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1. Introduction

Different geometric theories appear all across mathematics: differentiable manifolds, complex
and real analytic varieties, rigid analytic spaces, adic spaces, Berkovich spaces, algebraic varieties
and schemes, formal schemes, etc. The aim of "analytic stacks" is to define a general ecosystem
where the previous (and many more!) "theories of analytic and algebraic geometries" cohabit and
interact each other. To motivate the distribution of future talks let us make explicit the obstructions
that mathematicians have face all over the years when dealing with analytic geometry, and how
condensed mathematics and analytic stacks have solved these issues.

1.1. Light condensed sets. The building blocks in theories such as algebraic varieties or schemes
consist simply of commutative rings satisfying some additional algebraic properties. This leads to a
pleasant treatment of geometry that is studied in purely algebraic terms. However, in other theories
such as differentiable manifolds and complex or rigid analytic varieties, the building blocks turn
out to be some sort of topological rings, more often Banach or Fréchet rings. Then, any general
form of "analytic geometry" that inherits a similar formalism as algebraic geometry must be built
up over an algebraic theory of "topological rings". However, history has shown that the datum
of a topology does not mixes very well with that of an algebraic structure. A very simple and
clever solution to this is provided by condensed mathematics [CS19], where "topology" is changed
by the topos of (light) condensed sets. Therefore, our first replacement for topological "preferred
algebraic structure" (eg. ring/module/abelian group/monoid) will be condensed "preferred algebraic
structure".

The idea behind condensed mathematics follows the philosophy of Grothendieck saying that a
space X must be studied by looking at maps Y → X from some "test objects" Y . For this approach
to be useful, one needs to choose the "test objects" wisely. In our situation, we want to study (rea-
sonable) topological spaces, and a first class of reasonable topological spaces are compact Hausdorff
spaces. It turns out that compact Hausdorff spaces can be reconstructed from a certain class of
"very acyclic" spaces. Concretely, let Prof be the category of profinite sets/totally disconnected
compact Hausdorff spaces. We endow Prof with the Grothendieck topology whose covers are given
by finitely many jointly surjective maps. As justification for this choice, recall that any surjective
map of compact Hausdorff spaces is a quotient map, and that any compact Hausdorff space X
admits a surjection from a profinite set. For instance, the closed interval [0, 1] admits a surjective
map from the Cantor set

∏
N{0, 1} → [0, 1] by sending a sequence (an) to the real number written

in binary decimals
(an) 7→ 0.a1a2a2 · · · .

Definition 1.1.1. A condensed set is a sheaf T : Profop → Set (modulo some set-theoretical
technicalities i.e. accessible), we let CondSet denote the category of condensed sets. For X a
(reasonable) topological space (eg. Hausdorff), we define its condensification X ∈ CondSet by
taking

X(S) = Map(S,X)

the space of continuous maps from S to X, with S ∈ Prof.

Most of the spaces we care of in topology (such as countably generated CW complexes), geometry
(eg. manifolds), and analysis (eg. Banach, Fréchet spaces) are endowed with a topology for which
understanding converging sequences is often enough. More precisely, the most interesting topological
spaces are (locally) metrizable. Thus, a good balance in condensed mathematics between capturing
all the relevant information and avoiding unnecessary technicalities is given by light condensed sets:

Definition 1.1.2. A light profinite set is a metrizable profinite set, we Prof light be the category of
light profinite sets. A light condensed set is a sheaf T : Prof light,op → Set, we let CondSetlight denote
the category of light condensed sets.
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Finally, for any algebraic structure C (aka. a category with small limits and colimits), its con-
densification Cond(C ) is the category of sheaves T : Prof light,op → C from light profinite sets in C .
For example, we can talk about (light) condensed abelian groups, rings, monoids, etc. The notion
of light condensed "preferred algebraic structure" is the replacement we shall use for its topological
analogue.

1.2. Analytic rings. As it was mentioned before, part of the datum of the building blocks in a
general theory of analytic geometry must involve some kind of topological (aka condensed) ring. On
the other hand, the most fundamental invariant of a space X in both analytic or algebraic geometry
is its category of (quasi-)coherent sheaves QCoh(X). In classical algebraic geometry this category is
obtained by gluing, using "Zariski descent", the category of modules Mod(A) of commutative rings
A. However, in the case of complex and rigid geometries, the best that one can (classically) do in a
systematic and algebraic manner is to built up the category of coherent modules Coh(X), imposing
in this way finiteness conditions to the sheaves living over X. In particular, for a general morphism
f : X → Y of rigid or complex analytic spaces, the sheaf f∗OX does not belong to the category
attached to X. On the other hand, even though condensed rings are some kind of topological rings,
in analytic geometries we often want to have some kind of "complete tensor product" and a category
of "complete modules". It turns out that if A and B are two condensed rings, then the underlying
ring of A⊗ZB is just the algebraic tensor A(∗)⊗ZB(∗), proving that we still need to do something
else.

The notion of analytic ring appears as a solution to the previous problematics. The datum of
an analytic ring A consists of a condensed ring A▷ and a stable ∞-category D(A) of "complete
A-modules". Before enumerating the features of D(A), let us do a brief detour explaining this jump
from an abelian category of modules to a stable ∞-category: in classical algebraic geometry, the
category QCoh(X) of quasi-coherent sheaves is endowed with a symmetric tensor product ⊗OX

.
Within this tensor product one can construct fiber products X ×Y Z of (affine) schemes by simply
taking the (affine) scheme represented by the tensor product of rings. However, when dealing with
cohomological invariants of algebraic varieties, it is natural to enter the world of derived categories.
In this realm the "correct fiber product" X ×Y Z is not longer constructed using the "abelian"
tensor product of rings but instead the "derived tensor product". Thanks to the current status
of higher category theory and higher algebra, eg. [Lur09, Lur17, Lur18], we have nowadays the
categorical tools to develop theories of "derived algebraic geometries" as in [Lur04, Lur18].

In the former theory of analytic geometry, classical abelian or triangulated categories of quasi-
coherent sheaves are not enough to obtain descent and glue to more general spaces (a reason is
the lack of "complete" flatness even for some simple maps such as open immersions of rigid or
complex analytic spaces). Instead, stable ∞-categories are perfectly suited for these purposes.
As consequence of the previous explanation, the general theory of analytic rings depends in higher
categorical foundations (eg. the underlying condensed ring A▷ should be an animated or a condensed
E∞-ring), even though the most fundamental examples still can be explained in the world of abelian
categories. For the reader that is not comfortable with the language of higher category theory, we
recommend to consider D(A) as a classical derived category in a first approach, and accept some
features of ∞-derived categories for granted such as the existence of arbitrary (small) limits of
∞-categories [Lur09, §3.3.3], or the adjoint functor theorem [Lur09, Corollary 5.5.2.9].

Going back to the category D(A), it ought satisfy the following properties:

(1) It should be a full subcategory D(A) ⊂ D(A▷) of the derived ∞-category of condensed A▷-
modules stable under all limits and colimits, and "tensored over condensed abelian groups".
This are the basic requirements for doing homological algebra over A.

(2) There is a "completion functor" A ⊗A▷ − : D(A▷) → D(A), left adjoint to the natural
inclusion (note that we have dropped derived decorations in the tensor). Moreover, D(A)
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can be uniquely promoted to a symmetric monoidal category such that A ⊗A▷ − is a sym-
metric monoidal functor. Similarly as for schemes, we require our category of modules to be
endowed with a "complete tensor product" that will generalize "complete tensor products"
in classical theories of analytic geometries.

(3) The completion functor A⊗A▷ − should preserve connective objects: A⊗A▷ − : D(A▷)≥0 →
D(A▷)≥0. This will endow D(A) with a t-structure arising from condensed A▷-modules.

(4) We have A▷ ∈ D(A) (we want our topological ring to be complete!).

Definition 1.2.1. An analytic ring A is a pair (A▷,D(A)) consisting on a light condensed animated
ring A▷, and a full subcategory D(A) ⊂ D(A▷) of "complete modules" satisfying properties (1)-(4)
above. A morphism of analytic rings f : A → B is a morphism of condensed rings A▷ → B▷ such
that the forgetful functor f∗ : D(B▷) → D(A▷) sends D(B) to D(A). We let AnRing denote the
∞-category of analytic rings.

It turns out that AnRing a is a presentable ∞-category (cf. [Lur09, §5.5] for the notion of
presentability), in particular it admits all (small) colimits (cf. [CS20, Proposition 12.12] and [Man22,
Proposition 2.3.15]). Analytic rings shall be the bulding blocks in the theory of analytic stacks.

1.3. Analytic stacks. Let Ring be the category of rings. Schemes are constructed out from
Ring by gluing using the Zariski topology. In particular, a scheme can be seen as an object in
ShZar(Ring

op, Set), i.e. a sheaf for the Zariski topology in the opposite category of rings, aka, affine
schemes. Similarly algebraic spaces (resp. Artin stacks) are obtained by "gluing affine schemes"
along étale or smooth maps, they then define sheaves in more refined Grothendieck topologies such
as the étale or flat topologies. Moreover, when defining stacks in derived algebraic geometry [Lur04],
it is mandatory to not just consider functors with values in sets but in anima Ani (aka. ∞-groupoids
or spaces).

For the theory of analytic stacks we want to define a suitable Grothendieck topology G on AnRing
such that "analytic stacks" are given by (hyper)sheaves

AnStack = ShG(AnRing
op,Ani).

The question that arises is which Grothendieck topology should we consider? Well, by definition
analytic rings are not just its underlying condensed ring but its category of modules. Indeed,
an analytic ring is (essentially) completely determined by its category of modules! Thus, whatever
Grotendieck topology we choose, the functor A 7→ D(A) should certainly satisfy descent. On the
other hand, we want a refined enough Grothendieck that explains already existing "identifications"
from classical analytic geometries:

Let Qp be the field of p-adic numbers, and consider the projective space P1
Qp

. There are different
ways to construct P1

Qp
. First, we have the algebraic geometry manner that glues the (spectrum of

the) rings Qp[T ] and Qp[T
−1] along the intersection Qp[T

±1]. On the other hand, we have rigid
geometry and we can construct P1

Qp
by gluing the (adic spectrum of the) Tate algebras Qp⟨T ⟩ and

Qp⟨T−1⟩ along the intersection Qp⟨T±1⟩. Thus, we want the theory of analytic stacks to be able to
identify these both constructions of P1

Qp
as the same space, getting as a result a geometric version

of GAGA theorems.
In later talks we shall introduce the formal definition of the Grothendieck topology used for

defining analytic stacks. A key tool in its definition will be the abstract theory of six functor
formalisms built for analytic rings.

1.4. Examples. During the introduction of light condensed sets, analytic rings and analytic stacks,
we shall study in more detail some examples arising from algebraic geometry and the theory of adic
spaces (solid theory). We will just shortly mention the existence and some features of archimedean
and global examples of analytic rings (liquid and gaseous theory).
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Solid abelian groups. Let CondAblight denote the category of light condensed abelian groups.
We shall define the subcategory of (light) solid abelian groups Solid ⊂ CondAblight by imposing
a condition extracted from the idea that "converging sequences in non-archimedean analysis are
precisely the null sequences". The category of solid abelian groups is endowed with a tensor product
that we denote by ⊗□, it has Z as unit, and so it defines and analytic ring Z□ that we call the
"solid integers". The category Solid has a compact projective generator

∏
N Z that is flat for ⊗□,

and satisfies ∏
I

Z⊗□

∏
J

Z =
∏
I×J

Z

for countable sets I, J . This category is completely disjoint from archimedean analysis, namely,
the solidification of R is just 0. Examples of solid abelian groups are discrete groups, p-adically
complete modules, Qp-Banach and Fréchet spaces, etc. It also holds that (most) of the completed
tensor products appearing in non-arhimidean geometry coincide with ⊗□ (eg. p-complete tensor
products of Banach spaces, projective tensor product of nuclear Fréchet spaces).

Liquid vector spaces. Let q ∈ (0, 1]. The analytic ring of liquid real vector spaces was constructed
in [CS20]. The construction of this analytic ring requires a lot of effort due to the non-locally
convex functional analysis involved. For instance, if R<q denotes the analytic ring of < q-liquid real
numbers, and S is a profinite set, then the free liquid real vector space R<q[S] is not the naive guess
of signed Radon measures on S, but a certain space of (< q)-convex Radon measures. The liquid
tensor product agrees with the projective tensor product for nuclear Fréchet spaces, as well as for
their duals, see [CS22, IV].

Gaseous rings. As we shall see later, one of the main advantages of the new foundations for
the theory of analytic rings, based on light condensed sets, is that it is much easier to construct
analytic rings out from inverting some concrete maps of modules. The difficulty is then translated
in computing the functors of "measures" A[S] for S ∈ Prof light. The gaseous ring stack is defined
in this way via some universal property in the category of analytic rings. It specializes in both
solid and liquid stacks, and its underlying ring Z[q̂]gas ⊂ Z[[q]] consists on power series of at most
polynomial growth:

Z[q̂]gas(∗) = {
∑

n>>−∞

anq
n : ∃ m, k > 0 such that lim

n→∞
|an|(n+m)−k = 0}.

The gaseous ring was motivated from the construction of Tate’s elliptic curve Gan
m,A/q

Z in an universal
way.

2. Light condensed mathematics

In this talk we will study the basics in light condensed mathematics, this involves light profinite
sets, light condensed sets and light condensed abelian groups.

2.1. Light profinite sets. Condensed mathematics proposes a better algebraic framework that
replaces topological spaces, namely condensed sets. The building blocks of condensed sets are
profinite sets that we briefly recall down below.

Proposition 2.1.1. The following categories are equivalent.
(1) The pro-category of finite sets Pro(Fin) where maps are given by

Map(lim←−
i

Si, lim←−
j

Tj) = lim←−
j

lim−→
i

Map(Si, Ti).

(2) The category of totally disconnected compact Hausdorff spaces with continuous maps.
(3) The opposite category of Boolean algebras.

We let Prof denote the category of profinite sets, considered as in (1) or (2) above.
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Proof. We just construct the equivalences. From (1) to (2) we take a projective system {Si}i and
pass to the topological space S = lim←−i

Si endowed with the limit topology. From (2) to (1) we take
a totally disconnected compact Hausdorff space and consider the projective system {Si}i∈I of finite
quotients of S, equivalently, the projective system of partitions of S in clopen subspaces. From (2)
to (3) we take a totally disconnected compact Hausdorff space S and consider the Boolean algebra
A = C(S,F2) of continuous functions from S to F2. From (3) to (2) we take a Boolean algebra A
and consider its spectrum SpecA as a topological space. □

A delicate issue when working with the category of all profinite sets is that it is not essentially
small, i.e. there is not a set of isomorphism classes of objects. On the other hand, all the spaces we
actually care about appearing in geometry, topology or analysis (such as manifolds, CW complexes,
Banach or Fréchet spaces) admit a norm, and can be recovered within a set of smaller profinite
sets.

Proposition 2.1.2. Let S be a profinite set, the following are equivalent.
(1) C(S,Z) is countable
(2) S is metrizable
(3) S is 2-countable
(4) S can be written as a sequential limit of finite sets.

Proof. Urysohn’s metrization theorem implies that a compact Hausdorff space is metrizable if and
only if it is 2-countable, this shows (2) ⇔ (3).

(3)⇔ (4). By Proposition 2.1.1 the passage from a totally disconnected compact Hausdorff space
S to a projective system of finite sets is made by taking the system of partitions of S into clopen
subspaces, since S is 2-countable this projective system is countable. Conversely, if S = lim←−N

Sn is
a sequencial limit of finite sets, taking the fibers of the maps S → Sn defines a countable basis for
the topology of S.

(4) ⇒ (1). If S = lim←−N
Sn, then C(S,Z) = lim−→n

C(Sn,Z) which is countable.
(1)⇒ (3). Finally, if C(S,Z) is countable, then C(S,F2) is countable, and S = SpecC(S,F2) has

at most countably many clopen subspaces, proving that S is 2-countable. Indeed, clopen subspaces
of S are in bijection with the elements of C(S,F2). □

Definition 2.1.3. A profinite set is light if it satisfies the equivalent conditions of Proposition 2.1.2.
We let Prof light denote the category of light profinite sets.

Next, we prove some nice features that are special to the category of light profinite sets.

Proposition 2.1.4. The category of light profinite sets admits countable limits. Moreover, sequen-
tial limits of surjections is a surjection.

Proof. Stability under countable limits follows from Proposition 2.1.2 and that a countable limit of
2-countable topological spaces is 2-countable. Let S = lim←−n

Sn be a sequencial limits of surjections,
then the map S → Sn is surjection, namely, given xn ∈ Sn take lifts xn+m ∈ Sn+m, inductively such
that xn+m+1 maps to xm. □

Proposition 2.1.5. Let S be a light profinite set and let U ⊂ S be an open subspace. Then U is a
countable disjoint union of light profinite sets.

Proof. Let us write S = lim←−n
Sn and let Z = S\U . Then Z = lim←−n

Zn with Zn ⊂ Sn the image of
Z in Sn. Let πn : S → Sn and πm,n : Sm → Sn denote the projection maps. We define Y0 = S0\Z0

and for n ≥ 1 we let Yn = Sn\(Zn ∪ π−1
n,n−1Yn−1 ∪ · · · ∪ π−1

n,0(Y0)). Then

U =
⊔
n∈N

π−1
n (Yn).

□
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Proposition 2.1.6. Let S be a light profinite set. Then S is an injective object in Prof light.

Proof. Let f : X → Y be an injection of light profinite sets and let g : X → S be a map. The map
f is a closed immersion, then we can write it as a sequential limit lim←−n

(fn : Xn → Yn) of injective
finite sets. We can write the map g as a sequential limit of finite sets lim←−n

(gn : Xkn → Sn) with kn
some increasing sequence. After taking a subsequence we can assume that kn = n. Then, we can
always find a map h0 : Y0 → S0 extending g0, and provided the extension hn : Yn → Sn, we can
always find a map hn+1 : Yn+1 → Sn+1 extending gn+1 that reduces to hn in the n-th step. Taking
the limit h = lim←−n

hn we get the desired map h : Y → S extending g. □

Proposition 2.1.7 ([CS19, Theorem 5.4]). Let S be a light profinite set, then the space of continuous
functions C(S,Z) is a free Z-module.

Proof. Let us write S = lim←−n
Sn as a sequential limit with surjective maps. We can find compatible

sections
S0 → S1 → S2 → · · ·

and then inductively find compatible sections S0 → S, S1 → S, · · · . Then, we know that

C(S,Z) = lim−→
n

C(Sn,Z),

and we just found compactible sections of C(Sn,Z)→ C(S,Z), since the modules C(Sn,Z) are free,
this shows that C(S,Z) is also free. □

Example 2.1.8. The two examples of light profinite sets that will be the most relevant for us:
(1) The one point compactification of N, namely, N ∪ {∞}. It can be written as

N ∪ {∞} = lim←−
n

{1, 2, . . . , n,∞}

where for m ≥ n the map {1, 2, . . . ,m,∞} → {1, 2, . . . , n,∞} sends all the elements k ≥
n+ 1 to ∞.

(2) The Cantor set S =
∏

N{0, 1}, it admits a surjective map onto the interval [0, 1] by taking
binary decimal expansions.

The relevance of the Cantor set is explained in the following proposition.

Proposition 2.1.9. A profinite set is light if and only if it admits a surjective map from the Cantor
set.

Proof. Let S = lim←−n
Sn be a light profinite set, and let us suppose that S → Sn is surjective for all

n. Then, we can always find a sequence of non-negative integers (kn)n∈N and compatible surjection
maps for varying n

kn∏
m=0

{0, 1} → Sn.

Taking the limit we get the desired surjection from the Cantor set. □

2.2. Light condensed sets. After the previous preparations of light profinite sets we can finally
define light condensed sets (cf. [CS19, Definition 1.2]):

Definition 2.2.1. A light condensed set is a sheaf in the category of light profinite sets for the
Grothendieck topology given by finite disjoint unions of jointly surjective maps. More concretely, a
condensed set is a functor T : Prof light,op → Set such that

(1) T (∅) = ∗.
(2) T (S1 ⊔ S2) = T (S1)× T (S2).
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(3) For all surjective map S1 → S2 we have
T (S2) = eq(T (S2) ⇒ T (S2 ×S1 S2)).

We let CondSetlight denote the category of light condensed sets.

Remark 2.2.2. By Proposition 2.1.4, sequential limits of covers in Prof light are covers. In particular,
the topos of condensed sets is replete in the sense of [BS14, §3], namely, sequencial limits T = lim←−n

Tn

of condensed sets with surjective maps are still surjective. Indeed, by definition of the Grothendieck
topology, given S0 → T0 an S0-point of T0 there is a surjective map S1 → S0 and a lift S1 → T1.
Repeating this process we find a compatible sequence of points Sn → Tn with Sn+1 → Sn a surjective
map. Then, taking limits S = lim←−n

Sn → T , we get a lift of S0 → T0 to S → T and the map S → S0

is a cover in the Grothendieck topology being surjective by Proposition 2.1.4.

Example 2.2.3. (1) Let T be a light condensed set, then the set T (N ⊔ {∞}) is heuristically
the space of convergence sequences with fixed limit, namely, this is exactly the case when
T arises from the condensification of a topological space. If T = X arises from a Hausdorff
space then the set of convergence sequences are determined by its restriction to N, i.e. the
map T (N⊔{∞})→ T (N) is injective. In general, a convergence sequence can have different
limits, so the map T (N ⊔ {∞})→ T (N) is not necessarily injective.

(2) Let Top denote the category of topological space. We define the condensification functor

(−) : Top→ CondSetlight

mapping a topological space X to the condensed set X : S 7→ C(S,X) for S ∈ Prof light.
(3) The Yoneda embedding Prof light → CondSetlight maps a profinite set S to its condensification

S. Since Prof light is a small category, any condensed set can be written as a colimit of light
profinite sets. More precisely, we have that

T = lim−→
S→T

S

as a condensed set. From now we will not make further distinction between S and S for S
a light profinite set.

As we saw in the previous example, there is a natural functor from topological spaces to light
condensed sets by mapping from light profinite sets. The following proposition shows that this
functor is fully faithful in a reasonable subcategory of topological spaces (cf. [CS19, Proposition
1.7])

Proposition 2.2.4. The condensification functor has a left adjoint called the "underlying topological
space", mapping a condensed set T to the topological space given by

T (∗)top = lim−→
S→T

S

where the colimit is taken in the category of topological spaces. More precisely, T (∗)top has underlying
set T (∗) and topology determined by the set of maps⊔

S→T

S → T (∗).

In particular, the functor (−) is fully faithful in metrizably compactly generated spaces (eg. metriz-
able compact Hausdorff spaces).

Proof. Since T = lim−→S→T
S as a condensed set, the statement reduces to the fact that for a profinite

set S and a topological space X we have
X(S) = C(S,X).

