
Accelerating Discrete Fourier Transforms with
Dot-product Engine

Miao Hu and John Paul Strachan

Hewlett Packard Laboratories, Palo Alto, CA 94304, USA. Email: {miao.hu, john-paul.strachan}@hpe.com

978-1-5090-1370-8/16/$31.00 ©2016 IEEE

Abstract—Discrete Fourier Transforms (DFT) are extremely
useful in signal processing. Usually they are computed with
the Fast Fourier Transform (FFT) method as it reduces the
computing complexity from O(N2) to O(Nlog(N)). However,
FFT is still not powerful enough for many real-time tasks which
have stringent requirements on throughput, energy efficiency
and cost, such as Internet of Things (IoT). In this paper, we
present a solution of computing DFT using the dot-product engine
(DPE) – a one transistor one memristor (1T1M) crossbar array
with hybrid peripheral circuit support. With this solution, the
computing complexity is further reduced to a constant O(λ)
independent of the input data size, where λ is the timing ratio
of one DPE operation comparing to one real multiplication
operation in digital systems.

I. INTRODUCTION

Discrete Fourier Transform (DFT) converts the sampled

signal or function from its original domain (order of time

or position) to the frequency domain. It is regarded as the

most important discrete transform and used to perform Fourier

analysis in many practical applications including mathematics,

digital signal processing and image processing [1]. At early

stage people has issues to apply DFT for long signals since the

direct computing complexity of DFT is O(N2), where N is

the signal size. The inventions of Fast Fourier Transform (FFT)

algorithms dramatically alleviate the issue as it computes the

same result as DFT but does it more quickly with O(N logN)
[2], [3]. This improvement is so critical for practical Fourier

transform applications that in 1994 Gilbert Strang described

the FFT as “ the most important numerical algorithm of our

lifetime”[1] and it was included in Top 10 algorithms of

20th Century by the IEEE journal Computing in Science &
Engineering [4].

Although FFT is much more efficient than DFT, it is still

not fast enough for many applications. For example, in fast

convolution algorithms for real-time image processing, the

FFT and IFFT steps are the bottlenecks of the throughput [5],

[6]. Another example is Discrete Cosine Transform (DCT) for

loss image compression, where FFT still consumes the most

computation power comparing to quantization and other steps

[7].Although tremendous effort has been put in the algorithm

improvement [8], [9] and hardware implementation [10], [11]

to accelerate FFT, so far no algorithms with lower computation

complexity are known, and digital hardware implementations

based on existing FFT algorithms are still limited by the

complexity – O(N logN).

Data size n

C
om

pl
ex

ity

Fig. 1. Computing complexity of DFT, FFT and DPE implementation.

Here we introduce a completely new hardware implementa-

tion for DFT and other general fixed matrix multiplications in

the analog domain, which can break the O(N logN) limitation

and further reduce the computation time to a constant time

complexity O(λ) independent of input data size, as shown

in Fig. 1. λ is the timing ratio of one Dot-product engine

(DPE) operation to one real multiplication operation in digital

systems [12]. Currently, DPE works at 10MHz [12], or say 100

ns per operation, from which we can make a fair assumption

that λ = 100. Larger array size can contribute more RC time

delay in the crossbar and limits the minimum value of λ, but it

is still significantly smaller than the setup time of DAC inputs

(if original input data is digital) and the reading delay of ADC,

which together limits the DPE from going faster than 100 MHz

(λ = 10). In short, the array size is not the bottleneck of λ,

while the peripheral circuit is.

This implementation uses DPE as its fundamental building

block, and a circuit structure – DPE cluster to organize

multiple memristor crossbars for more complex computation

is also proposed. The major speed-up comes from using

the physical structure of memristor crossbars to approximate

matrix-vector multiplications: by applying a vector of voltage

signals to the rows of a memristor crossbar, multiplication

by each memristor element’s conductance is carried out by

the KCL rule and the current is summed across each column.

DPE automatically converts and programs the matrix values

appropriately to the memristor element’s conductance in order

to compensate parasitics in the circuit, and by translating

the input vector to input voltage signals by Digital Analog

Converters (DAC), we can directly get our dot-product result

by sensing the output current with Analog Digital Converters

(ADC).

