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1. Introduction

This paper is a theoretical study Af the effects of monetary
disturbances in an economy where firms set goods prices and consumers search
over firms for the lowest priced goods. Each period, in this economy, cash
transfers from the monetary authority determine consumers’ ability to spend.
The probability distribution of this transfer is common knowledge, but the
realization is not known to sellers until trading is concluded. Exchange
takes place sequentially within each period: séllers offer some goods for
sale at prices they choose; consumers search over these priced goods, buying
or not as they choose; sellers observe the sales that occur--their own, and
others’--and on the basis of this information price additional goods, and so
on. Trading ends when no consumer wishes to make additional purchases at
the prices sellers post. After trading is concluded in a period, sellers’
proceeds are recycled back to consumers, a new cash transfer is
probabilistically determined, and the process continues, ad infinitum,

‘The equilibrium of this model exhibits a non-neutrality of money that
is similar to many earlier models, one that we--in common with many earlier
writers--believe may be an important feature of reality. Unanticipated
changes in nominal spending flows induce less-than-proportional responses in
nominal transaction prices, and changes in the same direction in real
output. Since we take the economy’s endowment--or its productive capacity--
as fixed, periods of lower-than-average nominal spending are periods of
excess capacity, of a kind that could not occur inIWalrasian trading. Yet
nothing prevents any seller from cutting his prices at any stage during the
course of trading. Though it is possible to interpret the equilibrium of

the model as one in which producers set prices in advance, neither nominal



price commitments nor costs to changing nominal prices are assumed in the
definition of an equilibrium.

The information structure of the game we study is, of course, crucial
to the results we obtain, so the model has a surface resemblance to the
model of Lucas (1972). The two models obviously have a similar motivation,
and in both the inability of sellers to know the volume of spending that
will occur in a period is central to the real effects of monetary transfers.
Beyonﬁ this similarity, the two models have little in common. In Lucas
(1972), sellers obtain information from prices that are set by a Walrasian
mechanism; in this paper, prices are choice variables for sellers. In Lucas
(1972), sellers in any one market are denied access to relevant information
about the state of demand in other markets; in this paper, there is but one
market, and every seller at every point in time has full information about
everything that has occurred up to that time.

A much closer counterpart to the present paper is provided by Eden
(1994). As is ours, Eden’'s model is a dynamic adaptation of a market game
introduced by Prescott (1975) and Butters (1977), in which buyers search
over goods that have been priced in advance by sellers. Eden obtains a
Prescott-Butters-like equilibrium, as we do, in a game that does not require
this element of advance commitmentl, and then embeds this one-period game in
an interteﬁporal model of monetary exchange, as we do also. In the game
studied by Eden, trading unfolds in a sequence of Walrasian markets, and
non-price rationing plays no role. In ours, producer‘price-setting and
rationing are both central features. It appears that the equilibrium
obtained for a specific trading game by Prescott and Butters can be
interpreted as describing the outcomes of a remarkable variety of trading

games, in models that make very different assumptions on informationm,



commitment, and the process of price setting. This makes it a useful
abstract setting for trying to gain a deéber understanding of the eléments
that give rise to price rigidity and monetary non-neutrality.

Sections 2 and 3 of this paper define and analyze temporary
equilibrium in a one-shot game of consumer search and producer pricing.
This allows us to present the non-Walrasian market game while abstracting
~ from dynamic complications. Section 4 then embeds the temporary equilibrium
in a complete intertemporal monetary equilibrium, and proves the existence
of a stationary equilibrium in the case of monetary shocks that are
independent across periods. Section 5 discusses further the interpretation

of our results, and concludes the paper.

2. A Pricing Game with Sequential Purchases

In this section we describe in some detail the kind of market game
with sequential purchases that we have in mind. Since our theory centers on
the progressive revelation of information through the process of trading, it
is important to be explicit about the exact sequence of events. We describe
a simple one-shot game, an adaptation of the games introduced by Prescott
(1975) and Butters (1977).

There are two types of players, producers and consumers. We assume a
continuum of length one for both player types. Each consumer i begins

with ¢ dollars, where # is a random variable with the probability

measure ¢ on an interval 6 = [1,31 c R}+. He seeks to maximize U(c) +
as, where c 1is total units of the good purchased and s 1is unspent cash

remaining at the end of the game. We assume that U is continuously



differentiable, strictly increasing, and strictly concave. The positive
parameter a, the utility assigned to unspent cash, will be motivated in the
multiperiod model developed in Section 4.

Each producer j begins with y units of a single, non-storable
good. We may think of this as y wunits of inventory that can be sold, or
as a capacity to produce up to y units. Producers know the distribution
® of consumer cash holdings, but they do not observe the realization 4.
Each producer’s.objective is to maximize the eipected.revenues from all
units sold; unsold inventories (or unused capacity) have no value to
producers.

We describe a game with a continuum of stages, taking place within a
single period of real time, in which buyers acquire goods from sellers in
exchange for cash at each stage. At each stage in this game, sellers offer
goods for sale at prices they select. Consumers survey these priced goods,
and buy from those that are priced lowest. Consumers competing for given
units ;re rationed symmetrically. As goods are sold, producers are free to
revise their offers for the current and subsequent stages without
restriction. When no goods are offered for sale, or when no consumer wishes
to buy, the game ends. All seller inventories remain unsold, and all buyer
cash holdings remain unspent. We index the stages of this game
continuously, by the cumulative number of units sold, z.

Let c(d), c:8 » [0,y], denote the stage at which the game ends

(aggregate quantity sold), which will in general depend on the shock 4.

Let p(z), p:[0,y] - E; - l!.+ U {=}, be a function that describes the lowest
price at which further goods are offered for sale at each stage z (that is,

after an aggregate quantity z has already been sold). Here p(z) = «



means that no further goods are offered for sale at stage z. We require
that p(y) = «, but our notation allows for the possibility that producers
do not offer to sell even when unsold inventories exist. Since producers,
who set prices, receive no information about ¢ during the play beyond that
contained in the fact that the game has not yet ended (that c(8) = z) this
function p will not depend on §. All consumers and producers behave
atomistically, which is to say they take these functions z and p as
given. We will define a temporary equilibrium as a pair (c,p) that is
consistent with optimal behavior of both buyers and sellefs.

We require that p(z) be right-continuous, to capture the idea that
some goods must be placed on sale at a price in order for it to count as a
price at which goods are offered for sale.2 Because consumers will buy only
the lowest priced goods at each stage (if they buy at all), p(z) also
indicates the price at which sales occur at stage z. Thus given a price

function p(z), we can define

Z
(2.1) R(z) = J.p(u)du
0

as the total spending by buyers (revenue to sellers) when =z goods have
been sold. (The integral is necessarily well-defined for all 0 < z <y,
though it may be infinite for large values of. z.) Since p 1is taken as
given by all players, so is R.

Note that R(z) 1is non-decreasing, with R(0) = 0, and continuous for

all z<z= min(z'| p(z’') = »). If no goods are ever sold at a price of
zero--as will we show must be the case in equilibrium--then R is strictly

increasing. In this case, we can invert R to express real output z as



an increasing, continuous function of total spending #. Hence if variation
in @ causes variation in money spending, it must cause variation in real
output; it cannot simply change transactions prices while leaving the
quantity traded unaffected.

Buyers begin in identical situations, and all seek the lowest priced
goods at each stage. We assume that these goods are rationed equally, so
all buyers will acquire goods and deplete their cash at identical rates.
Hence every buyer at stage z has acquired "z units of the good and has
§ - R(z) wunits of cash remaining. A buyer will cease to place orders only
if his marginal utility of further consumption has fallen below the shadow
value of the'purchase price if added to end-of-period unspent cash (i.e., if
U'(z) > ap(z));3 or he has no remaining cash with which to make further
purchases (i.e., if R(z) = § and p(z) > 0). The latter condition may
equivalently be described as a stage z such that R(z’) > 4 for all =z’ >
z. Thus the game ends at stage z if one of the above conditions holds at
z (or if one holds for all 2z’ in a right neighborhood of z), while

neither holds for any z' < z. Hence
c(d) = inf(z | U'(2) < ap(z), or R(z) > 4}.
Given the price function p, let

(2.2) = inf{z | p(z) > a'lu'(z)).

(o]

Note that c < z < y. It then follows from the discussion above that



(2.3) c(8) - min(max R"1(8),c]

where max R'l(ﬂ) denotes the maximal element in the set (z I R(z) = §}).

(When the latter set is empty, we may define max R-l(ﬂ) - z. Note that the
exact value does not matter, as c(f) = ; in any such case.) This
consequence of buyer optimization shows how real output varies with the
realization of 4. Below we establish that R 1is strictly increasing, so

1

that R () is a single-valued function, continuous and monotonically

increasing for all 4 =< R(;). It then follows from (2.3) that c(4) 1is a
continuous function, monotonically increasing for all 4 =< ¢ = R(c), and

constant thereafter.