□
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Remark 2.2.5. Let us make more explicit what means to be an epimorphism for topological spaces
when considered as condensed sets. Let X → Y be a map of topological spaces such that their
condensification X → Y is an epimorphism. This means that for any light profinite set S and any
map f : S → Y , there is a surjection from a light profinite set S ′ → S and a map S ′ → X lifting S.
For example, if X → Y is a surjection of compact Hausdorff spaces then so is its condensification.
However, this property does not hold true for example in the case of a inductive limit lim−→n

Bn of
Banach spaces with injective transitions maps (LB spaces) in the case the maps are not of compact
type (the closure of the image of a ball is compact), for the quotient map

⊔
Bn → lim−→Bn. In other

words, the condensification of lim−→n
Bn is not necessarily the colimit of the condensification of the

Banach spaces Bn unless the maps are compact.

In every topos there is a notion of quasi-compact and quasi-separated objects, in the case of light
condensed abelian groups these properties can be stated in more concrete terms.

Definition 2.2.6. A condensed set T is quasi-compact if there is a surjection S → T from a profinite
set. A condenset set T is quasi-separated if for every two maps from profinite sets S → T ← S ′,
the fiber product S ×T S ′ is quasi-compact.

Remark 2.2.7. By definition, the Grothendieck topology of Prof light is finitary, this makes the profi-
nite sets quasi-compact objects in the topos of condensed sets. Moreover, since light profinite sets
are stable under countable limits, they are stable under pullbacks and so they are quasi-separated.
This makes CondSet a coherent topos. On the other hand, if T is a condensed set and S, S ′ → T are
maps from profinite sets to T , then S ×T S ′ is a subobject of S × S, therefore T is quasi-separated
if and only if for all S, S ′ as before S ×T S ′ is also profinite.

We can describe concretely the qcqs objects in CondSet.

Proposition 2.2.8. Let CHauslight be the category of metrizable compact Hausdorff spaces. Then
the condensification functor induces an equivalence from CHauslight to the category of qcqs condensed
sets. Moreover, the category of quasi-separated condensed sets is equivalent to the ind-category with
injective transition maps of metrizable compact Hausdorff spaces Indinj(CHaus

light).

Proof. First, we claim that a quasi-compact subobject of a light profinite set is necessarily profinite.
For this, let f : S → S ′ be a map of light profinite sets, we want to see that the image of f is
a closed subspace of S ′. Let Im(f) ⊂ S ′ be the image as topological space, it is profinite and we
know that f factors through the condensification of Im(f). Then, we are left to show that if f is
a surjection of light profinite sets then it is an epimorphism as condensed sets, but this is clear by
the definition of the Grothendieck topology of Prof light.

Let T be a qcqs object in CondSet, then there is a surjection S → T from a light profinite
set such that S ×T S is also profinite. Then, T arises as the quotient of a light profinite set by
a light profinite equivalence relation, making T (∗)top a metrizable compact Hausdorff space, the
natural map T (∗)top → T from the adjunction is an equivalence by Remark 2.2.5. Conversely, let
X be a metrizable compact Hausdorff space and fix a countable basis U of X. Let I denote the
countable cofiltered set of finite covers of X by 2 by 2 different elements in U, and for each i ∈ I
let Si = {Uj1 , . . . , Ujki

} be the cover of X. Then S = lim←−i
Si is a light profinite set. We can define

f : S → X by maping a system of open subsets x = {Uji}i∈I to its intersection f(x) =
⋂

i Uji which
is necessarily a point. The map f is then continuous and a surjection from a light profinite set onto
X. By Remark 2.2.5 the map of condensed sets S → X is surjective, and the fiber product S ×X S
is the condensification of the topological fiber product which is a light profinite set, this shows that
X is qcqs as wanted.

Finally, let T be a quasi-separated light condensed set, and let S → T be a map from a profinite
set S. Then the image X of S in T is qcqs since S ×X S = S ×T S is profinite. This shows that
T can be written as a union of qcqs condensed sets by injective maps, which produces an object
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in Indinj(CHaus
light), furthermore, since qcqs condensed sets are compact objects in CondSet this

map is fully faithful. Conversely, given a cofiltered diagram {Xi}i of light compact Hausdorff spaces
with injective transition maps, the colimit T = lim−→i

Xi of condensed sets is quasi-separated, namely,
given any two maps from profinite sets S, S ′ → T there is some i such that S, S ′ factor through Xi,
and S ×T S ′ = S ×Xi

S ′ is profinite. □

2.3. Light condensed abelian groups. Next, we define light condensed abelian groups and prove
some of its most important features.

Definition 2.3.1. The category of light condensed abelian groups CondAblight is the category of
abelian group objects in CondSetlight. Equivalently, it is the category of abelian sheaves on light
profinite sets.

Example 2.3.2. (1) The forgetful functor

CondAblight → CondSet

has a left adjoint T 7→ Z[T ] given by the free abelian group generated by a condensed set.
The condensed abelian group Z[T ] is given by the sheafification of the functor mapping a
light profinite set S to the free abelian group Z[T (S)].

(2) Let A be a topological abelian group, then A has a natural structure of light condensed
abelian group. Indeed, the condensification functor preserves finite limits and the structure
of an abelian group for A is encoded in some diagrams such as + : A× A→ A.

(3) Let R be the real numbers endowed with the addition and its natural topology, then R is a
condensed abelian group. On the other hand, if Rδ is endowed with the discrete topology
then Rδ is another condensed abelian group with same underlying group as R. There is an
inclusion Rδ ⊂ R which is not an isomorphism. Indeed, for a light profinite set S we have

R/Rδ(S) = C(S,R)/C lc(S,R),
where C lc(S,R) is the space of locally constant functions from S to R.

Theorem 2.3.3. The category CondAblight is a Grothendieck abelian category endowed with a nat-
ural symmetric monoidal structure and an internal Hom. Moreover, it has the following properties

(1) Countable products are exact (countable AB4*) and satisfy (AB6).
(2) Sequential limits of surjective maps are surjective.
(3) The object Z[N ⊔ {∞}] is internally projective.

Proof. The fact that CondAblight is a Grothendieck abelian category is a general fact about sheaves
on abelian groups on a site. It also has a natural tensor product given by the sheafification of
the tensor product of presheaves (in particular for A,B ∈ CondAblight we have (A ⊗ B)(∗) =
A(∗) ⊗ B(∗)). The internal Hom is just the right adjoint of the tensor product. Point (1) follows
from point (2) which is Remark 2.2.2. It is just left to prove point (3).

It suffices to prove that the space of null sequences P = Z[N∪{∞}]/(∞) is internally projective.
We want to show that for a surjection A → B of light condensed abelian groups, and that for all
light profinite set S, and a map g : Z[S] ⊗ N → B, there is a dashed arrow making the following
diagram commutative

A

Z[S]⊗ P B
g

after possibly replacing S by a cover. We have that Z[S]⊗ P = Z[S × (N× {∞})]/(Z[S × {∞}]).
Then the map g is the same as a map S × (N× {∞})→ B sending S × {∞} to 0. By hypothesis,
there is a surjection f : S ′ → S × (N ∪ {∞}) and a map S ′ → A lifting g. For n ∈ N let S ′

n be
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the fiber over S × {n} (which is still a surjection). By Proposition 2.1.6 we can find retractions
rn : S ′ → S ′

n ⊂ S ′, and construct the following diagram of locally profinite sets

S ′ × N S ′

S × (N ∪∞).

⊔
n rn

⊔
n f◦rn

f

We can find a light profinite compactification S ′′ of S ′×N such that S×N→ S ′ extends to S ′′ → S ′

(Exercise, construct one of such compactifications). Let D be the boundary of S ′′, by Proposition
2.1.6 we can find another retraction r : S ′′ → D. Let h : S ′′ → S ′ → A be the composite map, then
h− h ◦ r induces a map

Z[S ′′]/Z[D] = Z[S ′]⊗ P → A

that lifts g proving what we wanted. □

Remark 2.3.4. It is surprising that the object Z[N∪{∞}] is internally projective in CondAblight. This
does not happens at the level of profinite sets, for example the map (2N∪{∞})

⊔
(2N+1∪{∞})→

N ∪ {∞} does not admit a split. This condensed abelian group will be key in the construction of
examples on analytic rings.

We can define the condensed cohomology as follows:

Definition 2.3.5. Let T ∈ CondSetlight be a light condensed set and M a discrete abelian group,
we define the condensed cohomology of T with values in M to be

RΓcond(T,M) := RHom(Z[T ],M).

Condensed cohomology behaves as expected in good cases.

Proposition 2.3.6 ([CS19, Theorem 3.2]). Let S be a profinite set and M a discrete abelian group,
then

RΓcond(S,M) = C(S,M)

is the space of continuous (eq. locally constant) functions from S to M .

Proof. It is clear that H0
cond(S,M) is just the space of continuous maps from S to M . To show that

the higher cohomology groups vanish, it suffices to show that for a cover S ′ → S with Čech nerve
(S

′,×Sn1)[n]∈∆op the Čech cohomology complex

0→ C(S ′,M)→ C(S ′ ×S S ′,M)→ · · · (2.1)

is acyclic in cohomological degrees ≥ 1. For this, we can write the surjection S ′ → S as a sequential
limit of finite sets with surjective maps lim←−n

(S ′
n → Sn). Then the Čech complex (2.1) is the colimit

of the Čech complexes of the surjections S ′
n → Sn, which are acyclic in degrees ≥ 1 since any

surjection of finite sets splits. □

Proposition 2.3.7 ([CS19, Theorem 3.2]). Let X be a light compact Hausdorff space and M a
discrete abelian group, then there is a natural isomorphism

RΓcond(X,M) = RΓ(X,M)

between condensed and Čech cohomology.

Proof. Since X is compact Hausdorff we can formally reduce to the case M = Z. Let XProf :=
Prof light/X be the site of light profinite sets over X. Then condensed cohomology of X is the same as the
cohomology in XProf . Let Xtop be the site consisting on closed subspaces of X with coverings given
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by finite unions of closed subspaces admitting an open cover refinement. Then Čech cohomology of
X is the same as the cohomology on X⊤. We have a natural morphism of sites

η : XProf → Xtop.

It suffices to show that the natural map Z→ Rη∗Z is an isomorphism. This can be proved at stalks,
so let x ∈ X, then the stalk Rη∗Z|x is the same as the pushforward of the fiber over x, which is
nothing but the condensed cohomology of a point which is Z. □

3. Light solid abelian groups

The theory of solid abelian groups was introduced in [CS19], it plays a fundamental role in non-
archimedean analytic geometries and non-archimedean analysis. The category Solid of solid abelian
groups is a full subcategory of CondAb, stable under limits, colimits and extensions, and containing
Z; it is actually the smallest category satisfying those properties. In its "classical construction" 1

the theory of locally compact abelian groups and its extensions as condensed abelian groups play
a key role. However, within the new framework of light condensed mathematics, the theory of
solid abelian groups can be formally developed from the more intuitive idea that the "summable
sequences" in non-archimedean analysis are precisely the "null-sequences". In the following we will
explain how this very simple idea naturally guides us to the correct definition of Solid.

3.1. Null-sequences and summability. Let K be a local field and V a Banach space over K.
Recall that a null-sequence in V is a sequence (vn)n∈N converging to 0. Similarly, a summable
sequence is a sequence (vn)n∈N such that the partial sums

∑n
i=0 vi converge to an element in v that

we denote by
∑

n vn. One of the first properties that we learn in a course of analysis is that a
summable sequence (vn) has tails wn =

∑
i≥n vn converging to 0. In other words, we have a map

{summable sequences} → {null sequences} : (vn) 7→ (wn).

On the other hand, given a null sequence {wn}n∈N we can form the sequence xn := wn−wn+1 which
turns out to be summable in V , namely,

vn :=
n∑

i=0

xn = w0 − wn+1

and (vn)n converges to w0 as n→∞. Thus, we get a bijection

{null sequences} → {summable sequences } : (wn)n 7→ (xn)n = (wn − wn+1).

Nonetheless, any summable sequence in V is also a null-sequence. The converse does not hold for
archimedean fields (eg. (1/n)n), but it does for non-archimedean fields thanks to the ultrametric
inequality.

Therefore, a way to isolate non-archimedean analysis from condensed abelian groups is by asking
that any null-sequence is summable, namely, that the map

1− S : {null sequences} → {null sequences},

where S is the shift map (vn) 7→ (vn+1), is a bijection.
In order to formalize this idea, first we need to be able to talk about null-sequences of condensed

abelian groups.

Definition 3.1.1. We let P := Z[N ∪ {∞}]/(∞). Given a condensed abelian group A its space of
null sequences is given by Null(A) = Hom(P,A), we also let Null(A) := Hom(P,A).

1If we are allowed to call classical a construction just made around five-six years ago.
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Example 3.1.2. We continue in the spirit of Example 2.2.3 (1). For a quasi-separated condensed
abelian group A being a null-sequence is an actual property of the underlying sequence, namely,
the map

Null(A)→ Map(N, A) =
∏
N

A(∗)

is injective. However, for general condensed abelian groups null-sequences are not properties but
additional structure you put in the condensed abelian group. As example, let R be the real numbers
with the usual topology, and let Rδ be the real numbers with the discrete topology. Then R/Rδ,
if scary as topological abelian group, is a well defined condensed abelian group, and for any light
profinite set S we have that

R/Rδ(S) = C(S,R)/C lc(S,R)
is the quotient of continuous maps from S → R modulo locally constant maps from S to R. Applying
this to S = N∪{∞} we get that R/Rδ(S) is a non-zero space of null-sequences while R/Rδ(∗) = 0,
this shows that a null-sequence in that non quasi-separated quotient remembers the tails of the
virtually zero sequence.

An additional feature for P is that it has a natural structure of algebra making Z[T ] = Z[N]→ P
an algebra morphism.

Proposition 3.1.3. The map addition map

N× N→ N
induces an algebra structure on P , we shall denote this algebra by Z[q̂].

To prove Proposition 3.1.3, it will suffices to show the following lemma

Lemma 3.1.4. Consider a surjective map of light profinite sets S → S ′ and let U ⊂ S ′ be an open
subspace such that S ×S′ U → U is an homeomorphism. Let D and D′ be the complements of U in
S and S ′ respectively. Then we have a pushout square in CondSet

D S

D′ S ′.

Proof. We have a surjection of condensed sets S → S ′ whose Čech fiber is given by S ×S′ S =
∆S∪D×D′D ⊂ S×S. Since S → S ′ is surjective, we have that S ′ = S/(S×S′S) = S/(∆S∪D×D′D),
which is exactly the pushout S

⊔
D D′. □

Definition 3.1.5. Let U be a light locally profinite set, i.e. a countable disjoint union of light
profinite set. We let PU := Z[U ∪ {∞}]/(∞) be the space of "measures on U vanishing at ∞".

Proposition 3.1.6. Let U be a light locally profinite set, let S be any compactification of U and let
D be the boundary, then there is a natural isomorphism PU = Z[S]/Z[D].

Proof. We have a pushout diagram

D S

∗ U ∪ {∞},

applying the left adjoint Z[−] we get a push out diagram at the level of free modules, which induces
the isomorphism

Z[S]/Z[D] = Z[S ∪ {∞}]/(∞).

□
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Proof of Proposition 3.1.3. We can endow N∪{∞} with a structure of additive monoid by declaring
∞ + a = ∞. Then, Z[N ∪ {∞}] has a natural algebra structure such that Z[∞] is an ideal, this
endows P with an algebra structure. More explicitly, consider the addition map

(N ∪ {∞})× (N ∪ {∞})→ N ∪ {∞},
it sends the boundary of N× N to the boundary of N, and by Proposition 3.1.6 it defines a map

P ⊗ P → P,

compatible with the multiplication map Z[T ] ⊗ Z[T ] → Z[T ]. It is easy to check that this defines
an algebra structure on P . □

3.2. Solid abelian groups form an analytic ring. Now we define the category of solid abelian
groups, for this, note that the solid abelian group P parametrizing null sequences has an endomor-
phism Shift : P → P which is induced from the map of profinite sets N∪{∞} → N∪{∞} mapping
∞ to ∞ and n to n+ 1, we call Shift the shift map.

Definition 3.2.1. Consider the map 1− Shift : P → P . A light condensed abelian group A is said
solid if the natural map

Hom(P,A)
1−Shift∗−−−−−→ Hom(P,A)

is an isomorphism. We let Solid ⊂ CondAblight denote the full subcategory of (light) solid abelian
groups.

More generally, given C ∈ D(CondAblight) an object in the (∞-)derived category of condensed
abelian groups, we say that C if solid if the natural map

RHom(P,C)
1−Shift∗−−−−−→ RHom(P,C)

is an equivalence. We let D(CondAb)□ ⊂ D(CondAblight) be the full subcategory of solid objects.

Remark 3.2.2. By Theorem 2.3.3 the object P is internally projective in the category of light
condensed abelian groups, in particular there is no difference between the derived or non derived
Hom space Hom(P,A). This shows that Solid ⊂ D(CondAb)□.

The main theorem regarding the category of solid abelian groups is the following:

Theorem 3.2.3. The category Solid is a Grothendieck abelian category stable under limits, colimits
and extensions in CondAb. Furthermore, the following properties hold:

(1) Z ∈ Solid.
(2) There is a left adjoint (−)□ : CondAb→ Solid for the inclusion that we call the solidification

functor.
(3) There is a unique symmetric monoidal structure ⊗□ on Solid making (−)□ symmetric

monoidal.
(4) R□ = 0 (solid abelian groups kill the archimedean theory).

Moreover, D(CondAb)□ is a presentable full subcategory of D(CondAb) stable under limits and
colimits, and the following properties are satisfied:

(5) The inclusion D(CondAb)□ → D(CondAb) has a left adjoint (−)L□.
(6) An object C ∈ D(CondAb) is solid if and only if H i(C) ∈ Solid for all i ∈ Z, i.e. the natural

t-structure on D(CondAb) induces a t-structure on D(CondAb)□.
(7) For C ∈ D(CondAb)□ and M ∈ D(CondAb) we have RHom(M,C) ∈ D(CondAb)□.
(8) The category D(CondAb)□ has a unique symmetric monoidal structure ⊗L

□ making (−)L□
symmetric monoidal.

(9) The natural map D(Solid) → D(CondAb) of derived categories is fully faithful, and has
essential image D(CondAb)□.

(10) The functor (−)L□ is the left derived functor of (−)□.
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(11) The functor ⊗L
□ is the left derived functor of ⊗□.

(12) For S = lim←−n
Sn a light profinite set there is a natural equivalence

Z□[S] := (Z[S])L□ ∼−→ lim←−
n

Z[Sn] ∼=
∏
N

Z.

In particular, Z□[S] is a compact projective solid abelian group, and if S is infinite Z□[S] is
a compact projective generator of Solid.

(13) For I and J countable sets we have∏
I

Z⊗L
□

∏
J

Z =
∏
I×J

Z.

(14) The object
∏

N Z is flat in Solid.

In [CS19] a lot of effort is made in order to prove Theorem 3.2.3 and the only obvious property
was point (12), this is because solid abelian groups were constructed by first defining the functor
of measures S 7→ Z□[S]. Furthermore, property (14) is not true in arbitrary solid abelian groups
(counter example due to Effimov). It turns out that with Definition 3.2.1 most of the theorem is
immediate.

Proposition 3.2.4. The category Solid is a Grothendieck abelian category. Furthermore, points
(1)-(8) hold. Moreover, property (12) implies (9) and (10), and property (13) implies (11).

Proof. Recall that the category Solid is defined as the full subcategory of condensed abelian groups
A such that the map 1− Shift∗ on Hom(P,A) is an isomorphism. Since P is internally projective,
this condition is clearly stable under limits, colimits and extensions in CondAb, making Solid an
abelian category. The same argument shows that D(CondAb)□ is stable under limits and colimits
in D(CondAb). It is left to show that Solid and D(CondAb)□ are presentable, for this, consider
Q = cone(P → lim−→1−Shift

P ), then an object C is solid if and only if RHom(Q,C) = 0. Presentability
then follows from [Lur09, Theorem 5.5.3.18].

(1) By Proposition 2.3.6 for all S ∈ Prof we have that RHom(Z[S],Z) = C(S,Z) is the space
of locally constant functions. This implies that

Hom(P,Z) =
⊕
n∈N

Z.

Then, the action of 1 − Shift∗ maps a sequence (a0, a1, . . .) to (a0 − a1, a1 − a1, . . .), which
clearly has by inverse

(b0, b1, b2, . . .) 7→ (
∑
i≥0

bi,
∑
i≥1

bi, . . .).

since the sequences are eventually zero.
(2) and (5) The existence of the left adjoint follows from the adjoint functor theorem [Lur09, Corollary

5.5.2.9].
(3) and (8) It suffices to show that the kernel of the adjoints (−)□ and (−)L□ are tensor ideals in Solid

and D(CondAb)□ respectively. Let us just explain the proof for (−)L□. Let A ∈ D(CondAb)
be such that AL□ = 0 and let M ∈ D(CondAb). To prove that (M ⊗L A)L□ = 0 it suffices
to show that for all B ∈ D(CondAb)□ we have

RHom(A⊗L M,B) = 0,

but we have that

RHom(A⊗L M,B) = RHom(A,RHom(M,B)), (3.1)

and RHom(M,B) is solid by (7), proving that (3.1) vanishes.
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(4) Since R is an algebra and the functor (−)L□ is symmetric monoidal, it suffices to show that

π0(RL□) = R□ = 0.

Moreover, for this it suffices to show that the unit map Z → R□ is zero. For this, consider
the null-sequence in R

(1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, · · · )
defining a map f : P → R. By definition of the solidification, there is an unique map
g : P → R□ making the following diagram commutative

P R

P R□.

f

1−Shift

g

Let [0] : Z→ P be the inclusion in the zero-th component, then g ◦ [0] : Z→ R□ defines an
element x (virtually given by 1 + 1

2
+ 1

2
+ · · · ). We claim that x = 2 + x, this would show

that 2 = 0 and that R□ = 0 since 2 is a unit.
Consider the maps

F : Z[N]→ Z[N] : [n] 7→ [2n+ 1] + [2n+ 2]

G : Z[N]→ Z[N] : [n] 7→ [2n+ 1].

These maps naturally extend to endomorphisms of P . We claim that we have a commutative
diagram

P P

P P,

F

1−S1−S 1−S

G

namely, we have

(1−Shift)◦F ([n]) = (1−Shift)([2n+1]+[2n+2]) = [2n+1]−[2n+2]+[2n+2]−[2n+3] = [2n+1]−[2n+3]

and
G ◦ (1− Shift)([n]) = G([n]− [n+ 1]) = [2n+ 1]− [2n+ 3].

On the other hand, we have that f ◦ F = f , namely it is the sequence

((
1

2
+

1

2
), (

1

4
+

1

4
), (

1

4
+

1

4
), (

1

8
+

1

8
), (

1

8
+

1

8
), (

1

8
+

1

8
), (

1

8
+

1

8
), · · · ) = (1,

1

2
,
1

2
,
1

4
,
1

4
,
1

4
,
1

4
, · · · ).

By uniqueness of the lift g : P → R□, we must have g ◦G = g. Then, if g represents the null
sequence (x0, x1, x2, x3, · · · ), we must have xn = x2n+1 for all n ∈ Z. In particular, x0 = x1,
so that

0 = x0 − x1 = 1,

proving what we wanted.
(6) This follows from the fact that for all C ∈ D(CondAb) we have

H i(RHom(P,C)) = Hom(P,H i(C)) for i ∈ Z
since P is internally projective.

