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How should Reinforcement learning be viewed from a control systems perspective?
Control problems can be divided into two classes:

1. regulation and tracking problems, in which the objective is to follow a reference trajectory.
2. optimal control problems, which the objective is to extremize a functional of the controlled system’s behavior that not necessarily defined in
terms of a reference trajectory.

Tracking vs Optimization

In some problems, the control objective is defined in terms of a reference level or reference trajectory that the controlled system’s output should
match or track as closely as possible. Stability is the key issue in these regulation and tracking problems.

In other problems, the control objective is to extremize a functional of the controlled system’s behavior that is not necessarily defined in terms
of a reference level or trajectory. The key issue in the latter problems is constrained optimization; here optimal-control methods based on the
calculus of variations and dynamic programming have been extensively studied.

When a detailed and accurate model of the system to be controlled is not available, adaptive control methods can be applied. The overwhelming
majority of adaptive control methods address regulation and tracking problems. However, adaptive methods for optimal control problems
would be widely applicable if methods could be developed that were computationally feasible and that could be applied robustly to nonlinear
systems.
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For example, trajectory planning is a key and difficult problem in robot navigation tasks, as it is in other robot control tasks. To design a robot
capable of walking bipedally, one may not be able to specify a desired trajectory for the limbs a priori, but one can specify the objective of

moving forward, maintaining equilibrium, not damaging the robot, etc.

For both tracking and optimal control, it is usual to distinguish between indirect and direct adaptive control methods. An indirect method
replies on a system identification procedure to form an explicit model of the controlled system and determines then the control rule from the
model. Direct methods determine the control rule without forming such a system model.

Control problems Tracking problems Optimal problems
Trajectory Yes Not necessary
functional No Extremize a functional of the controlled system’s behavior

Adaptive control methods

. Indirect (system model)/Direct Direct (no system model, Q-learning)/Indirect
explicit model (sy ) (no sy g)

Present reinforcement learning methods as a direct approach to adaptive optimal control.

Reinforcement Learning

Reinforcement learning is based on the common sense idea that if an action is followed by a satisfactory state of affairs, or by an improvement in
the state of affairs (as determined in some clearly defined way), then the tendency to produce that action is strengthened, i.e., reinforced. This
idea plays a fundamental role in theories of animal learning, in parameter-perturbation adaptive-control method, and in the theory of learning
automata and bandit problems. Extending this idea to allow action selections to depend on state information introduces aspects of feedback
control, pattern recognition and associative learning. Further, it is possible to extend the idea of being “followed by a satisfactory state of affairs”

to include the long-term consequences of actions.

Conserved and Nonconserved Quantities

A conserved quantity cannot be created or destroyed and therefore has no sources or sinks; for conserved quantities such as atomic species i or

internal energy U,
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where w:  internal energy density.
For nonconserved quantities such as entropy, S,
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where
7 the rate of entropy production per unit volume.
Flux

A flux of i, Z ( F'.] describes the rate at which i flows through a unit area fixed with respect to a specified coordinate system.

Gradient
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Divergence

Studies of reinforcement-learning neural networks in nonlinear control problems have generally focused on one of two main types of algorithm:
actor—critic learning or Q-learning (they are direct adaptive optimal control algorithms). An actor—critic learning system contains two distinct
subsystems, one (value) to estimate the long-term utility for each state and another (policy) to learn to choose the optimal action in each state. A
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Q-learning system maintains estimates of utilities for all state-action pairs and makes use of these estimates to select actions.

Q-Learning
The name “Q-learning” comes purely form Watkins’ notation.
Watkins-Dayan1992_Article_Q-learning (http://blogs.cuit.columbia.edu/zp2130/files/2019/03/Watkins-Dayan1992_Article_Q-learning.pdf)

The objective is to find a control rule that maximizes at each time step the expected discounted sum of future reward. That is , at any time step k,
the control rule should specify action aj, so as to maximize

wherey, 0 Sy <1, is adiscount factor.

Reinforcement learning methods such as Q-learning do not estimate a system model. The basic idea in Q-learning is to estimate a real-valued
function, Q , of states and actions, where Q(x,a) is the expected discounted sum of future reward for performing action a in state x and
performing optimally thereafter. This function satisfies the following recursive relationship (or “functional equation®):

Qz, a) = E{ri + ymazyQ(xr+1.b) | zx = z, a = a}

The Q-learning procedure maintains an estimate (f') of the function Q. At each transitions from step k to k+17, the learning system can observe x
, @k, ', and xx+1- Based on these observations, Q is updated at time step k+17 as follows: (3 (. ) remains unchanged for all pairs (x, a) #

(Xk» ak)
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Watkins has shown that (2 converges to Q with probability one if all actions continue to be tried from all states.

Because it does not reply on an explicit model of the Markov Process, Q-learning is a direct adaptive.

The Q function, combines information about state transitions and estimates of future reward without replying on explicit estimates of state
transition probabilities.

Representing Q Function

Like conventional DP methods, the Q-learning method given by (1) requires memory and overall computation proportional to the number of
state—action pairs. In large problems, or in problems with continuous state and action spaces which must be quantized, these methods
becomes extremely complex (Bellman’s “curse of dimensionality”). One approach to reducing the severity of this problem is to represent (J
not as a look-up table, but as a parameterized structure such as a low-order polynomial, k-d tree, decision tree, or neural network. In general ,
the local update rule for Q given by (1) can be adapted for use with any method for adjusting parameters of function representations via
supervised learning methods. One can define a general way of moving from a unit of experience (xx, ax, rx, and xx+1as in (1)) to a training
example for Q :

(glf;sz. ar) should be ri + - m(:;zf:.!f? (Trs1,b)

This training example can then be input to any supervised learning method, such as parameter estimation procedure based on stochastic
approximation. The choice of learning method will have a strong effect on generlizatoin, the speed of learning and the quality of the final result.
This approach has been used successfully with supervised learning methods based on error backpropagation, CMACs, and nearest-neighbor
methods.
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3. Reinforcement Learning and Optimal Control Methods for Uncertain Nonlinear Systems
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