A

It will also be useful to define the function p(4) as:

A 0 if 4 =
(2.4) p(d) = 1

x

<@ > D>

U'(ec) 1if 0 >

Here ;(0) denotes the highest price at which buyers would be wiiling to
buy more goods in the last stage of the game, if any were offered at a price
that low. If 4 =< ;, all cash is spent, and buyers are unable to buy more
at any positive price. If 8¢ > ;, buyers continue to hold cash after
purchasing.’ ;, and would be willing to buy more at any price not in excess
of a'lU'(;). Note that (2.2)-(2.4) imply that ;(6) < p(e(9)) for all 4;
otherwise, sales would not end at c(4). .

This describes the opﬁimal behavior of buyers, given the function

p(z). We turn next to the sellers’' problem. Each individual producer takes

as given the functions p(z), c¢(§), and p(d) determined by the ensemble



of strategies of all of the other players. At each stage 2z, each producer

must post a price p € §+ at which he is willing to sell some of his
endowment. Producers are free to change their posted prices continuously,
as sales by themselves or others occur. A seller’s price at any stage may
depend upon aggregate sales 2z to that point and upon the units zj that
he has already sold. However, it cannot depend independently upon 4, for
the seller’s information about 6§ 1s always the same when stage 2z is
reached. Nor need we allow for any dependence upon the details of the
sequence of transactions that have occurred in the stages prior to =z, for
these are always the same when stage 2z 1is reached. We allow for

dependence upon z in order to reflect the possibility that a producer may

J
choose to sell his entire inventory at a given stage 2z, but not to offer
all of it for sale at a single price. (For example, he may first offer y/2
for sale at a price Py» and then his remaining y/2 for sale at a price
Py > Py all of which units are sold before aggregate sales exceed z. We
represent this by letting his price be Py when zj < y/2, and Py when

y/2 =< zj <y, all for a single value of z.) We also use the dependence

upon zj to express the constraint that a producer must post p = o if zj

- y. |
Units priced at p(z) or lower will be sold at stage z (to be
precise, if any sales in excess of z occuf); units priced above this level
will not. Thus it does not matter what price a seller posts at stage z if
it exceeds p(z); we may as well say that he chooses not to sell at that

stage. Hence we can describe a seller’s strategy by two functions, as

follows.
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Let Fj(zj) denote the aggregate guantity that will have been sold
before the sales by j exceed zj units. (More precisely, Fj(zj) is the
supremum of values z <y such that j has sold zj or less by stage
z.) Fj maps [0,y] into itself, and must be right-continuous and non-
decreasing, with Fj(y) -y.

Second, let Pj(zj) be tﬁe price at which j will accept orders when
he has already sold zj units. Note that j might vary his price over a
z-interval, but not obtain any orders and hence not increase his own sales
zj. But since no transactions occur at these prices, we do not need to
specify what j's price offers are in such an interval. The price pj(zj)
is the price at which j actually fills his next order. Dependence of j's
prices upon z need not be expressed, in the cases of prices at which j

actually sells, because the function Fj already indicates the stage =z

corresponding to any quantity sold by j. The function pj maps [0,y] into

§+, with pj(zj) = o, We also require pj to be right-continuous. This
means that a producer cannot post a price if he is not willing to sell a
positive fraction of his endowment at prices in a neighborhood of that
price, although we do allow the producer to vary the price continuously as
he receives orders.

A palr of functions F

]

represents an admissable strategy for j if in addition

and pj satisfying the above requirements

Pj(zj) = p(Fj(zj))

for all 0 = zj < y. That is to say, at any stage at which j 1is in fact

making sales, his price must not exceed the lowest price offered by other
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sellers. Note that our notation allows a producer to choose never to sell
more than yj <y wunits. This can be represented by functions (Fj’pj)
such that Fj(zj) = vy and pj(zj) = o for all zj > yj.

This definition of the strategy space for seller j allows strategies
of many kinds. For example, j may choose to accept orders in exact
proportion to the aggregate quantity sold (so that zj -z at all times),
and always to sell at the same price at which other transactions occur at
that stage. Such a strategy is represented by the functions Fj(zj) -~ zj,
pj(zj)v- p(zj) for all zj; in a symmetric equilibrium, ail sellers choose
strategies of this kind.

As another example, a seller may simply attach a price tag to each
unit of inventory before trading begins, and offer all of the units for
sale, never changing the price tags as trading proceeds. We can model such
advance pricing as the choice of a measure Kj on the Borel sets of R
that must satisfy xj(R¥) < y, where wJ(A) is the number of units with

prices in a set A. Such a strategy is represented by the functions

(Fj’pj) such that
pj(zj) = inf(p I wj([O,p]) >z,) ,

J

and
Fj(zj) = inf(z | p(z) = pj(zj))

for every 0 =< zj < y. This is the kind of strategy that sellers must

choose in the models of Prescott and Butters.
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Given a strategy (Fj’pj)’ producer j's sales in the case of state

§ are given by
(2.5) 25(8) = supl(z; | Fy(z;) < c(9), or
F&(zj) = ¢c(8) and pj(zj) < p(9))

This indicates that sales occur beyond the point zj if either a stage é >
F&(zj) is reached, or if the stage z = Fj(zj) is reached and pj(zj) <
;(0). In the latter case, sales beyond zj occur even though aggregate
sales equal only Fj(zj), because the price pj(zj) is low enough that
buyers are willing to buy more. Note that j's sales depend upon the

functions c(#) and p(d), but these are also taken as given in j’'s

decision problem. Sales zj(a) result in revenues of

z.(0)
J
(2.6) r.(8) = f p;(y)dy
J o J

Then producer j’s decision problem is to choose functions F. and pj to

j

maximize expected revenues

(2.7) _ Irj(o)dé(O)

given knowledge of the distribution &.
We require that the aggregate supply price function p(z) and the

ensemble of individual strategies (F (zj),pj(zj)) be consistent, in the

J

following sense. For each j, the function F, can be inverted to obtain a

]
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function fj(z) indicating the amount that j has sold by the time that

stage z has been reached:
fj(z) - sup(zjl Fj(zj) < z)

Note that fj is a right-continuous, noﬁ-decreasing function, taking [0,y]
into itself. Then we say that p 1is consistent with (Fj,pj) if the
inverse functions (fj) vary measurably with j, so that the integral

Ifj(z)dj is well-defined for all 0 < z < y;4 if

(2.8) Ifj(z)dj = z for all 0 <2z =<y;
and if
(2.9) : pj(zj) - p(F&(zj)) for all 0 =< zj <y.

We can then define an equilibrium for the game as follows:
Definition A temporary equilibrium is a number ¢ and a collection of
functions (p(z),c(4),R(z),p(d)), such that for some ensemble of producer
strategiesf(Fj,pj)

(1) given p, R is defined by (2.1);

(i1i) given p and R, c is defined by (2.2), c(8) by (2.3), and
by (2.4);
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(iii) the aggregate supply price function p is consistent with the
strategies (Fj,pj); and
(iv) for each i, (F&,pj) solves the producer’s problemn, given

P, ¢, and p.

In the next section we will prove that a unique temporary equilibrium

exists, and characterize it.

3, Existence of a Temporary Equilibrium

Optimal consumer behavior has been characterized in equations (2.2)
and (2.3) in the last section. We begin this section by further
characterizing optimal pricing behavior by a producer. Let us consider the
expected revenue p(q,z) from from the sale of a particular unit of
producér J's inventory, if this unit is to be sold only after stage 2z is
reached, and if the price that j intends to charge in this event is q.
(This is a feasible plan if and only if q = ﬁ(z).) The unit is sold if
either a stage beyond 2z 1is reached (c(8) > z), or if c(f) = z and ;(9)

= q. Expected revenue from this unit of inventory is thus
p(q,z) = q Prob{ec(d) > z} + q Prob{c(4) = z, p(4) = q)

It follows from (2.3)-(2.4) that p(d) >0 only if 6 > 4, in which

A

case c(§) = c. Hgnce for all z < ¢,

p(q,2z) = q Prob(c(d) > z)



14
It also follows from (2.3) that Prob{c(d) > c) = 0, and so from (2.4) that

R q Prob(d > 8) if q=a lU'(e)

p(q,c) = A
0 if q> a1 (e)

Finally, it similarly follows from (2.3) that

p(q,z) = O
for all ¢ < z <y (if this interval is non-empty).
Now given a choice of 2z (the stage at which the unit is to be sold),
let us consider how expected revenues vary with q. We observe that in each
of the three cases above p(q,z) attains a maximum on the interval 0 < q =

p(z). The maximum value is given by

A(z) = max p(q,2)
0=q=<p(z)

p(z) Prob(c(d) > z) if 0<z<c¢
(3.1) - { alur(c)Probis > 4y  if z =c
0 if c<z=y

The set of maximizing prices is given by

Q(z) = arg max p(q,2)
0=q=p(z)
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{p(z)) if 0<=z<e¢
- (a'lu'(c)) if z=c¢
{0,p(2)] if e<z=xy

A A
Note that A(z) 1is right-continuous on [0,c) and constant on (c,y];
hence A(z) 1is a measurable function on {0,y]. Also note that it is
possible to make a right-continuous selection from the correspondence Q;

for example, one might choose the function
(3.2) q(z) = min(p(z), a 1U’(c))