(7) Let M ∈ D(CondAb) and C ∈ D(CondAb)□, then the claim follows from the isomorphism

RHom(P,RHom(M,C)) = RHom(M,RHom(P,B)),

and the fact that B is solid.
Now let us assume that properties (11) and (12) hold.
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(9) The map Solid→ CondAb induces a functor of derived categories D(Solid)→ D(CondAb),
by [Lur17, Proposition 1.3.3.7], and since P□ =

∏
N Z is a compact projective generator of

Solid, it suffices to show that for A ∈ Solid we have

RHom(P□, A) = Hom(P□, A).

But we know that P□ = PL□, and by the left adjoints of (2) and (5) we have

RHom(P□, A) = RHom(PL□, A) = RHom(P,A) = Hom(P,A) = Hom(P□, A).

(10) This follows from the fact that Z[S]L□ = Z[S]□ sits in degree zero. Indeed, since both derived
categories are right complete, it suffices to show that the restriction of (−)L□ to connective
complexes D≥0(CondAb) (i.e. non-negative homological degrees) is the left derived functor.
This statement boils to the fact that (−)L□ : D≥0(CondAb) → D≥0(Solid) is the left Kan
extension of its restriction to the full subcategory of generators C 0 = {Z[S]}S∈Proflight ⊂
D≥0(CondAb)

2. In other words, that for C ∈ D≥0(CondAb) we have

CL□ = lim−→
Z[S]∈C 0/C

Z[S]L□ = lim−→
Z[S]∈C 0/C

Z[S]□.

(11) Finally, to show that ⊗L
□ is the left derived functor of ⊗□, it sufices to show that there is a

family of compact projective generators C 0 ⊂ Solid stable under the solid tensor product,
such that for A,B ∈ C 0 we have A ⊗L

□ B = A ⊗□ B. Taking C 0 as the full subcategory
spanned by Z□[S] with S light profinite we are done thanks to property (13).

□

Corollary 3.2.5. Let C be a real condensed vector space. Then CL□ = 0.

Proof. The solidification functor (−)L□ is symmetric monoidal, in particular RL□ is an algebra and
CL□ has a natural RL□ -module structure. But RL□ = 0, which implies that CL□ = 0. □

We have proven most of Theorem 3.2.3, it is left to show points (12)-(14) regarding the explicit
description of the free objects Z□[S] := Z[S]L□, their solid tensor products, and the flatness of

∏
N Z

in Solid, we left those properties for the next sections.

3.3. Computing measures in solid abelian groups. The objective in this section is to prove
the following theorem

Theorem 3.3.1. Let S = lim←−n
Sn be a light profinite set. Then the natural map of solid abelian

complexes
Z[S]L□ → lim←−

n

Z[Sn]

is an equivalence. Furthermore, the following hold:
(1)

∏
N Z is a compact projective generator of Solid

(2) The natural map D(Solid)→ D(CondAb)□ is an equivalence of ∞-categories.
(3) The functor (−)L□ is the left derived functor of (−)□.

By Proposition 3.2.4 it is only left to prove the first assertion of the theorem, this will require some
lemmas. Recall that P = Z[N∪ {∞}]/(∞) is the solid abelian group parametrizing null-sequences.

First, we see that it suffices to compute the solidification of P in order to compute the solidification
of Z[S] for S a light profinite set.

Lemma 3.3.2. Let S be a light profinite set, there is a map P → Z[S] that induces isomorphisms
on solidifications

PL□ ∼−→ Z[S]L□.
2Note that the full subcategory C 0 ⊂ D≥0(CondAb) is not a full subcategory of CondAb since the objects of C 0

are not projective
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Proof. Let us write S = lim←−n
Sn as a limit of finite sets with surjective transition maps and pro-

jections πn : S → Sn. We can find a sequence of compatible lifts S0 → S1 → S2 → · · · → S
with ιn : Sn → S. Enumerating

⋃
n ιn(Sn) ∼= N along the previous inclusions, we get an injection

N → S. Then for a ∈ ιn(Sn)\ιn−1(Sn−1) ⊂ N consider the element ιn(a) − ιn−1(a). The sequence
(ιn(a)− ιn−1(a))n∈N converges to zero in Z[S] and defines an injective map g : P → Z[S]. We claim
that g induces an isomorphism after solidification.

We claim that we have a commutative diagram

P ⊗ Z[S] Z[S]

P ⊗ Z[S] P

F

(1−Shift)⊗idS

G

(3.2)

where the top horizontal arrow F arises from a map (N × {∞}) × S → Z[S] that vanishes at
∞× S. This map is given by the sequence of maps {n} × S → Z[S] given by idZ[S] if n = 0 and
idZ[S]−ιn−1 ◦πn−1 if n ≥ 1, which vanish uniformly on S at∞. Then, to define the lower horizontal
arrow G we need to show that the composite F ◦(1−Shift) lands in P , but the composite corresponds
to the map of condensed sets

G : (N ∪ {∞})× S → Z[S]
vanishing at ∞× S, and given by ιn−1 ◦ πn−1 − ιn ◦ πn : S → Z[S] on {n} × S (where we make
the convention ι−1 ◦ π−1 = 0). In particular, G({n} × S) lands in P , and so it extends to a map
G : (N ∪ {∞})× S → P that vanishes at {∞} × S, producing the desired factorization.

Taking solidifications of (3.2), we get a commutative diagram

(P ⊗ Z[S])L□ Z[S]L□

(P ⊗ Z[S])L□ PL□

F

≀

G

(3.3)

where the left vertical arrow is an isomorphism, and the top horizontal arrow has a section induced
from the map {0} × S → P ⊗ Z[S]. The previous shows that Z[S]L□ is a retract of PL□ with
idempotent morphism r : PL□ → PL□. To show that the map is an actual isomorphism we need
to show that r is the identity. To prove this last claim, note that the diagram (3.2) restricts to a
diagram

P ⊗ P P

P ⊗ P P

F

(1−Shift)⊗idP idP

via the inclusion P ⊂ Z[S]. Indeed, the map F is given by the sequence of endomorphisms
idZ[S]−ιn−1 ◦ πn−1 of Z[S], which restrict to the endomorphisms idP −ιn−1 ◦ πn−1 of P . Taking
solidifications we get

(P ⊗ P )L□ PL□

(P ⊗ P )L□ PL□,

F

≀ idP (3.4)

and the idempotent r obtained from (3.3) is the same as the idempotent obtained from (3.4) which
is the identity. □
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Now, we compute the solidification of P . We apply the same trick as in the proof of Lemma 3.3.2
to replace P by a simpler condensed abelian group.

Lemma 3.3.3. Let
∏bnd

N Z =
⋃

n∈N
∏

N Z ∩ [−n, n] ⊂
∏

N Z be the condensed set of bounded se-
quences of integers. Consider the natural map P →

∏bnd
N Z induced by the null sequence en ∈

∏bnd
N Z

with en = (0, 0, · · · , 0, 1, 0, · · · ), which zero except for a 1 in the n-th component. Then the natural
map

PL□ → (
bnd∏
N

Z)L□

is an isomorphism.

Proof. We claim that there is a commutative square

P ⊗
∏bnd

N Z
∏bnd

N Z

P ⊗
∏bnd

N Z P

F

G

(1−Shift)⊗id (3.5)

where the top horizontal arrow F is given by the null-sequence of endomorphisms of
∏bnd

N Z given
by the projection π≥n in the ≥ n-components. To prove the claim, we need to see that the map
G = F ◦ (1 − Shift) lands in P , but it is given by the null-sequence of endomorphisms of

∏bnd
N Z

given by the projections πn = π≥n − π≥n+1, whose target is in P . Taking solidifications of (3.5) we
get a commutative diagram

(P ⊗
∏bnd

N Z)L□ (
∏bnd

N Z)L□

(P ⊗
∏bnd

N Z)L□ PL□

F

G

≀

such that the top horizontal arrow has a section given by the embedding in the 0-th component of the
tensor. Then, as in the proof of Lemma 3.3.2, one gets an idempotent endomorphism r : PL□ → PL□

whose retract is Z[S]L□, and to see that r is the identity, it suffices to notice that (3.5) restricts
to a commutative diagram of the form (3.4), and then one applies the argument as in the proof of
Lemma 3.3.2. □

Lemma 3.3.4. The natural map
∏

N
bndZ→

∏
N Z induces an isomorphism in solidifications

(
bnd∏
N

Z)L□ =
∏
N

Z.

Proof. Let
∏bnd

N R =
⊔

n

∏
N R∩ [−n, n] be the condensed real vector space. We have isomorphisms

of condensed abelian groups ∏
N

Z/
bnd∏
N

Z =
∏
N

R/
bnd∏
N

R.

Indeed, this follows from the fact that we have short exact sequences

0→
∏
N

Z→
∏
N

R→
∏
N

R/Z→ 0
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and

0→
bnd∏
N

Z→
bnd∏
N

R→
∏
N

R/Z→ 0.

In particular, the quotient
∏

N Z/
∏bnd

N Z can be endowed with an structure of R-condensed vector
space, and so its solidification vanishes by Corollary 3.2.5. This shows that

(
bnd∏
N

Z)L□ = (
∏
N

Z)L□ =
∏
N

Z

as wanted. □

Corollary 3.3.5. Let S = lim←−n
Sn be a light profinite set, then we have natural isomorphisms

Z□[S] = RHom(C(S,Z),Z)
and

C(S,Z) = RHom(Z□[S],Z).

Proof. The first isomorphism follows from the fact that C(S,Z) = lim−→n
C(Sn,Z) and that Z□[S] =

lim←−n
Z[Sn]. The second isomorphism follows from the left adjoint (−)L□

RHom(Z□[S],Z) = RHom(Z[S],Z) = C(S,Z).
□

Corollary 3.3.6. Theorem 3.3.1 holds. Moreover, we have
∏

N Z⊗L
□

∏
N Z =

∏
N×N Z. In particular,

⊗L
□ is the left derived functor of ⊗□.

Proof. The consequences (1)-(3) of the theorem were proven in Proposition 3.2.4. By Lemmas
3.3.2, 3.3.3 and 3.3.4, we know that Z[S]□ ≃

∏
N Z abstractly as solid abelian groups. Following

the explicit isomorphisms constructed in the lemmas, one can verify that the previous isomorphism
actually identifies with the natural arrow

Z[S]L□ ∼−→ lim←−
n

Z[Sn]. (3.6)

More explicitly, this hols true for P by the proof of Lemmas 3.3.3 and 3.3.4. In particular, we
have natural isomorphisms RHom(

∏
N Z,Z) =

⊕
N Z and RHom(

⊕
⋉ Z,Z) =

∏
N Z. This shows

that the objects Z[S]L□ are reflexive over Z, and it suffices to show that the map (3.6) becomes an
isomorphism after taking duals. This follows from the fact that

RHom(Z[S]L□,Z) = RHom(Z[S],Z) = C(S,Z)
= lim−→

i

C(Si,Z) = lim−→
i

RHom(Z[Si],Z) = RHom(lim←−
i

Z[Si],Z),

where in the last equality we use that lim←−i
Z[Si] is isomorphic to

∏
N Z by Proposition 2.1.7.

On the other hand, we have an isomorphism P × P
∼−→ P given by taking an anti-diagonal

enumeration of N× N. This shows that∏
N

Z⊗L
□

∏
N

Z ∼= (P ⊗ P )L□ ∼= PL□ ∼=
∏
N

Z. (3.7)

An explicit description of this enumeration shows that the isomorphism (3.7) is given by the natural
map ∏

N

Z⊗L
□

∏
N

Z ∼−→
∏
N×N

Z.

□
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A first interesting property of the solidification functor is that it computes singular cohomology
of CW complexes.

Proposition 3.3.7. Let X be a CW complex, then Z[X]L□ is equivalent to the complex of singular
chains in X.

Proof. Writing X as a colimit of finite CW complexes it suffices to construct a natural quasi-
isomorphism between Z[X]L□ and the chain complex of X, we can then assume X to be compact.
Let S → X be a surjection from a light profinite set with Čech nerve S• → X. We have a resolution

· · · → Z[S2]→ Z[S1]→ Z[S0]→ Z[X]→ 0

proving that Z[X]L□ is given by the connective complex.

· · · → Z□[S2]→ Z□[S1]→ Z□[S0]→ 0.

By Corollary 3.3.5 the complex Z[X]L□ is reflexive, and to naturally identify it with singular chains
it suffices to naturally identify its dual with singular cochains. But

RHom(Z[X]L□,Z) = RHom(Z[X],Z) = RΓcond(X,Z)

is the condensed cohomology of X, that we identified with sheaf cohomology on X by Proposition
2.3.7, and so with singular cochains. □

3.4. Flatness of
∏

N Z and the structure of Solid. In this section we prove the last part of
Theorem 3.2.3 regarding the flatness of

∏
N Z as solid abelian group. The proof strategy begins by

first describing all the finitely presented solid abelian groups.

Definition 3.4.1. A solid abelian group is said finitely generated if it is a quotient of
∏

N Z. A
solid abelian group is said finitely presented if it is a cokernel of a map

∏
N Z→

∏
N Z.

Theorem 3.4.2. The finitely presented objects of Solid form an abelian category stable under
kernels, cokernels and extensions in Solid, such that Solid = Ind(Solidfinpres). Moreover, any
M ∈ Solidfinpres has a resolution

0→
∏
N

Z→
∏
N

Z→M → 0.

A first corollary is the flatness of
∏

N Z.

Corollary 3.4.3. The solid abelian group
∏

N Z is flat for the solid tensor product.

Proof. Since Solid = lim−→(Solidfinpres), it suffices to show that for M a finitely presented solid abelian
group M ⊗L

□

∏
N Z sits in degree 0. By the Theorem 3.4.2 we have a resolution

0→
∏
N

Z→
∏
N

Z→M → 0.

Tensoring with
∏

N Z, and using Corollary 3.3.6 we see that

M ⊗L
□

∏
N

Z =
∏
N

M

which clearly sits in degree 0. □

In order to proof Theorem 3.4.2 we shall need the following lemma.

Lemma 3.4.4. Any finitely generated submodule of
∏

N Z is isomorphic to
∏

I Z with I countable.
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Proof. Let M ⊂
∏

N Z be a finitely generated subobject, then M is the image of a map f :
∏

N Z→∏
N Z, which is the dual of a map

g :
⊕
N

Z→
⊕
N

Z. (3.8)

We shall need the following claim:

Claim. Let N be a countable abelian group that embeds in a direct product of Z, then N is free.

Proof of the claim. Let us pick a basis {en}n∈N of Q⊗N , and let Nn = ⟨e0, . . . , en⟩Q∩N . It suffices
to show that each Nn is finite free, namely, we have N = lim−→n

Nn and the quotient Nn+1/Nn is
torsion free. We can assume without loss of generality that {en}n∈N ⊂ N . Then, it suffices to prove
that Mn = Nn/⟨e1, . . . , en⟩Z is finite. Suppose it is not, then we can find elements xm ∈ Mn of
exactly bm torsion for m ∈ N, so that bm →∞ as m→∞. Taking lifts ym ∈ Nn of xn this implies
that ym =

∑n
i=0

ci,m
di,m

ei with coefficients satisfying the following properties:

• ci,m = 0 or GCD(ci,mdi,m) = 1,
• lcm(di,m) = bm.

By hypothesis N embeds into
∏

I Z. Then, there is some projection
∏

I Z→
∏

J⊂I Z with J finite
such that the image of the elements {e1, . . . , en} are linearly independent, proving that for m >> 0

the element ym cannot be mapped into
∏k

i=0 Z as bm → ∞ as m → ∞, which is a contradiction.
This proves the claim. □

We can decompose the map g = j ◦h in (3.8) as a split surjection h :
⊕

Z Z→M and an injection
j : M →

⊕
N Z. We can then write short exact sequences

0→ K →
⊕
N

Z h−→M → 0

and
0→M →

⊕
N

Z→ Q→ 0

with M and K free abelian groups. Taking duals we get exact sequences

0→M∨ →
∏
N

Z→ K∨ → 0

and
0→ Hom(Q,Q)→

∏
N

Z→M∨ → Ext1(Q,Z)→ 0.

Then, the composite ∏
N

Z f−→
∏
N

Z→ K∨

is zero and we can assume without loss of generality that K = 0 and so g is injective. Thus, we
have an exact sequence

0→
⊕
N

Z g−→
⊕
N

Z→ Q→ 0. (3.9)

Consider the natural map
Q→

∏
Hom(Q,Z)

Z

and let Q be its image. By the previous claim Q is a free abelian group, and so Q → Q is a split
surjection. Thus, by taking out the free direct summand, we can assume without of generality that
Hom(Q,Z) = 0. Then, one actually has that Hom(Q,Z) = 0, namely, the S-valued points of the
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Hom space are equal to Hom(Q,C(S,Z)) and C(S,Z) is a free Z-module. We deduce that the dual
of (3.9) is the short exact sequence

0→
∏
N

Z→
∏
N

Z→ Ext1(Q,Z)→ 0,

getting that the image of f is
∏

N Z as wanted. □

Proof of Theorem 3.4.2. By the proof of Lemma 3.4.4 any finitely presented module M ∈ Solid is
of the form M =

∏
I Z⊕ Ext1(Q,Z) with I a countable set, and Q a countable abelian group such

that Hom(Q,Z) = 0. By taking duals of a free resolution

0→
⊕
N

Z→
⊕
N

Z→ Q→ 0,

we get a presentation
0→

∏
N

Z→
∏
N

Z⊕
∏
I

Z→M → 0

proving the second statement of the theorem. The stability of finitely presented solid modules under
kernels, cockernels and extensions is then a standard fact for abelian categories for which finitely
presented objects admit a resolution by compact projective generators (i.e. are pseudo-coherent, cf.
[Sta22, Tag 064N] for the case of modules over rings). □

3.5. Examples of solid tensor products. We finish the discussion of solid abelian groups with
some computations of solid tensor products that appear a lot in practice.

Example 3.5.1 (Power series ring). Let Z[[q]] be the ring of power series in one variable seen as a
condensed ring. It is a solid abelian group s since Z[[q]] = lim←−n

Z[q]/qn is a limit of discrete modules.
Indeed, if Z[q̂] = Z[N ∪ {∞}]/(∞) is the algebra of null-sequences, see Proposition 3.1.3, we have
Z[q̂]L□ = Z[[q]]. Corollary 3.3.6 implies that

Z[[q1]]⊗L
□ Z[[q2]] = Z[[q1, q2]].

On the other hand, the morphism of algebras Z[q] → Z[[q]] is idempotent when seen as solid
algebras, namely,

Z[[q]]⊗L
Z[q]Z[[q]] = (Z[[q1]]⊗L

□Z[[q2]])⊗L
Z[q1−q2]

Z = Z[[q1, q2]]⊗L
Z[q1−q2]

Z = Z[[q1, q2]]/L(q1−q2) = Z[[q]],

where Z[[q1, q2]]/L(q1 − q2) is the derived quotient, represented by a Koszul complex.

Example 3.5.2 (p-adic integers). The p-adic integers Zp = lim←−n
Z/pn is a solid abelian group being

a limit of discrete abelian groups. We have a short exact sequence of solid abelian groups

0→ Z[[X]]
X−p−−→ Z[[X]]→ Zp → 0,

indeed, this is the limit of the short exact sequences

0→ Z[X]/Xn X−p−−→ Z[X]/Xn → Z/pn → 0.

Thus, the tensor Zp ⊗L
□ Z[[Y ]] is nothing but Zp[[Y ]].

On the other hand, the tensor product Zp ⊗L
□ Zℓ is represented by the complex

Zp[[X]]
X−ℓ−−→ Zp[[X]],

if ℓ ̸= p then Zp ⊗L
□ Zℓ while if ℓ = p we get Zp ⊗L

□ Zp = Zp. In particular, Zp is an idempotent
Z-algebra for the solid tensor product. In other words, being a Zp-module is not additional structure
but a property for solid abelian groups!

https://stacks.math.columbia.edu/tag/064N
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Example 3.5.3 (I-adically complete modules). Given a discrete ring A and I a finitely generated
ideal, there is a notion of being derived I-adically complete (see [Man22, Definition 2.12.3] and
[Sta22, Tag 091N]). When I = (a) is generated by a single element, and A

a−→ A is the multiplication
by a, for an object C in the derived category of (condensed) A-modules being I-adically complete
is equivalent to the vanishing of the limit R lim←−a

C = 0 given by multiplication along the complex
A

a−→ A. If we write J → A for A a−→ A, we can think of J as a generalized Cartier divisor, namely, an
invertible A-module together with a map J → A. We can define powers of J by tensoring, obtaining
generalized Cartier divisors Jn → A. Then, a A-modules C is derived I-adically complete if the
natural nap

C → R lim←−C/LJn,

where the quotient C/LJn is the pushout of C along the map of derived rings A → A/LJn, where
A/LJn is the dg-algebra given by the Koszul complex J → A.

By [Man22, Lemma 2.12.9] if A is a finitely generated Z-algebra and N,M are connective derived
I-adically complete modules, then N ⊗L

A,□ M is also derived I-adically complete (here the tensor
product is the natural one attached for a commutative ring object in Solid, equivalently, it is the
solidification of the condensed tensor product over A).

Example 3.5.4 (Tensor product of Qp-Banach spaces). Specializing Example 3.5.3 to Banach
spaces we get the following computation: let I and J be two countable sets, then⊕̂

I

Qp ⊗L
Qp,□

⊕̂
J

Qp =
⊕̂
I×J

Qp. (3.10)

To prove this, since
⊕̂

IQp = (
⊕̂

IZp)[
1
p
] it suffices to do the analogue computation for Zp. By

Example 3.5.2, the ring Zp is an idempotent solid Z-algebra, and so the Z-solid or Zp-solid tensor
products are the same. Then, Example 3.5.3 implies that the solid tensor product⊕̂

I

Zp ⊗L
□

⊕̂
J

Zp

is p-adically complete, and so it is equal to

R lim←−
n

(
⊕
I

Z/pn ⊗L
□

⊕
J

Z/pn) = R lim←−
n

⊕
I×J

Z/pn =
⊕̂
I×J

Zp.

For a more direct proof of this fact see [RJRC22, Lemma 3.13].

Example 3.5.5 (Tensor product Fréchet spaces). A Fréchet Qp-vector space is by definition a
sequential limit F = lim←−n

Vn of Banach spaces, in particular they are naturally solid Qp-vector
spaces. If G = lim←−n

Wn is another Fréchet space then

F ⊗L
□ G = lim←−

n

(Vn ⊗□ Wn)

is the projective tensor product in classical functional analysis. In particular, we have that for I
and J countable sets we get ∏

I

Qp ⊗L
□

∏
J

Qp =
∏
I×J

Qp.

