assumptions on U. It can also be
shown that at any such steady state, v < Vv, so that the cash-in-advance
constraint binds. We are interested in the existence of other s.r.e.é. in
which v, remains within an arbitrarily small neighborhood of v*; from
whichbit follows that we are interested only in equilibria in which the cash-
in-advance constraint always binds. Lucas and Stokey (who assume only that U
is Cl) establish that h is a continuous function; one can similarly show
that if U is C% h is ¢! at all points except v. Hence, if our
neighborhood of v' is chosen small enough, h is ¢! everywhere in it.
Then (3.13) is an equilibrium condition of the form (1.1), and satisfies all
the assumptions of section 1, by Lemma 6. It follows from Theorem 1'that
stationary sunspot equilibria exist arbitrarily close to a steady state if and

only if IDh(v*)I > g7t This is a condition upon the first and second

derivatives of U, evaluated at the steady state consumption allocation; it
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can be shown that even if both goéds are normal goods, there exists an open
set of utility functions for which the inequality holds, as well as an open
set for which it does not.®

Examples of cash-in-advance economies with infinite lived agents and
capital accumulation are presented in Woodford (1986a, 1986b). All of these

examples involve equilibrium conditions of the form

(3.14) Jetk, \, &, v (w)dn (w) = 0

where g is a ct function, kt is the period t capital stock, and Ve

describes expectations regarding k so that Theorem 1 is again

t+1’
applicabie. One finds in all of these examples as well that s.s.e. may or may

not exist near the steady state, depending upon parameters of the model.

D. Muitigle Equilibria and Non-neutrality of Money

The method introduced in section 2 has applications other than to the
determination of conditions for the existence of stationary sunspat
equilibria. It is sometimes the case, even when the variables u, represent
exogenous shocks that affect the equilibrium conditions, that there exists a
stationary equilibrium in which certain of the state variables remain
constant. An example is provided by models in which certain real variables
are unaffected by money supply shocks. In such a case the methods of section
2 may be employed to determine whether there exist other s.r.e.e. near the one
éxhibiting the "neutrality" property, in which that property fails.

For example, consider again the model of Lucas and Stokey (1984), but now
let u, be a shock to the rate of growth of the money supply. Specifically,

suppose that if M, is the per capita money supply at the end of period t,
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1)M  at the

then each agent receives a lump sum transfer equal to (u .

b1

beginning of period t+l. Then Lucas and Stokey show that (3.13) becomes

(3.15) v, = BfuTh(v, (W)dn, (u)

In the case that W is an i.i.d. variable with support U C R, such that
E(ul) < B, there continues to exist a stationary equilibrium in which v,
is comstant, while P, remains always proportional to the money supply (and
hence responds to the current realization of ut). This equilibrium is the
one presented by Lucas and Stokey.in their discussion of this example
(Example 2 in section 5 of their paper). According to them, the neutraiity of
money supply shocks in this example illustrates a general property of
equilibria of their model: "The current rate of money growth plays no direct
role in determining the current allocation -- only ekpectations about money
growth ... matter" (p.18).

But there may also exist s.r.e.e. in this example in which v, (and
hence ¢,, and ¢,.) respond to the realization of ut.17 We wish to determine
if any functions ¢ E(X) exist, for X an arbitrarily small neighborhood
of v*, such that v, = ¢(ut) and v, = é(-, ut) satisfy (3.15), and such
that ¢(ut).# v'  for some u®. If we write (3.15), as ¥(¢) -‘O, then, as
in section 2, the answer depends upon whether or not DW(G*) is a'linear
homeomorphism. This amounts to determining whether there exists a unique

¢ € E solving
(3.16) BDR(v") [ug(u,ut)dn(u) - $(ut) = H(ub)

for each % € E. If we let the linear operator A: E-> E be defined by

Bp(u") = Eu™)fu(u,u¥)dn(u) then (3.16) becomes
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(3.17) [BDh(V)E(U™DE - I]¢ =

