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Abstract

We develop a theory of monotone comparative statics based on weak set order,

or in short weak monotone comparative statics, and identify the enabling conditions

in the context of individual choices, Pareto optimal choices for a coalition of agents,

and Nash equilibria of games. Compared with the existing theory based on strong set

order, the conditions for weak monotone comparative statics are weaker, sometimes

considerably, in terms of the structure of the choice environment and underlying

preferences of agents. We apply the theory to establish existence and monotone

comparative statics of Nash equilibria in games with strategic complementarities and

of stable many-to-one matchings in two-sided matching problems, allowing for general

preferences that accommodate indifferences and incomplete preferences.
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1 Introduction

Comparative statics in economics concerns how predictions of behavior—be it individual

choices, collective or social choices, or equilibria of games—change as economic conditions

indexed by some parameters change. In many economic problems, predictions are non-

unique, so they are represented by a set Sptq Ă X indexed by a parameter t P T , for some

set X of possible predictions. The key question is then: what would it take for set Sptq

to “increase” as t P T increases. Although there are typically well-defined orders on X
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and on T , there may be no clear sense of how one set S 1 “dominates” another S, given the

primitive order ě defined on X.1

The theory of monotone comparative statics pioneered by Topkis (1979, 1998) and

Milgrom and Shannon (1994) focuses on the so-called “strong set order,” denoted ěss.

Namely, S 1 ěss S if, for any x P S and x1 P S 1, x _ x1 P S 1 and x ^ x1 P S, where

x _ x1 :“ inftx2 P X : x2 ě x, x2 ě x1u and x ^ x1 :“ suptx2 P X : x2 ď x, x2 ď x1u, and

ě is a partial order on X. This notion of induced set order implies an intuitive property,

captured by a weaker notion called “weak set order” and denoted by ěws. Namely, S 1 ěws S

if, for each x P S, one can find x1 P S 1 such that x1 ě x, and likewise, for each x1 P S 1,

one can find x P S such that x ď x1. Strong set order is stronger than weak set order,

although the economic meaning of the difference may not be easy to interpret or motivate.

For ease of our discussion, we refer to monotone comparative statics in strong set order as

strong monotone comparative statics (or sMCS in short), whereas the one in weak set

order—the focus of this paper— as weak monotone comparative statics (or wMCS

in short).

As shown by Topkis (1979, 1998) and Milgrom and Shannon (1994), in the context

of individual choices, the strong set order proves to be an appropriate notion. Intuitive

conditions capturing complementarities across alternative choice dimensions and comple-

mentarities between them and parameters are known to be sufficient for sMCS of their

maximizers and they are also necessary if one insists upon the same properties to hold for

every subdomain.2

Beyond individual choices, however, strong set order proves less useful. Take Nash

equilibria of a game. Topkis (1979, 1998), Vives (1990), Milgrom and Roberts (1990), and

Milgrom and Shannon (1994) show that complementarities between one’s strategies and

those of her opponents as well as a parameter, say t, ensure each player’s best-response

correspondence to vary monotonically in strong set order with those variables. Yet, this

does not lead to the same sort of monotonic shift for Nash equilibria. More specifically,

appealing to Tarski (1955)’s fixed-point theorem, one could under suitable conditions guar-

antee that Nash equilibria contain the largest and smallest elements, each of which varies

monotonically with t. This result does imply monotone comparative statics in weak set

1While monotone selection—i.e., S1 declared to dominate S if x1 ě x for every x P S, x1 P S1—would be
most natural and easy to interpret, monotone selection is rather difficult to achieve for individual choices
and virtually impossible beyond individual choices such as for equilibria of games.

2See Milgrom and Shannon (1994) for the detail and our discussion in Section 3. See Quah and
Strulovici (2009) for a characterization with a weaker condition known as interval dominance for the case
in which X is a chain, i.e., a totally ordered set.
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order but not in strong set order (see Figure 1).3
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Figure 1: Failure of sMCS.

Note: This figure depicts how equilibria of a game with strategic complementarities may change

as player 1’s best response shifts out from B1 to B11 with a parameter change. The points x and x1

are equilibria before and after the change, respectively. However, x_x1 “ x is not an equilibrium

after the change.

Consider next a social choice problem. One may be interested in the monotone com-

parative statics of Pareto optimal choices by a collection of agents, although, to the best of

our knowledge and to our surprise, this interesting question has never been asked let alone

investigated. Monotone comparative statics is unlikely to hold in strong set order here as

well. Under suitable conditions, Pareto optimal choices consists of a union of alternatives

that maximize social welfare—a weighted sum of individual utilities—, where the union

is taken over all possible welfare weights (and partitions of agents, as will become clear).

Neither strong set order nor a lattice property is preserved by the set union operator.

Hence, even when the welfare-maximizing alternatives can be made to vary monotonically

in strong set order for fixed welfare weights, their union (over all welfare weights) fails to

vary monotonically in the same sense. Here again, a more suitable notion of monotonicity

is the weak set order.

Finally, consider two-sided matching problems where agents on two sides—e.g., men

and women, students and schools, and workers and firms—seek to match across the sides

3Short of assuming “uniqueness,” no obvious way of strengthening the notion of complementarities
either across players’ strategies or between their strategies and parameters restores monotone comparative
statics of equilibria in strong set order.
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stably, i.e. in ways avoiding coalitional deviations, or “blocks.” When the participants

have substitutable preferences, the set of stable matchings can be characterized as a set

of fixed points of a certain monotonic operator—which corresponds to Gale and Shapley’s

deferred acceptance algorithm in a simple setup—, and the stable matchings exhibit mono-

tone comparative statics properties when the market conditions change in terms of agents’

preferences and/or their entry or exit. Here again, monotone comparative statics holds in

weak set order but not in strong set order.4

These observations suggest that, for many problems of interest, monotone comparative

statics is feasible only in weak set order. Given this, the current paper asks: What would

it take to guarantee wMCS? Namely, what are the minimal structure of the problem and

properties one needs, if the goal is just to establish Spt1q ěws Sptq whenever t1 ě t and

nothing more. We show that the conditions required for monotone comparative statics

can be weakened compared to existing conditions, sometimes considerably. Naturally, the

notion of complementarities is weakened. More surprisingly, the lattice structure of domain

and the images of relevant operators, taken virtually as given by the existing literature,

proves not to be essential, and thus can be dispensed with, for results such as existence of

equilibria and their monotone comparative statics.