For a proof of this fact see for example [RJRC22, Lemma 3.28].

https://stacks.math.columbia.edu/tag/091N
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4. Analytic rings

The building blocks of algebraic geometry are given by commutative rings. In analytic geometry
the building blocks are the so called "analytic rings". The notion of analytic ring arises from the
following desiderata:

• An analytic ring A should have an underlying "topological" or condensed ring A▷.
• An analytic rings A should be endowed with a category of complete A-modules ModA, and

with a complete tensor product ⊗A.
In the next section we introduce analytic rings and prove some of their most fundamental prop-

erties. We will see how the new light foundations of the theory help to construct new examples of
analytic rings.

4.1. First definitions and properties. We want to define building blocks for analytic geometry
for which we can naturally attach a category of "complete modules". It turns out that in condensed
mathematics a category of complete modules for a condensed ring is additional datum; given a
condensed ring A there could be very different ways to complete condensed A-modules, and none of
them should have a preference. Nonetheless, once a category of "complete modules" is fixed, being
a complete module should be just a property.

On the other hand, derived algebraic geometry [Lur04, Toe14] has shown that the correct frame-
work to study geometric properties of algebraic varieties such as intersections is within higher
category theory. In analytic geometry the requirement of higher category theory and higher algebra
(taken in the form of [Lur09, Lur17, Lur18]) is even more notorious: even open localizations of rigid
or complex spaces are not going to be flat. In particular, the only way to obtain actually useful
new descent results is by looking at the ∞-derived categories of modules.

This desiderata for the notion of analytic ring is formalized in the following definition (see [CS20,
Definition 12.1 and Proposition 12.20] and [Man22, Definition 2.3.1]).

Definition 4.1.1 (Analytic ring). An uncompleted analytic ring is a pair A = (A▷,D(A)) consisting
on a condensed animated ring A▷ and a full subcategory D(A) ⊂ D(A▷) of the ∞-category of
condensed A▷-modules satisfying the following properties.

(1) D(A) is stable under limits and colimits in D(A▷) and there is a left adjoint F : D(A▷) →
D(A) for the inclusion.

(2) D(A) is linear over D(CondAb) 3. More precisely for all C ∈ D(CondAb) and M ∈ D(A)
the object RHomZ(C,M) is in D(A).

(3) The left adjoint F sends connective objects to connective objects. In particular, D(A) has
a natural t-structure induced from D(A▷) (see Proposition 4.1.7).
• We say that A is an analytic ring structure of A▷. Finally, we say that A is an analytic ring

if in addition A▷ ∈ D(A). We often write A ⊗A▷ − for the left adjoint F (note the drop of
derived notation).
• Given T a condensed (animated) set we let A[T ] := A ⊗A▷ A▷[T ], where A▷[T ] is the free
A▷-module generated by T .
• A morphism of analytic rings f : A → B is a morphism of animated condensed rings
f : A▷ → B▷ such that the forgetful functor f∗ : D(B▷)→ D(A▷) sends D(B) to D(A).
• We let AnRingun denote the ∞-category of uncompleted analytic rings. Let AnRing ⊂
AnRingun be the full subcategory of (completed) analytic rings.

Remark 4.1.2. Condition (2) of Definition 4.1.1 is equivalent to the following:
(2’) For all C ∈ D(A▷) and M ∈ D(M) then RHomA▷(C,M) is in D(A).

3This condition implies that D(A) is actually enriched in condensed abelian groups. It can be heuristically thought
as a suitable "continuity" or "condensed" condition for D(A).
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Indeed, it suffices to check the condition (2’) and (2) on generators of D(A▷) and D(CondAb)
respectively. Then we can suppose without loss of generality that C = A▷[S] or C = Z[S] for
S ∈ Prof light. In this case we have

RHomA▷(A▷[S],M) = RHomZ(Z[S],M).

Remark 4.1.3. Recall that in the new foundations we work with light profinite sets, and so for
a condensed animated ring A▷ the category D(A▷) is presentable. In particular, condition (1)
of Defintion 4.1.1 implies that the category D(A) is an accesible localization of D(A▷), and so
presentable by [Lur09, Proposition 5.5.4.15] (the small class of morphisms we invert can be taken
as the maps A▷[S]→ A[S] for S ∈ Prof light).

Example 4.1.4. So far we have seen essentially only two examples of analytic rings.
(1) The initial analytic ring is Z = (Z,D(CondAb)), the ring of condensed integers. More

generally, given B a condensed animated ring, we let B = (B,D(B)) denote the trivial
analytic ring structure on B.

(2) A more "complete" analytic ring is Z□ = (Z,D(Solid)), the ring of solid integers. Later in
§5 we shall introduce more examples of analytic rings arising in solid geometry.

(3) Other analytic rings are the liquid rings of [CS20] and the gaseous ring of Example 1.4;
these rings are global in the sense that they define analytic ring structures over the subring
Z[q̂] ⊂ Z[[q]] of null-sequences that specializes to analytic ring structures over all type of
local fields (reals, p-adics, and modulo p).

(4) In Section 4.6 we discuss a general way to construct analytic rings. This addresses a problem
in the previous foundations of condensed mathematics, namely, the difficulty of constructing
analytic rings.

Condensed rings embed fully faithful into analytic rings via the trivial analytic ring structure.

Proposition 4.1.5. The functor F : CondAniRing→ AnRingun mapping an animated condensed
ring A▷ to (A,D(A▷)) is fully faithful. Moreover, F has a right adjoint mapping an uncompleted
analytic ring B to its underlying condensed ring B▷.

Proof. By definition, given two uncompleted analytic rings A and B the mapping space MapAnRingun(A,B)
is the full subspace of MapCondRing(A

▷, B▷) such that the forgetful functor D(B▷) → D(A▷) sends
complete objects to complete objects. If A has the trivial analytic ring structure this condition is
tautological, proving that

MapAnRingun(A
▷, B) = MapCondRing(A

▷, B▷)

proving the fully-faithfulness and the adjunction. □

The category of complete modules of an uncompleted analytic ring has a natural symmetric
monoidal structure.

Proposition 4.1.6 ([CS20, Proposition 12.4] and [Man22, Proposition 2.3.2] ). The category D(A)
has a unique symmetric monoidal structure ⊗A making A ⊗A▷ − : D(A▷) → D(A) symmetric
monoidal. Moreover, given A→ B a morphism of analytic rings, the functor

D(A▷)
B▷⊗A▷−−−−−−→ D(B▷)

B⊗B▷−−−→ D(B)

factors (uniquely) through a functor

D(A▷)
A⊗A▷−−−−−→ D(A)

B⊗A−−−−−→ D(B).

The functor B ⊗A − is the left adjoint of the forgetful functor D(B)→ D(A).
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Proof. To show that D(A) has a natural symmetric monoidal structure such that A⊗A▷ is symmetric
monoidal, it suffices to show that the kernel K of the completion functor is a ⊗-ideal by [NS18,
Theorem I.3.6]. Let M ∈ D(A▷) be such that A ⊗A▷ M = 0 and let C ∈ D(A▷). Then, for
N ∈ D(A), we have

RHomA▷(A⊗A▷ (C ⊗A▷ M), N) = RHomA▷(C ⊗A▷ M,N)

= RHomA▷(M,RHomA▷(C,N))

= RHomA▷(A⊗A▷ M,RHomA▷(C,N))

= 0,

where the first two equalities are the obvious adjunctions, and the third equality follows since
RHomA▷(C,N) is A-complete by (2) of Definition 4.1.1 (cf. Remark 4.1.2). The previous shows
that A⊗A▷ (C ⊗A▷ M) = 0 as wanted.

Now, in order to see that the composite

D(A▷)
B▷⊗A▷−−−−−−→ D(B▷)

B⊗B▷−−−→ D(B)

factors through D(A), it suffices to see that it kills the kernel of A⊗A▷ (then it would be immediate
that the resulting functor is symmetric monoidal). Let M ∈ D(A) be an object killed by A-
completion and let K ∈ D(B), then

RHomB▷(B ⊗B▷ (B▷ ⊗A▷ M), K) = RHomB▷(B▷ ⊗A▷ M,K)

= RHomA▷(M,K)

= RHomA▷(A⊗A▷ M,K)

= 0,

where the first three equalities are adjunctions, and the last follows since K is an A-complete module
by definition of analytic ring. □

Completion of modules for analytic rings can be detected at the level of cohomology groups.

Proposition 4.1.7 ([CS20, Proposition 12.4]). Let A be an analytic ring. An object M ∈ D(A▷)
is A-complete if and only if πi(M) = H−i(M) is A-complete for all i ∈ Z.

Proof. Let us first show the statement for connective objects (i.e. concentrated in positive homo-
logical degrees). Let M ∈ D(A)≥0 and consider the fiber sequence

π≥1M →M → π0M.

Taking completions we get a fiber sequence

A⊗A▷ (π≥1M)→M → A⊗A▷ (π0M).

Since completion preserves connective objects, taking ≥ 1-truncations we get a map

A⊗A▷ (π≥1M)→ π≥1M

which exhibits π≥1M as a retract of A⊗A▷ (π≥1M). Since D(A) is stable under colimits we deduce
that π≥1M and so π0(M) are in D(A). An inductive argument shows that πi(M) is A-complete for
all i ≥ 0. Conversely, let M ∈ D≥0(A

▷) be such that all its homotopy groups πiM are A-complete.
Then M = lim←−n

τ≤nM is the limit of its Postnikov tower. By induction, each truncation τ≤nM is
A-complete and then so is M since D(A) is stable under limits.

We now prove the general case. Let M ∈ D(A), then we can write

M = lim−→
n

τ≥−nM,

and by the connective case it suffices to show that each τ≥−nM is A-complete. Since A-completion
preserves connective objects, τ≥−nM is a retract of A⊗A▷ (τ≥−nM), and so A-complete since D(A)
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is stable under colimits. Conversely, suppose that M ∈ D(A▷) is such that πi(M) is A-complete for
all i ∈ Z. By the connective case we know that τ≥−nM is A-complete for all n ∈ N. The proposition
follows by writing M = lim−→n

τ≥−nM . □

Our next goal is to show that analytic rings admit small colimits. As a first approximation let
us show that uncompleted analytic rings have small colimits. First we will recall induced analytic
structures [Man22, Definition 2.3.13].

Lemma 4.1.8 (Induced analytic structure). Let A be an uncomplete analytic ring and let B be
an animated A▷-algebra. Then there is a natural induced analytic structure BA/ on B such that
D(BA/) ⊂ D(B) is the full subcategory of B-modules whose underlying A▷-module is A-complete.
The uncompleted analytic ring BA/ is the pushout A⊗A▷ B, where A▷ and B are endowed with the
trivial analytic ring structure.

Proof. We want to see that BA/ defines an (uncompleted) analytic ring structure on B. Stability
under limits and colimits is clear since the forgetful functor D(B)→ D(A▷) commutes with limits
and colimits. On the other hand, the inclusion D(BA/)→ D(B) has by left adjoint

BA/ ⊗B − = A⊗A▷ −
which still sends B-modules to B-modules as A⊗A▷− is symmetric monoidal. Indeed, let C ∈ D(B▷)
and K ∈ D(B). We have a natural equivalence of B▷-modules thanks to the Barr construction

C = B▷ ⊗B▷ C = lim−→
[n]∈∆op

B▷,⊗A▷n+1 ⊗A▷ C.

Therefore,

RHomB(C,K) = RHomB(lim−→[n]∈∆op
B⊗A▷n+1 ⊗A▷ C,K)

= lim←−[n]∈∆ RHomB(B
⊗A▷n+1 ⊗A▷ C,K)

= lim←−[n]∈∆RHomA▷(B⊗A▷n ⊗A▷ C,K)

= lim←−[n]∈∆RHomA▷((A⊗A▷ B)⊗An ⊗A (A⊗A▷ C), K)

where in the first equivalence we use the Barr construction of the tensor product, the second
equivalence follows since RHom commutes with limits, the third follows by ⊗-adjuction, the fourth
follows from adjuction of A-completion and the fact that K is A-complete. On the other hand, the
same computation shows that

RHomB(A⊗A▷ C,K) = lim←−[n]∈∆ RHomA▷((A⊗A▷ B)⊗An ⊗A (A⊗A▷ (A⊗A▷ C)), K)

= lim←−[n]∈∆ RHomA▷(A⊗A▷ (B⊗A▷n ⊗A▷ C), K)

= RHomB(C,K),
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where the second equality follows since A-completion is symmetric monoidal and idempotent. This
proves that BA/ ⊗B C = A⊗A▷ C as wanted.

Stability under RHom(C,−) for C ∈ D(CondAb) is obvious. It is also clear that the left adjoint
BA/ ⊗B − sends connective objects to connective objects. Thus we have proven that BA/ is an
analytic ring.

Let us now check that BA/ = A ⊗A▷ B as uncompleted analytic rings. Let C be an uncomplete
analytic ring. Since B and A▷ have the trivial analytic ring structure, Proposition 4.1.5 implies that
a map B → C is just given by a map of condensed rings B → C▷. Thus, it suffices to see that the
following diagram of mapping spaces is cartesian

MapAnRinguc(BA/, C) MapCondRing(B,C▷)

MapAnRinguc(A,C) MapCondRing(A
▷, C▷).

(4.1)

The bottom horizontal map of (4.1) is an inclusion. Then the pullback C of (4.1) is the full
subspace of MapCondRing(B,C▷) consisting on those maps B → C▷ of A▷-algebras such that the
forgetful functor D(C▷)→ D(B▷) sends C-complete objects to A-complete modules. But this is by
definition the mapping space MapAnRingun(BA/, C), proving what we wanted. □

A second important kind of colimit of uncompleted analytic rings is obtained by taking intersec-
tions of analytic ring structures.

Lemma 4.1.9. Let A▷ be a condensed animated ring and let {Ai}i∈I be a diagram of (uncompleted)
analytic ring structures over A▷. Then the pair B = (A▷,

⋂
i D(Ai)) is an (uncompleted) analytic

ring representing the colimit lim−→i
Ai in the category AnRing

(un)
A▷/ of (uncompleted) analytic rings over

A▷.

Proof. Let B denote the pair (A▷,
⋂

i D(Ai)) where the intersection takes place in D(A▷). Note
that conditions (1)-(3) of Definition 4.1.1 are stable under intersection; conditions (2) and (3) are
obvious once (1) is proven. Stability under limits and colimits in (1) is clear. The existence of the
left adjoint in (1) follows from the adjoint functor theorem [Lur09, Corollary 5.5.2.9]. Indeed, since
all the functors involved in the diagram I are accessible localizations of D(A▷), all the categories
D(Ai) are presentable by Remark 4.1.3, and then so is its intersection by [Lur09, Theorem 5.5.3.18].
Moreover, if A▷ is Ai-complete for all i, it is also B-complete proving that B is an analytic ring if
all the Ai are so.

It is left to show that B is the colimit of the diagram Ai in the category of (uncompleted) analytic
rings over A▷. This follows from the fact that for any C ∈ AnRingun the maps

MapAnRingun(Ai, C)→ MapCondRing(A
▷, C▷)

are fully-faithful embeddings for all i, and then so its its limit. Then, the limit lim←−i
MapAnRingun(Ai, C)

over MapCondRing(A
▷, C▷) is the full-subanima of MapCondRing(A

▷, C▷) whose connected components
are those maps A▷ → C▷ such that the forgetful functor sends C-complete modules to Ai-complete
modules for all i. This is exactly the mapping space MapAnRingun(B,C) proving what we wanted. □

We can finally prove the existence of colimits in uncomplete analytic rings.

Proposition 4.1.10. The category AnRingun of uncompleted analytic rings have small colimits.
More precisely, let {Ai}I be a diagram of uncompleted analytic rings. Then B = lim−→i

Ai is the
uncompleted analytic ring with underlying ring B▷ = lim−→i

A▷
i and with category of complete modules

D(B) ⊂ D(B▷) given by those B▷-modules M whose restrictions to an A▷
i -module is Ai-complete

for all i.
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Proof. First, let us show that the pair B = (B▷,D(B)) constructed in the statement of the propo-
sition is an analytic ring. This follows from the fact that B can be written as the colimit

B = lim−→
i

B▷
Ai/

,

of uncompleted analytic ring structures over B▷ = lim−→i
A▷

i (Proposition 4.1.9), where B▷
Ai/

is the
induced analytic ring structure of Lemma 4.1.8.

Let us now consider the underlying diagram of condensed animated rings {A▷
i }i. Let C ∈

AnRingun. By definition of the category of analytic rings the limit

lim←−
i

MapAnRingun(Ai, C) (4.2)

is a full-subanima of the space

lim←−
i

MapAnRingun(A
▷
i , C

▷) = Map(B▷, C▷).

Furthermore, it is the full subanima of connected components consisting on those maps B▷ → C▷

for which a complete C-module is Ai-complete, equivalenty, for which a complete C-module is B▷
Ai/

-
complete. This shows that (4.2) is the full anima MapAnRingun(B,C) ⊂ Map(B▷, C▷), proving that
B = lim−→i

Ai as wanted. □

A first consequence of the previous lemma is the stability of analytic rings under sifted colimits
in the category of uncompleted analytic rings.

Corollary 4.1.11. The ∞-category AnRing of analytic rings is stable under sifted colimits in
AnRingun. Moreover, let B = lim−→i

Ai be a sifted colimit of uncompleted analytic rings. Then for
S ∈ Prof light we have

B[S] = lim−→
i

Ai[S]

Proof. It suffices to show the second claim, namely, if the terms in the sifted colimits are analytic
rings we have

B[∗] = lim−→
i

Ai[∗] = lim−→
i

A▷
i = B▷,

proving that B▷ is B-complete. Let S ∈ Prof light and consider the B▷-module M[S] = lim−→i
Ai[S].

It suffices to show thatM[S] is B-complete, namely, for C ∈ D(B) we have

RHomB▷(M[S], C) = lim←−
i

RHomAi
(Ai[S], C) = RHomZ(Z[S], C).

We have to show that M[S] is BAi/-complete for all i. Let us first argue when I is filtered. Fix
j ∈ I, for any i ≥ j the module Ai[S] is Aj-complete and taking colimits on i one gets that M[S]
is BAj/-complete. Since the previous hold for all j one deduces that M[S] is B-complete. Let us
now consider a general sifted diagram {Ai}i∈I . We have then a sifted diagram {BAi/}i∈I of analytic
ring structures of B▷. Note that the mapping space between two analytic ring structures B′ and
B′′ over B▷ is either contractible or empty, depending whether D(B′′) ⊂ D(B′) or not. Therefore,
there is a surective map of categories π : I → I ′ with I ′ filtered, such that {BAi/}i∈I can be refined
to {BAi′/

}i′∈I′ . In particular, for C ∈ D(B▷) we have

C ⊗B▷ B = lim−→
i

C ⊗B▷ BAi/. (4.3)
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Finally, we get that

M[S]⊗B▷ B = lim−→
i

(Ai[S]⊗A▷
i
B)

= lim−→
i

(Ai[S]⊗A▷
i
lim−→
j

BAj/)

= lim−→
i

(Ai[S]⊗A▷
i
BAi/)

= lim−→
i

(Ai ⊗A▷
i
(Ai[S]⊗A▷

i
B▷))

= lim−→
i

(Ai ⊗A▷
i
(Ai[S]⊗A▷

i
lim−→
j

A▷
j))

= lim−→
i

(Ai ⊗A▷
i
(Ai[S]⊗A▷

i
A▷

i ))

= lim−→
i

Ai[S]

=M[S].

where in the second equality we use (4.3), in the first, third and sixth equalities we use that I is
sifted (so the diagonal I → I × I is cofinal), and the rest follows from the definitions. □

In order to show that analytic rings admit arbitrary colimits we first need to discuss completions
of analytic rings.

Theorem 4.1.12 ([Man22, Proposition 2.3.12]). The functor AnRing→ AnRinguc has a left adjoint
A 7→ A= called the "completion functor". We have D(A) = D(A)= and A=,▷ = A ⊗A▷ A▷ is the
A-completion of A▷ (i.e. the unit in D(A)). In particular, AnRing admits small colimits. A
diagram {Ai}i of analytic rings has colimit B= where B = lim−→i

Ai is the colimit in the category of
uncompleted analytic rings.

Sketch of the proof. We will prove a weaker version of the theorem where "animated ring" gets
replaced by "commutative or E∞-ring". Indeed, the difficult part of the theorem is to show that
the unit A=,▷ has a natural animated ring structure. This will be handled in the next section.

Let B be an analytic ring and A an uncomplete analytic ring. By definition, MapAnRingun(A,B)
is the full subanima of maps MapCAlg(D(Cond))(A

▷, B▷) of commutative condensed algebras such that
the forgetul functor

D(B▷)→ D(A▷)

sends D(B) to D(A). By [Lur17, Corollary 4.8.5.21] the space MapCAlg(D(Cond))(A
▷, B▷) is naturally

equivalent to the space of D(CondAb)-linear symmetric monoidal functors D(A▷)→ D(B▷). There-
fore, MapAnRingun(A,B) gets identified with the full subcategory of symmetric monoidal functors as
above that factor through

D(A▷) D(B▷)

D(A) D(B).

B▷⊗A▷

A⊗A▷ B⊗B▷

Since both D(A) and D(B) are localizations of D(A▷) and D(B▷) respectively, the space MapAnRingun(A,B)
is naturally equivalent to the space of D(CondAb)-linear symmetric monoidal functors D(A) →
D(B), which is also clearly equivalent to MapAnRing(A

=, B), proving the desired adjunction.
The last claim about the computation of the colimit of analytic rings follows directly from the

existence of the left adjoint (−)=. □
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4.2. Completions of analytic rings. In this section we will complete the proof of Theorem 4.1.12.
For this we need to recall how animated rings are constructed out of connective modules.

Definition 4.2.1. Let C be a (presentable) compactly projective generated 1-category. Let C 0 ⊂ C
be the full subcategory of compact projective objects . The animation of C (or its non-abelian
derived category) is defined as the sifted ind-completion of C 0: Ani(C ) := sInd(C 0) (also denote
as PΣ(C 0) in [Lur09, §5.5.8]). More precisely, it is the full subcategory

sInd(C0) ⊂ Fun(C0,op,Ani)
of accessible presheaves F preserving finite products (i.e. F (X⊔Y ) = F (X)×F (Y ) for X, Y ∈ C 0).

Example 4.2.2. Standard examples of animation are the following:
(1) If C = Sets is the category of sets then C 0 is the category of finite sets and Ani(C ) = Ani

is the category of anima or of "spaces".
(2) If C = Ab is the category of abelian groups then C 0 is the category of free abelian groups

and Ani(C ) is the category of animated abelian groups (also known in the literature as
"simplicial abelian groups"). Thanks to the Dold-Kan-correspondence [Lur17, Theorem
1.2.3.7] it is also equivalent to the category D≥0(Z) of connective objects in the ∞-derived
category of abelian groups.

(3) If C = Ring then C 0 is the category of retracts of polynomial rings in finitely many variables
and Ani(C 0) is the category AniRing of animated commutative rings (also known as the
category of "simplicial commutative rings" in the literature).

Definition 4.2.3 (Symmetric functors). Consider D≥0(Z) the infinity category of animated abelian
groups. The symmetric power functors

Symn : D≥0(Z)→ D≥0(Z)
are defined as the left derived functors of the usual symmetric power functors in static rings and
abelian groups. More explicitly, it is the unique functor preserving sifted colimits and mapping a
finite free abelian group F to its symmetric power SymnF .