We now use the functions A and q and the correspondence Q to
describe the optimal strategy for producer j, given the functions p(z),
c(8), and ;(0). We first consider the optimal choice of the function pj,
given a choice of the function Fj' Recall that the only constraint on pj

is that it be right-continuous and satisfy 0 =< pj(zj) < p(Fj(zj)) for each

(2, - F. Z,

satisfies these requirements, for 'Fj any right-continuous, non-decreasing
function, ﬁhere q(z) 1is defined in (3.2). Thus it is possible to choose

. so that
P;

(3.3) Pj(zj) € Q(FJ-(ZJ-))

for each zj <y, and so it is optimal to do so.
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Next we consider the optimal choice of the function Fj’ given that
pj is chosen to satisfy (3.3). It follows from (3.3) that expected

revenues (2.7) are given by5

¥

{ A(Fj(zj))dzj

Producer j chooses Fj to maximiée this expression, subject to the
constraints that Fj ‘be right-continuous and non-decreasing, and that
Fj(y) = y. The latter constraints obviously do not prevent the producer
from choosing a function such that

Fj(z € arg max A(z)

j) O<z<y

for eagh (VS zj <y, and so it is optimal to do so.
Note that (3.1) implies that if p(0) = =, then A(0) = =, while A(z)

<« for all z > 0. Hence in this case, optimization requires that Fj(zj)

= 0 fér all 0 =< zj < y. On the other hand, if p(0) < =, then A(z) is

bounded above. (Because p(z) 1is right-continuous, there must exist an ¢

>0 and ; < « such that p(z) =< ; for all 0 <z < ¢.. Then A(z) =< p(z2)

< p on this interval. On the other hand, A(z) 1is bounded above on [e,y]
as well, as noted above.) Then j's choice of Fj is optimal if and only
if there exists a A > 0 such that

(3.4a) A(Fj(zj)) - A
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for each 0 =< zj <y, while
(3.4b) ' A(z) = A

for all 0 =<z =<y,

We next consider the conditions under which the aggregate supply
schedule p(z) 1is consistent with optimization by individual producers,
each of whom takes the schedule p(z) as given in choosing his own strategy
(Fj’pj)' The following preliminary results establish some useful necessary

conditions.

Lemma 1. Positive expected revenue is possible, so sup A(z) > 0.
z

Proof: Let z = inf(z | p(z) > 0). (Note that Z must exist, as p(y) =
©.) Then p(z) =0 for all z < z (if any such exist), so that ; > z, and
R(z) = 0.

Now if ; = Z, one must have p(Z) > 0. (This follows from (2.2) and
the right-continuity of p(z).) Then ; = R(z) = 0, so that Prob{(d > ;) -
1. (Recall that we have assumea that ¢ =2 ¢ with probability one, for somé
g >0.) It follows that A(Z) = a 1U'(Z) > O.

Alternatively, if ; > z, then there must exist an interval (E,;),
with z <-; < ;, on which p(z) > 0. Furthermore, Prob{c(d) > z) =
Prob{8 > 0) = 1. As Prob(c(d) > z)} 1is right-continuous in 2z, one must
also have Prob{c(8) > z}) >0 for all z in a right neighborhood of z.

A

Thus there exists z < z < ¢ at which A(z) = p(z)Prob(ec(d) > z) > 0. O

Lemma 2. In any equilibrium, c = y.
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Proof: Because p(y) = @, (2.2) implies that c < y. Hence we need only

show that c 2 y.
A
c

Suppose < y. Then (3.1) implies that A(z) = 0 for all

A

c <z =<y. Because sup A(z) > 0, optimization by producer j then
z

requires that Fj(zj) < c¢ for all 0 = zj <y, which in turn implies that

A

fj(z) =y for all c =<z =<y. As this is true for all j,
e @ag -y
3
for all ¢ =<z <y, which violates (2.8). Thus ¢ = y. o

Let us note some consequences of Lemma 2. First of all, it follows
from (2.2) that p(z) <o for all z <y. Second, it follows from (2.3)-
(2.4) that for any state 6, either c(4) = y (so that all goods are sold,
capaci;y is exhausted) or ;(0) = 0 (so that buyers are unwilling to buy
additional goods at any positive price). This observation is of some
importance. It might be asked why our trading game does not allow producers
to offer their remaining goods for sale after the state # has been
realized. But the equilibrium that we describe here would also be an
equilibrium of a game with an additional stage of that kind. For once the
stage c(#) is reached, it is no ionger possible for further exchange of

money for goods to occur--either because sellers have no remaining goods, or

because buyers have no remaining cash, or both.

Lemma 3. There exists a constant ) > 0 such that
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(3.5) p(z) = A[Prob(c(ﬂ)‘? z)].l

for all 0 =<z <y, while p(y) = @, Furthermore, ) satisfies
(3.6) a LU’ (y)Prob(d > 6) = A .

Proof: It follows from Lemma 2 that p(0) < =, so that optimization by
producer j requires (3.4a) and (3.4b). Now suppose that there exists zy <
y at which A(zl) < A. By the right-continuity of A(z), there must also
exist z; <z, Sy such that A(z) < 2 for all z) £z<z,. But then
(3.4a) requires that Fj(zj) & [zl,zz) for any 0 = zj < y, which implies
that fj(z) takes the same value for all zy <z < z,. As this must be

true for every producer j,

Ifj(Z)dj

takes the same value for all z; <z < Zy, which contradicts (2.8).
Ihus one must have A(z) = A for every 0 < z < y. But then (3.1)
and Lemma 2 imply (3.5) for every O < z < y. Furthermore, (3.4b) requires

that A(y) = A. But then (3.1) and Lemma 2 imply (3.6): ]

The result (3.5) has a number of interesting implications. It follows
that Prob{c(d) > z} > 0 for every 0 < z <y, and that p(z) > 0 for
every z = 0. The latter result implies, as noted earlier, that R(z) is

monotonically increasing and hence invertible, so (2.3) becomes simply

(3.7) ¢(6) = min[R 1(4),c]
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It also follows that p(z) must be non-decreasing in z; as further
purchases occur, prices may rise, but théy never decline. Thus implies that
p(z) < a-lU'(z) for all 0 < z <y, so that buyers strictly prefer to buy
at all stages prior to y, if they still have cash.

The result that p(z) must be non-decreasing in z also implies that
the equilibria of this model are also equilibria of a Prescott-Butters type
search model, in which producers are restricted to strategies in which price
tags are attached in advance to all units of inventory. For any aggregate
supply price function p(z) that is consistent with equilibrium is
consistent with an equilibrium in which every producer j chooses a strategy

of the form
Fj(zj) - zj ,
pj(zj) - p(zj)

for all z.,. This strategy is a Prescott-Butters strategy,6 corrésponding

to a price measure
~([0,p]) = supl0O=z=<y| pz)=p)

(nge we define the supremum as zero if the set is empty.) Because p(z)
is right-continuous and non-decreasing, xj([O,p]) is well-defined for all
P 2 0, and is itself right-continuous and non-decreasing (as a cumulative
distribution function must be).

With this characterization of producer optimization, we can now prove

the existence of a temporary equilibrium (TE). For this purpose, it is
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convenient to use the shock distribution ¢ to define a function G:[0,d] -

R as follows:

7
G(F) = f Prob(426')d4’
0

G 1is continuous, increasing, and concave, with G(0) = 0 and G(;) = E(§).

Because G 1is concave, we can define its subdifferential 4G(%):

3G(f) = (geR | G(6)-G(F) < g(8-7) for all 0 <4 < 9)

= [Prob(4 > 4)),Prob(d = 7))]

Note that for all 0 < 7 < 3, 3aG(d) 1is a non-empty, closed, convex set, and

the cofrespondence 3G 1is non-increasing and upper-hemi-continuous.

Moreover, 3G(0) = [1l,@) and inf ac(i) - 0,

Proposition 3.1 Let &, U(.), Yy, and a > 0 be given. Then there exists a

unique TE corresponding to each 0 < 8 <9 such that

G(;) € 8G(2)

[» ]
G-8 yu* (y)

and all TE are of this form.
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Proof. We first show that for any TE, 4§ satisfies (3.8). It follows from
Lemma 2 that p(z) < a'lU’(z) for all z < y. Because p(z) is non-
decreasing and U’'(z) 1is decreasing, the inequality is in fact strict.

Using (3.5), this implies that

A
U’ (2)

< Prob{c(d) > z)

for all =z < y, so that

Aa Aa

vy T R v@ F

inf Prob{c(d) > z)
z<y

= Prob{c(d) = y)
= Prob(4 = §)

Combining this with (3.6) yields

(3.9) . U??y) € 3G(8)

It also follows from (2.1), (3.7) and the fact that p(c(4)) > 0 for

every 4 6 8, that for any 4 <4 <4 ,

g

- —1 ___ 45
(3.10) c(f) c(d) + 3 (@) dg

This in turn implies that
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>

(3.11) y = c(8) = TG .