The current paper proceeds as follows. In Section 3, we consider individual choice

problems in which an action is chosen to maximize an objective function defined over a

lattice, and provide sufficient conditions for their wMCS. In particular, we identify no-

tions of one objective function “dominating” another in some weaker senses—called weak

domination and weak interval domination—than are required for sMCS (see for example

Milgrom and Shannon (1994) and Quah and Strulovici (2009)) such that the maximizers of

the former dominates the maximizers of the latter in weak set order, and show them to be

also necessary if one insists upon the wMCS relation to hold for all subdomains of certain

richness.

In Section 4, we consider Pareto optimal choices for a set of agents. Pareto optimal

choices are interesting in and of itself, but they can also be a model of behavior by an

individual whose preference is not complete (Eliaz and Ok (2006) for instance); such an

individual may be seen as balancing multiple, possibly conflicting, complete preferences,

each represented by a well-defined utility function. We study conditions on the change of

these latter “component” utility functions that give rise to wMCS of the associated Pareto

optimal choices. When X is a general lattice, the desired result requires fairly strong

4Given the fixed-point characterization of stable matchings, one may expect the set of stable matchings
to behave monotonically in weak set order but not in strong set order for a similar reason that the set of
Nash equilibria does so.
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conditions both on the curvature of individual utility functions and their complementarity

properties. When X is totally ordered, however, wMCS is simply ensured by the standard

single-crossing property.

Next, Section 5 studies existence of fixed points and their comparative statics. A fixed-

point theorem—an essential element of equilibrium analysis—concerns existence of an el-

ement x P X with the property x P F pxq for some correspondence F : X Ñ X. The

fixed-point theorem originally developed by Tarski (1955) and extended by Zhou (1994) to

correspondences is particularly useful for economic analysis. For their existence and lattice

properties, the theorem requires (see Zhou (1994)) that (i) X be a complete lattice; (ii)

F pxq be a complete sublattice of X for each x P X, and (iii) F p¨q be nondecreasing in

strong set order. For monotone comparative statics—i.e., to establish that the fixed points

of correspondence G dominates those of another correspondence F in weak set order—the

theorem requires (i)-(iii) for both F and G and that (iv) Gpxq dominate F pxq in strong set

order for each x.5

Despite its usefulness, the theorem’s applicability is limited by conditions (i)-(iv), some

or all of which may not hold in many environments of interest. In particular, the lattice

structure assumed for X and for the image F pxq of each x is quite restrictive. These

conditions can be weakened considerably, if one cares only about existence and wMCS of

fixed points. Theorems 5 (due in large part to Li (2014)) and 6 establish these two results

under a new set of conditions: For the existence of a fixed point, our requirements are (i’)

X is only partially ordered and compact (under a suitable topology); (ii’) F pxq is closed

for each x; and (iii’) F p¨q is nondecreasing in weak set order, plus a mild condition to be

introduced later. For wMCS of fixed points, our requirement is that (iv’) Gpxq dominates

F pxq in weak set order for each x. The fixed points need not form a complete lattice,

but their minimal and maximal points exist, and they in turn exhibit the wMCS property.

Further, the computability of a fixed point via an iterative algorithm carries over to our

environment albeit with some wrinkles (Theorem 7). Naturally, these results apply to a

broader class of games with strategic complementarities than have been identified before

(see Vives (1990), Milgrom and Roberts (1990), and Milgrom and Shannon (1994)). An

advantage of the present approach is that our class of games exhibits virtually the same

set of useful properties as theirs without making strong assumptions on lattices or strong

complementarities. For instance, the ability to handle non-lattice environments both in

(i’) and (ii’) means that the same powerful results extend to games (with strategic com-

plementarities) played by agents with incomplete preferences or games played by coalitions

5While the comparative statics result is not explicitly stated by Zhou (1994), it is a straightforward
implication of his result.
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of agents choosing Pareto optimal responses to their opponents which, as argued above,

generally do not form lattices.

In Section 6, we study wMCS of stable many-to-one matchings when agents have gen-

eral preferences. Tarski’s fixed-point theorem has been used to prove existence of stable

matchings under substitutable preferences (see Adachi (2000), Fleiner (2003), and Hatfield

and Milgrom (2005)). That the fixed-point theorem of Section 5 applies to correspondences

with non-lattice images means that agents’ preferences accommodate very general forms

of substitutability, as well as indifferences or even incomplete preferences. Indifferences

are natural when agents’ preferences arise from coarse priorities; a case in point is public

schools that often place many students in the same priority class. Incomplete preferences

may arise naturally in a multidivisional firm in which multiple divisions may compete for

common resources for hiring workers, or in a medical matching with regional caps, where

hospitals in the same region may compete for quotas subject to a cap. We prove existence

of a stable matching and its wMCS properties allowing for such general preferences. A

key step toward this end is the characterization of a stable matching via a fixed point of

a tâtonnement-like operator, and this requires a version of revealed preferences condition.

The standard version, known as Weak Axiom of Revealed Preference (WARP), however,

may not hold for incomplete preferences. Our characterization thus weakens the notion of

revealed preference condition that is compatible with incomplete preferences. This charac-

terization, together with the associated wMCS properties, advances the frontier of matching

theory.

2 Preliminaries

Throughout, our domain of choices X is assumed to be partially ordered set with regard

to some primitive partial order ě, namely a binary relation that is reflesive, transitive and

anti-symmetric on X. This primitive order induces two set orders, strong set order ěss and

weak set order ěws. We shall use the following terminologies related to these set orders.

We say X2 Ă X strong set dominates X 1 Ă X if X2 ěss X
1. Similarly, X2 upper weak

set dominates X 1, and write X2 ěuws X
1, if, for each x1 P X 1, there exists x2 P X2 such

that x2 ě x1; and X2 lower weak set dominates X 1, and write X2 ělws X
1, if for each

x2 P X2, there exists x1 P X 1 such that x1 ď x2. And, X2 weak set dominates X 1, and write

X2 ěws X
1, if X2 ěuws X

1 and X2 ělws X
1, as we have already defined in the introduction.

Some, but not all, results invoke additional order properties. We say X is a lattice if

for any x, x1 P X, x_ x1 P X and x^ x1 P X, or equivalently if X ěss X. X is a complete
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lattice if, for any X 1 Ă X, supX X
1 P X and infX X

1 P X, where supX X
1 :“ inftz P X : z ě

x, @x P X 1u and infX X
1 :“ suptz P X : z ď x, @x P X 1u. A subset X 1 Ă X is a sublattice

of X, if, for any x, x1 P X 1, x^X x
1 P X 1 and x_X x

1 P X 1, where x^X x
1 :“ suptx2 P X :

x2 ď x and x2 ď x1u and x _X x1 :“ inftx2 P X : x2 ě x and x2 ě x1u. A subset X 1 Ă X

is a complete sublattice of X if supX Y P X 1 and infX Y P X 1 for all Y Ď X 1.6 (We will

henceforth use ^ and _ instead of ^X and _X , unless the sup or the inf is being taken over

a set other than X.) Finally, a subset X 1 is a subinterval of X if there exist a ď b, a, b P X,

such that X 1 “ tx P X : a ď x ď bu, denoted equvalently by ra, bs.