The importance of the symmetric functors for us is that they appear in the monad defining
animated rings.

Proposition 4.2.4. Let AniRing be the ∞-category of animated commutative rings. Let D≥0(Z)
be the ∞-category of connective abelian group. Then the forgetful functor

G : AniRing→ D≥0(Z)
has a left adjoint given by the left derived functor of the functor Ab → Ring mapping an abelian
group M to its symmetric algebra Sym•M . Furthermore, the previous adjunction is monadic.

Proof. The forgetful functor F : Ring → Ab has by left adjoint the symmetric power functor
Sym• : Ab → Ring. Let Ab0 ⊂ Ab and Ring0 ⊂ Ring denote the full subcategories of compact
projective objects, namely, Ab0 is the category of finite free abelian groups and Ring0 is the category
of (retracts of) polynomial algebras of finite type. The symmetric power functor Sym• restricts to
a coproduct preserving functor Sym• : Ab0 → Ring0. We can then form the sifted ind categories
sInd obtaining the left derived functor

Sym• : D≥0(Z) ∼= sInd(Ab0)→ sInd(Ring0) = AniRing . (4.4)

By construction Sym• preserves coproducts when restricted to Ab0, namely, if F1 and F2 are finite
free abelian groups then Sym•(F1⊕F2) = Sym•F1⊗Sym•F2. Then, Proposition [Lur09, Proposition
5.5.8.15] (3) implies that (4.4) preserves colimits. By the adjoint functor theorem [Lur09, Corollary
5.5.2.9] the functor Sym• has a right adjoint G. Note that by uniqueness of the adjunction, G
restricted to Ring ⊂ AniRing is the forgetful functor G : Ring → Ab ⊂ D≥0(Z). Then, to see that
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G is the "forgetful functor" on the category AniRing it will suffice to show that it commutes with
sifted colimits. This follows from the fact that Sym• sends compact projective objects to compact
projective objects: given a sifted diagram {Ai}i∈I in AniRing and F ∈ Ab0 we have

MapD≥0(Z)(F,G(lim−→
i

Ai)) = MapAniRing(Sym
•F, (lim−→

i

Ai))

= lim−→
i

MapAniRing(Sym
•F, (Ai))

= lim−→
i

MapD≥0(Z)(F,GAi)

= MapD≥0(Z)(F, lim−→
i

GAi)

where the first equivalence is the adjunction, the second follows since Sym•F is compact projective
in AniRing, the third is another adjunction, and the last follows since F is compact projective in
D≥0(Z). This proves that the natural map lim−→i

GAi → G(lim−→i
Ai) is an equivalence.

Finally, to show that the adjunction is monadic, by the Barr-Beck-Lurie theorem [Lur17, Theorem
4.7.3.5] it suffices to see that G is conservative; this is obvious since Sym• sends Ab0 to a set of
generators of AniRing. □

Remark 4.2.5. Let C be an ∞-category with finite limits. Then the adjunction G : AniRing →
D≥0(Z) extends to an adjunction at the level of presheaves on C

G : PSh(C ,AniRing)→ PSh(C ,D≥0(Z)) : Sym•. (4.5)

Suppose that C has in addition a Grothendieck topology T , and for a presentable ∞-category D

let Ŝh(C ,D) denote the full subcategory of D-valued hypersheaves of C . Then the adjunction (4.5)
restricts to an adjuction

Ĝ : Ŝh(C ,AniRing)→ Ŝh(C ,D≥0(Z)) : Sym•.

Indeed, since G preserves limits it maps the full subcategory Ŝh(C ,AniRing) ⊂ PSh(C ,AniRing)

to Ŝh(C ,D≥0(Z)) ⊂ PSh(C ,D≥0(Z)). On the other hand, the inclusion of hypersheaves has by left
adjoint the hypercompletion functor

(−)∧ : PSh(C ,D)→ Ŝh(C ,D).

Thus, the forgetful functor

Ŝh(C ,AniRing)→ PSh(C ,D≥0(Z))

has by left adjoint the hypercompletion of the symmetric functor, namely, (Sym•)∧. This restricts
to an adjunction

Ĝ : Ŝh(C ,AniRing)→ Ŝh(C ,D≥0(Z)) : (Sym•)∧.

It is clear that Ĝ is conservative. Moreover, sifted colimits of objects in Ĝ : Ŝh(C ,AniRing) are
taken as hypersheafifications of sifted colimits in presheaves. This shows that Ĝ also commutes
with sifted colimits, and so it is monadic.

Applying the previous construction to C = Prof light endowed with its natural topology (and
dropping further notation in the hypercompletion functor) we get the monadic adjunction

G : Cond(AniRing)→ D≥0(CondAb) : Sym
•.

After the previous preparations we can now state the key proposition regarding the completion
of analytic rings.
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Proposition 4.2.6 ([CS20, Proposition 12.26]). Let A be an uncompleted analytic ring. Let
AniRingA/ be the category of condensed animated A▷-algebras whose underlying module is A-complete.
Consider the adjunction

Sym•
A▷ , G : D≥0(A

▷)→ AniRingA▷ . (4.6)
Then for any map N → M of A▷-modules which induces an equivalence after A-completion the
natual map

A⊗A▷ Sym•
A▷N → A⊗A▷ Sym•

A▷

is also an equivalence. In particular, the monadic adjunction (4.6) localizes to a monadic adjuction

Sym•
A, G : D≥0(A)→ AniRingA,

where Sym•
A = A⊗A▷ Sym•

A▷.

Proof. This is [CS20, Lemma 12.27]; its proof consists in studying the Goodwillie derivatives of the
polynomial functors Symi and reduce the statement to the fact that for all prime p the Frobenius
ϕ : A→ A/p is a morphism of analytic rings. This last statement will be proven in §4.3. □

Corollary 4.2.7. Let A be an uncompleted analytic ring, then the completion A= of A as E∞-ring
has a natural structure of analytic ring making A → A= a morphism of analytic rings. In other
words, A=,▷ = A[∗] has a natural structure of condensed animated ring defined by the completed
symmetric powers of Proposition 4.2.6 and it is the left adjoint of the natural inclusion AnRing→
AnRinguc.

Proof. This follows from proposition 4.2.6 and the monadic adjunction of Proposition 4.2.4, see
Remark 4.2.5. □

4.3. Frobenius. In the proof of Proposition 4.2.6 we used the fact that Frobenius induces a mor-
phism of analytic rings. The goal of this section is to prove this fact (Theorem 4.3.2). The key
step is Lemma 4.3.1 comparing the Tate constructions of free modules on light profinite sets with
Cp-action.

Lemma 4.3.1 ([CS20, Assumption 12.25]). Let A be an analytic ring. Let S be a light profinite set
endowed with a Cp-action and let S0 = SCp be the fixed points. Then the natural map

A[S0]
tCp → A[S]tCp

is an equivalence, where (−)tCp is the Tate construction.

Proof. Recall the Tate construction for spectra: let X ∈ Sp and let Cp be the cyclic group on
p-elements. Suppose that we have an homotopic action of Cp on X, then there is a norm map
Nm : XCp → XCp from the homotopic co-invariants to the invariants. The Tate construction is
defined as the cofiber

X tCp := cofib(XCp → XCp).

Now let S be a light profinite set endowed with a Cp-action and let S0 = SC−p be its fixed
points. For a light locally profinite set U with compactification U ⊂ T and boundary ∂T let
A[U ] := A[T ]/A[∂T ] be the A-measures on U vanishing at ∞. Set U = S\S0. The module A[U ] is
independent of the compactification since we have a pushout diagram

∂T T

{∞} U ∪ {∞}.

It suffices to show that A[U ]tCp = 0. By Proposition 2.1.5 we can write U =
⊔

n S
′
n as a countable

disjoint union of light profinite sets. The action of Cp on U is then totally discontinuous not having
any fixed point. Then, U/Cp =

⊔
n S

′′
n is a countable disjoint union of light profinite sets, and by
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taking pullbacks of such decomposition by the map U → U/Cp we can write U ∼=
⊔

nCp × S
′′
n.

Therefore, if S ′′ is a compactification of U/Cp, we see that Cp×S ′′ is a compactification of U . This
shows that

A[U ]tCp = cofib(A[Cp × ∂S ′′]tCp → A[Cp × S ′′]tCp).

But for any condensed anima T we have A[Cp × T ] = A[Cp] ⊗ A[T ] and so has vanishing Tate
cohomology A[Cp × T ]tCp = 0, proving what we wanted. □

Theorem 4.3.2 ([CS20, Proposition 12.24]). Let A be an analytic ring and let A/p = A ⊗Z Fp.
Then the Frobenius map ϕ : A▷ → A▷/p is a map of analytic rings ϕ : A→ A/p.

Proof. This is proven in loc. cit. where the only condition needed is Assumption 12.25 which always
holds true thanks to Lemma 4.3.1. □

4.4. Invariance of analytic ring structures. It is useful for constructions of analytic rings to
compare analytic ring structures between morphisms of condensed animated rings. In this section
we shall prove that analytic ring structures are "formally étale" in the sense that they are invariant
under nilpotent thickenings and higher animated structures. We follow [CS20, Lecture XII Appendix
1]. The first result in this direction if the following theorem that encodes the datum of an analytic
ring structure in terms of an abelian category.

Theorem 4.4.1. Let A▷ be a condensed animated ring. Then the set of (uncompleted) analytic ring
structures A over A▷ is in bijection with full subcategories C of the abelian category Mod(π0(A

▷))
satisfying the following properties:

(1) C is stable under all limits, colimits and extensions in Mod(π0(A
▷)).

(2) C is presentable.
(3) C is stable under arbitrary higher direct products

∏(n)
I .

(4) For all S ∈ Prof light and C ∈ C the Ext modules ExtiZ(Z[S], C) are in C .
More precisely, given A an analytic ring structure of A▷, the category C = D(A) ∩ D♡(A▷)

satisfies the conditions (1)-(4) above. Conversely, given a subcategory C as above then the category
D ⊂ D(A▷) consisting on those complexes C with cohomology groups in C defines an analytic ring
structure on A▷.

In order to prove the theorem let us first show a bijection for localizations with weaker conditions.

Proposition 4.4.2 ([CS20, Proposition 12.19]). Let A▷ be a condensed animated ring. The collec-
tion of full sub ∞-categories D ⊂ D≥0(A

▷) stable under limits and colimits is in natural bijection
with the collection of all full subcategories C ⊂ Mod(π0(A

▷)) = D♡(A▷) stable under limits, col-
imits, extensions and higher derived products, via sending D to the intersection with Mod(π0(A

▷)),
and C to the full subcategory D of all C ∈ D≥0(A

▷) such that πi(C) ∈ C for all i ≥ 0. Moreover,
D is presentable if and only if C is so.

Proof. Let D ⊂ D≥0(A
▷) be a full subcategory stable under limits and colimits. Define C =

D ∩D♡(A▷). Given C ∈ D the functor τ≥1C is the suspension of the loops of C, and so it is in D .
This shows that π0(C)[0] ∈ C being the cofiber of τ≥1C[1]→ C. Then, πi(C)[0] ∈ C for all i ≥ 0.
Since D is stable under finite limits and colimits, this shows that C is stable under finite limits,
finite colimits and extensions. Since arbitrary direct sums are exact and D has all colimits, then C
has arbitrary direct sums and it is stable under all colimits. Finally, given a family of objects Xi

in C , the homotopy product
∏

i(Xi[n]) is in D for all n ∈ N as D is stable under all limits. Taking
homotopy groups we see that the higher products

∏(n)
i Xi are in C for all n ∈ N. In particular, C

has arbitrary products and so it is stable under all limits.
Conversely, let C ⊂ D♡(A▷) be a full subcategory stable under all limits, colimits, extensions and

arbitrary higher products. Let D ⊂ D≥0(A
▷) be the full subcategory consisting on those objects C
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with homotopy groups in C . Stability under finite limits and extensions in C shows that D is stable
under fibers and cofibers. It is also clear that D is stable under Postnikov limits. Since arbitrary
direct sums are exact then D is stable under direct sums and so under all colimits. Stability under
arbitrary higher products in C implies that D is stable under arbitrary homotopy products, and so
it is stable under all limits.

Finally, if C0 is a family of generators of D then its homotopy groups form a family of generators
of C . Conversely, given a family of generators of C all their shifts form a family of generators for
D . This proves that D is presentable if and only if C is so. □

Remark 4.4.3. There is a minor difference between the statement of Proposition 4.4.2 and [CS20,
Proposition 12.19], namely in the former we ask for the stability of higher derived products. In
the classical condensed framework arbitrary products are exact thanks to the extremally totally
disconnected spaces. However, in the light set up a priori only countable products are exact, and
there could be higher derived functors for sets with non countable cardinality.

Proof of Theorem 4.4.1. Given an analytic ring structure A on A▷, the category C = D(A)∩D♡(A▷)
satisfies (1)-(3) of Theorem 4.4.1 thanks to Proposition 4.4.2. Moreover, condition (2) of Definition
4.1.1 and Proposition 4.1.7 imply that C is also stable under internal Ext functors. On the other
hand, Proposition 4.1.7 also says that D(A) ⊂ D is the full subcategory consisting on complexes
whose cohomology groups are in C .

Conversely, let C ⊂ Mod(π0(A
▷)) be a full subcategory as in the statement of the theorem and let

D≥0 ⊂ D≥0(A
▷) be the full subcategory of objects whose cohomology groups are in C . Proposition

4.4.2 implies that D≥0 is stable under all limits and colimits and that it is presentable. The same
holds true for its stabilization D ⊂ D(A▷) consisting on all the complexes whose cohomology groups
are in C . Since D is stable under all limits, colimits and is presentable, we have the left adjoint
for the inclusion L : D(A▷) → D . Moreover, this left adjoint preserves connective objects since
D≥0 is also stable under all limits and colimits in D≥0(A

▷). This proves conditions (1) and (3) of
Definition 4.1.1. It is left to show that D is stable under RHomZ(Z[S],−) for S ∈ Prof light. Let
M ∈ D . By writing M = lim←−n

τ≥nM as limit of its Postnikov tower we can assume that M ∈ D≤0

is co-connective. Then, there is a convergent expectral sequence with second page

Ep,q
2 = Extp(Z[S], π−q(M))⇒ π−p−q(RHomZ(Z[S],M)).

Since all the objects in the E2-page of the spectral sequence are in C by hypothesis, and since
C is stable under limits, colimits and extensions, one deduces that the cohomology groups of
RHom(Z[S],M) are in C . We deduce that D satisfies condition (2) of Definition 4.1.1, and so it
defines an analytic ring structure on A▷. □

The first application of Theorem 4.4.1 is the homotopy invariance of the analytic ring structures.

Corollary 4.4.4 ([CS20, Proposition 12.21]). Let A▷ → B▷ be a map of animated condensed rings
such that π0(A

▷)→ π0(B
▷) is an isomorphism. There is a bijection between (uncompleted) analytic

ring structures of A▷ and B▷ given by mapping A to B▷
A/.

Proof. By Theorem 4.4.1 analytic ring structures on A▷ are in bijection with suitable localizations
of the abelian category Mod(π0(A

▷)). This proves the corollary. □

Another application of Theorem 4.4.1 is the invariance of analytic ring structures under nilpotent
thickenings.

Proposition 4.4.5 ([CS20, Proposition 12.23]). Let A▷ → B▷ be a map of condensed animated
rings such that the kernel I of π0(A

▷) → π0(B
▷) is nilpotent. Then there is a natural bijection of

uncompleted analytic ring structures on A▷ and B▷ mapping an analytic ring structure A of A▷ to
the induced analytic ring structure B▷

A/.
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Proof. By Proposition 4.4.4 we can assume that A▷ and B▷ are static rings. By induction, we can
even assume that I2 = 0.

Let B be an analytic ring structure on B▷ corresponding to some category CB. Let C ⊂ D♡(A▷) be
the full subcategory of objects M such that IM and M/IM are in D(B). The category C is clearly
presentable. We claim that it is stable under limits, colimits, extensions, arbitrary higher direct
products and internal Ext groups from condensed abelian groups. It is clear from the definition
that C is stable under kernels, cokernels and extensions and that it contains CB. It also contains
arbitrary direct sums as they are exact. To see that it contains arbitrary higher products consider
a family of objects {Mi}i∈I in C . We then have a fiber sequence of homotopy products∏

i

h
IMi →

∏
i

h
Mi →

∏
i

h
Mi/IMi.

Taking the long exact complex we see that the higher product
∏(n) Mi are in C , namely, by Theorem

4.4.1 we know that arbitrary higher products of objects in CB stay in CB. Finally, stability under
internal Ext of CB with condensed abelian groups follows by the long exact sequence induced by
the short exact sequence 0→ IM →M →M/IM → 0. □

4.5. Morphisms of analytic rings. Let A and B be analytic rings and let f : A▷ → B▷ be
a morphism of condensed animated rings. We want to have a criterion for the map f to be a
morphism of analytic rings f : A→ B. The category D≥0(B) is generated by the objects B[S] for
S a light profinite set. Then, f is a morphism of analytic rings if and only if B[S] is A-complete for
all S-light profinite. Suppose that instead we are given with functorial maps A[S] → B[S] linear
over A▷ → B▷ commuting with the map from S ∈ Prof light. Then this datum produces a map of
analytic ring under a mild condition:

Proposition 4.5.1 ([CS19, Proposition 7.14]). Keep the previous notation. Suppose that for all
S ∈ Prof light with a map S → A▷, inducing A[S] → A[∗] in D(A▷), and from the composite
S → A▷ → B▷, a unique map B[S]→ B[∗] in D(B▷), the diagram

π0(A[S]) π0(A[∗])

π0(B[S]) π0(B[∗])

commutes. Then f : A▷ → B▷ is a morphism of analytic rings f : A→ B.

Proof. Let CA and CB be the hearts of the categories of complete A and B-modules respectively.
By Theorem 4.4.1 it suffices to show that objects in CB are in CA when seen as A▷-modules. Since
the objects π0(B[S]) are generators of CB it suffices to prove that they are in CA. This reduces the
question to the abelian situation, where the proof of [CS19, Proposition 7.14] applies. □

4.6. Localizing by killing algebras. In the "old" foundations of condensed mathematics the
construction of analytic rings was a big challenge. The construction of the solid integers required a
full understanding of extension groups of locally compact abelian groups, and the construction of
the liquid rings involved a lot of non-locally convex functional analysis. In the new framework of
light condensed mathematics it is much easier to construct analytic rings out from the internally
compact projective object P of null sequences. This simplifies the construction of solid rings, and
gives a natural construction of gaseous rings motivated from the Tate curve. A disclaimer: the
construction of the liquid rings remains as difficult as before and a priori the light theory does not
help to simplify its construction. Nevertheless, we can now construct localization of categories of
modules in a much more general way as we shall explain down below.

Let C be a presentably symmetric monoidal stable∞-category. Let A ∈ C be an object endowed
with the following two maps
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(1) m : A⊗ A→ A.
(2) µ : 1→ A

such that the composite A
µ⊗idA−−−→ A ⊗ A

m−→ A is the identity of A. We let D ⊂ C be the full
subcategory of objects M such that Hom(A,M) = 0. It is clear that D is presentable, and that it
is stable under limits in C and under internal Hom.

Our goal is to construct explicitly the localization functor C → D . Let C = fib(1 → A) be the
fiber. Define F : C → C to be the functor Hom(C,−). Since we have a map C → 1, there is a
natural transformation of functors idC → F .

Lemma 4.6.1. Let X ∈ C and M ∈ D . Then Hom(F (X),M)→ Hom(X,M) is an equivalence.

Proof. By unraveling the constructions, it suffices to show that

Hom(Hom(A,X),M) = 0. (4.7)

We claim that Hom(A,X) is a retract of A ⊗ Hom(A,X). Suppose the claim holds, then we get
that

Hom(A⊗ Hom(A,X),M) = Hom(Hom(A,X),Hom(A,M)) = 0,

which implies the vanishing of (4.7). Let us now prove the claim. The multiplication map m :
A⊗ A→ A induces a map

Hom(A,X)→ Hom(A⊗ A,X)

which is adjoint to a map
A⊗ Hom(A,X)→ Hom(A,X).

On the other hand, the unit map µ : 1 → A induces a map Hom(A,X) → A ⊗ Hom(A,X). Then
a diagram chasing shows that the composite

Hom(A,X)→ A⊗ Hom(A,X)→ Hom(A,X) (4.8)

is the identity map, proving the claim. Indeed, the diagram (4.8) is adjoint to a diagram

f : A⊗ Hom(A,X)
µ⊗idA−−−→ A⊗ A⊗ Hom(A,X)

g−→ X

where g is the composite

g : A⊗ A⊗ Hom(A,X)
m∗
−→ A⊗ A⊗ Hom(A⊗ A,X)

evA⊗A−−−−→ X.

Then, we have a commutative square

A⊗ A⊗ Hom(A,X) A⊗ A⊗ Hom(A⊗ A,X)

A⊗ Hom(A,X) X

m∗

m⊗id evA⊗A

evA

Therefore, f is also the composite

A⊗ Hom(A,X)
µ⊗idA−−−→ A⊗ AHom(A,X)

m⊗id−−−→ A⊗ Hom(A,X)
evA−−→ X

which is the same as the evaluation map evA since m◦(µ⊗ idA) = idA. Taking adjoints, one deduces
that the composite (4.8) is the identity. □

Let n ∈ N and let F n : C → C be the n-th iteration of the functor F . The natural transformation
idC → F produces a sequential diagram of natural transformations

idC → F → F 2 → · · · → F n → · · · .
We let F∞ = lim−→n

F n. Lemma 4.6.1 shows that for all n ∈ [0,∞], X ∈ C and M ∈ D the natural
map

Hom(F n(X),M)→ Hom(X,M) (4.9)
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is an equivalence. We want to impose some conditions on F for F∞ to be a left adjoint of the
inclusion.

Proposition 4.6.2. Suppose that one of the following conditions hold:
(1) The sequential colimit F∞(X) = lim−→n

F n(X) stabilizes for all X (eg. if A is idempotent).
(2) Hom(A,−) : C → C commutes with sequential colimits (eg. if A is internally compact in

C ).
Then F∞ : C → C lands in D and is the left adjoint of the inclusion D ⊂ C .

Proof. By (4.9) it suffices to show that F∞ lands in D . Conditions (1) and (2) imply that for all
X ∈ C the natural map

lim−→
n

Hom(A,F n(X))→ Hom(A,F∞(X))

is an equivalence. Note that we have a commutative diagram whose rows are fiber sequences

Hom(A,F n+1(X)) F n+1(X) F n+2(X)

Hom(A,F n(X)) F n(X) F n+1(X).

id

Then, taking colimits as n→∞ in the columns, we obtain a fiber sequence

lim−→
n

Hom(A,F n(X))→ lim−→
n

F n(X)
∼−→ lim−→

n

F n+1(X),

where the right arrow is an equivalence. This proves that Hom(A,F∞(X)) = lim−→n
Hom(A,F n(X)) =

0 as wanted. □

Example 4.6.3. Some classical localizations in commutative algebra appear in the form of Propo-
sition 4.6.2.