But A has all of the properties of A used in the proof of Lemma 5, and so

a similiar proof shows that a unique solution ¢ € E exists for (3.17) if
(3.18) [BDh(vHE(u D] < 1

In this case, the inverse function theorem implies that the Lucas-Stokey
equilibrium is locally unique. On the other hand, if the inequality in (3.18)
is reversed, a continuum of nearby s.r.e.e. can be shown to exist, following
the proof of Theorem 1 for case (iii), and money supply shocks are non-neutral
in all of them except the Lucas-Stokey equilibrium. Stationary sunspot
equilibria also exist near the Lucas-Stokey equilibrium in this case.

This example provides an illustration of the w;y in which the analysis of
local uniqueness of s.r.e.e. can be important for questions of stabilization

policy. Let us suppose that preferences are such that the function

2 2
D,U[D,U + c(D} U - DZ,U)]

v(c) = " 2
DlU[DzU + c(Dle - Dzzu)]
where all derivatives are evaluated at (¢, y-c), satisfies the conditions:

(a) v 1is non-increasing in c¢ for all 0 < ¢ < y, and (b) 1lim |7(c)| < 1.
c-0

(Note that v(c) <1 for all 0 < c¢ < y 1if, for example, U is additively
separable, U = Ul(cl) + Uz(cz); while both (a) and (b) hold if, for example,
Ul and U2 are both constant absolute risk aversion util;ty functions.)
Under these assumptions, there is a unique steady state v'(E(uq))
corresponding to each average rate of grdwth of the money supply such that

ul < E(ul) < B!, where
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. - DéU(c,y-c)
u = limg " —mm——

c~0 DlU(c,y-c)
Furthermore, (a) implies that ﬂDh(vﬁ(E(uﬂ)))E(uﬂ) is a non-decreasing
function of E(uﬂ), while (b) implies that that quantity is always less than
1, and is greater than -1 for E(u™}) small enough.

It follows that (3.18) holds for all averages rates of money growth

higher than some critical value. Furthermore if (3.18) fails to hold for any

average rate of money growth such that E(u™') < 87!, non-neutral equilibria
and stationary sunspot equilibria necessarily exist near the steady state for
low rates of money growth, while a high enough rate of money growth is

"stabilizing" in that it rules out undesirable equilibrium fluctuations of
this sort.'® There is accordingly, in such a case, ; trade-off between
efficiency of the steady state allocation of resources and determinacy of
equilibrium. For if one were simply to compare the allocations of resources
in the Lucas-Stokey equilibria associated with alternative rates of money
growth, steady state expected utility of the representative agent would be
seen to be an increasing function of E(uq), and efficiency would require
making E(u!) as close as possible to B!, as in the prescription of
Friedman (1969). But for too low a rate of money growth, (3.18) ceases to

hold, and there exist fluctuating equilibria in addition to the Lucas-Stokey

equilibrium; and these unnecessary fluctuations reduce expected utility.

4. Comments on the Literature

In this section we comment upon some issues raised by previous treatments

of stationary sunspot equilibria, from the standpoint of our own results.
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A. "Decentralizability" of Sunspot Equilibria

For given (qu, Veorr Melgs Yoo nt), the set of X, € X such that (1.1)
holds comprises the set of temporary equilibria. Guesnerie (1986)
distinguishes between "informative" and "non-informative" sunspot equilibria,
according to whether the sunspot realization u, affects the equilibrium
value of X, by shifting the set of temporary equilibria (through its effects
upon v, and 75,), or merely by affecting the selection that is made from the
set (which may contain more than one point).lg In the latter ("non-
informative") case, sunspots have no effect upon the way any agents respond to
prices; they affect the equilibrium because the "auctioneer" pays attention to
them, not because agents do. In such a case, sunspot equilibria might be
regarded as "non-decentralizable", i.e., as an artigact of the Walrasian
formalism that would not have any analog in a more complete model of

competitive markets.?’