Finally, some of our results pertaining to existence of maximizers or fixed points invoke

topological properties such as compactness of X and upper semicontinuity of an objective

function defined on X. Whenever such properties are invoked, we invoke a metrizable

natural topology under which upper contour sets Uy :“ tx P X : x ě yu, @y P X, and lower

contour sets Ly :“ tx P X : x ď yu, @y P X, are closed, where ě,ď are our primitive

partial order.

3 Individual Choices

In this section, we study wMCS of individual choices. Consider an individual who chooses

an action x from some set X 1 Ă X by maximizing an objective function f : X Ñ R. We

are concerned with how her choices

MX 1pfq :“ arg max
xPX 1

fpxq

change when her objective function f shifts from one function u to another v. In particular,

we explore sufficient conditions for the shift to produce wMCS of her choices—or more

precisely, MX 1pvq ěws MX 1puq—for every subdomain X 1 within a class X Ă 2X .

The sufficient conditions we look for should ideally be “tight” or “necessary” in some

sense, and this desideratum is provided by the requirement that the conditions be necessary

for wMCS for every subdomain X 1 Ă X within a class X Ă 2X . How rich we require that

class X to be involves a tradeoff. If X is very coarse, then the sufficient conditions become

weak, but they could become too dependent on the “details” of the specific subdomain to

be of practical value. If X is very rich, the conditions become detail-free and robust but

at the expense of being strong. In this regard, we follow two prominent works by Milgrom

6Some other terminologies are used for the same notion: Topkis (1998) uses subcomplete sublattice and
Zhou (1994) uses closed sublattice. In particular, the “closedness” of Zhou (1994) should not be confused
with the topological “closedness” used in this paper.
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and Shannon (1994) and Quah and Strulovici (2009).

Milgrom and Shannon (1994) find conditions that guarantee sMCS on the class Xsublat
of all sublattices of X, whereas Quah and Strulovici (2009) find conditions that guarantee

sMCS on the class Xsubint of all subintervals of X, where X is totally ordered.7 Obviously,

the class of sublattices of X is richer than the class of subintervals of X (note a subinterval

is a sublattice).8 So, the condition for monotone comparative statics with respect to the

former class will be more robust, albeit stronger, than that with respect to the latter class.

3.1 Characterization with Respect to Sublattices of X.

Milgrom and Shannon (1994) provide canonical conditions that guarantee sMCS of indi-

vidual choice on the class Xsublat. Specifically, their Theorem 4 proves that the maximizers

of v strong set dominate those of u for every sublattice of X if v MS dominates u, or

v ľMS u:9 (i) v single-crossing dominates u, i.e., for any x2 ą x1, upx2q ´ upx1q ě pą

q0 ñ vpx2q ´ vpx1q ě pąq0; and (ii) f “ u, v is quasi-supermodular: for any x1, x2 P X,

fpx2q ´ fpx1 ^ x2q ě pąq0 ñ fpx1 _ x2q ´ fpx1q ě pąq0. Intuitively, (i) means that it pays

a decision maker to raise her action under utility function v whenever it does so under

utility function u, and (ii) means that raising one component of action by a decision maker

increases her incentive to raise another component of her action (in the ordinal sense).

These two conditions combined together imply that: for any x1, x2 P X, x2 ď x1,

upx2q ě pąqupx1 ^ x2q ñ vpx1 _ x2q ě pąqvpx1q. (1)

It is immediate that sMCS follow from (1): if x2 P MX 1puq and x1 P MX 1pvq for any

sublattice X 1, then x1 _ x2 PMX 1pvq and x1 ^ x2 PMX 1puq.

We weaken (1) in the following way. We say v weakly dominates u, and write v ľw u,

if, for any x1, x2 P X, x2 ď x1,

upx2q ě pąqmaxtupx1 ^ x2q, upx1qu ñ maxtvpx2q, vpx1 _ x2qu ě pąqvpx1q. (2)

This condition is weaker than MS dominance since the hypothesis of (2) is stronger, and

7 There is a subtle difference between the two studies: Quah and Strulovici (2009) obtain their charac-
terization by fixing the constraint set X 1 in two maximization problems under comparison, while Milgrom
and Shannon (1994) do so by varying X 1 (in the strong set order sense) together with the objective function.
Our study takes the former approach.

8If x, x1 P ra, bs, then x^ x1, x_ x1 P ra, bs.
9As mentioned earlier in footnote 7, MS dominance does not quite characterize the sMCS for all

sublattices. To be precise, Theorem 4 of Milgrom and Shannon (1994) shows that MS dominance is also
necessary (in addition to being sufficient) for MX2pvq ěss MX1puq in which X2 strong set dominates X 1.
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its conclusion is weaker, than that of (1). Therefore, (1), and hence v ľMS u, implies

that v ľw u. Note also that weak dominance need not yield sMCS of individual choices.

Suppose x2 P MX 1puq and x1 P MX 1pvq for a sublattice X 1, so the hypothesis of (2) holds;

yet we are not assured that x1 _ x2 PMX 1pvq.

For wMCS of individual choice on sublattices, however, weak dominance turns out to

be just the right condition:

Theorem 1. Suppose that X is a lattice. Function v weakly dominates u if and only if,

for every X 1 P Xsublat,
MX 1puq ďws MX 1pvq (3)

whenever both sets are nonempty.

Proof. The “only if” direction. Fix any sublattice X 1 Ă X and let z2 P MX 1puq

and z1 P MX 1pvq. Clearly, upz2q ě maxtupz1 ^ z2q, upz1qu. Since v ľw u, we then have

maxtvpz2q, vpz1 _ z2qu ě vpz1q. Hence, MX 1pvq upper weak set dominates MX 1puq. For

the lower weak set monotonicity, we invoke the contrapostive involving strict inequalities.

Since vpz1q ě maxtvpz2q_vpz1_z2qu, we must have maxtupz1^z2q, upz1qu ě upz2q, proving

that MX 1pvq lower weak set dominates MX 1puq.

The “if” direction. Consider X 1 “ tx1, x2, x1 ^ x2, x1 _ x2u, where x2 ď x1. Suppose first

upx2q ě maxtupx1 ^ x2q, upx1qu. Then, tx2, x1 _ x2u XMX 1puq ‰ H. We must then have

maxtvpx2q, vpx1 _ x2qu ě vpx1q, or else MX 1pvq does not upper weak set dominate MX 1puq.