(1) Let R be an animated ring, C = D(R) and P = R/Lf . Then the category D ⊂ C of
objects M such that RHomR(P,M) = 0 is precisely D = D(R[1/f ]). Indeed, an explicit
computation shows that F∞(M) = lim−→×f

M = M [1/f ].
(2) Let us keep R and C as before and take P = R[1/f ]. Then P is an idempotent algebra

and the category D ⊂ C of R-modules M such that RHomR(P,M) = 0 is precisely the
category of f -adicaly complete modules. The functor F∞ stabilizes for n = 1 and F (M) =
lim←−n

M/Lfn is the f -adic completion functor.

Example 4.6.4. Let P = Z[N ∪ {∞}]/(∞) be the free condensed abelian group of null sequences.
By Proposition 3.1.3 it has a natural algebra structure making Z[q] → P a morphism of algebras,
where q is mapped to [0]. We will write P = Z[q̂].

(1) The multiplication by q in Z[q̂] corresponds to the shift map Shift : P → P . Then, the
category of solid abelian groups is precisely the category of those condensed abelian groups
M such that

Hom(Z[q̂]/(1− q),M) = 0.

The object P is internally compact projective, then the previous localization lands in the
case (2) of Proposition 4.6.2.

(2) Let Z□ be the ring of solid integers. We know that Z□ ⊗Z Z[q̂] = Z[[q]] is a power series
ring in the variable q. We can construct additional solid structures arising from polynomial
algebras as follows: we define the category of solid Z[T ]□-modules, denoted by Mod(Z[T ]□)
to be the full subcategory of Z-solid Z[T ]-modules M such that

HomZ[T ](Z[[q]][T ]/(1− Tq),M) = 0.
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Heuristically, we are asking for a null sequence (bn)n∈N to be T -summable, i.e. for
∑

n bnT
n

to converge. Note that Z[[q]][T ]/(1− qT ) = Z((T−1)) is the ring of Laurent power series in
T−1. By Example (3.5.1) the algebra Z((T−1)) is idempotent over Z[T ]. Then the previous
localization lands in both conditions (1) and (2) of Proposition 4.6.2.

(3) The new kind of analytic rings that can be constructed abstractly using Proposition 4.6.2
are the gaseous rings. Let A▷ = Z[q̂][q−1] and consider the algebra A▷ ⊗Z P . Let T denote
the variable of P . Then the gaseous structure over A▷ is the localization with respect to the
algebra A⊗Z P/(1− qT ). In other words, an object M ∈ D(A▷) is gaseous if

HomA▷(A⊗Z P/(1− qT ),M) = 0.

(4) More generally, given an analytic ring A consider PA = A⊗ZZ[q̂]. Then, for any PA-algebra
R which is a perfect PA-module one can consider the localization D ⊂ D(A) consisting
on the objects M such that Hom(R,M) = 0. The category D satisfies conditions (1)
and (2) of Definition 4.1.1. The only constrain to define an analytic ring structure for
A▷ is the connectivity condition (3). Nevertheless, this solves the problem of constructing
several examples of analytic rings by a systematic procedure (after verifying condition (3)
for connectivity).

5. Solid analytic rings

In this section we give examples of analytic rings arising from non-archimedean geometry. In
Section 3 we constructed the analytic ring Z□ of solid integers, our first objective is to generalize
this construction to finite type algebras over Z and then to arbitrary discrete animated rings. We
continue with the definition of solid quasi-coherent sheaves for schemes.

5.1. Smashing spectrum. Before giving examples of solid analytic rings let us discuss some gen-
eral constructions in (stable) symmetric monoidal∞-categories that will be crucial in the definition
of analytic stacks. These are natural categorifications of open and closed immersions of spaces from
the point of view of a six functor formalism. We shall follow [CS22, Lecture V], see also [Aok23].

5.1.1. Topological six functors. As motivation let us recall some basic facts about sheaves on topo-
logical spaces. Let X be a topological space, and let D(X,Z) be the derived category of abelian
sheaves on X. Given U ⊂ X an open subspace and Z = X\U the closed complement we have
different functors relating the categories D(U,Z), D(Z,Z) and D(X,Z). More precisely, we have

• Pullback functors
ι∗ : D(X,Z)→ D(Z,Z)
j∗ : D(X,Z)→ D(U,Z).

• The functor ι∗ has a right adjoint given by a pushforward or extension by 0 functor

ι∗ : D(Z,Z)→ D(X,Z).
• ι∗ itself has also a right adjoint given by sections supported at Z

ι! : D(X,Z)→ D(Z,Z).
The functor ι∗ satisfies the projection formula, namely, the following arrow is an equivalence

ι∗N ⊗ZX
M

∼−→ ι∗(N ⊗ZZ
ι∗M). (5.1)

More explicitly, ι∗ZZ is the locally constant sheaf Z supported on Z, and we have

ι∗ι
∗ = ι∗ZZ ⊗ZX

−.
The functor ι! is then described as

ι∗ι
! = RHomZX

(ι∗ZZ ,−).
On the other hand, the functor j∗ has both left and right adjoints.
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• The right adjoint j∗ : D(U,Z)→ D(X,Z) is the natural pushforward functor.
• The left adjoint j! : D(U,Z)→ D(X,Z) is the natural extension by 0 functor.

Furthermore, the functor j! satisfies the projection formula, namely, the natural map

j!(N ⊗ZU
M)

∼−→ j!N ⊗ZX
M (5.2)

is an equivalence.
It turns out that the functors ι∗, j∗ and j! are fully faithful; this is a consequence of the fact that

the map ZX → ι∗ZZ is idempotent in D(X,Z), namely, that the natural map ι∗ZZ → ι∗ZZ⊗L
ZX

ι∗ZZ

is an equivalence. Hence, one has natural exact triangles in D(X,Z) involving all four functors:

ι∗ι
! → idX → j∗j

∗

j!j
∗ → idX → ι∗ι

∗.

The previous exact triangles give rise to "Verdier exact sequences" of derived categories

D(Z,Z) D(X,Z) D(U,Z).ι∗ j∗

ι!

ι∗

j∗

j!

(5.3)

One would like to generalize the localization sequences of (5.3) altogether with the projection
formulas (5.1) and (5.2) in order to talk about abstract open and closed immersions of symmetric
monoidal categories. This idea is realized thanks to the smashing spectrum.

5.1.2. Smashing spectrum and idempotent algebras. For a general notion of open and closed immer-
sions the key objects are idempotent algebras.

Definition 5.1.1. Let C be a presentably symmetric monoidal stable ∞-category with unit 1. In
particular, C is closed, i.e., it has an internal Hom.

An idempotent algebra in C is a map

µ : 1→ A

in C such that the natural map
A

idA ⊗µ−−−−→ A⊗ A

is an equivalence. A morphism A → B of idempotent algebras is a map in C preserving the unit.
We let S (C ) be the opposite of the category of idempotent algebras in C and call it the smashing
spectrum of C .

A priori an idempotent algebra is not required to have any algebra structure. However it will be
always endowed with a natural commutative algebra structure arising from the natural equivalences

A ∼= A⊗ A ∼= A⊗ A⊗ A ∼= · · ·
together with all the higher coherences, see [Lur17, Proposition 4.8.2.9].

Given A an idempotent algebra in C the natural map

ModA(C )→ C

is fully faithful, namely, M ∈ C is an A-module if and only if M µ⊗idM−−−−→ A⊗M is an equivalence.
In other words, being an A-module for an object in C is a property and not additional structure.
One also has that M is an A-module if and only if Hom(A,M)→M is an isomorphism.

Finally, given A and B idempotent algebras, the mapping space Map1/(A,B) of idempotent
algebras is either contractible or empty. This shows that S (C ) is a poset. Actually, the category
S (C ) has the structure of a locale, i.e. it behaves as the poset of closed subspaces of a topological
space:
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Proposition 5.1.2 ([CS22, Proposition 5.3], [Aok23, Theorem 3.8]). The poset S (C ) is a locale
whose closed subspaces Z ⊂ S (C ) correspond to idempotent algebras A of C , so that

(1) Z ∩ Z ′ corresponds to A⊗ A′;
(2) Z ⊂ Z ′ if and only if A⊗ A′ = A;

(3) Z ∪ Z ′ corresponds to fib(A ⊕ A′ → A ⊗ A′), the unit is given by 1
µA⊕(−µA′ )−−−−−−→ A ⊕ A′.

Equivalently, Z ∪ Z ′ corresponds to the pullback A×A⊗A′ A′.
(4)

⋂
i Ai corresponds to lim−→i

Ai.

We will often let Z ⊂ S (C ) denote a closed subspace of the local of C and let A(Z) be the
attached idempotent algebra.

5.1.3. Open and closed immersions of symmetric monoidal categories. Let Sym be the ∞-category
of presentably symmetric monoidal stable ∞-categories. We will take inspiration from the six
functors of topological spaces to define open and closed immersions. For geometric reasons we
will work with the opposite category Symop, given an arrow f : C → D in Symop we shall write
f ∗ : D → C for the corresponding map in Sym.

Definition 5.1.3. Let f : C → D be a map in Symop.
(1) We say that f is a closed immersion if f ∗ has a colimit preserving fully faithful right adjoint

f∗ : C → D such that for M ∈ C and N ∈ D the natural map

f∗M ⊗N → f∗(M ⊗ f ∗N)

is an equivalence.
(2) We say that f is an open immersion if f ∗ has a fully faithful left adjoint f! : C → D such

that for M ∈ C and N ∈ D the natural map

f!(M ⊗ f ∗N)→ f!M ⊗N

is an equivalence.

In a few words, a morphism f : C → D in Symop is a closed immersion if and only if f∗ is colimit
preserving, fully faithful and satisfies the projection formula (so we shall have f! = f∗). Similarly,
f is an open immersion if and only iff f ∗ has a left adjoint f! which is fully faithful and satisfies
projection formula (so we shall have f ∗ = f !). The following proposition characterizes closed and
open immersions in terms of the smashing spectrum.

Proposition 5.1.4 ([CS22, Proposition 6.5]). Let f : C → D be a morphism in Symop.
(1) f is a closed immersion if and only if there is a (necessarily unique) idempotent algebra

A ∈ D such that 1C → f ∗A is an equivalence, and the induced natural map ModA(D)→ C
is an equivalence.

(2) f is an open immersion if and only if there is a (necessarily unique) idempotent algebra A
such that f ∗A = 0, and the induced natural map D/ModA(D)→ C is an equivalence.

Remark 5.1.5. Let C ∈ Sym and let A ∈ C be an idempotent algebra with associated closed
subspace Z ⊂ S (C ) and open complement U . Let C (Z) = ModA(C ) and C (U) = C /C (U) denote
the closed and open localizations associated to Z and U respectively. For future reference we shall
write explicitly the six functors for open and closed immersions.

(1) The pullback map ι∗ : C → C (Z) is given by the base change ι∗M = A ⊗M for M ∈ C .
The pushforward ι∗ : C (Z)→ C is the forgetful functor and the ι! is determined by

ι∗ι
!M = HomC (A,M)

for M ∈ C .
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(2) We let j∗ : C → C (U) denote the pullback or localization map. The functors j! and j∗ are
determined by

j!j
∗M = fib(1→ A)⊗M

and
j∗j

∗ = HomC (fib(1→ A),M)

for M ∈ C .

Closed and open immersions behave topologically as expected along pullbacks in Symop, inclu-
sions, unions and intersections (see Lemma 6.4 and Corollary 6.6 of [CS22]). Furthermore, one gets
“for free” the descent of the underlying symmetric monoidal categories along the topology of the
locales.

Theorem 5.1.6 ([CS22, Theorem 6.7]). (1) There is a Grothendieck topology in Symop where
the coverings of C are given by open localizations of C whose corresponding open subsets
cover S (C ).

(2) The identity functor (Symop)op → Sym is a sheaf with respect to this Grothendieck topology.
(3) The posets of open (resp. closed) immersions also satisfies descent for this Grothendieck

topology.

Remark 5.1.7. There is also a variant of Theorem 5.1.6 where the covers are given by finitely many
closed localizations whose closed subspaces cover S (C ). Later we will see that a more general
Grothendieck topology, called the !-topology, has open and closed covers of symmetric monoidal
categories as particular covers.

5.2. The ring Z[T ]□. Let P = Z[N∪ {∞}]/(∞) be the condensed abelian group of null sequences
and let Z[q̂] be P considered as an algebra. The multiplication by q = [1] in Z[q̂] corresponds to
the shift map. Since Z[q̂] ⊂ Z[[q]], it is an integral domain and so we have a short exact sequence

0→ Z[q̂] 1−q−−→ Z[q̂]→ Z[q̂]/(1− q)→ 0.

By definition Solid is the full subcategory of condensed abelian groups M such that

RHomZ(Z[q̂]/(1− q),M) = 0.

Note that this localization process fits in the general framework of Proposition 4.6.2 (2) since P is
internally compact projective in condensed abelian groups. From Theorem 3.2.3 (12) we know that

Z[q̂]L□ = Z[[q]].

Let us consider the polynomial algebra in one variable Z[T ] seen as a solid abelian group. We let
A = (Z[T ],Z)□ denote the induced analytic structure Z[T ]Z□/. Then

A⊗Z P = (Z[T ],Z)□ ⊗Z Z[q̂] = Z[[q]][T ]

is a polynomial algebra over the power series ring in the variable q. Then, we could solidify the
variable T by asking that a null-sequence (mn) in an A-module M is "T -summable", i.e. that∑

n mnT
n converges (uniquely and functorially) in M . This leads to the following definition

Definition 5.2.1. An object M ∈ Mod(A) (resp. in D(A)) is said Z[T ]-solid (or T -solid) if the
natural map

RHomA(A⊗Z P,M)
1−T Shift∗−−−−−−→ RHomA(A⊗Z P,M)

is an equivalence. We let Mod(Z[T ]□) (resp. D(Z[T ]□)) be the full subcategory of Z[T ]-solid
modules.
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Since A ⊗Z P is a compact projective A-algebra, Proposition 4.6.2 (2) shows that D(Z[T ]□) is
essentially an (uncompleted) analytic ring structure on A▷, and the only condition to verify is the
right t-exactness of the localization. We will do better, and we will actually compute the free solid
modules Z[T ]□[S] for S ∈ Prof light.

To begin with, note that the fiber sequence A⊗Z P
1−T Shift−−−−−→ A⊗Z P → Q is actually exact and

that it is equivalent to the short exact sequence

0→ Z[[q]][T ] 1−Tq−−−→ Z[[q]][T ]→ Z((T−1))→ 0 (5.4)

where Z((T−1)) = Z[[T−1]][T ] is the algebra of Laurent power series in the variable T−1. In partic-
ular, since Z[[X]] is an idempotent (Z[X],Z)□-algebra, one deduces that Z((T−1)) is an idempotent
(Z[T ],Z)□-algebra. We get the following proposition.

Proposition 5.2.2. The category D(Z[T ]□) is the localization of D((Z[T ],Z)□) with respect to the
idempotent algebra Z((T−1)). More precisely, we have a semi-orthogonal decomposition

D(Z((T−1))Z□/)
ι∗−→ D((Z[T ],Z)□)

j∗−→ D(Z[T ]□)

where ι∗ is the natural inclusion and j∗ is the localization functor. We let ι∗ be the base change
Z((T−1))⊗A − and let j∗ be the right adjoint of j∗.

From the general non-sense of smashing localizations in presentably symmetric monoidal stable
∞-categories (see [CS22, Lecture V] and Remark 5.1.5), we can explicitly compute the functor j∗:

j∗j
∗M = RHomA(fib(Z[T ]→ Z((T−1))),M),

in particular the functor j∗j
∗ commutes with limits.

Using the resolution (5.4) of Z((T−1)) one can easily compute that RHomA(Z((T−1)),Z[T ]) = 0
so that j∗j

∗Z[T ] = Z[T ]. Indeed, we can write

RHomA(Z[[q]][T ],Z[T ]) = Z[T ]((q))/qZ[T ][[q]]

as Z[q, T ]-module, and multiplication by 1− Tq is invertible on Z[T ][[q]].
With this computation we can show the following theorem (for more details see [CS19, Lecture

VIII])

Theorem 5.2.3. The full subcategory D(Z[T ]□) ⊂ D((Z[T ],Z)□) defines an analytic ring structure
on Z[T ]. For S = lim←−n

Sn a light profinite set written as limit of finite sets, the free Z[T ]□-module
generated by S is given by

Z[T ]□[S] = lim←−
n∈N

Z[T ][Sn].

Sketch of the proof. Let us write A = (Z[T ],Z)□. Conditions (1) and (2) of Definition 4.1.1 follow
immediately from Proposition 4.6.2 and the fact that the object A ⊗Z P/(1 − Tq) is compact in
D((Z[T ],Z)□). It is left to show condition (3), this one follows from the computation of Z[T ]□[S].
Recall that, if S is infinite, Z□[S] ∼=

∏
N Z. Since D(Z[T ]□) is the localization with respect to the

objects in D(Z((T−1))), it suffices to show that the cone Q of the map (
∏

N Z)[T ]→
∏

N(Z[T ]) is a
Z((T−1))-module. But it is not hard to see that∏

N

(Z[T ])/((
∏
N

Z)[T ]) =
∏
N

(Z((T−1)))/((
∏
N

Z)⊗Z□
Z((T−1))).

One deduces that
j∗j

∗Q = RHomZ[T ](fib(Z[T ]→ Z((T−1))), Q) = 0
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as Q is a Z((T−1))-module. We get that
Z[T ]□[S] = j∗j

∗(Z□[S][T ])

= j∗j
∗(lim←−

n

Z[T ][Sn])

= lim←−
n

(j∗j
∗Z[T ][Sn])

= lim←−
n

Z[T ][Sn]

finishing the proof of the theorem. □

5.3. Solid rings of finite type algebras. Let us now generalize the construction of the ring Z[T ]□
to finite type algebras over Z.

Definition 5.3.1. (1) Let R be a solid animated algebra and let r ∈ π0(R). We say that a solid
R-module M is r-solid if for (any and so all) lifts Z[T ] → R of r, the restriction of M to a
Z[T ]-module is T -solid.

(2) Let R be a finite type algebra over Z. We let R□ be the analytic ring structure on R making
an R-module M complete if and only if M is r-solid for all r ∈ R.

Theorem 5.3.2. Let R be a finite type algebra over Z. Then for S = lim←−n
Sn a light profinite set

the natural map
R□[S]→ lim←−

n

R[Sn]

is an isomorphism. In particular, D(R□) is the derived category of its heart and ⊗L
R□

is the left
derived functor of ⊗R□

. Moreover,
∏

n R is flat for the R□-tensor product.

Our first task is to compute the free solid generators R□[S] for S ∈ Prof light. Note that any
algebra of finite type is a quotient of a polynomial algebra, let us then start with those:

Proposition 5.3.3. Let T1, . . . , Tn be a set of variables, then the natural map

Z[T1]□ ⊗Z□
· · · ⊗Z□

Z[Tn]□ → Z[T1, . . . , Tn]□ (5.5)

is an isomorphism.

Proof. Let A = Z[T1]□ ⊗Z□
· · · ⊗Z□

Z[Tn]□, it is the analytic ring structure on Z[T1, . . . , Tn] making
a module A-complete if and only it it is Z[Ti]□-complete for all i = 1, . . . , n. We clearly have
that D(Z[T1, . . . , Tn]□) ⊂ D(A) ⊂ Dcond(Z[T1, . . . , Tn]). We need to show the opposite inclusion
D(A) ⊂ D(Z[T1, . . . , Tn]□), i.e. that if a solid Z[T1, . . . , Tn]-module is Ti-solid for all i + 1, . . . , n,
then it is p(T )-solid for all p(T ) ∈ Z[T1, . . . , Tn].

As a first step, let us compute the compact projective generators of the ring A. We show by
induction on the number of variables that for S = lim←−k

Sk profinite

A[S] = lim←−
n

Z[T1, . . . , Tn][Sk],

the case n = 1 being Theorem 5.2.3. Suppose that the claim follows for n and consider B =
Z[T1, . . . , Tn, Tn+1]A/ the induced analytic rings structure. Let C = Z[T1]□ ⊗Z□

· · · ⊗Z□
Z[Tn]□. By

definition D(C) ⊂ D(B) is the full subcategory of objects that are Z[Tn+1]-solid (since they are
already Z[Ti]-solid for all i = 1, . . . , n). By Proposition 5.2.2 an object M ∈ D(A) is Z[Tn+1]-solid
if and only if

RHomZ[Tn+1]
(Z((T−1

n+1)),M) = 0.

By taking base change along Z[Tn+1]Z□
→ B this is equivalent to the vanishing of

RHomZ[T1,...,Tn+1]
(B ⊗Z[Tn+1] Z((T−1

n+1)),M) = 0.
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Recall that we have the resolution

0→ Z[[q]][Tn+1]
1−qTn+1−−−−−→ Z[[q]][Tn+1]→ Z((T−1

n+1))→ 0.

Then, by induction, we have that
B ⊗Z[Tn+1] Z((T−1

n+1)) = Z[T1, . . . , Tn]((T
−1
n+1)),

which is an idempotent B-algebra. Then, the same argument of Theorem 5.2.3 will show that
C□[S] = lim←−

n

Z[T1, . . . , Tn+1][Sk]

as wanted.
Now, note that any discrete Z[T1, . . . , Tn]-module is immediately Z[T1, . . . , Tn]□-complete since

it is a-solid for any a ∈ Z[T1, . . . , Tn]. This shows that A[S] ∼=
∏

k Z[T1, . . . , Tn] is Z[T1, . . . , Tn]□-
complete (since complete modules are stable under products), and so that any complete A-module
is Z[T1, . . . , Tn]□-complete (being stable under colimits). One deduces that

D(A) ⊂ D(Z[T1, . . . , Tn]□) ⊂ Dcond(Z[T1, . . . , Tn])

and so that we have the equivalence
D(A) = D(Z[T1, . . . , Tn]□),

proving that the map (5.5) is indeed an equivalence. □

Corollary 5.3.4. Let R be a finite type algebra and let Z[T1, . . . , Tn]→ R be a surjection. Then

R□ = RZ[T1,...,Tn]□/

has the induced analytic structure. Moreover, for S = lim←−k
Sk a light profinite set we have

R□[S] = lim←−
k

R[Sn].

Proof. By definition an M -module is Z[T1, . . . , Tn]□-complete if it is Z[a]□-complete for all a ∈
Z[T1, . . . , Tn]. By definition of R□ this shows that it has the induced analytic structure. In particular,

R□[S] = R⊗L
Z[T1,...,Tn]□

Z[T1, . . . , Tn]□[S].

We will prove a more general fact: let M be a finite type Z[T1, . . . , Tn]-module, then

M ⊗L
Z[T1,...,Tn]□

∏
k

(Z[T1, . . . , Tn]□) =
∏
k

M.