< 4. Then (3.5) implies that p(z)A-l

(5Y

Consider first the case where

A for all 0 =<z < c(g), so that § R(c(8)) = Xc(4), and

8 = >

> I

c(g) =

Equation (3.5) also implies that p(c(4’')) = A[Prob{d > 9’)]-1 for all § <
§' < ;. Substitution of this into the second term on the right hand side of
(3.10) yields %[G(ﬂ) -'G(ﬂ)]. Application to the case § = ; then yields
(3.11). ‘

Consider next the case where 6§ < §. Then (3.5) implies that p(z) =

A for all 0 =<z <y, so that § = R(y) = Ay, and

1

Y G(8)

<
1
>
< >
]

Thus (3.11) holds for this case as well. Substitution of (3.11) into (3.9)

then yields (3.8).

Now let 4 be any solution to (3.8). We show that exactly one TE can

A

* A A
be constructed for this value of 4. Let XA = G(4)/y. Since 6 > 0, A* >

0. Then define c(4) by

1 A
c(d) = I*G(G) for all § <=4 =4 |,

c(d) =y for all 4 = 9 .
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Then ¢ 1s a continuous, non-decreasing, non-negative function,
monotonically increasing for all ¢ < ¢ €'2. (If ; < §, these conclusions
hold vacuously.)

Define Q(e) by (2.4). Then define p(z) by (3.5), setting A = A*
and defining p(y) = =. Note that p(z) 1is a positive, right-continuous
function. The continuous, increasing function R(z) is then given by
(2.1). We can choose an ensemble of strategies (Fj,pj) for individual

producers to be consistent with p(z) in various ways. One simple choice

is to set

Fj(zj) - zj ,

pj(zj) - p(zj)

for all 0 = zj =<y, for every j.

Clearly, the value A* and the functions c(8), ;(0), p(z), and R(z)
are uniquely defined, and these are the only functions that can correspond
to a TE. Moreover, it is easily seen that the functions just constructed
satisfy all the requirements for a TE. It follows from the facts that ;
satisfies (3.8) and that p(z) 1is defined by (3.5) that ; =y in (2.2).
Then the construction(of c(8) and ;(8) above guarantees that (2.3) and
(2.4) are satisfied for ; = y; thus (c,;) represents optimal buyer
behavior given (p,R). The aggregate supply function p(z) 1is clearly
consistent with the ensemble of strategies (Fj,pj). Finally, <Fj’pj) is
opﬁimal for each producer j, given (p,c,;). For (3.5) implies that A(z) =
A for all 0 = z <y, from which it follows that any choice of F, such

J
that 0 < F&(zj) <y for all 0 < zJ <y 1is optimal. The choice of pj
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is optimal if and only if (3.3) is satisfied for each 0 = zj <y, and this

is so in the above construction. O

Proposition 3.2 For any a > 0, there exists a unique TE, corresponding to
a unique ;(a) > 0. Furthermore, ;(a) is a continuous, non-increasing
function.

Proof. To prove the existence of a unique TE, we need only show the
existence of a unique solution to (3.8) for each a > 0. Since G(4) is
continuous and strictly increasing in ¢, ;ﬁ%z;yc(a) has.these same
properties as a function of 4. On the other hand, 4G(4) 1is non-increasing

in 4, with a closed graph, and the range [0,w»). Hence there is a solution

0<6=<98 to (3.7) for any a > 0. Furthermore, since

a
yu' (y)

G(0) = 0 < inf 3G(0)

A A

all solutions must satisfy 4 > 0. If there are two solutions 01 < 02 < ;,

then one must have c(al) - G(92), which would contradict the fact that G
is monotonically increasing for all 4 =< 9.

Thus the function 0:R++* (0,;] is well-defined, and we consider its

behavior as a varies. Let @y >a; > 0. Then 8(ay) 1is the unique 9§

A a
for which (3.8) holds, and hence for all 4 > 9(a1), ;ET%;yc(a) > sup
[+ 4
3G(8). Since a, > ay, it follows that }ET%§7G(’) > sup 3G(4) for all 4

> E(al). Then (3.10) cannot be satisfied at a, for any ¢ > a(al), which

A

proves that B(az) =< a(al), or that 4d(a) 1is non-decreasing.
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We next show that ;(a) is continuous for all a > 0. For some
sequence (an) with a > 0 for each n and a, - a* > 0, suppose that
0n - ;(an) for each n, and that 0* - ;(a*). We wish to show that Bn -
0*. That is, for any ¢’ such that §' < 0*, we wish to show that 4§’ < ﬁn
for all n large enough, and similarly, for any 4" such that 4" > 0*, we

wish to show that 4" > on for all n large enough. Consider first the

*
" lower bound. Since a *a and G(# ) > G(#'), the inequality

must hold for n sufficiently large. We show that this inquality in turn

implies that ﬁn > §'. For if one had 0n < §’, one could show that
%n “n
£ < G(d'
in ac(an) 307 (3) c(an) < 307 () (6')
*
&-— G(6') =< sup 3G(4) = inf 3G(4)
yUI(y) - -_— n ’

which is a contradiction. The proof for the upper bound 4" 1is identical.

o

4, Stationary Equilibrium with Independent Monetary Shocks

We now embed the temporary equilibrium of the previous section in a
complete intertemporal equilibrium. We consider an economy operating in an
infinity of periods t = 0,1,2,... 1In each period, consumers exchange cash

for goods provided by sellers in exactly the manner described in Section 2.
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Cash acquired by sellers is returned to consumers at the end of the period,
after the pricing game is completed, in the form of a dividend to
shareholders. The monetary authority uses beginning-of-period and end-of-
period transfers in such a way as to make consumer cash holdings Gt an
independent, identically distributed random variable. In this section we
spell out the details of this economy, and show that its stationary
equilibrium can be obtained by the same construction used to characterize
the temporary equilibrium in Section 3. The idea will be to show that the
value that consumers assign to unspent cash, the given parameter a in the
preceding sections, can be reinterpreted as a marginal value derived from
consumers’ intertemporal maximum problem.

The economy we consider is made up of a continuum of infinite-lived

households, each of which seeks to maximize the expected value of
-]

(4.1) . z pU(e,)
t=0

where U is the same single-period utility function as above, and g 1is a
discount factor in (0,1). Note that there is no direct utility from cash
balances of the kiﬁd assumed in Sections 2 and 3. The monetary authority is
assumed to choose a monetary injection ﬁt in éach period t, the value of
which is égain not known to producers until after all period t sales have
océurred. The state variable (ﬁt) 1s assumed to be identically and
independently distributed across periods, being drawn each period from the
same distribution as above. Hence the information of producers at the

beginning of period t is simply that Ot will be drawn from the
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distribution ¢ on 6 = [i,;] c R++, as .in the temporary equilibrium of the
previous section. 1In this section, we also assume that ¢ < 1,

In order to calculate the endogenously determined value of end-of-
period cash balances, we must consider how a given consumer’s budget
constraint in the following period will be affected if he deviates from
equilibrium behavior. Let us return again to the consumer search process
described in Section 2. There we assumed that all consumers entered each
stage of the game in identical positions, and that goods were rationed among
them symmetrically. Here we consider the Possibility that a single (non-
atomic) consumer 1{ will, as a result of his actions in the past, begin a
pefiod with money holdings pu#, for some 4 > 0, while all other consumers
have 6. As observed in Section 2, each consumer will purchase as many
units as he can at each stage prior to the last stage in which he buys any
positive quantity. We assume that at each stage prior to the final stage z
= c(0), consumers are rationed in proportion to their unspent cash holdings,
so that consumer i is rationed B times the goods allocated to anyone
else. Thus when =z goods have been sold, if =z < c(8) and i has not
stopped buying, consumer i will have obtained pz units at a cost of
BR(Z) = pfgp(u)du dollars. At the final stage, we assume that consumer i
can purchase whatever he wants at the final price p(c(8)). The expenditure

he requireé to purchase ¢ wunits of consumption is thus

c/u
pg min[p(z),p(c(d))]dz

Now let mi denote consumer 1i's money balances at the beginning of

period t, before the period t monetary injection occurs. Each consumer
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receives a lump-sum transfer of Gt- 1 at the beginning of period ¢t , and

a lump-sum transfer of Te at the end of the period. At the end of the

period, each consumer also receives as a dividend his proportional share of

. : . i
the total sales revenues Ht of the firms. Then if consumer i buys c_

units of goods, he will begin the next period with money balances of

i, i
ce/bBe
i i .
(4.2a) ey - ut(ﬁt - £ mln[p(z),p(c(ﬁt))]dz) + l'It +T
where
i -1 1 :
(4.2b) B, = at [mt + at - 1] .

The end-of-period lump-sum transfer is assumed to be
(4.2¢) r, = 1 -9

Finally, since in a symmetric equilibrium the revenues o equal the
expenditure of each consumer, if mt = 1 then mi+1 =1 as well. We thus
consider an equilibrium in which mi = 1 forever, in which et again
represents the money supply in period t, and the expression in (4.2b)
indicates the ratio of i’s post-injection cash balances to those of the
typical consumer.

The problem of consumer i is then to choose a plan specifying
consumption purchases ci in each period as a function of the history of

realizations (90,;..,0t) of the monetary injections, so as to maximize the

expected value of (3.1), subject to the constraints that period ¢



30

expenditure not exceed ptot, and that H§+l =20, in ;11 periods and under
all possible histories of monetary injections, given the laws of motion
(4.2). Here the determination of I_ as a function of the history of
monetary injections is also taken as given by the consumer, and similarly-
the functions p and ¢, which may also depend upon the history of monetary
injections. 1Initial money balances .mé = 1 for all i are given as an
initial condition.