In the "informative" case, by contrast, agents’
expectations are affected by the sunspot variable; their decision rules are
affected, and so as a result are equilibrium prices and allocations. These
expectations are "rational", in that the sunspot variable really does (in
equilibrium) convey information about the distribution of future state
variables; but it does so because of the way future expectations and actions *
will in turn be conditioned upon the history of sunspot realizations, not
because u, conveys information about preferences, technology, or other
"fundamental" factors that affect the form of the function f.

It might appear that sunspots affect equilibrium in our examples in the
way Guesnerie characterizes as "non-informative", because of the connection
between existence of stationary sunspot equilibria and the existence of a

continuum of convergent deterministic equilibria established by Theorem 1.

Certainly the existence of such a continuum of deterministic equilibria
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implies the existence of sunspot equilibria simply because the sunspot
variable may select which equilibrium is to occur, and it might be thought
that this is all that occurs in our examples, and hence that such sunspot
equilibria are subject to a problem of “non-decentralizability".

In fact, however, the sunspot equilib}ia in our examples are generically
of the "informative" sort. Let us impose as an additional regularity

assumption the following.
(A.7) At each steady state x*, Det D3F # 0.

This assumption should hold generically for applications of interest, just as
in the case of (A.5) and (A.6); in the case of stationary overlapping
generations exchange economies, the regularity analysis of Kehoe and Levine
(1984) can be used to establish that (A.7) holds generically. This condition

in turn implies that
Det Dsf(x*, X, n; X, X, n,) = 0

for all n,, N, € II(U). The implicit function theorem then implies the

3 3 r L) 3 *
exlistence of a unique temporary equilibrium near x* for any (x v

ta1 Ye-rd Vy)

—~ ~k

sufficiently close to (x", X'; % ). Then in the case of sunspot equilibria
in which X, remains always close to x" (the only ca#e treated in this
paper), fluctuations in X, 1in response to sunspot restrictions must
represent movement of the equilibrium set rather than a change in the
selection of equilibrium from the set.

Guesnerie links "informativeness" of a sunspot equilibrium to statistical
properties of the sunspot variable. Specifically, he argues that a sunspot

equilibrium in which the endogenous state variables respond to an
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independently and identically distributed (i.i.d.) sunspot variable must be
"non-informative". However, this is because he restricts his attention to
sunspot equilibria in which X, depends only upon the current realization

u , in which case, if {u;} is i.i.d. and agents have rational expectations,

-
u, cannot affect agents’' expectations regarding the distribution of X,,,» and
so cannot affect the temporary equilibrium set. But the argument just given
in the case of our s.s.e. holds regardless of whether {u,} is i.i.d or
otherwise; for when xt' depends upon the entire history u®, u, can affect
the expected distribution of values for X,,, even if {ut) is i.i.d. ‘A
correct formulation of Guesnerie’s proposition would be: a sunspot equilibrium
in which (xt) is 1.1.4. must be "non-informative". This would cover the

cases discussed by Guesnerie, and is also true even for the more general class

of sunspot equilibria considered here.

B. Alternative Representations of Stationary Sunspot Equilibria

The formalism used to describe stationary sunspot equilibria in section 1
differs from that used by previous authors such as Azariadis, Guesnerie,
Grandmont, and Spear; our reasons for investing in so much new notation are
perhaps worthy of brief comment. For one thing, these authors all consider

only equilibrium conditions of the form

(4.1) £(x,, v,, 1) = 0

The methods that they develop for proving the existence of s.s.e. accordingly
cannot be applied to models in which any predetermined state variables exist;:
f&r example, to a model with capital accumulation, or even to overlapping

generations exchange economieé with non-additively separable preferences (and

more than one good per period), or with more than one agent type per
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generation. The desire to overcome this limitation is one of the main reasons
for introduction of a new technique here.

