

HEALTH SCIENCES

# Air Pollution and Climate Change: A Public Health Perspective

Mike He Introduction to Atmospheric Chemistry April 18, 2019

#### Overview

- Which air pollutants are of greatest health concern and why?
- Ozone and Particulate matter
  - Background and history
  - Case studies
  - Current research
- How might climate change affect air quality?

# Air Pollution: the Big Picture

- Most but not all health-relevant outdoor air pollutants are produced by burning of fossil fuels
- The mixtures of air pollutants produced by burning of fuels can both
  - Adversely affect human health
  - Promote climate change
- In addition:
  - Climate influences air pollution concentrations via several mechanisms
  - Climate can affect other aspects of air quality, including smoke from agricultural or wild fires, and aero-allergens like pollen and mold spores

## Criteria Air Pollutants

- Carbon monoxide (CO)
- Nitrogen dioxide (NO<sub>2</sub>)
- Lead (Pb)
- Sulfur dioxide (SO<sub>2</sub>)
- Ozone (O<sub>3</sub>)
- Particulate matter (PM<sub>2.5</sub>, PM<sub>10</sub>)

# Ground-level Ozone

- A "secondary pollutant" i.e., formed via reactions in the atmosphere from primary pollutants (NO<sub>x</sub> and VOCs) in the presence of sunlight
  - Where do NOx and VOCs come from?
- Higher temperatures favor ozone formation
- Strong oxidant that damages cells lining the respiratory system, resulting in a variety of adverse health outcomes, including lung function decrease, asthma attacks, and premature death
- Ozone is also a greenhouse gas



Source: US EPA (1991); in Kleinman and Lipfert, 1996.

#### **Ozone Formation**



USDA Forest Service, 2013

#### GLOBAL BUDGET OF TROPOSPHERIC OZONE (Tg O<sub>3</sub> yr<sup>-1</sup>)

Chem prod in Chem loss in 4700 4200 troposphere troposphere ±700 ±500 O<sub>2</sub>. Transport from Deposition 1000 500 hν stratosphere **±100 ±200**  $O_3$ Ozone lifetime: 24 ± 4 days STRATOSPHERE 8-18 km TROPOSPHERE hν NO NO  $O_3$  $hv, H_2O$ OH HO<sub>2</sub>  $H_2O_2$ Deposition CO, VOC

IPCC (2007) average of 12 models

Arlene Fiore, Intro to Atmospheric Chemistry, Lecture 13, from Daniel Jacob

#### Ozone and Acute Deaths

**Figure 1.** Percentage Change in Daily Mortality for a 10-ppb Increase in Ozone for Total and Cardiovascular Mortality, for Single-Lag and Distributed-Lag Models



The single-lag model reflects the percentage increase in mortality for a 10-ppb increase in ozone on a single day. The distributed-lag model reflects the percentage change in mortality for a 10-ppb increase in ozone during the previous week. Error bars indicate 95% posterior intervals.

# Particulate Matter (PM<sub>2.5</sub>, PM<sub>10</sub>)

- A complex mixture of extremely small particles and liquid droplets, made up of acids, organic chemicals, metals, and soil or dust particles (EPA 2010)
- Divided into two subcategories: inhalable coarse particles ( $PM_{10}$ ) and fine particles ( $PM_{2.5}$ )
- PM<sub>2.5</sub> is a big concern: bypass body's defense mechanism, and no natural clearance process



# Particulate Matter ( $PM_{2.5}$ , $PM_{10}$ )

- Can be either primary or secondary; produced by combustion, atmospheric reactions, and mechanical processes
- Wide range of physical/chemical properties
- Wide range of human health impacts, including premature death
- Higher temperatures may favor secondary formation processes in the atmosphere
- Some particle types contribute to climate warming; others to climate cooling
  - Which?