Indeed, consider a finite projective resolution P• → M where all the terms Pn are finitely
many copies of Z[T1, . . . , Tn]. Then M ⊗L

Z[T1,...,Tn]□

∏
k(Z[T1, . . . , Tn]□) is equivalent to the com-

plex P• ⊗L
Z[T1,...,Tn]□

∏
k(Z[T1, . . . , Tn]□). Since each term Pn is a finite free module we actually

have
P• ⊗L

Z[T1,...,Tn]□

∏
k

(Z[T1, . . . , Tn]□) =
∏
k

P•.

Since countable products are exact we have an equivalence∏
k

P•
∼−→

∏
k

M.

□

Proof of Theorem 5.3.2. The claim about the free objects on profinite sets is Corollary 5.3.4. The
fact that D(R□) is the derived category of its heart and that ⊗L

R□
is the left derived functor of ⊗R□

follows the same argument of the analogue statements in Theorem 3.2.3. The final statement about
flatness of

∏
n R will be proven in Proposition 5.3.7. □

It is left to prove flatness of
∏

n R, this will follow a similar argument as the one for Z.
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Definition 5.3.5. An R□-module is finitely generated if it is a quotient of
∏

N R. An R□-module
is of finite presentation (or coherent) if it is a cokernel of a map

∏
N R→

∏
N R.

We want to have a good understanding of coherent R□-modules. Under some topological hypoth-
esis these are easier to describe:

Lemma 5.3.6. If M ∈ ModR□
is quasi-separated, then the following are equivalent.

i. M is of finite presentation.
ii. M is finitely generated.
iii. M = lim←−Mn is a limit of finitely generated discrete R-modules with surjective transition

maps.

Proof. Let (Mn)n be a projective system as in (iii). Since R is noetherian we can find a right exact
resolution

Rsn → Rkn →Mn → 0

for each n. By constructing the resolution step by step, we can construct liftings

Rsn+1 Rkn+1 Mn+1 0

Rsn Rkn Mn 0

such that all the vertical maps are surjective. Taking limits we find a right exact sequence∏
N

R→
∏
N

R→M → 0

proving (iii)⇒ (ii).
It is clear that (ii) ⇒ (i). It is left to show that (i) implies (iii). We have a surjection

∏
n R →

M → 0 with kernel K. The space
∏

n R arises from a metrizable topological space, and since M is
quasi-separated the space K ⊂

∏
n R is closed. Writing

∏
nR = lim←−n

Rn as the limit of finite free
R-modules, we see that K = lim←−n

Kn where Kn is the image of K in the projection
∏

nR → Rn.
This shows that

M = lim←−
n

Rn/Kn

proving what we wanted. □

Proposition 5.3.7. Let ModR□
be the abelian category of R□-modules and let Modcoh

R□
⊂ ModR□

be
the full subcategory of coherent modules. The following hold:

(1) We have ModR□
= Ind(Modcoh

R□
).

(2) The category Modcoh
R□

of coherent modules is an abelian category stable under all kernels,
cokernels and extensions.

(3) Any coherent module M is pseudo-coherent, namely, it has a resolution of the form P• →M
with P• a free R□-module on a profinite set S.

(4) The R□-module
∏

n R is flat.

Proof. (1) The category ModR□
has a compact projective generator given by

∏
N R. This for-

mally shows that coherent modules are the compact objects in ModR□
and the description

as inductive category of (1).
(2) By the standard arguments in commutative algebra it suffices to show that any finitely

generated module M of
∏

NR is actually finitely presented. By then M is quasi-separated
and Lemma 5.3.6 implies that M is coherent.
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(3) Let M be a coherent module and consider a right exact sequence∏
N

R
f−→

∏
N

R→M → 0.

By part (2) the kernel K = ker f is a coherent module. An inductive argument allow us to
construct the resolution P• →M of M where each term is isomorphic to

∏
N R.

(4) It suffices to show that for any coherent module M we have M ⊗L
R□

∏
N R =

∏
N M as then

the tensor product will be exact. This follows from the fact that P ⊗L
R□

∏
N R =

∏
N P for

P ∼=
∏

N R and the resolution of M of part (3).
□

Remark 5.3.8. Let R be a finite type Z-algebra. Then for any pseudo-coherent solid R□-module we
have M ⊗L

R□

∏
N R =

∏
N M , namely, this follows from the computation of the solid tensor product

of countable products of R, and the fact that M has a projective resolution whose terms are given∏
NR
As a special consequence, if R is an animated algebra with π0(R) a finitely generated Z-algebra

and πi(R) a finite π0(R)-module for all i, then the induced analytic ring structure R□ := Rπ0(R)□/

from Corollary 4.4.4 is such that
R□[S] = lim←−

n

R[Sn],

so that
∏

I R⊗R□

∏
J R =

∏
I×J R for countable sets I and J .

The solid ring structures are also independent of integral extensions.

Corollary 5.3.9. Let R → A be an integral map of finitely generated algebras. Then the natural
map of analytic rings AR□/ → A□ is an isomorphism.

Proof. By hypothesis both R and A are finitely generated Z-algebras with A integral over R, so
that A is a finite R-module. By Remark 5.3.8 we find that A⊗R□

∏
N R =

∏
N A, which implies the

corollary. □

5.4. Schemes as analytic stacks. With the introduction of the rings R□ for R a finitely generated
Z-algebra we are in shape to talk about two different realizations of schemes as analytic stacks (these
will be introduced later in the notes).

5.4.1. Classical approach. We first need to see commutative rings as analytic rings:

Proposition 5.4.1. Let AniRing be the ∞-category of (discrete) animated rings. There is a fully
faithful embedding

(−) : AniRing→ AnRing

mapping a ring R to the analytic ring R = (R,D(R)) to the trivial analytic ring structure on R,
i.e. the analytic ring structure whose complete modules are all condensed R-modules.

Proof. This follows from the natural fully faithful embedding of animated rings into animated
condensed rings as discrete rings. □

Let R be an animated commutative ring and let SpecR be its spectrum defined as the spectrum
of π0(R). Let D(R) be the ∞-derived category of R-modules. The Zariski topology of SpecR has
a basis of open affine schemes given by spectrums of the form SpecR[f−1] for f ∈ R (were by
definition R[f−1] = lim−→×f

R is the colimit of multiplication by f). We can rephrase the classical
Zariski descent of R-modules in the language of Theorem 5.1.6 and Remark 5.1.7.

Proposition 5.4.2. Let {Ui = SpecRi}ni=1 be a finite affine Zariski cover of SpecR. Then the
morphisms of symmetric monoidal categories {f ∗

i : D(R) → D(Ri)}ni=1 form a closed cover of
D(R). In particular, we have descent of quasi-coherent sheaves on SpecR for the Zariski topology.
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Proof. We prove the proposition in two steps.
Step 1. Let f1, . . . , fn ∈ R be elements generating the unit ideal and suppose that the cover is

of the form Ui = SpecR[f−1
i ]. It is clear that the R-algebras R[f−1

i ] are idempotent so that they
define closed subspaces in the locale S (D(R)). We want to see that they cover the locale, but this
is equivalent to asking that there is an equivalence of complexes

R
∼−→ [

n⊕
i=1

R[
1

fi
]→

⊕
i<j

R[
1

fifj
]→ · · · → R[

1

f1 · · · fn
]]

which amounts to Zariski descent for the underlying ring.
Step 2. Now let {Ui}ni=1 be an arbitrary open cover of R. By Zariski descent we know that there

is a natural equivalence of complexes

R
∼−→ [

n⊕
i=1

Ri →
⊕
i<j

Ri ⊗R Rj → · · · →
⊗
i,R

Ri]

so the only thing to show is that each R-algebra Ri is idempotent. But for any open affine subspace
U = SpecR′ of R there is a Zariski cover of U of the form R[f−1

i ] for suitable fi ∈ R. It is clear
that R[f−1

i ] = R′[f−1
i ] so that we have an equivalence

R′ ∼−→ [
n⊕

i=1

R[
1

fi
]→

⊕
i<j

R[
1

fifj
]→ · · · → R[

1

f1 · · · fn
]],

but the right hand side is the idempotent algebra in D(R) corresponding to the union of the
closed subspaces of the locale S (D(R)) associated to the algebras R[f−1

i ]. This shows that R′ is
idempotent which finishes the proof. □

An immediate corollary of Proposition 5.4.2 is the construction of quasi-coherent sheaves for
schemes.

Corollary 5.4.3. Let X be a scheme with structural sheaf OX and let |X|op be the topological space
with underlying set |X| and the coarsest topology given by declaring closed subspaces the subsets of
the form |U | ⊂ X with U an open Zariski subspace. Then the functor that maps an open affine
Zariski subspace U ⊂ X to D(OX(U)) is a sheaf. More precisely, let D(X) = lim←−U⊂X

D(OX(U)) be
the category of quasi-coherent sheaves on X, where U runs over the poset of open affine subspaces
of X. Then there is a unique natural morphism of locales

F : F (D(X))→ |X|op

such that for U ⊂ X open affinoid we have D(F−1(U)) = D(OX(U)).

Proof. This is a consequence of Proposition 5.4.2, the only thing to verify is that the map is surjec-
tive. For the last claim, let U ⊂ X be a Zariski open subset and let AU be the idempotent algebra
associated to U . Then we have that

U = {x ∈ X : k(x)⊗OX
AU ̸= 0}.

This shows that if for two Zariski open sets one has F−1(U) = F−1(U ′), i.e. AU = AU ′ , then U = U ′

proving surjectivity. □

In Corollary 5.4.3 it is not relevant that we have used the classical category of quasi-coherent
sheaves. Indeed, the same holds if we see R = R as a discrete condensed ring and we take D(R)
to be the category of condensed R-modules: the only feature that is needed are the idempotent
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properties of the algebras R[f−1] for f ∈ R and the classical Zariski descent for the underlying
rings. 4

However, an anti-intuitive phenomena is happening in the classical Zariski descent of quasi-
coherent sheaves, namely, open Zariski subspaces of SpecR are giving rise to closed subspaces of
the locale S (D(R))! This explains why the classical theory of quasi-coherent sheaves on schemes
do not have (apparently!) a well defined theory of cohomology with compact support outside the
proper case. A way to overcome this discrepancy is to use a different realization of schemes into
analytic stacks, or equivalently, a different embedding of the category of commutative rings into the
category of analytic rings. A the end, it will be more convenient to work with a generalization of
both theories of quasi-coherent sheaves; this is captured in the theory of discrete adic spaces (see
[CS19, Lectures IX and X]). But before that, let us finish the study of the topology of the locale
defined by classical algebraic geometry.

5.4.2. Formal completions. As we saw above for U = SpecR′ → SpecR an open Zariski map gives
rise to a closed subspace of the locale S (D(R)). A natural question is to describe what the open
complement is, it has indeed a very natural answer.

Proposition 5.4.4. Let X be a scheme and let U ⊂ X be a qcqs open Zariski subspace with closed
complement Z ⊂ X. Let X∧Z be the (derived) formal completion of X along Z. Let D(X) be the
∞-category of derived quasi-coherent sheaves on X and let F : S (D(X)) → |X|op be the map of
locales provided by Corollary 5.4.3. Then the open subspace F−1(Z) has as underlying category the
derived category of (derived) formally complete quasi-coherent sheaves on X∧Z.

Sketch of the proof. We will explain the simplest case when X = SpecR is affine and U = SpecR[f−1]
is given by inverting f ∈ R. For a general definition of I-adically complete modules we refer to
[Man22, Definition 2.12.3], and we left as an exercise to the reader the formal definition of X∧Z and
D(X∧Z), and the proof of the proposition in the general case (Hint: X∧Z is actually an ind-scheme).

By definition D(F−1(Z)) is the Verdier quotient j∗ : D(R) → D(R)/D(R[f−1]). Moreover, the
functor j∗ : D(F−1(Z))→ D(R) is fully faithful and as by essential image the elements M ∈ D(R)
such that the natural map

M → RHomR(fib(R→ R[f−1]),M)

is an equivalence (equivalently those M such that RHomR(R[f−1],M) = 0). But we can write
R[f−1] = lim−→×f

R as the colimit of multiplication by f on R, and so we find that

RHomR(fib(R→ R[f−1]),M) = R lim←−
n

(M ⊗L
R R/Lfn)

where R/Lfn is the derived quotient of R by fn, represented by the Koszul complex [R
fn

−→ R].
Thus, by definition, the essential image of f consists on those modules which are derived f -adically
complete.

Now let I = (f) ⊂ R be the ideal generated by f . To finish the proof of the proposition it
suffices to see that for any element g ∈ Rad(I) in the radical of I, a derived f -adically complete
module is also derived g-adically complete. Indeed, this will show that the category D(F−1(Z))
only depends on the formal completion of SpecR along Z and that by definition it consists on the
derived formally complete modules of X∧Z . To see this, we note that SpecR[g−1] ⊂ SpecR[f−1],

4Zariski descent can go even more general in the following way: let PrLD(R) be the (∞, 2)-category of D(R)-linear
presentable categories. Given a morphism of rings R → S there is a natural base change functor PrLD(R) → PrLD(S)

given by Lurie’s tensor product M 7→ M ⊗D(R) D(S). Then the functor mapping an open affine Zariski subspace
U = SpecR′ ⊂ SpecR to PrLD(R′) is a sheaf for the Zariski topology.
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i.e. that we have a map of idempotent R-algebras R[f−1]→ R[g−1]. But then

RHomR(R[g−1],M) = RHomR(R[g−1]⊗L
R R[f−1],M)

= RHomR(R[g−1], RHomR(R[f−1],M))

= 0

proving what we wanted. □

To conclude, classical algebraic geometry is in the strange situation where the classical qcqs open
Zariski maps give rise to closed maps at the level of derived categories, while formal completions
along finitely generated Zariski closed subschemes give rise to open immersions.

5.4.3. Solid approach. Let us now discuss the solid approach to the theory of quasi-coherent sheaves
for schemes. We need a definition:

Definition 5.4.5. Let R be a commutative ring, we define the analytic ring R□ to be the colimit
R□ = lim−→

B⊂R

B□

where B runs over all the finitely generated Z-subalgebras, and B□ is the analytic ring constructed
in Theorem 5.3.2. Equivalently, B□ is the analytic ring structure on B where a condensed B-module
is B□-complete if and only if it is b-solid for all b ∈ B.

In general, for R an animated commutative ring we let R□ be the analytic ring structure on R
induced from π0(R)□ via Proposition 4.4.4. Equivalently, an R-module M is R□-complete if and
only if all its cohomology groups H∗(M) are π0(R)□-complete.

Remark 5.4.6. By Theorem 5.3.2, for B a finitely generated Z-algebra B□ is an analytic ring struc-
ture of B, i.e. B is B□-complete. It follows formally that any discrete (derived) B-module is also
B□-complete. This shows that, for any animated ring R, the ring itself is R□-complete and so R□

is an analytic ring structure on R.

Remark 5.4.7. Let R be an animated ring and let S ⊂ π0(R) be a set of generators as Z-algebra. By
Corollary 5.3.4 the ring R□ is also obtained as the analytic ring structure on R making an R-module
complete if and only if it is s-solid for all s ∈ S.

Remark 5.4.8. The reader might ask why not to define B□ to be the analytic ring whose values at
a profinite set S = lim←−n

Sn are given by B□[S] = lim←−n
B[Sn]. The answer is that it is not clear (and

probably false) that for an arbitrary ring this definition gives rise to an analytic ring structure on
B. 5 So far we have seen that this is a sensitive definition when B is a finitely generated Z-algebra.
It turns out that this also works well when B is essenitally of finite type, i.e. when it is a Zariski
localization (i.e. colimit of open Zariski localizations) of a finitely generated Z-algebra. For example,
when B = Q one obtains the ultra solid rational numbers and the category D(Q□) ⊂ D(Z□) is the
open localization which is complement to the idempotent Z□-algebra Ẑ =

∏
p Zp.

In general, by going beyond the notion of analytic ring, one can define categories of ultra-solid
modules over arbitrary animated rings and E∞-algebras, see [MA24] for the proper definition and
the development of this theory.

Let R→ S be a map of animated commutative rings, by definition of the analytic ring structure
there is a map of analytic rings R□ → S□. Indeed, a complete S□-module is an S-module M which
is solid for all s ∈ S, this means concretely that for all map Z[T ]→ R the module M is Z[T ]□-solid.
Hence, it is easy to see that its restriction to an R-module is also R□-complete. We get a functor

(−)□ : AniRing→ AnRing

5The problem being that in the correct definition of the (ultra-)solid modules attached to B, the forgetful functor
D(B□)→ D(B) from ultra-solid to condensed B-modules could not be fully faithful.
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from animated commutative rings to analytic rings.
One of the first properties we have to check is the compatibility with colimits of the functor (−)□.

Proposition 5.4.9. The functor (−)□ : AniRing → AnRing is fully faithful and commutes with
colimits.

Proof. Let R, S be animated rings. We want to see that the natural fully-faithful map of anima
(−)▷ : MapAnRing(R□, S□)→ MapAniRing(R, S)

is essentially surjective. For this, recall that we have a map AnRing→ Cond(AniRing) mapping an
analytic ring to its underlying condensed ring. The claim follows from the fact that the composite

AniRing
(−)□−−−→ AnRing

(−)▷−−→ Cond(AniRing)

is fully faithful.
Next, we show the second statement. Let {Ri}i∈I be a diagram of animated commutative rings

and let {Ri,□}i∈I be its associated diagram of solid rings. By Proposition 4.1.10 the colimit lim−→i
Ri,□

is the analytic ring given by the completion of the analytic ring structure on S := lim−→i
Ri where an

S-module M is complete if and only if it is Ri,□-complete for all i. But this is equivalent for M to
be r-solid for all r ∈ Ri and all i ∈ I, which is also equivalent to be s-solid for all s ∈ S. This shows
that lim−→i

Ri,□ = S□ as wanted. □

Our next step to construct solid analytic stacks attached to schemes is proving Zariski descent
for the functor mapping SpecR 7→ D(R□). We first prove this for coverings given by basic open
Zariski subspaces. We need some technical lemmas.

Lemma 5.4.10. Let f : A → B be a map of analytic rings such that induced map of derived
categories f ∗ : D(A) → D(B) is an open immersion of locales. Then for all analytic ring C and
any map A → C the base change C → C ⊗A B also induces an open immersion at the level of
locales.

Proof. By hypothesis there is D ∈ D(A) an idempotent algebra such that D(B) ⊂ D(A) is the full
subcategory consisting on those M such that RHomA(D,M) = 0. This defines an uncompleted
analytic ring structure on A▷. Thus, by Theorem 4.1.12, C ⊗A B is given by the completion of
the analytic ring structure on C▷ such that a C▷-module M is complete if and only if it is C and
B-complete. This is equivalent to asking M to be C-complete and that RHomC(C ⊗A D,M) = 0.
Thus, C ⊗A B is the open localization complement to the idempotent C-algebra C ⊗A D proving
what we wanted. □

Lemma 5.4.11. The following maps of analytic rings give rise to open immersions at the level of
locales:

(1) Z[T ]Z□/ → Z[T ]□ with complement idempotent algebra Z((T−1)).
(2) Z[T ]Z□/ → Z[T±1]Z[T−1]□/ with complement idempotent algebra Z[[T ]].

Proof. Part (1) is Theorem 5.2.3. Part (2) follows by a similar argument as in loc. cit., we left the
details to the reader. □

Lemma 5.4.12. Let R be an animated commutative ring and let f ∈ R. Then the map R□ →
R[f−1]□ of analytic rings induces an open immersion at the level of locales.

Proof. By Proposition 5.4.9 we have that
R[f−1]□ = R□ ⊗Z[T ]□ Z[T±1]□

where T 7→ f . Therefore, by Lemma 5.4.10, it suffices to show that the map Z[T ]□ → Z[T±1]□
induces an open immersion of locales, but this follows from Lemma 5.4.11 (2) by taking the base
change Z[T ]Z□/ → Z[T ]□. □
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Proposition 5.4.13. Let R be an animated commutative ring and let {Ui = SpecR[f−1
i ]}ni=1 be

an open cover of SpecR by basic affine subspaces. Then the maps R□ → R[f−1
i ]□ induce an open

covering in the locale S (D(R□)).

Proof. By Lemma 5.4.12 we know that the pullback maps D(R□)→ D(R[f−1
i ]□) are open localiza-

tions. By noetherian approximation we can assume without loss of generality that R is an animated
algebra of finite presentation (or for simplicity just a finitely generated algebra over Z). In such a
case, the free solid R-module for S = lim←−n

Sn profinite is

R□[S] = lim←−
n

R[Sn].

By construction, the closed complement Zi of R□ → R[f−1
i ]□ is given by the idempotent R□-

algebra
R[[fi]] := R□ ⊗Z[T ]Z□/

Z[[T ]]

also given by the derived quotient R[[X]]/L(X − fi). Thus, in order to show the proposition it
suffices to prove that ∩ni=1Zi = ∅ in S (D(R□)), namely, that

⊗n
i=1 R[[fi]] = 0. But we have that

n⊗
i=1

R[[fi]] = R[[X1, . . . , Xn]]/
L(X − f1, . . . , X − fn).

Now let us write 1 =
∑

i aifi and consider the map g : Z[T ] → R[[X1, . . . , Xn]] mapping T to∑
i aiXi. Then g extends (uniquely by idempotency) to a map Z[[T ]] → R[[X1, . . . , Xn]]. This

shows that the unit 1 ∈
⊗n

i=1 R[[fi]] gives rise to a map from Z[[T ]], but Z[[T ]]/(T −1) = 0 proving
that 1 = 0 in the tensor and so that

⊗n
i=1R[[fi]] = 0 as wanted. □

Theorem 5.4.14. Let R be an animated ring and let {Ui = SpecRi}ni=1 be an open affine Zariski
cover of SpecR. Then the maps R□ → Ri,□ induce an open cover of the locale S (D(R□)).

Proof. First we show that the maps R□ → Ri,□ induce open immersion at the level of the locales.
For this, let us take open basic affines SpecR[fi,j]

−1 covering Ui. We have that R[f−1
i,j ] = Ri[f

−1
i,j ]

and by Proposition 5.4.13 we know that {Ri,□ → Ri[f
−1
i,j ]□}j gives rise an open cover of locales.

This implies that D(R□)→ D(Ri,□) is an open immersion (being the union of the open immersions
D(R□) → D(Ri[f

−1
i,j ]□)). Finally the fact that the open immersions {D(R□ → D(Ri,□))}i cover

S (D(R□)) follows from Proposition 5.4.13 and the fact that we can find a refinement of {Ui}ni=1

by basic Zariski open subspaces. □

Corollary 5.4.15. Let X be a scheme with structural sheaf OX . Then the functor that maps
an open affine Zariski subspace U ⊂ X to D(OX(U)□) is a sheaf. More precisely, let D□(X) =
lim←−U⊂X

D(OX(U)□) be the category of solid quasi-coherent sheaves on X, where U runs over the
poset of open affine subspaces of X. Then there is a unique natural surjective morphism of locales

F : S (D□(X))→ |X|

such that for U ⊂ X open affinoid we have D□(F
−1(U)) = D(OX(U)□).