The previous authors also consider only s.s.e. that can be represented by
a function X, = u(ut), where v € El, i.e., in which the endogenous variables
depend only upon the current sunspot state. We instead allow X, to depend
upon the entire history of sunspot realizations, for several reasons. The
first is simply that a more general class of equilibria is better; this is
particularly true insofar as our local uniqueness result (i.e., local
nonexistence of s.s.e.) is concerned. However, the cogency of this
consideration is greatly reduced if -- as is generally the approach of the
previous authors -- one considers the entire set 6f s.s.e. corresponding to
all different possible sunspot processes, rather than only a single
specification of the stochastic process {ut).. For all of the s.s.e. that can
be represented using our formalism can also be represented as involving
dependence only upon the current sunspot realization, if one defines the
"current realization" as an element of U” (rather than U), and the sunspot

process as a Markov process on U”, defined b
p y

.Prob(slut) = w(A]u®)

where S € =° and A is the maximal element of ¥ such that wu®

€S
for all v € A.

The more important drawback of limiting oneself to dependence upon the
current sunspot realization is that it has led the previous authors to
emphasize statistical properties of the sunspot variable among the necessary
conditions for the existence of s.s.e. For example, as noted above, Guesnerie

(1986) states that "informative" s.s.e. are not possible in the case of an

1.i.d. sunspot process. Azariadis (1981) draws attention to the need for
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negative serial correlation of the sunspot process in order for s.s.e. of the
kind he considers to exist for his model. Our result, by contrast, shows that
statistical properties of the process {ut} are completely irrelevant to the
question of whether or not "informative" s.s.e. exist near a given steady
state -- only the derivatives of F évaluated at the steady state matter.

Our result indicates that whether or not expectations-driven instability is
possible depends upon the economic "fundamentals", not upon the type of
extrinsic random variable that happens to be observed by agents.

The previous authors»also have assumed that U 1is a finite set (in most
of the papers, there are only two sunspot states). This limitation has a more
important effect upon the kind of results obtained than one might expect. For
in this case, the restriction of attention to s.s.e, in which endogenous
variables depend only upon the current sunspot state becomes a severe
restriction upon the type of equilibria that can be considered. For even when
U 1is a finite set, U” has the cardinality of the continuum, and so the
reinterpretation of an equilibrium in which X, depends upon the entire

history u® as one in which X, depends only upon u_ would require use of a

t
sunspot variable taking values in an uncountably infinite set.

One consequence of restriction of attention to finite-state s.s.e. is
that the previous authors find (in the generic case) only a finite number of
locally isolated equilibria for any given specification of the sunspot
process, although they are able to demonstrate the existence of continua of
s.s.e. for a given model by varying the statistical properties of the sunspot
process. The fact that equilibria are locally isolated means, in turn, that
s.s.e. are not found near a steady state in the generic case; local methods

can be used to demonstrate the existence of s.s.e. only in the case of sunspot

variables with very special statistical properties. (See, e.g., the treatment
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of s.s.e. near a steady state in Guesnerie (1986), sec. 5.) And even in those
special cases, the conditions under which finite-state s.s.e. exist near a
steady state are more restrictive than those under which general s.s.e. exist
near it. For example, Guesnerie finds (in the case of the class of models
(4.1), for which M(x*) necessarily has n zero eigenvalues) that two-state
S.s.e. can exist arbitrarily close to a steady state only if M(x") has a
non-zero real eigenvalue with absolute value less than one. Yet Theorem 1
above, which applies to Guesneriefs class of models, implies that s.s.e. exist
arbitrarily close to a steady state in such a model whenever M(x") hé; any
non-zero eigenvalue with modulus less than one -- i.e., a complex pair with
modulus less than one suffices.