We now specialize to the case of a stationary equilibrium, in which
the functions (p,c) are the same for all t. We also assume that each
period Ht - n(ot), where the function II(#) is also the same for all t.
The consumer'’s problem then takes a stationary recursive form. Let v(mé)
denote the maximum attainable value for the expected value of (4.1) given

the constraints listed above, for -any initial money balances mé = 1- 4.

This value function v must satisfy the Bellman equation

(4.3a) v(m) = f[ma§ (UCe) + Bv(m))]2(dd)

c,m

where for each m= 1-4, § < 4 < ;, (c,m) must be chosen such that

(4.3b) - max(1-9,0(8)+r(4)] = m =< m+ 4§ - 1+ I(4) + r(4) ,
c/p(m,4) ‘
(4.3¢) m = p(m,d)(6 - f min[p(z),p(c(d))]dz) + I(4) + r(8)
, .0

if u(m,8) >0 ,
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(4.3d) c = 0 if ju(m,4) =0

Here u(m,f) 1is the function defined in (4.2b) and r(4) 1is the function
defined in (4.2c). Equation (4.3c) restates the law of motion (4.2a). The
lower bound 1-§ in (4.3b) follows from the requirement that “t+l =0

regardless of the realization of 4 The lower bound II(4) + r(4)

t+l°
follows from the requirement that the household’s expenditure not exceed
“tat , as does (4.3d). Finally, the upper bound in (4.3b) follows from. the
requirement that c. 2 0.

This recursive formulation allows us to describe consumer behavior
each period by a choice of total purchases ci - c(mi,ﬁt), where
(c(m,d),m(m,8)) 1is the solution to the maximization problem inside the
brackets in (4.3a). This will in turn allow us to describe a stationary
intertemporal equilibrium as a succession of temporary equilibria of the
kind analyzed in the previous section. But since a stationary equilibrium
involves the value function v(m), before we can define a stationary
equilibrium we need to ensure the existence of a solution to (4.3)
(Proposition 4.1) and to establish its differentiability at m = 1

(Proposition 4.2). These results develop some other properties of v and

the associated policy functions (c,m) as well.

Proposition 4.1. In the maximization problem (4.3), suppose that
(1) the function c(4) 1is continuous on 8;
(i1) the function p(z) is non-decreasing and right-continuogs, with
p(z) >0 for all 0 =<z < y;
(1ii) the function IH(4) is continuous, with o(#) 2= 0 for all 4§ e

8; and
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(iv) the function U(e) is bounded, continuous, strictly increasing,
and concave, for all ¢ = 0.
Then there exists a value fﬁnction v(m), defined for all m > 1-4, that
satisfies the Bellman equation (4.3a). Furthermore, v(m) is bounded,
continuous, strictly increasing, and concave.

Proof: See the appendix.

By a standard argument (see, e.g., Stokey, Lucas, and Prescott, 1989,
Theorem 9.2), the existence of a function v(m) that satisfies the Bellman
equation implies the existence of a solution to the original infinite-
horizon consumer optimization problem, and optimal behavior consists of

choosing each period

i i
c, = c(mt,ﬂt) .

i ~ i
mt+1 m(mt"at) ’

where again (c,m) are the functions that solve the optimization problem
inside the brackets in (4.3a). We accordingly turn our attention to that
problem.

In avstationary equilibrium, we want 'c(o) = c(1,4) to hold, and to

specify TM(4) as

c(8)
(4.4) o(8) = R(c(8)) = I p(z)dz .
0
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(Note that we have not yet proved that this is possible, since we have only
shown the existence of a function c(1,4) given some specification éf c(§)
and II(4); we do not know that we can find functions c(4) and T1(F) such
that the c¢(1,6) that attains (4.3a) will equal c(4) and also generate that

same function I(4) in (4.4).) Then given the initial condition mé =1

for all i, each household’s optimal behavior will be to choose

i
¢, = c(@t) ,

in all periods. (This follows from (4.3¢).)

Hence it suffices to consider the single period maximization problem
in (4.3a) for the case m = 1 . Suppose that, as assumed in the previous
section, U(c) is continuously differentiable for all c > 0, strictly

concavé, and that 1lim U’(c) = +o. Suppose also that v(m) is
c-0

differentiable at m = 1. Then necessary and sufficient conditions for the
function c¢(4) to solve the problem in (4.3a) (given that R(#) satisfies
(4.4)) are that, for each 8§ €8, c(§) be the infimum of the set of z

such that either

(4.5a) U'(z) < gv'(l)p(2)

or

c(8)
(4.5b) I p(z)dz > ¢
0




34
If the parameter a in Sections 2 and 3 is given the value
(4.6) a = pv'(1) ,

this case is seen to correspond exactly to the characterization of c¢(§) 1in

Section 2, and in particular to imply that c¢(4) 1is given by (3.7), where

; is again given by (2.2). Thus with the identification (4.6) of «a,

consumer behavior each period in a stationary equilibrium is exactly oppiﬁal

consumer behavior in the TE characterized in the previous section.
Sufficient conditions for the differentiability of the value function,

and hence for the characterization (4.5) of consumer behavior, are given by

the following result.

Proposition 4.2. Assume hypotheses (1)-(iv) of Proposition 4.1, and suppose
that ¢(1,8) = c(f) solves the maximum problem (4.3) at m = 1. Suppose in

addition that
(v) ¢(d) is uniformly bounded away from zero on 6;

(vi) the function U{(c) is continuously differentiable for all c >
0, it is strictly concave (i.e.,U’(c) 1is monotonically

decreasing), and 1lim U'(c) = += ; and
c~0

(vii) I(9) 1is given by (4.4).
Then the value function v(m) that satisfies (4.3a) is diffgrentiable

at m = 1, and the derivative equals
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(4.7) vi(l) = (1-ﬂ)'1fa‘lu'<c(a))c(a)¢<d0) .
Proof. See the appendix.

Hence the characterization of optimal consumer behavior in the
Previous section continues to apply to a stationary equlllbrlum with the
identification of the parameter o« > Q given by (4.6) and (4.7). We next
consider optimal producer behavior. Each producer j has a capacity
constraint y > 0 in each period. The producer chooses an admissable
strategy (F, ,pj » as defined in Section 2, yielding sales as a function of
6 - as given by (2.5) and revenues as given by (2.6).

Producers distribute all earnings to the households (owners of the
firms) at the end of the period, and producer j chooses (F Jt’th) SO as
to maximize the value to the representative household of an increment in its
earnings distribution, contingent upon 0t, of the form rjt(ﬂt). The value
to be maximized 1s an ex ante value, before the value of 0 is known, and
firm j takes as given the aggregate earnings distribution function
R(e(s £)) in calculating the value of an incremental distribution. Then,
under the hypotheses of Proposition 4.2, (F&t,pjt) is chosen so as to

maximize
frjtca)v'(ﬁcmt.onﬁdo) - v’(l)frjtw)eb(de)

That is, it is chosen S0 as to maximize expected revenues, given that 0t
will be drawn from the distribution &. Thus (F. ,pj is chosen each

Period in exactly the way assumed in the temporary equilibrium of the
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previous section, and the characterization of optimal producer behavior
there applies here as well.

Under the hypotheses of Proposition 4.2, then, the characterizations
of both producer and consumer behavior in the previous section continue to
apply. As a result, a stationary equilibrium will involve a succession of
temporary equilibria of the kind described earlier. But our previous

- characterization of temporary equilibrium implies that the hypotheses of
Proposition 4.2 will indeed hold in such a case. Hence we may define a

stationary equilibrium as follows:

A

Definition. A stationary equilibrium is a constant a > 0, a number c, and
a collection of functions (p(z),c(8),R(z),p(8)) such that

(i) given a > 0, (c¢,p,c,R,p) constitute a temporary equilibrium in
the sense defined in Section 2; and

(ii) the constant a satisfies
(4.8) a = 81-p) Yo o c(o))e(a)acas)

Here (4.8) follows from (4.6) and (4.7).
The following result shows that such an equilibrium exists for all

possible distributions of the monetary shocks.

Proposition 4.3. Suppose that the function U(c) is bounded, continuous,
strictly increasing, and strictly concave for all c¢ = 0, continuously

differentiable for all ¢ > 0, and satisfies 1lim U'(c) = + =, Then there
c~0

exists a stationary equilibrium.
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Proof. By Proposition 3.2, there is a unique TE for every a > 0, and

§(a), the unique solution to (3.8), is a continuous, non-increasing function

A

of a, with §:R__ -+ (0,4]. It remains only to show that a can be chosen
so that (4.8) is satisfied.
To this end, we next consider how the function c(f;a) in a TE with

given o varies with a. For any a > 0, the construction used in the

proof of Proposition 3.1 implies that

c(f;a) =y min[—géil—-, 1]
G(0(a))

Now for pairs (4,a) sucﬁ that 4 € 8, a > 0, and ;(a).z §, the continuity
of G(4), the continuity of ;(a), and the fact that G(;(a)) = G(F) = G(4)
> 0 1imply that G(a)/G(;(a)) is a continuous function of (4,a).