Proof. This is a consequence of Theorem 5.4.14, the only thing left to verify is the surjectivity of
F . For this, we can assume that X = SpecR is affine. Let U,U ′ ⊂ X be two open Zariski subsets
such that F−1(U) = F−1(U ′), we want to show that U ′ = U . By taking intersections with open
affines, we can assume without loss of generality that U ′ ⊂ U = X. Then, to prove the claim it
suffices to show that if for Z ⊂ X a closed subspace the associated idempotent algebra AZ is zero,
then Z = ∅. Suppose this does not hold, then AZ = 0 and Z ̸= ∅. There is a closed point x ∈ Z



54 JUAN ESTEBAN RODRÍGUEZ CAMARGO

and a map of analytic rings R□ → κ(x)□ that gives rise a commutative map of locales

S (D(κ(x)□)) Spec(κ(x))

S (D(R□)) Spec(R).

G

Fx

F

But then we have that G−1(F−1(Z)) = F−1
x (Spec(κ(x))) which shows that F−1(Z) ̸= ∅, a contra-

diction with the fact that AZ = 0. □

5.5. Discrete Huber pairs. In Section 5.4 we saw two possible ways to attach categories of quasi-
coherent sheaves to a scheme X (later in the notes we will see that this corresponds to realize the
scheme X in two different ways as an analytic stack). For the continuation of the theory it will be
more convenient to generalize both constructions in the theory of discrete Huber rings and discrete
adic spaces.

Definition 5.5.1. An animated discrete Huber pair is a tuple (R,R+) where R is an animated
discrete ring and R+ ⊂ π0(R) is an integrally closed subring. A morphism of discrete Huber pairs
(R,R+) → (A,A+) is a map of animated rings R → A such that R+ is mapped to A+. We let
AffDis be the ∞-category of animated discrete Huber pairs.

Lemma 5.5.2. The category AffDis admits colimits and has by generators the discrete pairs (Z[T ],Z)
and (Z[T ],Z[T ]).

Proof. Let {(Ri, R
+
i )i∈I be a diagram in AffDis, then its colimit is given by the Huber pair (A,A+)

where A = lim−→i
Ri and A+ ⊂ π0(A) is the integral closure of the ring generated by the images of

R+
i → π0(A). To show that (Z[T ],Z) and (Z[T ],Z[T ]) generate AffDis, it suffices to show that the

functor
F : AffDis→ Ani× Ani

mapping a ring (R,R+) to the mapping spaces MapAffDis((Z[T ],Z), (R,R+))×MapAffDis((Z[T ],Z[T ]), (R,R+))
is conservative. But we have that

MapAffDis((Z[T ],Z), (R,R+)) = R

and
MapAffDis((Z[T ],Z[T ]), (R,R+)) = R×π0(R) R

+,

proving the claim. □

To discrete Huber pairs we can naturally attach a solid analytic ring; it will be convenient to
make a more general construction.

Definition 5.5.3. Let (A, S) be a pair consisting on a solid animated ring and a map of sets
S → π0(A)(∗) towards the underlying discrete static ring of A. We define the analytic ring (A, S)□
to be completion of the analytic ring structure on A making a condensed A-module complete if and
only if it is a solid abelian group and for all s ∈ S it is s-solid as in Definition 5.2.1.

Lemma 5.5.4. Let (R, S) be a tuple with R a discrete animated ring and S ⊂ π0(R) a subset.
Let R+[S] ⊂ π0(R) be the integral closure of the subalgebra generated by the image of S. Then the
natural map

(R, S)□ → (R,R+[S])□

is an equivalence.
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Proof. By Proposition 4.4.4 we can assume without loss of generality that R is static. Let (R, S) be
a pair with R a discrete ring and S ⊂ R a set. Let R+[S] be the integral closure of the subalgebra of
R generated by S. We claim that (R, S)□ = (R,R+(S))□. Indeed, let r ∈ R+[S], then r is integral
over a subalgebra B generated by finitely many elements in S. Then, by Corollary 5.3.9, we have
maps of analytic rings

B[r]□ = B[r]B□/ → (R, S)□,

which in turn produces a map of analytic rings
(R,B[r])□ → (R, S)□.

Taking colimits along all r ∈ R+[S] we get maps (R, S)□ → (R,R+[S])□ → (R, S)□ proving that
(R,R+[S])□ = (R, S)□, proving what we wanted. □

Proposition 5.5.5 ([And21, Proposition 3.34]). The functor AffDis → AnRing mapping (R,R+)
to (R,R+)□ is colimit preserving and fully faithful.

Proof. First, note that for any pair (R, S) with R a discrete animated ring, the underlying ring
(R, S)▷□ as any discrete module is solid (resp. s-solid for s ∈ S). The commutativity with colimits
follows from the definition of (R, S)□ by declaring an R-module complete if it is solid as abelian
group and s-solid for all s ∈ S, and the description of colimits of (uncompleted) analytic rings of
Proposition 4.1.10.

We now prove fully faithfulness. Since the functor is colimit preserving and (Z[T ],Z) and
(Z[T ],Z[T ]) generate AffDis, it suffices to show that for (R,R+) a discrete Huber pair the maps

R→ MapAnRing((Z[T ],Z)□, (R,R+)□) (5.6)
and

R×π0(R) R
+ → MapAnRing((Z[T ],Z[T ])□, (R,R+)□) (5.7)

are equivalences. By definition, (Z[T ],Z)□ = Z[T ]Z□/ has the induced solid structure from the inte-
gers. Therefore, the mapping space (5.6) is the underlying discrete ring of (R,R+)□ which is nothing
but R as expected. For the second claim, note that the map (Z[T ],Z)□ → (Z[T ],Z[T ])□ is idempo-
tent and so the mapping space of (5.7) is completely determined by its connected components. But
by definition π0(MapAnRing((Z[T ],Z[T ])□, (R,R+)□)) consists on all the maps Z[T ]□ → (R,R+)□.
By Proposition 4.4.4 we can assume without loss of generality that R is static, we then have by
definition that (R,R+)□ = RR+

□/. Then, for S = lim←−n
Sn a light profinite set, we have

(R,R+)□[S] = R⊗R+ R+
□ [S].

Thus, we can write
(R,R+)□[S] = lim−→

B⊂R+

M⊂R

M□[S]

where B runs over all the finitely generated subalgebras of R+, M runs along all the finite B-
submodules in R+, and M□[S] = lim−→n

M [Sn]. Now let T ∈ R be such that we have a map Z[T ]□ →
(R,R+)□ and let C ⊂ R+ be the subalgebra generated by the image of T . Then (R,R+)□[S] is
C□-complete and we have a map of C□-modules

C□[S]→ (R,R+)□[S]

Taking S = N ∪ {∞} and identifying Z□[S] ∼=
∏

N Z we find a map∏
N

C → lim−→
B⊂R+

M⊂R

∏
N

M.

In particular, there is a finitely generated ring B ⊂ R+ and a finite B-module M ⊂ R such that
the sequence (1, T, T 2, . . .) lands in

∏
N M . Thus, all the powers of T are in M which implies that

T is integral over B and so that T ∈ R+. This finishes the proof. □
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5.6. Discrete Adic spaces. Huber’s approximation to non-archimedean geometry relies in the
formalism of adic spaces [Hub94, Hub93, Hub96]. The traditional approximation to the theory
always involve talking about topological rings and continuous valuations, then some technical sheafy
property appears in order to have descent for the analytic topology. In this section we shall follow
the approach of [CS19, Lexture IX] and restrict to the theory of discrete adic spaces where these
topological and sheafiness subtleties disappear.

5.6.1. Adic spectrum of Huber pairs.

Definition 5.6.1. Let (R,R+) be a discrete Huber pair with R a static ring. We let Spa(R,R+)
be the set of equivalence classes of multiplicative valuations x : R→ Γ such that |f(x)| ≤ 1 for all
f ∈ R+. For a general discrete Huber pair (R,R+) we define Spa(R,R+) := Spa(π0(R), R+). We
call Spa(R,R+) the adic spectrum of (R,R+). when R+ is the integral closure of the image of Z
we simply write Spv(R); this is the set of equivalent classes of valuations of R+ and is called the
valuation spectrum of R. We have Spa(R,R+) ⊂ Spv(R).

Remark 5.6.2. An equivalent way to define Spa(R,R+) is as follows: it is the set of tuples (p, V )
where p is a prime ideal of R and V ⊂ κ(p) is a valuation ring on the fraction field at p containing
the image of R+ → κ(p).

Huber has defined a topology on Spa(R,R+) called the analytic topology. It is defined as follows:
let (R,R+) be a discrete Huber pair and let (f1, . . . , fn, g) be a tuple of elements in R. Define
the rational localization Spa(R,R+)

(
f1,...,fn

g

)
to be the subset of Spa(R,R+) consisting on those

equivalence classes of valuations x : R→ Γ such that |g| ≠ 0 and |fi(x)| ≤ |g(x)| for all i = 1, . . . , n.
Then the analytic topology of Spa(R,R+) is the topology generated by declaring rational subsets to
be open subspaces. We left as an exercise to the reader to prove that for a map (R,R+)→ (S, S+)
of discrete Huber pairs, the induced map Spa(S, S+)→ Spa(R,R+) preserves rational localizations
(and so it is continuous for Huber’s topology), and that intersections of rational localizations are
rational localizations.

The following proposition identifies integrally closed subrings of R with suitable subsets of Spv(R).

Proposition 5.6.3 ([CS19, Proposition 9.2]). Let R be a static discrete ring. There is a bijection
between integrally closed subrings R+ ⊂ R and subsets U ⊂ Spv(R) which are intersections of
rational localizations Uf,1 := Spv(R)(f

1
). Explicitly, one has

R+ = {f ∈ R : ∀x ∈ U, |f(x)| ≤ 1}
and

U =
⋂

f∈R+

Uf,1.

In particular,
R+ = {f ∈ R : ∀x ∈ Spa(R,R+), |f(x)| ≤ 1}.

Proof. Let U ⊂ SpvR be a subset of the form U = lim←−f
Uf,1, then it is clear that the ring

R+(U) = {f ∈ R : ∀x ∈ U, |f(x)| ≤ 1}
Conversely, given an integrally closed subring R+ ⊂ R we let U(R+) =

⋂
r∈R Ur,1.

A bookkeeping of the definitions shows that for U ⊂ Spd(R) as before one has U = U(R+(U)).
Conversely, given an integrally closed ring R+, one easily verifies that R+ ⊂ R+(U(R+)). Now let
f ∈ R be such that for all x ∈ U(R+) one has |f(x)| ≤ 1. If f /∈ R+ then f is not in R+[ 1

f
] ⊂ R[ 1

f
]

and there is a prime ideal p of R+[ 1
f
] that contains 1

f
. Let q be a minimal prime contained in p.

We may then find a valuation ring V with a map SpecV → SpecR+[ 1
f
] taking the generic point

to q and the special point to p. As the image of SpecR[ 1
f
] → SpecR+[ 1

f
] contains the minimal
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prime q (the map R+[ 1
f
] → A+[ 1

f
] being injective), we can lift the valuation corresponding to

SpecV → SpecR+[ 1
f
] to R[ 1

f
]. The resulting valuation takes values ≤ 1 on R+, and value > 1 on

f since f ∈ p. This gives the contradiction. □

Next, we want to show that there is a well defined analytic topology on Spa(R,R+) and to
construct a structural sheaf.

Proposition 5.6.4. Let (R,R+) be a discrete Huber ring and let (f1, . . . , fn, g) be a tuple generating
the unit ideal of R. Let R(f1,...,fn

g
)+ ⊂ π0(R[1

g
]) be the integral closure of the subring generated by

the image of R+ and fi
g

for all i = 1, . . . , g. Then the natural map

Ψ : Spa(R[
1

g
], R(

f1, . . . , fn
g

)+)→ Spa(R,R+)

induces an homemorphism onto Spa(R,R+)
(

f1,...,fn
g

)
. Furthermore, if two rational localizations

(R1, R
+
1 ) and (R2, R

+
2 ) are such that Spa(R1, R

+
1 ) = Spa(R1, R

+
1 ) when considered as subspaces in

Spa(R,R+), one has a unique isomorphism of R-algebras R1 = R2 such that R+
1 = R+

2 .

Sketch of the proof. By the description of the adic spectrum in terms of prime ideals and valu-
ation rings of Remark 5.6.2 it is clear that Ψ is injective. To prove that it surjects onto U =

Spa(R,R+)
(

f1,...,fn
g

)
, it suffices to see that a point (p, V ) ∈ Spa(R,R+) belongs to U if and only if

g is non zero in κ(p) and fi
g
∈ V for all i = 1, . . . , n. But a proof reading of the definitions shows

that these are precisely the elements of Spa(R[1
g
], R(f1,...,fn

g
)+) after identifying prime ideals of both

rings via the inclusion SpecR[1
g
] ⊂ SpecR using that valuation rings are integrally closed to pass

to the integral closure. For proving that it is a homeomorphism for Huber’s topology, it suffices to
check that a rational localization of Spa(R[1

g
], R(f1,...,fn

g
)+) is mapped to a rational localization of

Spa(R,R+), we left this as an exercise to the reader.
Finally, let (h1, . . . , hk, s) be another tuple generating the same rational localization as (f1, . . . , fn, g).

First, note that one has an inclusion F : SpecR → Spec(R,R+) given by mapping a prime ideal p
to the pair (p, κ(p)). It is easy to see that the pre-image along F of a rational localization corre-
sponding to (f1, . . . , fn, g) is SpecR[1

g
]. This shows that the localizations R[1

s
] and R[1

g
] induce the

same open Zariski subspaces of SpecR and so that R[1
s
] = R[1

g
]. Then, the equality

R(
f1, . . . , fn

g
)+ = R(

h1, . . . , hk

s
)+

follows from Proposition 5.6.3, proving the last assertion. □

Definition 5.6.5. Let (R,R+) be a discrete Huber pair and denote X = Spa(R,R+). Let OX and
O+

X be the presheaf on rational open subsets of X mapping Spa(R′, R
′+) to R′ and R

′+ respectively.

A final important property of the adic spectrum of discrete Huber rings is that it is immediately
sheafy:

Proposition 5.6.6. Let (R,R+) be a discrete Huber ring and let X = Spa(R,R+) be its adic
spectrum. Denote by Xrat the site of rational localizations of X. Then the pre-sheaf OX on Xrat

is a sheaf on D(R) the derived category of R . Similarly, O+
X is a sheaf on the abelian category of

R+-algebras

Proof. There is a continuous map F : SpecR → Spa(R,R+) mapping a prime ideal p to the tuple
(p, κ(p)). Then the pre-sheaf OX is nothing but the (derived) pushforward of the structural sheaf of
SpecR, which shows that is a sheaf. The sheaf property for O+

X follows since for a rational subspace
U ⊂ X one has

O+
X(U) = {f ∈ OX(U) : ∀x ∈ U, |f(x)| ≤ 1}.



58 JUAN ESTEBAN RODRÍGUEZ CAMARGO

□

5.6.2. Descent for the analytic topology. In the previous paragraph we have defined the adic spec-
trum of a discrete Huber pair, define its analytic topology and proved that the structural pre-sheaf
is actually a sheaf. Out next goal is to prove that the functor mapping (R,R+) 7→ D((R,R+)□)
satisfies descent for the analytic topology (later we will reinterpret this as !-descent on analytic
rings). We need a technical lemma.

Lemma 5.6.7 ([Hub94, Lemma 2.6], [CS19, Lemma 10.4]). Let (R,R+) be a discrete Huber pair
and X = Spa(A,A+). Assume that U1, . . . , Un ⊂ X are open rational subsets covering X. There
there exist s1, . . . , sN ∈ A generating the unit ideal such that each X( s1,...,sN

sj
) is contained in some

Ui; in particular {X( s1,...,sN
sj

)}j refines {Ui}.

Theorem 5.6.8. Let (R,R+) be a discrete Huber ring and let X = Spa(R,R+) be its adic spectrum.
Let Xrat be the site of finite disjoint unions of rational open subspaces of X. Then the functor

D : Xop
rat → CAlg(PrL,ex)

on presentably symmetric monoidal stable∞-categories mapping U ∈ Xrat to D((OX(U),OX(U)+)□)
is a sheaf.

Proof. Step 1. Let {Ui}i∈I be a finite rational cover of X and let {UJ}J⊂I be the poset of finite
intersections of the Ui. We want to prove that the natural map

D((R,R+)□)→ lim←−
UJ⊂X

D((OX(UJ),OX(UJ)
+)□) (5.8)

is an equivalence of categories.
By Lemma 5.6.7 we can find elements s1, . . . , sN generating the unit ideal of R such that the

rational cover {X( s1,...,sN
sj

)}j refines {Ui}. Therefore, it suffices to show descent with respect to the
covers of the form {Uj = X( s1,...,sN

sj
)}j.

Step 2. Let us first consider the case when sN is a unit in R. By replacing sj by sj/sN we can
assume that sN = 1. We claim that the cover {Uj = X( s1,...,sN−1,1

sj
)}j has a refinement given by

composition of Laurent covers

X = X(
1

f
) ∪X(

f

1
). (5.9)

Indeed, it is refined by the intersection of the Laurent covers X = X( 1
sj
) ∪X(

sj
1
) for the different

j. Therefore, by an induction argument, it suffices to deal with the case of a single Laurent cover
as in (5.9). But this cover corresponds to the maps of analytic rings

(R,R+)□ → Z[T ]□ ⊗Z[T ] (R,R+) = (R,R(
f

1
)+)

and
(R,R+)□ → (Z[T±1],Z[T−1])□ ⊗Z[T ] (R,R+) = (R[

1

f
], R(

1

f
)+)

where T maps to f . Lemma 5.4.11 implies that these maps give rise to open immersions at the level
of locales. Therefore, in order to show descent, by base change along Z[T ] → (R,R+) (T 7→ f),
and by Theorem 5.1.6, it suffices to prove that the open localizations (Z[T ],Z)□ → Z[T ]□ and
(Z[T ],Z)□ → (Z[T±1],Z[T−1])□ cover the locale D((Z[T ],Z)□). This amounts to show that the
tensor product of the solid Z[T ]-idempotent algebras Z((T−1)) and Z[[T ]] vanish. But we have that

Z((T−1))⊗Z[T ] Z[[T ]] = Z[[X,T ]]L/(XT − 1),

but XT − 1 is a unit in Z[[X,T ]] proving that the tensor vanishes.
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Step 3. We now deal with the general case. The elements s1, . . . , sN give rise to a Zariski cover
{SpecR[ 1

sj
]}j of SpecR, we let Vj = X(g

g
) be the locus where |g| ≠ 0, and let {VK}K⊂J denote the

poset of finite intersections of the Vj’s. Note that R(g
g
)+ is nothing but the integral closure of R+

in R[1
g
]. Then, by Corollary 5.5.4 we have that (R[1

g
], R+)□ = (R[1

g
], R(g

g
)+)□. By Zariski descent

the natural map
D((R,R+)□) = lim←−

VK⊂X

D((OX(VK),O
+
X(VK))□)

is an equivalence. Concretely, the Zariski cover gives rise to a closed cover of the locale of D(R),
and by Theorem 5.1.6 the base change to D((R,R+)□) gives rise to a closed cover as well. By Step
2 the rational cover {VK ∩ Uj}j gives rise an open cover of the locale L (D((OX(VK),O

+
X(VK))□))

and so we have

D((OX(VK),O
+
X(VK))□) = lim←−

UJ⊂X

D((OX(VK ∩ UJ),O
+
X(VK ∩ UJ))□),

taking limits with respect to the poset {VK} we get then

D((R,R+)□) = lim←−
VK⊂X

D((OX(VK),O
+
X(VK))□)

= lim←−
VK⊂X

lim←−
UJ⊂X

D((OX(VK ∩ UJ),O
+
X(VK ∩ UJ))□)

= lim←−
UJ⊂X

lim←−
VK⊂X

D((OX(VK ∩ UJ),O
+
X(VK ∩ UJ))□)

= lim←−
UJ⊂X

D((OX(UJ),O
+
X(UJ))□)

where the first equivalence is Zariski descent for X, the second follows from Step 2 applied to the
rational subspaces VK , the third is a commutation of of limits, and the last is Zariski descent applied
to the rational subspaces UJ . This finishes the proof of the theorem. □

In order to define the correct analogue of Corollaries 5.4.3 and 5.4.15 for discrete adic spaces we
need to modify Huber’s topology on Spa(R,R+).

Definition 5.6.9. Let (R,R+) be a discrete Huber pair. We let X = Spa(R,R+)mod be the adic
spectrum endowed with the coarsest topology making the rational localizations of the form X( 1

f
)

and X(f
1
) open (f ∈ R), and the rational localizations of the form X(g

g
) closed (g ∈ R).

Corollary 5.6.10. Let (R,R+) be a discrete Huber pair and let Spa(R,R+)mod be the modified adic
spectrum. Then the functor mapping a rational subset U ⊂ X to D((OX(U),O+

X(U))□) gives rise
to a unique natural surjective map of locales

F : S (D((R,R+)□))→ Spa(R,R+)mod.

Proof. This follows from Theorem 5.6.8, the only thing to verify is the surjectivity of F . We
want to prove that given U,U ′ ⊂ Spa(R,R+)mod two open subspaces for the modified topology,
if F−1(U) = F−1(U ′) then U = U ′. For this, let x ∈ Spa(R,R+) and let (κ(x), κ(x)+) be the
residue field at x. We can assume without loss of generality that U ′ ⊂ U . Then by naturality of
F and by taking pullbacks along all affinoid points, it suffices to deal with the case where R = K
is a field and K+ ⊂ K an integrally closed subring. In this case, the analytic and the modified
topology agree, and the open subspaces of Spa(K,K+) form a poset by inclusion. Quasi-compact
open subspaces of Spa(K,K+) are of the form Spa(K,K

′,+) for K+ ⊂ K
′,+ an integrally closed

ring. Thus, by taking intersections of U with open affinoids, to prove surjectivity it suffices to
show that for U ⊂ Spa(K,K+) an arbitrary open subspace, if F−1(U) = F−1(Spa(K,K+)) then
U = Spa(K,K+). Suppose this does not hold and let x ∈ Spa(K,K+) be the maximal closed point,
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then F−1(x) = ∅. Let Ax be the idempotent algebra corresponding to x, and let {Zj}j be the poset
of closed subspaces with qcqs open complements with idempotent algebras AZj

. Then we have that
0 = Ax = lim−→

j

AZj
.

Since the colimit is filtered, there exists some j such that 1 ∈ AZj
is zero and so AZk

= 0 for all
k ≥ j. But this will imply that F−1(X\Zj) = F−1(X) and X\Zj = Spa(K,K

′,+) is affinoid with
K+ strictly contained in K

′,+. This contradicts the fully faithfulness of discrete Huber pairs into
analytic rings of Proposition 5.5.5, proving what we wanted. □

Remark 5.6.11. We have not stated Corollary 5.6.10 for general discrete adic spaces since the
analytic topology differs from the modified topology, so that discrete adic spaces are not obtained
from gluing affinoid spaces along the modified topology. Instead, since the analytic topology contains
both closed and open subspaces of the modified topology, discrete adic spaces will be examples of
gluing affinoids via !-covers (to be defined later in the notes).
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