It is easily shown that Guesnerie's overly rese;ictive result is due to

his consideration of only finite-state equilibria. For consider a linear

rational expectations model

(4.2) E Ax

t.xt.+1 = t

where X, 1s an n-vector and A an nxn matrix. (This is the class of
linear models that can arise from linearization near a steady state of a model
in the class considered by Guesnerie.) It can be shown that a two-state
S.S.e. can exist for such a model only if A has a real eigenvalue with
absolute value less than one. For suppose that there exists such an
equilibrium. Let xj, j = 1,2, be the vectors of endogenous variables in
each of the t&o sunspot states, and let LI > 0 denote the probability of
transition from state i state js» for 1i,j =1,2. If we assume that 1 is not
a eigenvalue of A (this is implied by (A.5) of section 1), then x" =0 is

the unique deterministic steady state, and so if xJ = 0 for any j, one has a

s.s.e. For a two-state equilibrium, (4.2) becomes
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i _ 2 3
(4.3) ax' = 2o ox

for 1i=1,2. This in turn implies

1

2 1 2
A(1r21x +m X ) (1r21x + m X )

Since 1 is not an eigenvalue of A, it follows that one must have

» 1 2
(4.4) T X +m X = 0

One can use (4.4) to eliminate x? from (4.3), yielding

2 2
AxX® = ("22 wlz)x

Then since x> = 0 in the case of a sunspot equilibrium (for (4.4) implies

= 0 as well), T, - 7, must be an eigenvalue of A.

that if %% = 0, x!

This result explains both why Guesnerie finds that s.s.e. can exist near a
steady state only for certain transition probabilities, and why A must have

<1, so

a real eigenvalue. Futhermore, O < M, <1 implies -1< LIS

the real eigenvalue must have absolute value less than one.

On the other hand, a linear model of the form (4.2) can have stationary
sunspot equilibria eveh if the only eigenvalues of A 1less than one in
modulus are a complex pair, if one allows X, to depend upon the complete
history of sunspot realizations, or a continuum of possible sunspot states.
For suppose that A has a pair of eigenvalues petw, where 0 <p< 1,

0 < 8§ <n. Then there must exist two linearly independent vectors u, v € R

such that

Au p cosf p sind u

Av -p sing p cosé v
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Now suppose that agents observe a two-state sunspot process, with transition
probabilities T >0, i,j = 1,2. Let a,b be any two real numbers such that
at least one of them is non-zero, and let e = au + bv. Then one possible
stationary sunspot equilibrium is

plcos jé plsin i8]

]

X, o= 2 __ [c_d ] . .
¢ =0 e -p’sin j8 . plcos jo |
where

[ T, [a b] if u =1, u_ =1
My, [a b] it u = 1, u,_, = 2

le, 4,1 = 1 .
-7, [a b] if u =2, u =1
( 7,, [a Db] if u, =2, u_, =2 '

(In fact, by varying a,b we obtain a two-parameter family of s.s.e.) Thus
it is the consideration of a restricted class of s.s.e. that accounts for the

difference between Guesnerie'’s necessary conditions and our own.

€. Sunspot Equilibria and Deterministic Cycles

The prévious literature gives a great deal of attention to thé existence
of deterministic cycles among the perfect foresight equilibria of a given
stationary economic model as a necessary and sufficient condition for the
existence of stationary sunspot equilibria. Azariadis and Guesnerie (1984)
establish, in the case of a very special class of overlapping generations
economies, that the existence of two-period cycles is a necessary and
sufficient condition for the existence of a two-state s.s.e. (for gome two-

state sunspot process). Guesnerie (1986) establishes that the existence of
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two-period cycles is a sufficient condition for the existence of s.s.e. in a
broader class of models (essentially those of the form (4.1)), while Grandmont
(1986) establishes that it is both necessary and sufficient for the existence
of s.s.e. within a much broader class, in the case of the class of quels
considered by Azariadis and Guesnerie.