Moreover, this function equals 1 at all points on the boundary where ;(a)
= 0. Hence c(f;a) 1is a continuous function of (8,a) on the domain

6xR . . Furthermore, if one defines

++

c(8;0) = y G(4)/G(4)

then c(ﬂ;q) is a continuous function on the domain OXR+.
The function c¢(f;a) is obviously non-decreasing in both arguments on

that domain. Furthermore, one observes that for any 6 € 8, lim c(f;a) = y.
o

Finally, the function is bounded and bounded away from zero on 9xR+,

insofar as

0 < yG()/6(#) = c(fia) < y
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for all Qsasz,azo.

Now consider the right hand side of (4.8), as a function of a.
Because U(c) 1is continuously differentiable for all ¢ > 0, and c¢(4;a)
is continuous in both arguments, bounded, and bounded away from zero, the

function

c(8:a)U' (c(b:a))
[

is a continuous function of (8,a) on the domain 8xR¥ that is both
bounded and bounded away from zero. Then by the Lebesgue dominated
convergence theorem, the integral of this function over © is a continuous
function of a on the domain a > 0, and is both bounded and bounded away
from zero. Hence the right hand side of (4.8) is a function of «a with
these properties.

It follows that both the left hand and right hand sides of (4.8) are
continuous functions of a, with the left hand side necessarily larger for
large enough a, and smaller for small enough «a > 0. Hence there must
exist a solution for some a > 0. Given this value, the (;,p,c,R,;)
that describe the temporary equilibrium for this value of a then

constitute a stationary equilibrium. O

5. Discussion

The stationary equilibrium we have just constructed consists of a
sequencé of temporary equilibria of the kind characterized in section 3. 1In

each period t there is another independent drawing of the shock et that
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determines the period’s money supply. The aggregate purchases that result
are given by ¢, = c(ot), and the margin;l price level (the highest price at
which all goods offered for sale are sold) is given by P = p(ﬁt). The |
distribution of transaction prices in period t is given by the function‘
p(z) on the interval [O,c(&t)], and total nominal spending is given by
R(c(&t)) - min(&t,;). The i.i.d. random variations in Ht thus give rise
to i.i.d. variations in spending, consumption, and prices.

Under the interpretation in which producers begin with a productive
capacity rather than an endowment of goods and produce only to fill the
orders that they accept, the fluctuations in C, Trepresent fluctuations in
real output. As promised, then, we have exhibited a model in which surprise
variations in the money supply affect not only nominal spending and prices,
but real activity as well. Because c(4) 1is a non-decreasing function,
monotonically increasing over the range § =< § < ;, low realizations of the
money supply are associated with low levels of output.7 The model can thus
rationalize the association between low rates of growth of the money supply
and contractions of economic activity documented by Friedman and Séhwartz
(1963) and many others. The marginal price level is also non-decreasing in

9, so that higher realizations of the money supply are generally associated

with higher prices being reached. The average transaction price,
1

< fgp(z)dz, is non-decreasing in # and increasing in c¢. Thus the model
predicts an upward-sloping Phillips-curve relation linking output movements
to corresponding movements of average transactions priées.

It is also worth noting that in this model uncertainty about the
money supply reduces the average level of output as well as increasing its

variability. With a fully predictable money supply, output equals capacity

at all times. With stochastic money shocks, output is sometimes at capacity
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and sometimes below it. The model thus captures an association between
inflation uncertainty and real activity tgat is often asserted to exist.

The model we have analyzed has a fixed endowment of goods (or
capacity) but it is easy to imagine variations in which goods are produced
by labor, some of which is contracted for prior to the realization of 4,
and the rest of which is hired on a spot market during the course of
trading. In such an elaboration of the model, a high demand shock would
induce both high production per unit of labor under contract and a large
employment of spot labor. Even though the production technology is not
actually changing, monetary surprises will produce variation in the measured
Solow residual, correlated with output and employment variations. This kind
of effect is discussed in detail by Eden (1990), Rotemberg and Summers
(1990), and Eden and Griliches (1993), in the context of non-monetary models
of the Prescott-Butters type.

In this model, as in many earlier models, variations in the money
supply affect real activity only because they are unanticipated. If, by way
of contrast, the drawings of . were made public before any trading
occurred, consumers would still purchase goods until the marginal price of
goods reached the value a-lU'(c), but producers would be able to choose
strategies contingent upon 0t. Since there would be no uncertainty about
the marginal price Pe» each producer would offer to sell ¥y units at the
price P., and none at any lower price. The equality c(4) = y would hold

for all ¢, and the equilibrium price would be given by

¢ W
(&) = min(l, L
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The resulting equilibrium would in fact be identical to the equilibrium of a
cash-in-advance model with Walrasian spot markets (see, e.g., Sargent, 1987,
chap. 5).8

In the present model, as in that of Lucas (1972), producers’ imperfect
information about the state of nominal aggregate demand is crucial to the
non-neutrality of monetary shocks. But in Lucas (1972), the real effects of
monetary shocks depend upon producers’ ignorance about the shadow value to
them of the cﬁsh they acquire in current tradiﬁg. In a recession, selleré
supply too little because they fail to realize how low prices generally will
be in the following period, when they spend the cash obtained from current
sales. In the present model, by contrast, producers correctly understand
the shadow value of cash (8v’(l) in our notation above), and knowledge of
the current shock 9t would not affect their evaluation of this value. The
information that they lack, instead, is about how the price they charge will
affect the quantity that they will be able to sell. In a recession state,
producers offer to supply too few goods at low money prices, because they
overestimate the chance of eventually finding buyers who will pay a high
price; if they knew the current state of nominal aggregate demand they would
know better.

Of course, if we were to drop our unrealistic assumption that the
money supply 1s independently distributed across periods, and assume instead
that the money shocks are serially correlated, then a seller’s estimate of
0: would affect his estimate of gv’(l), and misperception of the shadow
value of cash due to ignorance of the current money supply would indeed bear
some of the blame for the inefficient use of resources assdciated with

monetary instability. But a still more realistic model would recognize that

each producers’ sales are stochastic for many reasons independent of the
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current realization of money growth, and as a result that there is little
reason for producers to revise their esti;ates of either the current or the
future money supply on the basis of surprise variations in their own current
sales. Consider, for example, a model with many submarkets each organized
along the non-Walrasian lines explained in Section 2, but with independent
variatibns in spending in the various submarkets superimposed upon the
(possibly autocorrelated) variation in aggregate spending. We would expect
each submarket’'s equilibrium to be similar to the kind described above, with
producers choosing a pricing strategy similar to the one that would maximize
expected revenues, even in the case of significant persistence in the
fluctuations in aggregate spending.

There is an alternative interpretation of the equilibrium of Section
4, under which consumers--symmetrically with firms--learn the current
realization et only in the course of trading. Instead of assuming that 4
is given to consumers as a single, beginning-of-period transfer, one can
assume instead that consumer cash balances are ¢ at the beginning of
trading in all periods, and that additional transfers occur continuously
during trading, stopping when a total money supply of Gt per household has
been reached. The drawing of ﬂt By the monetary authority is thus not
revealed to anyone--consumers or firms--until the transfers stop. If in
equilibriumlconsumers spend all of the cash available to them as soon as
they receive it, up to the point where a'IU'(c) no longer exceeds the
marginal price at which goods are available, then the.information of
producers and consumers wili be the same at all stages: Each will know only
the ex ante distribution of possible money supplies, and the quantity of
money transferred and spent up to that point. In this case of a sequence of

symmetric-information trading games, trading at each stage is equivalent to
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a Walrasian equilibrium. This is the interpretation developed in Eden
(1994), in which there is a sequence of‘ﬁalrasian spot markets, onelafter
each new injec;ion of cash,

There is thus a sense in which our results do not rely upon a non-
Walrasian market structure, if the sequential revelation of information
about the state of aggregate demand can be motivated in some other way. We
find the sequential mechanism described here, however, to be an especially
attractive model of the trading process. In Eden'’s model, it is fortuitous
that the joint probability structure for the sequence of monetary injections
within a period always implies that a larger total money supply corresponds
to a longer sequence of injections, rather than to a larger quantity
injected on each occasion. (In the latter case, the shock would be
neutral.) In our model, the connection between a larger total money supply
and a longer sequence of transactions at distinct prices in inevitable.

To sum up, in models in which goods are exchanged for money in a
single centralized market, changes in money--anticipated or not--are neutral
because all prices immediately adjust in proportion, leaving relative prices
and goods quantities unaffected. If some of the affected prices do not
respond in this way, either because they have been set in advance or because
changing them involves costs, real effects can occur. One may think of the
equilibrium studied in this paper as a formalization of tne consequences of
advance price setting on the part of sellers. 1In our setting, sellers lose
nothing by pPricing all units in advance, and if there were costs, however
small, of maintaining flexibility, they would give it up. Our obJective has
been to show that, however important such commitments and costs may be in
reality, they are in no sense Necessary in generating real effects of

monetary shocks.
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We have given our producers up-to-tbe-minute information about all
trading that has taken place anywhere in the system, and can easily
interpret the equilibrium--as Eden does his-;as one in which they have up-
to-the-minute information on the supply of money in the system. We have
given them the flexibility to make current pricing decisions, given their
information, in a way that is entirely unconstrained by past actions. We
have, however, coﬁpelled them to trade goods for cash, in a situation in
which the terms on which they would wish to do so necessarily depend on
monetary events they cannot know at the time. We have shown that, in this
situatioﬁ, they cannot avoid being led by monetary instability into
inefficient production behavior of a kind that could not occur in an Arrow-
Debreu economy. Moreover, in a context in which teéhnology shocks do not
occur, we have shown how an outside observef could easily misread their

actions as efficient responses to such shocks.