To evaluate the performance, we employ one dimensional

DFT as the benchmark. A real-life scenario is also simulated

for practical application interest, where a remote surveillance

camera compresses its color image with only 6 memristor

crossbars. The result shows our new hardware implementa-

tion with DPE can have great potential in low-power signal

processing, filtering and Internet of things(IoT) applications.

II. PRELIMINARY

A. Discrete Cosine Transforms

Discrete cosine transform(DCT) is a Fourier-related trans-

form similar to DFT, but using only real numbers [13].

Comparing to DFT, DCT has two strong advantages: first, it

is much easier to compute, second and more important, it has

nice energy compaction. Energy compaction is the ability to

pack the energy of the spatial sequence into as few frequency

coefficients as possible, and this is very important for image

compression – if compaction is high, we only need to transmit

a few coefficients instead of all the pixels. In this work we use

DCT to calculate DFT result since DCT can be regarded as

DFT with double the length for real values. For simplicity, here

we only demo real value computations since complex value

computations can also be realized by real value computations.

B. Dot-Product Engine

Dot-product engine (DPE) is an accelerator for approxi-

mated vector-matrix multiplications with one transistor one

memristor(1T1M) memristor crossbar arrays. The reason of

using 1T1M instead of 1M or one selector one memris-

tor(1S1M) is because access transistor at each cross-point can

enable precise control of the memristor states, and transistor

has better linear ON states and less variabilities than other

existing selector solutions.

One key difference of DPE from previous crossbar-based

computing engines is the conversion algorithm that finds the

correct mapping between mathematical calculations and circuit

operations to overcome the known circuit issues and other

limitations to maximize computing accuracy. The mapping is

currently run on an external computer but can be embedded

on-chip for higher efficiency. With conservative assumptions,

a 1T1M crossbar simulation platform has been built and cal-

ibrated to experimental data. The performance and efficiency

of the DPE is compared to a state-of-the-art ASIC. The result

shows the DPE can have 1,000 to 10,000 better speed-energy

efficiency product than the ASIC using 512×512 crossbars. In

previous work, DPE’s application in neuromorphic computing

[12] and scientific computations [14] has been discussed, and

here we extend its usage to more general matrix computing

applications like DFT.

III. DOT-PRODUCT ENGINE CLUSTER

A. Structure of DPE cluster

The original DPE module focuses on its primary function

of doing matrix vector multiplication with one multi-channel

DAC/ADC and one memristor crossbar. Although complex

matrix-based computations can be realized with different

Read circuit

Drive circuit

MUX Crossbar
1

Crossbar
2

Crossbar
NBu

ffe
r

Bu
ffe

r

Crossbar selection &
buffer control

MCU

Fig. 2. Dot-product engine cluster

combinations of the primal DPE module, more compact and

efficient implementations can be realized with more sophis-

ticated peripheral circuit design. Fig. 2 shows the diagram

of DPE cluster, which organize multiple memristor crossbars

instead of one for better efficiency and area. Since DAC/ADC

are the most area and power hungry components in the

design, it only includes one set of multi-channel DAC/ADC as

drive/read circuit for necessary device programming and off-

chip communication. A small MCU is embedded in the chip

for crossbar selection, buffer selection and matrix conversion

(if needed). Crossbar selection & buffer controls are latches

that enable/disable crossbars and buffers. Buffers consist of

analog amplifiers that can provide direct signal propagation

from one crossbar to other enabled crossbars. Last but not

least, a multi-channel MUX is also necessary to program bipo-

lar memristor devices with access transistors. Although drive

circuit can provide bipolar voltages, NMOS access transistors

usually could not satisfy the RESET current requirement in the

negative voltage region. With the help of MUX, some useful

functions can also be realized in a neat way.

B. Matrix-based computations on DPE cluster

With the help of DPE cluster, we can realize and not

limited to the following matrix-based computations much more

efficiently than using DPE modules.