The reason that the existence of a two-period cycle is sufficient for the
existence of s.s.e. in a model of the form (4.1) is simple.21 In the case of

a two-state s.s.e., (4.1) may be written
Sl L2, -
F(x™, x%; "11) 0
=,.2 1, -
F(x®, x°; ﬂzz) 0

where F(x, ¥; p) denotes the value of f£f(x,v,n) ;h the case that (v,n)
is a measure assigning probability p to the value x and (l-p) to the
value y. (Thus the derivatives of F with respeét to (x, y) exist and are
continuous functions of (x, y; p).) A two-period cycle is an xf, " e X

. * wn

such that x = x and F(x*, x**, X , x*) - F(x*', x*, X, x ) = 0. But

if such an (x*,x**) exist, then

*N

Fx', ;00 = 0

e *

Fx', x"; 0) = 0
Let us suppose furthermore that

Dl‘f(x*,x**;O) DZF(x*,x**;O)
Det —~ 2 ] -— xW * # o
DZF(x ,X ;0) DlF(x ,X ;0)

as can be shown to be generically the case. Then the implicit function

. . R . . 1 2
theorem implies the existence of continuous functions x (el,ez), X (el,ez),
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e, 2 0, such that x%(0,0) = x", x%(0,0) = 7. and

defined for all small enough €€,

that for all small enough €,,€, = 0,

F(x'(ey,e,), ¥¥(e, 605 ¢) = 0

F(x*(e ,6,), xM ey, 600 €,) = 0

That is, (xl(el,ez), xz(el,ez)) is a two-state s.s.e. in the case of a
sunspot variable with transition probabilities given by LT € 12 L

Ty = l-ez, Ty, = €,

This result may appear puzzling given our Theorem 1. For on the one
hand, it would appear that our method of proof should extend to the analysis
of s.r.e.e. near deterministic cycles (as well as steady states), while on the
other, the argument shows that for a certain class ef models there must be
S.s.e. mnear any two-period cycle, regardless of whether there exists a
continuum of p.f.e. converging to the cycle. The contradiction, however, is
only apparent. For the two-state s.s.e. just exhibited are not "near" the
two-period cycle in the sense of the topology introduced in section 1. In all

periods (for e '€,y small enough), x is close to either x  or x ;  but

1 t

X, 1s not almost always close to the valueAit would take in a two-period
cycle, since it is not true in any of the s.s.e. just constructed that x, is
always close to x" in odd periods and close to x in even periods (or the
reverse). One can show that indeterminacy of p.f.e. at the two-period cycle
1ls necessary and sufficient for the existence of periodic s.s.e. near the two-
period cycle (i.e., equilibria in which X, = ¢1(ut) for t odd, X, -‘¢2(ut)
for t even, where ¢1 is near ﬁ* and ¢2 is near ﬁ** in the L_
norm topology).

The fact that our formalism is not well-suited to a demonstration of the

connection between s.s.e. and deterministic cycles explored by previous
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authors does not seem an important drawback, for the connection between
indeterminacy of p.f.e. and the existence of s.s.e. developed in section 2
seems to be a much more robust result. The main advantage of the approach via
deterministic cycles as a way of characterizing the types of stationary models
in which s.s.e. exist is that, in the simple class of models considered by
Azariadis and Guesnerie (1984), cycles are not just sufficient but necessary
for the global existence of s.s.e., whereas our own necessary condition holds

2 And a global necessary condition is, of course, a very useful

only locallx.2

result, particularly for demonstrating that a proposed stabilizatién policy

can in facﬁ prevent the existence of expectations-driven fluctuations.

However, the result that cycles are necessary in order for s.s.e. to exist

holds only for a very special class of models. Even within the class of
stationary overlapping generations exchange economies with a single agent type

per generation and a single good per period, the result holds only if

preferences satisfy certain boundary conditions assumed by Azariadis and
Guesnerie. For example, if agents’ utility functions are given by

u(cl,cz) =c + (1_7)-lc;w, and their endowments are e > 1 in the first

period of life and zero in the second, one can show that perfect foresight
equilibrium-is indeterminate near the monetary steady state if vy > 2. Hence
Theorem 1 implies that s.s.e exist in that case (and, indeed, two-state s.s.e.
of the kind considered by Azariadis and Guesnerie exist in that case). But

one can also show that no deterministic cycles exist for this model when v > 2.
More importantly, the necessary condition ceases to be valid if the model is
extended in even small respects. For example, if one adds a government

deficit financed by money creation, as in Farmer and Woodford (1984), then

S.s.e.. can exist even for preferences satisfying "gross substitutability", but

no deterministic cycles exist in that case.
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Furthermore, even the sufficient condition seems not to be valid in the
case of of a broader class of stationary models than is considered by