45

Appendix: Proofs of Propositions 4.1 and 4.2,

For convenience, we restate the propositions in the text.
Proposition 4.1. In the maximization problem (4.3), suppose that
(1) the function c(8) 1is continuous on 8;
(ii) the function p(z) is non-decreasing and righ;-continuous, with
p(z) >0 for all 0 =<z < ¥
(iii) the function II(4) is continuous, and II(4) = O fof all 4 €
| 8; and |
(iv) the funection U(c) 1is bounded, continuous, strictly increasing,
and concave, for all ¢ = 0.
Then there exists a value function v(m), defined for all m > 1-4, that
satisfies the Bellman equation (4.3a). Furthermore, v(m) is bounded,
continuous, strictly increasing, and concave.
Proof: The proof involves five parts. We first, (1), use the constraints
(4.3b)-(4.3d) to express the decision variable ¢ -in (4.3a) in terms of m.
Then, (2), we define an operator T associated with (4.3) and show that
this operator takes the set of bounded continuous functions on [1-§,) into
itself. We show, (3), that T has a unique fixed point v in this set of
functions, the unique solution to (4.3). Then we show, (4), that v is
increasing and, (5) that v is coﬁcave.

(1) For each m2> 1 - 8, 4 €8, let F(m,d) denote the interval of
values for m that satisfy (4.3b). Note that I is a continuous, compact-
valued correspondence. Let D denote the graph of T, i.e., the set
(m,d,m) satisfying the inequalities just mentioned. On the subset of D

on which u(m,4) > 0 (i.e., on which m > 1-4) define the function
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m - [(4) - 7(§)
p(m,8)

J(m)oya) = 0 -

Note that 0 < J(m,4,m) < § by (4.3b). Likewise define

X
I(x,0) = _gmin[p(Z),p(c(a))]dZ

for arbitrary x>0, § € 8, using ;he convention that p(z) =« for all =z
zy. By (i) and (ii); I(x,8) is continuous and strictly increasing in x,

with I(0,4) =0 and I(w,§) = «. Hence the equation
(A.1) I(x,8) = J(m,6,m)

has a unique solution x(m,4,m) = 0, and the unique solution to (4.3¢) is

given by
(Aa.2) c(m,d,m) = p(m,0)x(m,8,m)

When 4(m,8) = 0, let c(m,d,m) = 0. Then c = c(m,§,m) is the unique
solution to (4.3¢) and (4.3d) on D.

‘ By (iii), J 1is continuous on the subset of D on which u(m,4) > O,
and by (i) and (ii), I(x,9) is rightlcontinuous in 4. Hence on this
subset of D, the function c(m,f,m) is continuous in (m,ﬁf ‘for each 94,
and a right continuous function of 4 for each (m,m). Morover, on this

subset,
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~ J(m. 4. .m) g

which implies that 0 = c(m,d,m) < p(m,0)8/p(0). Since p(0) >0 and o
is bounded, it follows that c(m,§,m) has these continuity properties on
all of D.

(2) Let f(m) be any bounded, continuous function, defined for all n
2 1l-4. Then

F(m,f,m) = U(c(m,f8,m)) + A£(m)

is a bounded function on D . Furthermore, it follows from our results
above that for any 7 > §, there exists a right neighborhood N of 7 such
that F is continuous on DN’ the subset of D on which § e N.

Now for any m=2>1-4 , 9§ < 4 < 4, define

$(m,d) = sup F(m,d,m)
mel (m, §)

For any § = §, let N be the right neighborhood of 7 just referred to.
Then by the theorem of the maximum (Stokey, Lucas, and Preécott, 1989,
Theorem 3.6), ¢(m,d) is continuous on the set m = 1-§ , § € N. Thus we

observe that ¢(m,4) is a well-defined bounded function for all m=> 1-49, 4

4 = ;; that for every 4 € 0, ¢(m,f) is a continuous function of m; and

IA

that for every m 2 1-4, ¢(m,9) 1is a right-continuous function of 4.

Finally for‘any m=1-§, define

(A.3) (TE) (m) = f¢(m,9)¢(dﬂ)
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Since ¢(m,8) 1is a bounded, right-contingous function of 4, it is
integrable, and the above expression is well-defined. It is also obviously
bounded as a function of m . We wish to show that it is also continuous.
Consider any sequence (mn) such that m, = 1-4 for each n, and m - m.
Since ¢(m,d) 1is continuous in m for every §, the functions (¢(mn,-)}
converge pointwise to the function é(m,+). All of those functions are
integrable, and they are uniformly bounded; hence, by the Lebesgue dominated

convergence theorem,

lim J-¢(mn.9)<l>(d9) - J.¢(m,0)¢(d0)

T+

Thus Tf is a continuous function of m.

We observe that (A.3) defines an operator T , mapping the set of
bounded continuous functions on [l-§,=) into itself. The existence of a
function v(m) satisfying (4.3a) then follows if we can show that there
exists a fixed point of the mapping T.

(3) Let F denote the set of bounded continuous functions on
[1-4,+ =), with the sup norm. For any functions f,g,€ F, f£2g implies
that Tf = Tg. For any function f € F and any constant function a,
T(f+a) = TE + Ba. Thus the Blackwell conditions are satisfied (recall that
0<B8< 1); and so T is a contraction (Stokey, Lucas, and Prescott, 1989,
Theorem 3.3). Then since F is a complete metric space, T has a unique
fixed point v € F. This function v necessarily satisfies (4.3a).

(4) We next show that v(m) is monotonically increasing. Let F' CF
be the set of bounded, continuous functions that are also non-decreasing.

We wish to show that T maps F' into itself as well.
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Note that [ is increasing in m, in the sense that n' 2z m implies
that T'(m,8) ¢ I'(m’',#). Note also that Aﬁ(m,&) is strictly increasing as a
function of m , as a result of which J(m,&,ﬁ) is strictly increasing in.
m on the subset of D where u(m,§) >0 (so that J 1is defined). Sinée
I(x,8) 1is strictly increasing in x, equation (A.l) defines a function
x(m,d,m) that is strictly increasing in m (on the domain of J). It
follows that c(m,f,m) 1is also strictly increasing in m on this domain.
Consider now the unique point in D at which u(m,d) = 0, namely, m = 1-4,
f =69, m=1I¢) +1 - 4. If (m,4,m) takes these values, and m’ > m,
then u(m’,8) >0, J(u’,8,8) = 4, 1(0,8) = 0, so that x(m’,d,d) >0 and
c(m',d,m) > 0. But c(m,§,m) = 0 , so that c(m’,8,m) > c(m,d,m). Thus
c(m,f,m) is strictly increasing in m, on the entire domain D.

Now let f(m) be any function belonging to F’'. It follows that
F(m,f,m) is strictly increasing in m, on the domain D. Because T is

increasing in m, it follows that ¢(m,§) is strictly increasing in m, on

the domain m= 1-4, § <4 =< 9. Finally, it follows from this that (Tf)(m)
is strictly increasing in m, on the domain m = 1-4. Thus T:F’' - F', and
furthermore f € F' implies that Tf 1is strictly increasing. Since F’
is a closed subset of the complete metric space F, T must have a fixed
point in PF’, which is the same functibn v(m) referred to above.
Furthermore; since v = Tv , v(m) must be monotonically increasing in m,
and not merely nondecreasing.

(5)'Fina11y, we show that v(m) is concave. Let F" ¢ F be the set
of bounded, continuous functions that are also concave. We wish to show

that T maps F" 1into itself as well.
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We first show that the function c(m,@.ﬁ), defined above, is concave

in (m,m), for any 8 € 8. Let us define
K(p,0,m) = Gy + () + r(6) - m .
Then (A.l) can equivalently be written

I(x,8) =

® IR

which we can invert to obtain

-, K
- -,o
X x(“ )

Because p(z) 1is non-decreasing, 1I(x,4) 1is a convex function of x, for

any §. It follows that ;(%,0) is a concave function of %. Then

=K

c(K,p,0) = ux(,0)

is a concave function of (K,s), for any 6. But

c(m,f,m) = c[K(u(m,f8),0,m),u(m,0),0]

Since K(p,f,m) is linear in (u,m), and u(m,d) is linear in m, for any
8, it follows that c(m,d,m) is concave in (m,m).
Now let f(m) be any function belonging to F". Then the concavity

of U(c) and c(m,d,m) imply that F(m,d,m) is concave in (m,m), for any
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§ € 8. Furthermore, for any § € 6, the set of values (m,m) such that
(m,4,m) € D is convex, from which it follows that ¢(m,d) is concave in
m. As this is true for all 4, the integrallover § must be concave in m
as well, so that (Tf)(m) is concave in m.

