
Lecture	20:	Reinforcement	Learning	– part	III
(function	approximation)

Sanjeev	Arora	 Elad	Hazan

COS	402	– Machine	
Learning	and	

Artificial	Intelligence
Fall	2016

Admin

• (programming)	exercise	MCMC	– due	today

• exercise	on	RL	- announced	hereby	– due	in	1	week

• Last	lecture	of	the	course:	course	summary	+	“ask	us	anything”,	Prof.	Arora	+	myself.	
Exercise:	submit	a	question	the	lecture	before (graded)

• Asking	questions	in	class	– everything	is	allowed,	including	“can	you	explain	again”	(especially	
for	RL	material)

• Next	class:	Prof.	Seung on	deep	learning

• Class	after	the	next:	Dr.	Li			(please	submit	questions)

Markov	Decision	Process

Markov	Reward	Process,	definition:	
• Tuple	(𝑆,𝑃, 𝑅, 𝐴, 𝛾) where

• S	=	states,	including	start	state
• A	=	set	of	possible	actions
• P	=	transition	matrix				𝑃))*+ = Pr[𝑆012 = 𝑠′|𝑆0 = 𝑠,𝐴0 = 𝑎]
• R	=	reward	function,	𝑅)+ = 𝐸[𝑅012|𝑆0 = 𝑠, 𝐴0 = 𝑎]
• 𝛾 ∈ [0,1]	=	discount	factor

• Return
𝐺0 = > 𝑅01?𝛾?@2

?A2	0B	C	
• Goal:	take	actions	to	maximize	expected	return

Policies

The	Markovian	structure	è best	action	depends	only	on	current	state!	

• Policy	=	mapping	from	state	to	distribution	over	actions
𝜋: 𝑆 ↦ Δ(𝐴), 𝜋 𝑎 𝑠 = Pr[𝐴0 = 𝑎|𝑆0 = 𝑠]	

• Given	a	policy,	the	MDP	reduces	to	a	Markov	Reward	Process

Reminders +1

-1

START

Bellman	optimality	equations

• Bellman	equation:	𝑣∗ 𝑠 = max
+
	 𝑞∗(𝑠, 𝑎) implies	Bellman	optimality	

equations:

𝑞∗ 𝑠, 𝑎 = 𝑅)+ + 𝛾	>𝑃))*+
)*

max
+*
	 𝑞∗(𝑠′, 𝑎′)

𝑣∗ 𝑠 = max
+

𝑅)+ + 𝛾	>𝑃))O
+ 𝑣∗(𝑠*)

)*
• Iterative	methods	based	on	the	Bellman	equations:	dynamic	programming

• Policy	iteration
• Value	iteration

Policy	iteration

Evaluate	policy

Improve	policy

Start:	arbitrary	
policy

Compute	final	
policy

Value	iteration

Improve	values

Start:	state	values	
corresponding	 to	
arbitrary	policy

Compute	final	
policy

Model-free	RL	

Thus	far:	assumed	we	know	transition	matrices,	rewards,	states,	and	they	are	not	too	large.	
What	if	transitions/rewards	are:
1. unknown	
2. too	many	to	keep	in	memory	/	compute	over

“model	free”	=	we	do	not	have	the	”model”	=	transition	matrix	P	and	reward	vector	R

• can	estimate	P	and	R	from	history,	and	use	any	of	the	methods	we	saw
(solving	for	estimate	may	not	be	optimal!)	

Monte	Carlo	policy	iteration/evaluation

Instead	of	computing,	estimate		𝑣P 𝑠 = 𝐸P[𝐺0|𝑆0 = 𝑠]	 by	random	walk:
• The	first	time	state	s	is	visited,	update	counter	N(s)	(increment	every	time	it’s	visited	again)
• Keep	track	of	all	rewards	from	this	point	onwards
• Estimate	of	Gt is	sum	of	rewards	/	N(s).	
• Claim:	this	estimator	has	expectation	GR 𝑠 ,	and	converges	to	it	by	law	of	large	numbers
• Similarly	can	estimate	value-action	function	𝑞P 𝑠, 𝑎 = 𝐸P[𝐺0|𝑆0 = 𝑠, 𝐴0 = 𝑎]

• What	do	we	do	with	estimated	values?	
• policy	iteration	requires	rewards+transitions
• Model-free	policy	improvement:	

𝜋 𝑠 = argmax
+

𝑞P 𝑠,𝑎

Temporal	Difference	learning	

Similar	idea,	but	instead	of	long-horizon	estimation,	iteratively	update	by

𝑣P 𝑠 = 𝑣P(𝑠) + 𝛼 𝐺0 − 𝑣P(𝑠)
																																					= 𝑣P 𝑠 + 𝛼(𝑅012 + 𝛾𝑣P 𝑠* − 𝑣P 𝑠)

• More	flexible	than	MC	learning	(don’t	need	to	wait	for	estimates	to	converge)
• Similar	idea	applies	to	state-action	function	q(s,a)

• Never	estimate	the	“model”	(transition	matrix	and	reward	vector)

LARGE	state	space

#	of	states	may	still	be	prohibitively	large!	

• Backgammon:	 1020 states

• Chess:	1040 states

• Go:	1070 states

Previous	methods	still	 infeasible!	

Function	Approximation:	approximate	the	state	space	(and	all	model	parameters)	with	a	more	compact	 one!	

• Reduction	in	#	of	states	(computation	and	space)	
• More	importantly:	generalization	to	unseen	states!	

Types	of	(value	/	action-value)	function	approximation:

• Linear

• Neural	network

• Decision	tree

• …

Function	approximation

Finding	optimal	𝜃à knowledge	of	value	for	ALL	states!	