To prove the strict inequality part of the condition, we consider its contrapositive. To this

end, suppose maxtvpx2q, vpx1 _ x2qu ď vpx1q. Then, tx1, x1 ^ x2u XMX 1pvq ‰ H. We must

then have maxtupx1^x2q, upx1qu ě upx2q, or else MX 1pvq does not lower weak set dominate

MX 1puq. This implies that upx2q ą maxtupx1^x2q, upx1qu ñ maxtvpx2q, vpx1_x2qu ą vpx1q.

�

3.2 Characterization with Respect to Subintervals of X.

The domain of subintervals is coarser than that of sublattices. Hence, the condition char-

acterizing wMCS in the former domain must be weaker than weak dominance. To describe

that condtion, for any x1, x2 P X, we let

Jpx1, x2q :“ tx P X : x1 ^ x2 ď x ď x1 _ x2u
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denote the smallest subinterval of X containing them. Further, we assume that MX 1pfq is

well defined for every subinterval X 1 of X, for f “ u, v.10

We say v weakly interval dominates u, or v ľwI u, if, for any x1, x2 P X such that

x2 ď x1, upx2q ě upxq, and vpx1q ě vpxq, @x P Jpx1, x2q,

upx2q ě pąq max
xPJpx1^x2,x1q

upxq ñ max
xPJpx2,x1_x2q

vpxq ě pąq vpx1q. (4)

Note that the weak interval dominance is implied by weak dominance: the hypothesis of (4)

is stronger, and its conclusion is weaker, than that of (2). The following result shows that

weak interval dominance characterizes wMCS of individual choices on every subinterval.

Theorem 2. Suppose that X is a lattice. Function v weakly interval dominates u if and

only if, for every X 1 P Xsubint,
MX 1puq ďws MX 1pvq. (5)

Proof. The “only if” direction. Choose any z2 PMX 1puq and z1 PMX 1pvq, and suppose

that z2 ď z1. Then, since v ľwI u and upz2q ě maxxPJpz1^z2,z1q upxq, there exists z3 P

Jpz2, z1 _ z2q such that vpz3q ě vpz1q. That X 1 is an interval and z1, z2 P X 1 implies

Jpz1, z2q Ă X 1, which in turn implies z3 P Jpz2, z1 _ z2q Ă Jpz1, z2q Ă X 1. We must thus

have z3 P MX 1pvq, since vpz3q ě vpz1q and z1 P MX 1puq. Hence, MX 1pvq upper weak set

dominates MX 1puq.

For the lower weak set domination, we consider the contrapositive relation involving

strict inequalities. Specifically, choose any z2 PMX 1puq and z1 PMX 1pvq, and suppose that

z2 ď z1. Then, since v ľwI u and vpz1q ě maxxPJpz2,z1_z2q vpxq, there exists z3 P Jpz1^z2, z1q

such that upz3q ě upz2q. For the same reason as above, we have z3 P Jpz1 ^ z2, z1q Ă

Jpz1, z2q Ă X 1. We must then have z3 P MX 1puq, since upz3q ě upz2q and z2 P MX 1puq,

proving that MX 1pvq lower weak set dominates MX 1puq.

The “if” direction. Fix any x2, x1 with x2 ď x1 such that upx2q ě upxq and vpx1q ě

vpxq, @x P Jpx1, x2q. Obviously, upx2q ě maxxPJpx1^x2,x1q upxq. Suppose to the contrary that

vpx3q ă vpx1q, @x3 P Jpx1, x1 _ x2q. Then, MJpx1,x2qpvq fails to upper weak set dominate

MJpx1,x2qpuq, a contradiction. Next we prove the strict inequality part of the condition,

by considering its contrapositive. Note that vpx1q ě maxxPJpx1_x2,x2q vpxq. Suppose to the

contrary that upx3q ă upx2q, @x3 P Jpx1 ^ x2, x1q. Then, MJpx1,x2qpvq fails to lower weak

set dominate MJpx1,x2qpuq, a contradiction. �

Theorem 2 parallels the characterization result in Quah and Strulovici (2009) for a

10This is guaranteed if X is compact, X 1 is closed, and f “ u, v is upper semicontinuous, for instance.
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totally ordered X. For such X, their interval dominance order characterizes sMCS for all

subintervals of X.11 In fact, one can extend their interval dominance order to a general

lattice X. For such X, we say v interval dominates u, or v ľI u, if, for any x1, x2 P X,

x2 ď x1, such that upx2q ě upxq and vpx1q ě vpxq, @x P Jpx1, x2q,

upx2q ě pąqupx1 ^ x2q ñ vpx1 _ x2q ě pąq vpx1q. (6)

This condition reduces to Quah and Strulovici’s interval dominance order when X is totally

ordered. For the general lattice X, Theorem 13 in Online Appendix D proves that (6)

characterizes sMCS for every subinterval of X in strong set order.12 This condition implies

weak interval dominance, and hence yields wMCS.

Corollary 1. If v ľI u, then v ľwI u.

Proof. The statement follows from Theorems 2 and 13 (in Online Appendix D). �

3.3 Properties of Individual Choices.

One by-product of the conditions guaranteeing sMCS is that MX 1pfq forms a sublattice

of X. Specifically, if f is quasi-supermodular and X 1 is a sublattice, then MX 1pfq is a

sublattice. The same is not implied by our wMCS conditions, however. In fact, MX 1pfq

need not (even) be a lattice. The following example illustrates this point.

Example 1. Let X “ r0, 1s2, upx1, x2q “ ´px1` x2´ tq
2, and vpx1, x2q “ ´px1` x2´ t

1q2,

for 0 ă t ă t1 ă 1. Note that v weakly interval dominates u. Indeed, for any subinterval

X 1, MX 1puq is the projection of the hyperplane tx P r0, 1s2 : x1`x2 “ tu on X 1, and likewise

MX 1pvq is the projection of the hyperplane tx P r0, 1s2 : x1 ` x2 “ t1u on X 1. See the blue

and red lines in Figure 2. One can easily see that MX 1pvq dominates MX 1puq in weak set

order but not in strong set order. Note also that neither set forms a lattice, let alone a

sublattice of X. Finally, observe that v does not weakly dominate u. Consider a sublattice

Z “ tx1, x2, x1 ^ x2, x1 _ x2u consisting of the four dots in Figure 2. Clearly, MZpuq “ x2

and MZpvq “ x1, and they are not weak set ordered.

The following proposition establishes some useful properties of individual choices, which

will be referred to in our analysis of games.