# PM<sub>2.5</sub> Composition



Annual average fine particle data for 2001 from the Look Rock station of the Tennessee Valley Authority. Source: http://www.tva.gov/environment/air/ontheair/fine\_particles\_smokies.htm





EPIDEMOSLOGOSuponpeoplestudy

#### **EPIDEMIOLOGY?**

The study of "what befalls a population"

The study of the distribution and determinants of health and disease in specified populations

LINKING EXPOSURE TO DISEASE OUTCOME (IN HUMAN POPULATIONS)

Epidemiology is a not a body of knowledge: It's a methodology, a way of studying a health problem.

#### Health Effects of PM

- Historical experience provides strong evidence for causal relationship between PM exposure and premature death
- Modern epidemiologic studies have consistently found significant associations with a range of adverse health outcomes
- Two primary epidemiologic study designs:
  - Time series studies of acute effects
  - Cohort studies of chronic effects

#### London, December, 1952



#### London Killer Fog, December, 1952



UK Met Office, 2009

### Time Series Epidemiology

- Addresses short-term, acute effects of air pollution
- Involves analysis of a series of daily observations of air pollution and health data
- Widely used and economical approach, often utilizing readilyavailable data
- Most air pollution epidemiology studies have followed this design

#### **Prospective Cohort Studies**

- They address longer-term, more chronic effects
- Approach:
  - Large populations in multiple cities enrolled and then followed for many years to determine disease or mortality experience
  - Must control for potential "spatial" confounders, e.g., smoking, income, race, diet, occupation
  - Assessment of confounders at individual level is an advantage over cross-sectional, "ecologic" studies

#### Harvard Six Cities Study



• Long-term average concentrations of fine particle air pollution were associated with mortality rates, controlling for individual-level risk factors across six US cities

Dockery et al., 1993





A replication in a larger cohort:

#### Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution

Pope, C.A. et al., Journal of the American Medical Association: 287, 1132-1141, 2002

## American Cancer Society Cohort Study

- Original study had nothing to do with air pollution, so this was "opportunistic epidemiology"
- Objective: To assess the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality
- Approach: Vital status and cause of death data were collected by the American Cancer Society through 1998 in 500,000 U.S. adults from 50 urban areas for which air pollution exposure data were available in 1980.

#### **ACS Cohort Results**

**Table 2.** Adjusted Mortality Relative Risk (RR) Associated With a  $10-\mu g/m^3$  Change in Fine Particles Measuring Less Than 2.5  $\mu m$  in Diameter

|                    |                  | Adjusted RR (95% CI)* |                  |  |  |  |
|--------------------|------------------|-----------------------|------------------|--|--|--|
| Cause of Mortality | 1979-1983        | 1999-2000             | Average          |  |  |  |
| All-cause          | 1.04 (1.01-1.08) | 1.06 (1.02-1.10)      | 1.06 (1.02-1.11) |  |  |  |
| Cardiopulmonary    | 1.06 (1.02-1.10) | 1.08 (1.02-1.14)      | 1.09 (1.03-1.16) |  |  |  |
| Lung cancer        | 1.08 (1.01-1.16) | 1.13 (1.04-1.22)      | 1.14 (1.04-1.23) |  |  |  |
| All other cause    | 1.01 (0.97-1.05) | 1.01 (0.97-1.06)      | 1.01 (0.95-1.06) |  |  |  |

\*Estimated and adjusted based on the baseline random-effects Cox proportional hazards model, controlling for age, sex, race, smoking, education, marital status, body mass, alcohol consumption, occupational exposure, and diet. CI indicates confidence interval.



Figure 8-9. Natural logarithm of relative risk for total and cause-specific mortality per 10 µg/m<sup>3</sup> PM<sub>2.5</sub> (approximately the excess relative risk as a fraction), with smoothed concentration-response functions. Based on Pope et al. (2002) mean curve (solid line) with pointwise 95% confidence intervals (dashed lines).

#### Conclusion

"Long-term exposure to combustionrelated fine particle air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality."