Guesnerie. For example, consider equilibrium conditions of the form

(4.5) | Eg(x,_,, %X, X)) = 0

1

where X, 1s a real-valued scalar quantity and g: R+ R is C*. (E.g.,

(3.12) and (3.14) above are of this form.) A two-period cycle exists if there

Heke ek

exist x*, X
one still use theaimplicit function theorem to demonstrate the existencg of
"nearby" finite state s.s.e. as above? Certainly the existence of a two-
period cycle does not imply the existence of "nearby" two-state s.s.e, as in
Guesnerie’s case, for a two-state s.s.e. is impossihle for a (generic) model
with a predetermined state variable. The simplest type of s.s.e. that is

possible for an open set of models of the form (4.5) is one in which X,

always takes one of two values -- X' or x° -- but in which the probability
that X,,, Wwill equal x! depends upon both x, and x .. (The sunspot
variable is a four-state Markov process in this case.) Let =« _ denote the

ijk

probability that Ry = x* if X, = x? and X, = x'; then in the case of an

equilibrium of this kind, (4.5) becomes
(4.6) Ei=1 nijkg(xi, xj, xk) = 0

for i,j = 1,2. Suppose that a two-period cycle (x°, x™) exists; does this

*

imply (as in the previous case) that a solution to (4.6) exists with x' = x

x% = x™, if the transition probabilities ik take on extreme values? If

so, the implicit function theorem would again imply the existence of true

s.s.e. (i.e., solutions to (4.6) with ik >0 for all i, j, k). But this

need not be the case. If Mgy = Ty = 1, Moy = Ty = 0, (4.6) holds for
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i=1, j=2, and for i=2, j=1. But it is not possible to choose transition

probabilities so that x! = x*, x? = x™ satisfies (4.6) in the other cases as
well, unless

(4.7a) g(x*, x*, x*) . g(x*, x*, x**) < 0

(4.7b) g(x™", X", XN gx™, ™, ™ <o

Thus four-state s.s.e. exist "near" a two-period cycle (in the same sense as
in Guesnerie’s result) if and only if equations (4.7a-b) hold at the two-
period cycle. There is no reason why these conditions must hold at all two-
period cycles of stationary economic models, and hence it would appear that
the existence of a two-period cycle is not sufficient for the existence of

stationary sunspot equilibria in models more general than (4.1).
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FOOTNOTES

The general result presented here was first conjectured in Woodford
(1984).
2 See, e.g., Kehoe and Levine (1984, 1985), Muller and Woodford (1985),
Woodford (1986b), and Kehoe et al. (1986).
For further discussion see Woodford (1986b, 1986d).
Such equilibria may be taken as formal representations of the Keynesian
idea that entrepreneurial "animal spirits" can be an independent causal
factor, in addition to economic "fundamentals" such as technology, consumer
preferences, and the like. This interpretation originates with Cass and Shell
(1980) . |
3 See, e.g., Lucas (1977). Stationary sunspot equilibria are also of
particular interest as they may represent limit states of disequilibrium
learning processes (see Woodford (1986c)), while it is more difficult to
imagine how the degree of coordination of beliefs assumed in the case of a
non-stationary sunspot equilibrium could come about.
°  But see Theorem 2 in section 2, for the case of exogenous shocks that
affect the equilibrium conditions directly.
’ See, e.g., Kehoe and Levine (1985).
Again, see Kehoe and Levine (1984, 1985).
This can be proved, for example, using the implicit function theorem for
Banach spaces stated in section 2. Kehoe and Levine derive the proposition,
instead, from the stable manifold theorem for discrete time dynamical systems.