11Their online appendix considers a general lattice X and provides a set of conditions that are sufficient
(but not necessary) for sMCS for all subintervals of X,

12This characterization means that the current (generalized) interval dominance order is weaker than
the sufficient condition provided in Theorem 1 of Quah and Strulovici (2007): their total-order version of
interval dominance and their I-quasisupermodularity. See Online Appendix D.
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p0, 0q

p1, 1q

MX1puq

MX1pvq

x1

x2
x1 _ x2

x1 ^ x2

X 1

Figure 2: Weakly interval dominating shift that is not weakly dominating

Proposition 1. Assume X is a partially ordered metric space, and f is upper semicon-

tinuous. Then, for any compact subset X 1 of X, MX 1pfq is nonempty and compact, and

admits maximal and minimal points.13

Proof. First of all, the nonemptiness of MX 1pfq follows from Weierstrass’ extreme value

theorem. Let us prove that MX 1pfq is closed, and thus compact. Consider any sequence

pxmq with xm P MX 1pfq, @m, and any limit point x˚ of the sequence. We must have

x˚ P X 1 since X 1 is compact. Also, the upper semicontinuity of f implies that fpx˚q ě

lim supmÑ8 fpxmq, which in turn implies x˚ P MX 1pfq, as desired. By Theorem 2.3 of Li

(2014), the compactness of MX 1pfq implies that MX 1pfq is chain complete: namely, every

chain in X has a supremum and an infimum in X. By Zorn’s lemma, it then follows that

there are maximal and minimal points in MX 1pfq.
14 �

13Minimal points of X 1 are a set tx P X 1 : x1 ă x,@x1 P X 1u and maximal points of X 1 are a set
tx P X 1 : x1 ą x,@x1 P X 1u.

14Zorn’s lemma states that a partially ordered set X 1 has a maximal element if it satisfies the following
property: every chain in X 1 has an upper bound in X 1. The latter property is satisfied if X 1 is chain-
complete. Note that the existence of minimal point obtains easily from reversing a given order.
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4 Pareto-Optimal Choices

Consider a set of alternatives X and a finite set I of individuals with utility functions

u “ puiqiPI , where ui : X Ñ R is a utility function for individual i. We say y P X

Pareto dominates x P X given u if uipyq ě uipxq for all i P I and ujpyq ą ujpxq for at

least one j P I. The set of Pareto optimal choices (or POC in short) given u is the set

P puq :“ tx P X : no y P X Pareto dominates x given uu. We wish to study conditions

enabling wMCS of sets P puq with respect to a change in utility functions u.

Remark 1. Our main interpretation of the set I is a collective of individuals. As mentioned

in the introduction, however, one could also interpret I as a single decision maker with

incomplete preferences. According to that interpretation, the decision maker I is associated

with functions u “ puiqiPI , and the decision maker’s choice behavior is described by the

Pareto optimal choices P puq.15

The existence of a Pareto optimal choice follows from standard assumptions.

Proposition 2. Assume X is compact and ui is upper semicontinuous for every i P I.

Then, the set P puq is nonempty.16

Proof. See Appendix A. �

4.1 Monotone Comparative Statics of Pareto Optimal Choices

In order to analyze wMCS of Pareto optimal choices, we first present a novel characteriza-

tion of POC, which we will use later for our wMCS result.

Lemma 1. Suppose X is compact and convex, and ui is upper semicontinuous and concave

for each i P I. Then, x P P puq if and only if there exist strictly positive weights λ :“

pλ1, ..., λ|I|q P R|I|`` and a partition I “ tI1, ..., Inu of the set of agents I such that

x P Xn, where X0 :“ X and Xm :“ arg max
x1PXm´1

ÿ

iPIm

λiuipx
1
q for all m “ 1, ..., n.

Proof. See Appendix A. �

15In a context of choice problems under certainty, Ok (2002) provides sufficient conditions for incomplete
preferences to be represented as Pareto optimal choices. Characterization results are given by Dubra,
Maccheroni and Ok (2004) and Ok, Ortoleva and Riella (2012) for problems with lotteries and uncertainty.
See also Eliaz and Ok (2006) who characterize a class of incomplete preferences.

16The set of Pareto optimal choices may be empty if X is not compact. For example, let X “ r0, 1q,
I “ t1u, and u1pxq “ x. Then there exists no Pareto optimal choice because for any x P X, there exists
x1 P X with x1 ą x and hence u1px

1q ą u1pxq.
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This characterization is related to the fact that, given the conditions above, every Pareto

optimal choice maximizes a weighted sum of utilities (see Mas-Colell et al. (1995)), possibly

with zero weights on some individuals. This fact does not provide a characterization,

however, since the converse does not hold if there are ties.17 Instead, our characterization

rationalizes POC as serially maximizing welfare. More specifically, an alternative is Pareto

optimal if and only if it is a solution to a series of maximization problems, where at each

step m, the solutions maximize the weighted total welfare of a subset of players Im (with

all weights strictly positive) among the solutions from the earlier steps.

Our serial welfare maximization is reminiscent of the serial-dictatorship characterization

of Pareto efficiency for indivisible object assignment (Abdulkadiroğlu and Sönmez, 1998).

Note that indifferences are quite natural in this environment, since an agent is indifferent

to alternatives that differ only in others’ assignments. In that setting, serial dictatorships

correspond to a subclass of the above serial welfare maximization such that the partition

I is made up of all singleton sets so that exactly one individual’s utility is maximized at

each step.

Building on the characterization in Lemma 1, we now establish a wMCS result for

POC. To this end, we indtroduce several conditions. We say that utility functions v single-

crossing dominates utility functions u if vi single-crossing dominates ui for each i P I, and v

increasing-differences dominates u if, for each i P I and x1 ą x, vipx
1q´vipxq ě uipx

1q´uipxq.

Obviously, the latter condition implies the former. We say u is supermodular if ui is

supermodular for each i P I: for each x, x1 P X, uipx_x
1q´uipxq ě uipx

1q´uipx^x
1q.18 Just

like single-crossing dominance and quasi-supermodularity, increasing-difference dominance

and supermodularity guarantee that individual choices exhibit sMCS (Topkis, 1979). We

use them to establish wMCS of POC.

Theorem 3. Suppose X is a compact, convex and complete lattice, and u and v are both

upper semicontinuous, concave and supermodular. If v increasing-differences dominates u,

then P pvq ěws P puq.

Proof. Suppose x̂ P P puq. Then, by Lemma 1, there exist λ :“ pλ1, ..., λ|I|q P R|I|`` and a

17Specifically, merely maximizing weighted welfare is not sufficient for Pareto optimality when welfare
weights for some individuals are zero. This is because welfare maximization may not break the ties for
agents with non-zero weight in a way that accounts for the utilities of agents with zero welfare weights. On
the other hand, it is straightforward to see that maximizing weighted welfare for strictly positive weights
is not necessary for Pareto optimality (though it is sufficient).