#### Beijing: Before and After Olympics



#### The Air Pollution Brick



# More Beijing





\$

Tom Phillips @tomphillipsin · 29 Nov 2015 Beijing's stunning World Trade Centre #COP21

**1**38 •••

#### What about Data?

- Real time AQI exists, available for hundreds of cities
- Reports concentrations of various air pollutants, including PM<sub>2.5</sub>

• But...

| AQI     | Air Pollution Level               | Health Implications                                                                                                                                                            |  |  |
|---------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0 - 50  | Good                              | Air quality is considered satisfactory, and air pollution poses little or no risk                                                                                              |  |  |
| 51 -100 | Moderate                          | Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution. |  |  |
| 101-150 | Unhealthy for Sensitive<br>Groups | Members of sensitive groups may experience health effects. The general public is not likely to be affected.                                                                    |  |  |
| 151-200 | Unhealthy                         | Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects                                                        |  |  |
| 201-300 | Very Unhealthy                    | Health warnings of emergency conditions. The entire population is more likely to be affected.                                                                                  |  |  |
| 300+    | Hazardous                         | Health alert: everyone may experience more serious health effects                                                                                                              |  |  |

#### Anyang Air Pollution: Real-time Air Quality Index (AQI)





#### Another Caveat...

- Public data only available from 2013 and on
- What about pre-2013?

#### Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

Aaron van Donkelaar,<sup>1</sup> Randall V. Martin,<sup>1,2</sup> Michael Brauer,<sup>3</sup> Ralph Kahn,<sup>4</sup> Robert Levy,<sup>4</sup> Carolyn Verduzco,<sup>1</sup> and Paul J. Villeneuve<sup>5,6</sup>

<sup>1</sup>Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada; <sup>2</sup>Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA; <sup>3</sup>School of Environmental Health, University of British Columbia, British Columbia, Canada; <sup>4</sup>NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; <sup>5</sup>Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; <sup>6</sup>Population Studies Division, Health Canada, Ottawa, Ontario, Canada

BACKGROUND: Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5  $\mu m$  (PM<sub>2.5</sub>) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM<sub>2.5</sub> concentrations.

Objective: In this study, we developed a technique for estimating surface  $\rm PM_{2.5}$  concentrations from satellite observations.

METHODS: We mapped global ground-level PM<sub>2.5</sub> concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model.

RESULTS: We determined that global estimates of long-term average (1 January 2001 to 31 December 2006)  $PM_{2,5}$  concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean  $PM_{2,5}$  concentration of 20 µg/m<sup>3</sup>. The World Health Organization Air Quality  $PM_{2,5}$  Interim Target-1 (35 µg/m<sup>3</sup> annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean  $PM_{2,5}$  concentrations exceed 80 µg/m<sup>3</sup> over eastern China. Our evaluation of the satellite-derived estimate with ground-based *in situ* measurements indicates significant spatial agreement with North American measurements (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived  $PM_{2,5}$  is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 µg/m<sup>3</sup>.

CONCLUSIONS: Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations.

KEY WORDS: aerosol, aerosol optical depth, AOD, particulate matter, PM<sub>2.5</sub>. Environ Health Perspect 118:847–855 (2010). doi:10.1289/ehp.0901623 [Online 16 March 2010] et al. 2006; Liu et al. 2005) or to filter the AOD (e.g., Gupta et al. 2006). Some studies have employed light detection and ranging (LIDAR) instruments to capture the vertical aerosol distribution at specific locations (e.g., Engel-Cox et al. 2006; Schaap et al. 2008). Schaap et al. (2008) noted that locally derived AOD-PM25 relationships cannot be extended easily to other regions because of variation in meteorology and aerosol composition. Unique, local, time-dependent AOD-PM2.5 relationships are necessary to infer global estimates of PM25. Ground-based measurements of aerosol vertical profiles and properties have insufficient coverage to estimate global AOD-PM2 5 relationships.