• Sequential matrix multiplication needs the input vector

to multiply with multiple matrices sequentially. To realize

this, we can enable the buffers and crossbars in the

correct order to form the required data flow. This method

can reduce the need of DAC/ADC to only the begin

and the end stages of the computation. However, it

should be noticed that noise will accumulate in analog

signal propagations and intermediate DAC/ADC steps are

required for noise cancellation.

• Parallel matrix multiplication needs the vector to mul-

tiply with multiple matrices in parallel. To realize this,

selected crossbars should be enabled and final result

can be sensed at one time step instead of selecting and

accumulating output result from different crossbars.

• Iterative matrix multiplication needs the vector to

iteratively multiply with the same matrix until certain

threshold or condition in the result is triggered. This

computation is extensively used in many iterative neu-

ral networks, like the Brain-state-in-a-box (BSB) neural

network for pattern association and recognition [15]. By

just enabling the buffer adjacent to the selected crossbar,

we can easily realize the computation in DPE cluster.

Frequency (Hz)
0 5 10 15 20 25 30 35

Y
(f)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Spectrum of y(t)

FFT
DPE

Fig. 3. DFT result with signal size = 128 using FFT method or DPE cluster

Frequency (Hz)
0 5 10 15 20 25 30 35

E
rr

or

0.014

0.0145

0.015

0.0155

0.016

0.0165

Error
Mean

Fig. 4. Error of DFT result with signal size = 128 using DPE cluster

Meanwhile, the saturation/idle status of amplifiers in the

buffer can also be configured as the threshold condition.

• Transport matrix multiplication needs the vector to

multiply with the transport of the matrix. Generally it

needs the signal to travel from columns to rows instead

of rows to columns in crossbar arrays. It can be realized

either with the MUX or the buffer, depends on the

origination as well as the purpose of the signal(on-

chip or off-chip), and the accuracy requirement. It is

important because for symmetric matrix like DCT matrix,

multiplying the transport equals multiplying the inverse

of the matrix. It means that a DPE cluster for DCT

computation can be easily used for IDCT computation by

just changing of the direction of signal flow in crossbar

arrays.

IV. DFT IMPLEMENTATION

In simulation we use experiment calibrated component mod-

els and Table I summaries the simplified simulation configura-

TABLE I
SIMPLIFIED SIMULATION CONFIGURATIONS

Component Simplified properties:

Memristor
Ron(Ω) Roff(Ω) Temp.(k) Vread (V)

150k 3M 300 0.2

Crossbar
wire (Ω) Rin(Ω) Rout(Ω) Size

10 100 100 128/256

Transistor
Ron (Ω) Roff(Ω)
∼500 1G

DAC
Bit-accuracy V out (V)

8 0∼0.125

ADC
Bit-accuracy I in (mA)

8 0∼1mA

Frequency (Hz)
0 10 20 30 40 50 60 70

Y
(f)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Spectrum of y(t)

FFT
DPE

Fig. 5. DFT result with signal size = 256 using FFT method or DPE cluster

Frequency (Hz)
0 10 20 30 40 50 60 70

E
rr

or

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

error
mean

Fig. 6. Error of DFT result with signal size = 256 using DPE cluster

tions [12]. For example, the transistor model is calibrated with

the 0.18um transistor used in crossbar arrays, and its typical

ON and OFF state resistance are measured and summarized

in the table. We have noticed that the transistor ON state

resistance slightly varies depending on the VDS signal, and we

have considered its impact in simulation. The conductance of

memritor also varies because of device nonlinearity and here

we use 0.2V as the read voltage amplitude for all devices

to generate the final conductance matrix. The 10 Ω wire

resistance in crossbar is the wire resistance between two

adjacent devices. Rin and Rout in crossbar represent the input

and output resistance, respectively.

To implement one dimensional DFT, we actually use the

conversion algorithm to convert the DCT matrix instead of

DFT matrix to device conductance values. Since DCTs are

equivalent to DFT of roughly twice the length, operating on

real data with even symmetry, we only need to extend the

data size by copying existing data. The conductance values

are then programmed to one of the memristor crossbar array

in the DPE cluster and keeps other crossbars un-selected. We

first test the DFT performance on the 128×128 crossbar array.

the data size is set to 64 and extended to 128. Then we

use 0.7 · sin(2 · π · 10 · t) as the input signal. A Gaussian

noise with μ = 0.5, σ = 1 is added to the signal. Fig. 3

shows the DFT result with FFT method and the DPE cluster

implementation. Interestingly, DPE result shows fairly high

consistence with the correct result (by FFT method) only with

a near constant positive mean shift around 0.015, as shown in

Fig. 4. This mean shift is due to usual offset issue in analog

signal processing.