18It is straightforward to see that supermodularity implies quasi-supermodularity.
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partition I “ tI1, ..., Inu of agents I such that

x̂ P Xm :“ arg max
x1PXm´1

ÿ

iPIm

λiuipx
1
q, @m “ 1, ..., n,

where X0 :“ X.

For the same λ and I, define

Ym :“ arg max
x2PYm´1

ÿ

iPIm

λivipx
2
q, @m “ 1, ..., n,

where Y0 “ X. We prove inductively that Ym ěss Xm for all m “ 1, ..., n. Suppose indeed

Ym´1 ěss Xm´1.19 Since u and v are supermodular and v increasing-differences domi-

nates u,
ř

iPIm
λiuipx

2q and
ř

iPIm
λivmpx

2q are supermodular, and the latter increasing-

differences dominates the former. Then, by Theorem 4 of Milgrom and Shannon (1994)

we have Ym ěss Xm, so Ym ěws Xm, for m “ 1, ...n. Hence, there exists ŷ ě x̂ such that

ŷ P Yn. Applying Lemma 1 again, we conclude that ŷ P P pvq. This proves that P pvq upper

weak set dominates P puq. A symmetric argument in the reverse order proves the lower

weak set domination of P puq by P pvq. �

In the proof of this theorem, the characterization in Lemma 1 plays an important role.

Under convexity of X and concavity of each ui, by this Lemma, x̂ is Pareto optimal only if

it solves a series of maximization problems for some partition of agents and some profile of

weights. Then, supermodularity of u and v, together with increasing-differences domination

of u by v, guarantees that the weighted sums of ui’s and vi’s inherit the same properties.

This implies that, for the same partition and weights, the series of maximization problems

associated with v has a solution ŷ ě x̂. By Lemma 1 again, ŷ is Pareto optimal under v,

as desired.

Given Theorem 3, it is natural to ask whether the conditions in its hypothesis can be

relaxed. We establish that compactness of X cannot be dispensed with; see the example

in Online Appendix E.3. Whether other properties, namely the convexity of X or the con-

cavity or supermodularity or the increasing-differences dominance of the utility functions,

can be weakened proved more difficult to resolve. On the one hand, our proof utilizes these

conditions in an essential manner. As illustrated earlier, we heavily rely on the charac-

terization of Pareto optimality by a series of maximization problems of a weighted sum of

individuals’ utilities (Lemma 1), and this characterization does not hold unless X is convex

19This holds for m “ 1—namely, Y0 “ X ěss X “ X0—, since X is a lattice. For m ą 1, it is an
induction hypothesis.
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and the utility functions are concave. Moreover, the proof of the theorem builds upon

applying a (strong) MCS result of Milgrom and Shannon (1994) to weighted welfares asso-

ciated with two profiles of utilities u and v; and supermodularity and increasing-differences

dominance are used in a crucial manner for guaranteeing that the weighted welfares satisfy

conditions for MCS.20 On the other hand, we have not found any counterexample when

those conditions are dropped. Whether those conditions are tight or not is an interesting

but challenging question, and we submit it as an open question.

Fortunately, further progress can be made for a certain natural subdomain. Specifically,

we next analyze a case where X is totally ordered as in the case of, for instance, one-

dimensional Euclidean space. In that case, we offer a much weaker sufficient condition for

wMCS.

To proceed, we first present the following lemma which holds generally for compact X,

and not just for totally ordered X.

Lemma 2. Suppose X is compact. If y R P puq, then y is Pareto dominated by some

x P P puq.

Proof. See Appendix A. �

With this lemma at hand, we are ready to establish wMCS for totally ordered X under

the weaker sufficient condition.

Theorem 4. Suppose that X is compact and totally ordered. If v single-crossing dominates

u, then P pvq ěws P puq.

Proof. By Proposition 2, both P puq and P pvq are well defined and admit infima and

suprema. Any x ă inf P puq is Pareto dominated, so it must be Pareto dominated by some

x1 P P puq by Lemma 2: uipx
1q ´ uipxq ě 0 for all i P I and ujpx

1q ´ ujpxq ą 0 for some

j P I. Since x1 ą x and v single-crossing dominates u, we must have vipx
1q ´ vipxq ě 0 for

every i P I and vjpx
1q´ vjpxq ą 0. Hence, x is also Pareto dominated under v. This proves

that inf P puq ď inf P pvq.

The same argument, applied to the contrapositive of the strict inequality part of the

single-crossing domination, implies that if x2 ą supP pvq, then x2 ą supP puq, implying

that supP puq ď supP pvq.

20In particular, one might wonder why Theorem 3 assumes cardinal properties, namely increasing-
differences dominance and supermodularity, rather than weaker, ordinal ones, namely single-crossing dom-
inance and quasisupermodularity. The reason is that, as already mentioned, our proof builds upon weighted
welfare maximizations for two profiles of utilities u and v, and the cardinal properties are closed under
linear combinations while the ordinal ones are not.
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It remains to rule out the possibility that inf P puq “ inf P pvq, inf P puq R P puq, and

inf P pvq P P pvq. To this end, suppose inf P puq R P puq. Then inf P puq is Pareto dominated

by some x1 P P puq, and by the same single-crossing argument as above, it follows that

inf P puq is Pareto dominated by x1 under v, so inf P pvq R P pvq. Finally, a similar argument

rules out a symmetric possibility with regard to the suprema. Combining the results, we

conclude that P pvq weak set dominates P puq. �

4.2 Properties of Pareto Optimal Choices.

Given Theorems 3 and 4, a natural question is whether the same assumptions guarantee

sMCS, not just wMCS, of POC. The following example shows that the answer is negative.21

Example 2 (Failure of sMCS). Let X “ r0, 6s2 endowed with the standard product order,

that is, px, yq ě px1, y1q if and only if x ě x1 and y ě y1.22 Suppose that I “ t1, 2u and

#

u1px, yq “ ´px´ 1q2 ´ py ´ 1q2

u2px, yq “ ´px´ 4q2 ´ py ´ 1q2
and

#

v1px, yq “ ´px´ 1q2 ´ py ´ 4q2

v2px, yq “ ´px´ 4q2 ´ py ´ 2q2.

Then u and v satisfy all the conditions in Theorem 3. Meanwhile, P puq is a (closed) line

segment between p1, 1q and p4, 1q while P pvq is a line segment between p1, 4q and p4, 2q, i.e.,

P puq “ tλp1, 1q ` p1´ λqp4, 1q : λ P r0, 1su and P pvq “ tλp1, 4q ` p1´ λqp4, 2q : λ P r0, 1su.