Global chemical transport models (CTMs) resolve atmospheric composition at a resolution of hundreds of kilometers horizontally by hundreds of meters vertically, with a temporal frequency of tens of minutes. Liu et al. (2004) first estimated surfacelevel PM<sub>2.5</sub> from MISR observations by using CTM output to represent local AOD-PM<sub>2.5</sub> conversion factors over the continuous United

#### Research

A Section 508-conformant HTML version of this article is available at http://dx.dol.org/10.1289/ehp.1409481.

#### Satellite-Based Spatiotemporal Trends in PM<sub>2.5</sub> Concentrations: China, 2004–2013

Zongwei Ma,<sup>1,2</sup> Xuefei Hu,<sup>2</sup> Andrew M. Sayer,<sup>3,4</sup> Robert Levy,<sup>4</sup> Qiang Zhang,<sup>5</sup> Yingang Xue,<sup>6</sup> Shilu Tong,<sup>7</sup> Jun Bi,<sup>1</sup> Lei Huang,<sup>1</sup> and Yang Liu<sup>2</sup>

<sup>1</sup>State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China; <sup>2</sup>Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA; <sup>3</sup>Goddard Earth Sciences Technology and Research, Universities Space Research Association, Greenbelt, Maryland, USA; <sup>4</sup>NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; <sup>5</sup>Center for Earth System Science, Tsinghua University, Beijing, China; <sup>6</sup>Changzhou Environmental Monitoring Center, Changzhou, Jiangsu, China; <sup>7</sup>School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia

BACKGROUND: Three decades of rapid economic development is causing severe and widespread  $PM_{2.5}$  (particulate matter  $\leq 2.5~\mu m$ ) pollution in China. However, research on the health impacts of  $PM_{2.5}$  exposure has been hindered by limited historical  $PM_{2.5}$  concentration data.

OBJECTIVES: We estimated ambient  $PM_{2.5}$  concentrations from 2004 to 2013 in China at 0.1° resolution using the most recent satellite data and evaluated model performance with available ground observations.

METHODS: We developed a two-stage spatial statistical model using the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) and assimilated meteorology, land use data, and PM<sub>2.5</sub> concentrations from China's recently established ground monitoring network. An inverse variance weighting (IVW) approach was developed to combine MODIS Dark Target and Deep Blue AOD to optimize data coverage. We evaluated modelpredicted PM<sub>2.5</sub> concentrations from 2004 to early 2014 using ground observations. China from 2006 to 2010. However, their ANN was trained partially using  $PM_{2.5}$  and satellite data from the United States, which may have introduced substantial prediction error.

Taking advantage of the newly available national  $PM_{2.5}$  measurements for China, Ma et al. (2014) estimated  $PM_{2.5}$  levels for 2013 in China using satellite AOD and a geographically weighted regression (GWR) model. Using an early version of the Dark Target (DT) algorithm (Remer et al. 2005), this study adopted a relatively coarse spatial

#### Comparison with GFDL Model





Figure 5. Evaluation of historical PM<sub>2.5</sub> estimations (2004–2012 and January–June 2014) at daily (A), monthly (B), and seasonal (C) levels. Because there were few ground PM<sub>2.5</sub> data for mainland China before 2013, we also estimated PM<sub>2.5</sub> for the first half of 2014 using the 2013 model and compared the results with the ground measurements to validate the accuracy of the historical estimations.

#### Piecing Together the Puzzle



International Journal of Environmental Research and Public Health



Review

#### Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review

Mike Z. He <sup>1,2,\*</sup>, Xiange Zeng <sup>3</sup>, Kaiyue Zhang <sup>4,5</sup> and Patrick L. Kinney <sup>6</sup>

- <sup>1</sup> Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- <sup>2</sup> Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA

#### A Grueling Process...Not Fun



#### But it Exists!

| Region                 | [PM <sub>2.5</sub> ] (µg/m <sup>3</sup> ) | Number of<br>Measurements | % Above<br>Annual Limit <sup>1</sup> | % Above<br>24-h Limit <sup>2</sup> |
|------------------------|-------------------------------------------|---------------------------|--------------------------------------|------------------------------------|
| Northeastern           | $66.50 \pm 27.96$                         | 61                        | 91.80%                               | 34.43%                             |
| Northern               | $76.10 \pm 38.69$                         | 53                        | 100%                                 | 50.94%                             |
| Northwestern           | $85.41 \pm 59.19$                         | 42                        | 100%                                 | 14.29%                             |
| Eastern                | $55.41 \pm 18.16$                         | 121                       | 86.78%                               | 20.66%                             |
| South Central          | $50.23 \pm 21.00$                         | 136                       | 75.74%                               | 16.91%                             |
| Southwestern           | $48.72 \pm 13.63$                         | 51                        | 90.20%                               | 11.76%                             |
| Beijing                | $94.42 \pm 23.83$                         | 98                        | 100%                                 | 77.55%                             |
| Taiwan                 | $30.49 \pm 1.81$                          | 12                        | 8.33%                                | 0%                                 |
| <b>Overall Average</b> | $60.64 \pm 33.27$                         | 574                       | 87.80%                               | 32.06%                             |

Table 1. Summary of geographic regions.

 $^1$  Annual limit is 35  $\mu g/m^3.$   $^2$  24-h limit is 75  $\mu g/m^3.$ 

Table 2. Summary of three economic regions.

| Region                 | $[PM_{2.5}]$ (µg/m <sup>3</sup> ) | Number of<br>Measurements | % Above<br>Annual Limit <sup>1</sup> | % Above<br>24-h Limit <sup>2</sup> |
|------------------------|-----------------------------------|---------------------------|--------------------------------------|------------------------------------|
| BTH                    | $93.73 \pm 25.89$                 | 123                       | 100%                                 | 78.05%                             |
| Yangtze River          | $55.86 \pm 17.62$                 | 59                        | 93.22%                               | 28.1%                              |
| Pearl River            | $47.23 \pm 14.86$                 | 38                        | 65.79%                               | 13.16%                             |
| <b>Overall Average</b> | $71.99\pm30.20$                   | 220                       | 92.27%                               | 53.64%                             |

 $^1$  Annual limit is 35  $\mu g/m^3.$   $^2$  24-h limit is 75  $\mu g/m^3.$ 

#### How might Climate Change affect Air Pollution?

- Formation reactions for secondary pollutants generally happen faster at high temp and with greater sunlight
  Biogenic emissions increase at higher temp

  - Some particle species may volatilize at higher temperatures
- Regional air mass patterns over time and space may change, altering stagnation and clearance events
  - The mixing height of the lower atmosphere may change, affecting dilution of pollution emitted at the surface
  - $\rightarrow$  Use Coupled Climate/Air Quality Models to Investigate

# Climate-induced Changes in Ozone (ppb) from late 20<sup>th</sup> to late 21<sup>st</sup> Century



Fang et al., Climatic Change, 2013

# Climate-induced Changes in $PM_{2.5}$ (µg/m<sup>3</sup>) from late 20<sup>th</sup> to late 21<sup>st</sup> Century



Fang et al., Climatic Change, 2013

#### Key Inputs and Assumptions in Assessing Future Climate-Air Quality-Health Impacts

- Baseline and Future Time Windows
- Climate models
  - Which models?
  - At what spatial scale? Downscaling?
- Greenhouse gas emission scenarios
  - SRES (older IPCC reports); RCPs (newer IPCC reports)
- Air pollution models and emission scenarios
  - Which models? Downscaling?
- Exposure-response functions
- Population projections
- Baseline mortality rates by region and over time

### Take-Home Messages

- Air pollution is bad; PM<sub>2.5</sub> and ozone priority
- Many historical and current research that document health effects of PM<sub>2.5</sub>, currently a huge concern
- Climate change will make it harder to achieve future air quality goals – the "climate penalty"
- We lack climate/air quality/health information at fine spatial scales relevant to local decision makers
- To the extent possible, air pollution and climate mitigation should be planned in a coordinated way

# Questions?