Thus T:F" - F". As F" 1is a closed subset of the complete metric
space F, T must have a fixed point in F", which must be the function v.

Hence v(m) is concave in m. O

Proposition 4.2. Assume hypotheses (i)-(iv) of Proposition 4.1, and let
c(d) = c(l,9) solve the maximum problem (4.3) at m = 1. Suppose in

addition that
(v) ¢(8) 1is uniformly bounded away from zero on 8;

»(vi) the function U(c) is continuously differentiable for all ¢ >
0, it is strictly concave (i.e.,U’(c) is monotonically

decreasing), and 1lim U’(c) = += ; and
c+0

(vii) N(4) 1is given by (4.4).

Then the value functién v(m) that satisfies (4.3a) is differentiable

at m = 1, and the defivative equals
(6.7 vy = (-8 Yo lur (e(a))ecorecan

Proof. 1In order to show that v(m) is differentiable, we first consider

the differentiability of another function, v(m), that coincides with v(m)
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at m=1. For any my = 1-4, and any sequence of monetary injections 4 =

{8_), let sequences (Et(mo;o),ﬁt(mo;a)) be defined recursively by the

t

relations

Eo(mo;o) my

B (@i0) = (@ (my30),0)[1-I08)-7(8)] + M) + 7(8) ,
c (mg;0) = p(m (my;8),0.)c(6,)

For any m, and any sequence of monetary injections, the sequences
(Et(mo;a),ﬁt(mo;ﬂ)) represent a plan that satisfies (4.3b)- (4.3d) in all
periods. Moreover, when m, = 1 ; this is the optimal plan, namely Et -
c(6,), m_ y =1 for all t. Then let G(mo) denote the level of utility

obtained under this plan, i.e.,
-]
V(my) = E‘tfoﬂtu<°c<mo">)’

where the expectation is over the different possible histories of monetary
injections - §. It is easily seen that for each t, Et(mo;ﬂ) is a
continuous function of 4, so that U(Et(mo;o)) is a bounded continuous
function, with the same bounds for all t. Hence the integral involved in
the above definition is well-defined for each t, and the uniform bounds
imply that ‘the infinite sum of integrals must converge. Hence G(mo) is
well-defined for each m, > 1-4.

We wish to show that G(mo) is differentiable at m, = 1. FTor
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€z -48, ¢ #0, let us define

v(l+e) - v(1)
€

ple) =

Then we wish to show that the function p(e) 1s continuous at € = 0; the

limiting value p(0) is then v’(l). From the definition of the processes

(Et,ﬁt), it is obvious that

V(my) = E(U(u(my,04)e(d0))

where here the expectation is over the possible realizations of 00. This
implies that for any ¢ = - 4, ¢ ¥ 0,

(A.4) p(e) = Jlute,0) + Boca(8)e)10(an)

where

A(§) = l-HQG;-rQQQ ,

u(e,d) = FUEHe) - Ue)]

Note that (4.3b)-(4.3c), together with (4.4), imply that 0 < IO(4) < § for
all ¢, so that 0 < A(4) <=1 for all 4. And the facts that U(c) is

continuously differentiable for all ¢ > 0, and that c¢(d) is a continuous



54

function bounded away from zero, imply that if we adjoin to the above

definition the stipulation

u(0,d) = siilgéﬁgiill

then wu(e,d) 1is a continuous function on the domain e = - 4, § < 4 < 8.

Finally the concavity of U(c) 1implies that for any 4 < 4 =< 3,

Ule(8)) - U0
g

0 =< u(e,f) =

for all e = - §. As the right hand expression is a bounded function of 4,
it follows that wu(e¢,d) 1is a bounded function.
Now for any bounded continuous function £(¢) on the domain ¢ = - 4,

let
(A.5) (T£) (¢) = j[u(é.ﬁ) + BE(A(0)€)]8(dF)

From the properties just mentioned, it is evident that wu(e,f) + BFf(A(8)¢)
is well-defined for all « =2 -9, § €8, and that it is furthermore a
bounded continuous function on this domain. It then follows that (Tf)(4)
is well-defined for all ¢ = - §, and furthermore a bounded continuous
function of ¢ on this domain. Thus (A.5) defines an operator T that
maps the set of bounded continuous functions on the domain [-§,=) into
itself. As it satisfies the Blackwell conditions (with the sup norm), it is
a contraction, and so has a unique fixed point. Comparison of (A.5) with

(A.4) shows that the fixed point coincides with the function p(e) defined
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earlier, for all ¢ # 0. Since the fixed point is a continuous function,
p(e) 1is continuous at ¢ = 0. Thus v(m) is differentiable at m = 1, and
the derivative is v'(l) = p(0).

From (A.5) we observe that the fixed point, evaluated at ¢ = 0, must

satisfy
00 = Jru(0,0) + o0y 19(an)

so that

(Al6) vy = @ ol ewryenracan

'Finally,'since (Et(mo;ﬁ),ﬁt(mo;ﬁ)} represents a feasible plan, it
follows that v(m) < v(m) for all m 2= 1-9. Furthermore, v(1) = v(1).
One also observes that Et(mo;ﬂ) is a linear function of m,, for each ¢,
as a result of which v(m) is a concave function of m. Then the fact that
v(m) is differentiable at m = 1 implies that v(m) is differentiable at
that point as well, by the lemma of Benveniste and Scheinkman (Stokey,
Lucas, and Prescott, 1989, Theorem 4.10), and that the derivative is v’ (1)

= v'(l). Then (A.6) implies (4.7). O
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Footnotes

1 Rotemberg (1988) also stresses that the Prescott-Butters equilibrium need
not involve any price commitments by sellers prior to the time at which an
order is accepted.

To be precise, p(z) denotes the minimum element in the support of the
distribution of prices at which goods are offered for sale after stage z
is reached. This more precise definition is important in clarifying. that an
individual, atomistic.producer cannot change the aggregate supply function
p(z) through his own pricing behavior.

Here we assume that if buyers are indifferent between buying and not, they
will always buy. This allows us to exclude the possibility of purchases
ending at a stage z where U’(z) = ap(z) even though cash balances are
not exhausted, and U’(c) + af[f - R(ec)] 1is still increasing in ¢, for ¢
in a right neighborhood of z. 1In fact, it is shown below that in
equilibrium, U’(z) > ap(z) for all z < c(d), so that buyers strictly
prefer to buy at all stages prior to the terminal stage.

4 This measurability assumption amounts to restricting attention to a
particular type of equilibrium, in which it happens that producers’
strategies vary with their index in a certain way. Consideration of
equilibria of this particular form does not involve any assumption that
producers coordinate their pricing decisions, any more than would a
restriction to the much more special class of symmetric equiiibria._ Any
symmetrical equilibrium is necessarily of this form. To simplify notation,
we do not even formally define equilibrium except of this particular sort.
3 Technically, we define this expression as the limit as et0 of the

integral over the interval le,y]. As A(z) 1is a measurable function,
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A(Fj(zj)) is measurable for any right-cqptinuous Fj' Furthermore, (3.1)
imples that this function is non-negative, and Bounded above by a-lU'(e)
on [e,y]. Hence A(Fj(zj)) is integrable on any such interval. Moreover,
the integral is non-decreasing as € decreases, so the limit as €0
exists (though it may be infinite).

In the case of a measure ¢ that contains atoms, this is a Prescott-
Butters strategy only if the previous definition is relaxed to specify that

for every 0 =< z <y, either Fj(zj) = inf(z | p(z) = pj(zj)); or

p(Fj(zj)) - pj(zj). In other words, in the event that a positive fraction
of aggregate sales occur at a single price p, it is not necessary that
every seller j that intends to sell units at the price p sell all of
them as soon as p(z) reaches the level p; it is enough that all of j's

goods with that price tag be sold by the time p(z) rises above p.

Note that the equilibrium concept of Prescott and Butters is in fact
an equilibrium in this broader class of strategies (for equilibria in which
a positive fraction of all goods sell at a single price are possible in
their framework). 1In the case that the weaker definition is required, the
representation of the Prescott-Butters equilibrium is our formalism is
somewhat awkward, in that our formalism requires seller j to specify at

exactly which of the stages (z | p(z) = p) his units will be sold, which

appears inconsistent with the idea that i ”simply fixes the price tags
before any sales occur and is thereafter completely passive. Nonetheless,
it may be verified that the Prescott-Butters equilibrium corresponds exactly
to an equilibrium in our sense, within the restricted class of strategies
just defined.

7

Note that in this model, beyond a certain point a higher realization of the

money supply has no effect on either prices or real activity. The
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additional money is sihply hoarded. This kind of "liquidity trap" is a
typical feature of cash-in-advance models, and has nothing to do with the
special market structure proposed here. See, for example, the discussion of
the corresponding equilibrium with Walrasian spot markets in the two
paragraphs below.

8Of course, real effects of anticipated money growth are possible in such
models, if there are possibilities for substituting away from cash
transactions. Such effects are entirely due to the fact that higher
anticipated inflation increases the cost of using cash, and so increases the
resort to inefficient alternmatives. 1In this pPaper, we abstract entirely

from this source of monetary non-neutrality.
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