The set P pvq dominates P puq in weak set order but not in strong set order; for instance,

p4, 1q P P puq and p1, 4q P P pvq, but p4, 1q _ p1, 4q “ p4, 4q R P pvq. See Figure 3.

As illustrated in Introduction and the proof of Theorem 3, a change in utility functions

shifts the set of (serial) maximizers of weighted welfare monotonically in the sense of strong

set order given any fixed partition and weights. POC is a union of such maximizers

over different partitions and weights, however, and this fact causes the failure of strong

set monotonicity. In the present example, p4, 1q P P puq is the solution to a series of

maximization problems with respect to partition I “ tt2u, t1uu (together with arbitrary

weights), and the solution given the same weight and partition under v is p4, 2q, which does

strong set dominates p4, 1q as singleton-sets. However, P pvq contains p1, 4q, a solution with

respect to a different partition, tt1u, t2uu, and indeed the join p4, 1q _ p1, 4q “ p4, 4q fails

to be in P pvq. �

21While Example 2 is set in a multidimensional setting Theorem 3 assumes, the example in Online
Appendix E.3 shows the same conclusion for Theorem 4.

22Throughout, when X is a subset of (multi-dimensional) Euclidean space, we endow X with the stan-
dard (product) order unless noted otherwise.
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p0, 0q

p6, 6q

Figure 3: Failure of strong set monotonicity

The above example also demonstrates that the set of Pareto optimal choices does not

necessarily form a lattice. In particular, P pvq in that example fails to be a lattice (indeed,

it does not even have a smallest or largest point).

Another question of interest is whether in general P puq is compact (or equivalently

closed, given compactness of X). Compactness of POC plays an important role in Section

5.3. In that section, we consider a game where a player is a representative of a collective

or an individual with incomplete preferences whose best response is composed of POC. For

establishing an existence of a (pure strategy) Nash equilibrium and comparative statics in

such a game, we need the best response correspondences to be compact-valued.

The following example shows that P puq is not necessarily compact in our environment.

In fact, P puq may even fail to have a minimal (or maximal) element (note that any compact

set has both minimal and maximal points).23

Example 3 (Non-existence of a minimal POC). Let X “ r0, 1s, I “ t1, 2u, and

u1pxq “

#

x if x ď 1{2

1´ x if x ą 1{2,
and u2pxq “

#

2´ x if x ă 1

3 if x “ 1.

23To see the connection between compactness and existence of maximal/minimal points, refer to the
proof of Proposition 1.
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Figure 4: Example with no minimal Pareto optimal choice and failure of compactness.

This environment satisfies all the assumptions made for Proposition 2; In particular, X

is compact and both utility functions are upper semicontinuous. See Figure 4. However,

P puq “ p0, 1{2s Y t1u, and this set is non-compact and does not have a minimal element.24

�

This example shows that conditions assumed in Proposition 2 need not guarantee com-

pactness of P puq. Fortunately, some additional regularity conditions lead to compactness

(and hence the existence of maximal and minimal points). To state them, for each i P I

and x P X, let U´ipxq :“ ty P X : ujpyq ě ujpxq, @j P Iztiuu denote the set of alternatives

that every agent other than i weakly prefers to x.

Proposition 3. Suppose that X is compact and convex and that, for each i P I, uip¨q

is continuous and the correspondence U´ip¨q is lower hemicontinuous.25 Then, P puq is

compact. In particular, P puq has minimal and maximal points.

Proof. See Appendix A. �
24An example with no maximal element of P puq can be obtained from this example by endowing X

with the opposite order to the standard one.
25Given the compactness of X (which is assumed throughout), U´ipxq is lower hemicontinuous if, for

each sequence pxnqn with xn P X for each n P N and converging to x, and for any z P U´ipxq, there exists
pznqn with zn P U´ipxnq for each n P N that converges to z. Proposition 6 in Online Appendix E.2 provides
sufficient conditions for U´ipxq to be lower hemicontinuous.
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5 Fixed Point Theorem and Games with Weak Strate-

gic Complementarities

In this section, we present a fixed-point theorem that plays a central role in the remainder

of this paper. In addition to establishing the existence of a fixed point, we also offer a new

comparative statics theorem for the fixed points and an algorithm to find fixed points. We

then apply these results to analyze a new class of games called games with weak strategic

complementarities.

Consider a nonempty set X endowed with a partial order ě and a metric which induces

a natural topology. Throughout, assume that X is compact with respect to this topology.

Let F : X Ñ X be a self-correspondence, i.e., a correspondence from X to itself. We

say that F is strong set monotonic if F px1q strong set dominates F pxq for x1 ě x, upper

weak set monotonic if F px1q upper weak set dominates F pxq for x1 ě x, and lower weak set

monotonic if F px1q lower weak set dominates F pxq for x1 ě x. Finally, we say that F is

compact-valued if F pxq is compact for all x P X.

5.1 Fixed Point Theorem.

Here, we provide our fixed-point theorem which will play a central role in the subsequent

analysis. In addition, we present a novel comparative statics theorem for the fixed points.

We first define X` :“ tx P X : Dy ě x s.t. y P F pxqu to be the set of points whose

image includes a weakly higher point than that point, and similarly define X´ :“ tx P X :

Dy ď x s.t. y P F pxqu. Now we are ready to present a formal statement of our fixed-point

theorem.

Theorem 5 (Fixed-Point Theorem). Suppose X is compact, a self-correspondence F :

X Ñ X is nonempty-valued, upper (resp., lower) weak set monotonic and compact-valued,

and X` (resp., X´) is nonempty. Then, F has a fixed point. Moreover, there exists a

maximal (resp., minimal) fixed point, that is, a fixed point x for which there is no other

fixed point y with y ą x (resp., y ă x).

Proof. See Appendix B. �

Before proceeding, it is instructive to compare this theorem with Zhou (1994)’s fixed-

point theorem, which extends Tarski (1955)’s fixed-point theorem to accommodate corre-

spondences. First, we require that X be partially ordered. This condition is considerably

weaker than the complete lattice condition required by Tarski (1955) or Zhou (1994). Sec-

ond, we do not require F pxq to be a complete sublattice of X, as is assumed by Zhou
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(1994). Third, we require F to be weak set monotonic instead of strong set monotonic

as in Zhou (1994). Finally, the nonemptiness of X` (or X´) is trivially satisfied both in

Tarski (1955) and Zhou (1994) because they restrict their attentions to the case where X is

a complete lattice and hence where there exist smallest and largest points. Meanwhile, our

theorem requires two topological conditions—compactness of X and compact-valuedness

of F—absent in Tarski (1955) and Zhou (1994).