A similar test is also done for 256×256 crossbar array to

prove the scalability. For data size = 128 and extended to

256, we use 0.7 · sin(2 · π · 10 · t) + sin(2 · π · 30 · t) as

Source image
captured by image sensor DPE1 with DCT matrix DPE2 with DCT matrix

2D DCT result

Compression (send top 30%)
Received image

IDCT

Fig. 7. Data flow in the surveillance camera scenario

the input signal this time. The same noise is also applied to

the input signal. Fig. 5 shows the result. The DPE result is

still very close to the correct value while the mean shift is

negative in this case, as shown in Fig. 6. This may due to

the impact of device nonlinearity on conversion algorithm’s

optimization process. Since in large arrays, device nonlinearity

has a larger and more complex impact on the output result,

while the conversion algorithm is always trying to minimize

the overall average computing error, the mean-shift in final

computing can also be changed. However, in both case, the

mean-shift are consistent among all data points and can be

easily removed or ignored if applications only interest at the

peaks.

V. IMAGE COMPRESSION APPLICATION

A. Wireless surveillance camera scenario

DPE-based DFT result may not be as accurate as FFT result

in digital implementations, but it can still be very useful for

many real-life applications which emphasize more on energy

efficiency, speed and fabrication cost. An typical example is

the wireless surveillance camera that captures and transfers

the image data to remote computers. The image data must be

processed and compressed before sending out. In this scenario

2D-DCT is used for image compression. Generally, 2D-DCT

is just doing column-wise DCT on each image vector and then

do a row-wise DCT on the previous DCT result. To realize

this in DPE cluster, we need and only need six memristor

crossbars for the three R,G,B pixel data of a color image.

Then one quarter of the final DCT result, the top-left corner

of the 2D-DCT result, is sent out to the computer and finally

decompressed there with IDCT by FFT method.

DPE cluster has three attractive advantages in this scenario:

first, since it’s analog at core, it can directly process real-

world analog signals captured by sensors, omitting the high

power and high delay DAC step in traditional digital signal

processing units; second, since the implementation only uses

six crossbars, it can be extremely power efficient and high

throughput; last but not least, these crossbars are still re-

programmable, so more advanced functions, like image filters

or even neural network for pattern recognitions can be imple-

mented onto the DPE cluster to make the camera more smart

and more powerful.

B. Result

All of the advantages mentioned above require a simple

prerequisite: DPE cluster can realize 2D-DCT with enough

Fig. 8. Result of restored image. Image compression on left is completed by
FFT, and on right is by DPE.yy

Fig. 9. Four pairs of restored images for comparison. Similar to Fig. 8, in
each pair, the image compression for the right figure is completed by DPE

accuracy to generate recognizable restored figures in the end.

Here the restored image from DCT and DPE are shown in

Fig. 8. More examples are shown in Fig. 9. It is obvious

that the images are still easy recognizable, with some loss of

detail at the edges and corners. Some color shifting happens

but the shape of images are well-preserved for further pattern

recognition. In addition, these result are generated by a system

with no optimization for image compression: quantizer and

entropy encoder are not included in the design yet.

C. Error analysis

We check the data between two DCT steps, as shown in

Fig. 10. At the first column-wise DCT step, image signal

is the input and the output result well matches the ideal

result. However, since DCT has high energy compaction and

compress energy to low frequency signals, after column-wise

DCT large values are concentrated to the first few rows and

remaining rows are holding very small values. When a row

vector of very small signals enters the memristor crossbar for

row-wise DCT, its output could not be very accurate since

the DPE is not calibrated to such small signals but to whole-

range signals. The similar issue happens to the first few rows

as well since their values are all large, but the impact is less

severe since large-value rows are fewer than small value rows.