¥ We re-derive the result here, however, in order to be precise about the
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regularity conditions (such as (A.6)) that must be assumed in order for the
result to hold.

1 See, e.g., the discussion of indeterminate response to fiscal policy
shocks in Farmer and Woodford (1984). Spear, Srivastava and Woodford (1986)
show that coninua of non-sunspot s.r.e.e. may exist in stationary overlapping
generations exchange economies (like those discussed in section 3.A below)
with stochastic endowments. Their result, based upon an extension of the
techique of Farmer and Woodford, applies to small endowment shocks in
economies with a steady state (in the absence of endowment shocks) at which
dim W = 2n, i.e., all eigenvalues of M(x*) have modulus less than one. The
present Theorem 2 shows that dim W > n suffices for a continuum of such
equilibria to exist in the case of small enough enddwment shocks.

2 Prom this view of the proper significance of linear rational expectations
models, the degree of attention in the literature on linear models given to
characterization of gxplosive as well as bounded solutions to such models

would appear to be misplaced, as explosive "solutions" have no counterpart in

the local analysis of nonlinear models.

13 h

Since we only need 2z to be defined for prices in an arbitrarily small
neighborhood of p* and y in an arbitrarily small neighborhood of 1", the
implicit function theorem suffices to prove this. We need not discuss here
boundary conditions on u® that would guarantee the existence of such a
function on a larger set.

14 Since in this case dim W = 2n, i.e., all eigenvalues of M have modulus

less than one, s.s.e. could be shown to exist near the steady state using the
technique of Farmer and Woodford (1984). Extensions of that technique

directly applicable to a case like Reichlin’s are illustrated by Woodford
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(1986a) and Spear, Srivastava and Woodford (1986). These methods do not,b
however, establish that dim W= 2 1is also necessary for the existence of
s.s.e. near the steady state, as does Theorem 1.

' Lucas and Stokey impose a number of additional restrictions upon the
function U in order to insure that h(v) is uniquely defined for all v;
these additional restrictions are not necessary, however, for h(v) to be
defined locally or for (3.13) to be necessary and sufficient for an
equilibrium in a neighborhood of a steady state.

16 In the case of an additively separable function U, the equilibrium
conditions (3.14) are in fact formally analogous to those of the Azariadis
(1981) overlapping generations model, so that similar conclusions about the
kind of preferences required in order for s.e.e. to.exist apply here. For
further discussion see Woodford (1986b), sec. 2.A.

17 A result of this kind was first demonstrated, .in the case of money supply
variations through interest payments on existing money balances and an
overlapping generations economy, by Farmer and Woodford (1984).

18 The techniques introduced here, of course, suffer only to show that such
a monetary policy rules out s.s.e. involving onnly small fluctuations around
the steady state. For a global demonstration that a sufficiently high rate of
money growth rules out s.s.e. in a related model, see Grandmont (1986).

' This is not Guesnerie'’s exact definition:; he calls a sunspot equilibrium
"informative" if the sunspot realization u,  conveys information about the

u

probabilities of future realizations (u .). His intention, however,

t+1’ Tp+2?

seems to have been the sort of discrimination described here. The definition
he gives is plainly only of interest when the endogenous state variables

depend only upon the current sunspot state u, ; see further discussion below.
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20 I am indebted to Jean-Michael Grandmont for suggesting this

interpretation, in correspondence.

2L The following simple argument first appeared in Woodford (1984).

22 It is known that s.s.e. may exist even in a model in which the unique
steady state does not have a continuum of p.f.e. converging to it. For
example, in the overlapping generations model of Azariadis; there may exist
two-period cycles even when the unique.steady state is of that sort, and in
such a case, the result of Azariadis and Guesnerie (1984) implies that s.s.e.

exist, even though our Theorem 1 implies that none of them are near the steady

state. See Azariadis and Guesnerie for an example.
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