𝑣W 𝑠 = 𝜃2𝑥2 𝑠 + 𝜃Y𝑥 𝑠 +	…+ 𝜃[𝑥[𝑠 = 𝜃\𝑥(𝑠)

1040 states	are	mapped	to	linear	function	over	n	“important”	
features,	i.e.	
1. Number	of	white	pieces	– black	pieces
2. Distance	between	kings
3. Etc.

Learning	a	value	function	over	n	parameters:	supervised	learning!
Recall	1st	part	of	coruse:	sample	complexity,	computational	complexity,…

Function	approximation	– computing	value	function

Natural	objective:		MSE	between	approximation	and	true	value	per	state,	i.e.	
𝑓 𝜃 = 𝐸P 𝑣P 𝑠 − 𝑣W 𝑠

Y

Minimizing	𝑓 𝜃 ?
Stochastic	gradient	descent!!	

𝜃012 = 𝜃0 − 𝛻𝑓 𝜃0̀

Consider	linear	approximation:	𝑣W 𝑠 = 𝜃\𝑥(𝑠),	then	algorithm	becomes:

𝜃012 = 𝜃0 − 𝜂	𝐸P 𝑣P 𝑠 − 𝑣W 𝑠 	×	𝑥 𝑠
TD	algorithm:

𝜃012 = 𝜃0 − 𝜂	 𝑅012+ 𝛾	𝜃\𝑥(𝑠′) − 𝜃\𝑥(𝑠) ×	𝑥 𝑠

How	to	improve	the	policy?	

Apply	same	idea	for	state-action	function,	i.e.	linear	approximation:		𝑞W 𝑠, 𝑎 = 𝜃\𝑥(𝑠, 𝑎) for	a	
state-action	vector	x(s,a).		Optimize	MSE	of	state-action	error:

𝑓 𝜃 = 𝐸P 𝑞P 𝑠, 𝑎 − 𝑞W 𝑠, 𝑎
Y

TD	algorithm:
𝜃012 = 𝜃0 − 𝜂	 𝑅012 + 𝛾max

+*
𝜃\𝑥(𝑠*, 𝑎′) 	− 𝜃\𝑥(𝑠, 𝑎) ×	𝑥 𝑠, 𝑎

Off-policy	vs.	on-policy:	for	on	need	to	add	exploration	(e.g.	instead	of	greedy	a’	choice,	choose	with	
small	probability	an	action	at	random).

Policy	gradient	+	function	approximation

Improve	policy

Start:	(approximate)	
state	values	

corresponding	 to	
arbitrary	policy

Return
final	policy

Policy	gradient	algorithm	for	approximate	MDP

Parametrized	policy,	𝜋W 𝑠 ,	for	example,	could	be	the	max	action	according	to	q	functions:

𝜋W 𝑠 = max
+
𝑞W(𝑠, 𝑎)

(many	times	– soft	approximation	to	max	to	ensure	smoothness)

Q-functions	can	be	linear	/	deep	nets,	etc.	
Plan:	gradient	descent	on	the	parameter	𝜃 to	optimize	policy	directly.	
NOT	the	same	as	Q-learning	w.	value	approximation!	(not	trying	to	optimize	q	function).	
How	do	we	compute	gradient?	
We	can	compute:	𝑓 𝜃 = 𝐸Pj 𝑣

Pj(𝑠2)
(by	evaluating	return,	running	policy)

gradient	descent	without	a	gradient

The	derivative	of	a	function	𝑓 𝑥 :𝑅 ↦ 𝑅

𝑓* 𝑥 = lim
k↦l	

m n1k @m(n@k)
Yk 	

≈ 𝐸p∈q @2,2
m n1kp ⋅p

Yk

Idea:	can	sample	unbiased	coin,	and	return	gradient	estimator	by	single	evaluation	of	the	function!	

Can	you	see	how	to	continue?	

gradient	descent	without	a	gradient

Stokes’	theorem	for	𝑓 𝑥 : 𝑅s ↦ 𝑅,	let	𝛿 ≪ 1 be	very	small,

𝛻𝑓 𝑥 ≈ 𝛻𝐸|v|w2[𝑓 𝑥 + 𝛿𝑣 = s
k 𝐸|p|A2 𝑓 𝑥 + 𝛿𝑣 ⋅ 𝑣

Idea:	can	sample	function	at	a	single point	𝑥 + 𝛿𝑣,	and	estimate	the	
gradient	for	stochastic	gradient	descent!	

(or,	almost	equivalently,	do	the	previous	slide	for	each	coordinate)

Policy	gradient	without	a	gradient

Parametrized	policy,	𝜋W 𝑠 ,	for	example,	could	be	the	max	action	according	to	q	functions:

𝜋W 𝑠 = max
+
𝑞W(𝑠, 𝑎)

(many	times	– soft	approximation	to	max	to	ensure	smoothness)

Update	using	gradient	descent:
𝜃012 = 𝜃0 − 𝜂	𝛻𝑓(𝜃0)x

Where	the	gradient	estimator	 is	obtained	by:
𝑑
𝛿
𝐸|p|A2 𝑓 𝜃0 + 𝛿𝑣 ⋅ 𝑣

for	𝑓 𝜃 = 𝐸Pj 𝑣
Pj(𝑠2)

(by	evaluating	return,	running	policy)

Summary

• Model	free	algorithms	for	solving	MDPs
• Q-function	(state-action)	and	value	function	estimation	via	MCMC
• Same	via	temporal	difference	
• Q-function	optimization	via	temporal	difference	(or	MCMC)

• Function	approximation	idea	– generalization	and	efficiency
• Gradient	descent	approximation	to	estimate	value/Q	functions
• gradient	descent	to	optimize	the	optimal	Q-function	directly	

• Policy	gradient	method
• Gradient	descent	without	a	gradient	idea