An simple fix would be using two memristor crossbars at the

row-wise DCT step, one is calibrated to process small signals

and another is calibrated to process large signals.

Many IoT applications require fast and low power signal

pre-processing on the sensor data, it needs to real-time process

all the analog data provided by sensors, and just needs a

modest accuracy that is enough to trigger the alarm for more

advanced and more expensive data process request. Here

in the wireless surveillance camera scenario, DPE cluster

is good enough as the pre-processing unit to enable high

throughput and high efficiency real-time image processing and

compression.

“Red” output of 1st DPE

“Red” output of 2nd DPE

Ac
tu

al
 re

su
lt

Ac
tu

al
 re

su
lt

Ideal result

Take one row and
pass it to the 2nd DPE

Fig. 10. Error analysis for 2D-DCT with DPE.

VI. CONCLUSION

In this work, we present the DPE cluster for DFT appli-

cations. It uses DPE as the fundamental building block and

extend its functionality for more complex matrix computa-

tions. Comparing to existing DFT and FFT methods, it breaks

the complexity barrier of O(Nlog(N)) and reaches a constant

time complexity independent of data size. We also demonstrate

its performance in DFT and image compression. The result

proves the potential of DPE cluster for many IoT applications.

VII. ACKNOWLEDGMENTS

This research is based upon work supported by the Office

of the Director of National Intelligence (ODNI), Intelligence

Advanced Research Projects Activity (IARPA), via contract

number 14080800008. The views and conclusions contained

herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,

either expressed or implied, of the ODNI, IARPA, or the

U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon.

REFERENCES

[1] G. Strang, “Wavelets,” American Scientist, vol. 82, no. 3, pp. 250–255,
1994. [Online]. Available: http://www.jstor.org/stable/29775194

[2] C. Van Loan, Computational Frameworks for the Fast Fourier Trans-
form. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1992.

[3] M. Heideman, D. Johnson, and C. Burrus, “Gauss and the history of the
fast fourier transform,” IEEE ASSP Magazine, vol. 1, no. 4, pp. 14–21,
October 1984.

[4] J. Dongarra and F. Sullivan, “Guest editors introduction to the top 10
algorithms,” Computing in Science Engineering, vol. 2, no. 1, pp. 22–23,
Jan 2000.

[5] K. Pavel and S. David, Algorithms for efficient computation of convo-
lution. INTECH Open Access Publisher, 2013.

[6] O. Fialka and M. Čadik, “Fft and convolution performance in image
filtering on gpu,” in Information Visualization, 2006. IV 2006. Tenth
International Conference on. IEEE, 2006, pp. 609–614.

[7] A. B. Watson, “Image compression using the discrete cosine transform,”
Mathematica journal, vol. 4, no. 1, p. 81, 1994.

[8] H. Pang, D.-x. Li, Y.-x. Zu, and Z.-j. Wang, “An improved algorithm for
harmonic analysis of power system using fft technique [j],” Proceedings
of the Csee, vol. 6, no. 009, 2003.

[9] D. P. Kolba and T. W. Parks, “A prime factor fft algorithm using high-
speed convolution,” Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 25, no. 4, pp. 281–294, 1977.

[10] A. Pedram, J. McCalpin, and A. Gerstlauer, “Transforming a linear
algebra core to an fft accelerator,” in Application-Specific Systems,
Architectures and Processors (ASAP), 2013 IEEE 24th International
Conference on. IEEE, 2013, pp. 175–184.

[11] E. Sujatha, C. Subhas, M. G. Prasad, and N. Padmaja, “A review on
optimized fft/ifft architectures for ofdm systems,” i-Manager’s Journal
on Wireless Communication Networks, vol. 4, no. 3, p. 33, 2015.

[12] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, R. S. Williams, and J. Yang, “Dot-product engine
for neuromorphic computing: programming 1t1m crossbar to accelerate
matrix-vector multiplication,” 2016.

[13] K. R. Rao and P. Yip, Discrete cosine transform: algorithms, advantages,
applications. Academic press, 2014.

[14] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in Proc. ISCA, 2016.

[15] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of bsb
recall function using memristor crossbar arrays,” in DAC. ACM, 2012,
pp. 498–503.