Compared with the fixed-point theorem of Tarski (1955) or Zhou (1994), Theorem 5

dispenses with some restrictive order-theoretic assumptions but adds the aforementioned

topological assumptions. Since these latter conditions are satisfied in many economic ap-

plications, the current theorem will be useful in many settings in which Tarski (1955) or

Zhou (1994) cannot be applied. In fact, Theorem 14 in Online Appendix F shows that,

in many problems of interest, the conditions in Theorem 5 are weaker than those of Zhou

(1994)’s theorem. Furthermore, the following examples show that our conditions cannot

be dispensed with:

• Compactness of X: Let X “ r0, 1q. The correspondence F : X Ñ X with F pxq “

t1
2
` 1

2
xu, @x P r0, 1q satisfies all conditions except for compactness of X and admits

no fixed point.

• Compact-valuedness of F : Let X “ r0, 1s. The correspondence F : X Ñ X with

F pxq “ p0, 1qztxu, @x P r0, 1s satisfies all conditions except for compact-valuedness of

F and admits no fixed point.

• Nonemptiness of X`: Let X “ tp0, 1q, p1, 0qu. The correspondence F : X Ñ X

with F pp0, 1qq “ tp1, 0qu and F pp1, 0qq “ tp0, 1qu satisfies all conditions except for

nonemptiness of X` and admits no fixed point.

• Upper weak set monotonicity: Let X “ tp0, 0q, p0, 1q, p1, 0qu. The correspondence

F : X Ñ X with F pp0, 0qq “ tp0, 1q, p1, 0qu, F pp0, 1qq “ tp1, 0qu, and F pp1, 0qq “

tp0, 1qu satisfies all conditions except for upper weak set monotonicity (although it

satisfies lower weak set monotonicity) and admits no fixed point.

• Lower weak set monotonicity and minimal fixed point: Let X “ r0, 1s. The

correspondence F : X Ñ X with F pxq “ rx, 1s for x P p0, 1s and F p0q “ r1{2, 1s is

upper weak set monotonic but not lower weak set monotonic, while satisfying all other

conditions for Theorem 5. The set of fixed points is p0, 1s and contains a maximal

element but not a minimal one.
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While the conditions required in Theorem 5 are typically weaker than those in extant

results, the conclusions obtained are also weaker. Unlike Tarski’s fixed-point theorem and

Zhou (1994)’s extension, fixed points need not form a complete lattice in the current case,

and the set of fixed points may not even have the largest or the smallest element. Still, it is

worth pointing out that the theorem shows that the set has a maximal or minimal point.26

Remark 2. After proving Theorem 5, we became aware of an earlier contribution by Li

(2014), who established the existence of a fixed point under the same set of assumption as

ours. We fully acknowledge his prior contribution here. Meanwhile, a few remarks are in

order. First, our proof is different from, and arguably simpler than, his; see Appendix B.

Second, we establish the existence of maximal and minimal fixed points, a property that

Li (2014) did not show. Finally, we also establish a comparative statics result on the fixed

points, to be presented below as Theorem 6, which is novel to our knowledge.

An important benefit of the fixed-point theorem is the ease with which it can be adapted

for monotone comparative statistics. For each self-correspondence F , let EpF q denote the

set of fixed points of F .

Theorem 6 (Comparative Statics). Suppose X is compact, both self-correspondences F

and G are upper (resp., lower) weak set monotonic and compact-valued, and X` (resp.,

X´) is nonempty for both F and G. If Gpxq ěuws F pxq (resp., Gpxq ělws F pxq) for all

x P X, then EpGq ěuws EpF q (resp., EpGq ělws EpF q).

Proof. Consider any x˚ P EpF q. Define correspondence G˚ by G˚pxq :“ Gpxqěx˚ for

x P Xěx˚ , where for any X 1 Ď X and x P X, X 1
ěx :“ tx1 P X 1 : x1 ě xu. Clearly, G˚ is

compact-valued. That x˚ P F px˚q and that Gpxq ěuws F pxq for each x P X imply that for

any x ě x˚, there is some x1 P G˚pxq, that is, G˚ is a nonempty-valued self-correspondence

defined on Xěx˚ . Moreover, G˚ is upper weak set monotonic since, for any x, x1 P Xěx˚

with x1 ě x and any y P G˚pxq Ă Gpxq, there exists some y1 P Gpx1q such that y1 ě ypě x˚q

so y1 P Gpx1qěx˚ “ G˚px1q. Since G˚ satisfies all the conditions for Theorem 5, there must

exist a fixed point x̃ P G˚px̃q, which means that x̃ P Gpx̃q and x̃ ě x˚. This completes

the proof for the “upper” version of the statement. The proof of the “lower” version is

symmetric. �
26The set of maximal or minimal fixed points is not necessarily compact. See Example 8 in Online

Appendix F.2.
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5.2 Iterative Algorithm for Finding a Fixed Point.

An important benefit of a monotonic operator is that it gives rise to a constructive method

for finding a fixed point. A classic result in the standard environment of Tarski and Zhou

is: given some additional continuity property of F which holds trivially if X is finite (a

practical situation), the highest fixed point can be obtained by iteratively applying the

highest selection from the correspondence starting from the highest point x :“ supX

(and a symmetric result holds for the lowest fixed point). This property, known as Kleene’s

fixed-point theorem (see Baranga (1991) for instance) and also established for supermodular

games by Milgrom and Roberts (1990) and Milgrom and Shannon (1994), is very convenient

in practice.

We show that a similar property holds if X satisfies the hypotheses of Theorem 5,

albeit with some qualifications. We say F is upper hemi-order-continuous if, for any

sequence ppxn, ynqqnPN converging to px, yq, where pxnqn is either monotone nondecreasing

or monotone nonincreasing, and yn P F pxnq for each n P N, we have y P F pxq.27

Theorem 7. Suppose X is compact, a self-correspondence F is upper weak set monotonic,

compact-valued, and upper hemi-order continuous, and X` is nonempty.

(i). For every x P X` there exists a weakly increasing sequence txnunPN such that x1 “ x

and and xn`1 P ty P X : y P F pxnq, y ě xnu, for each n P N; and its limit x˚ “

limnÑ8 xn is well defined and is a fixed point of F .

(ii). Suppose G : X Ñ X satisfies the properties of Theorem 5, is upper weak set monotonic

and upper hemi-order continuous, and Gpxq upper weak set dominates F pxq for each

x. Then, for each fixed point xF of F , there is a fixed point xG of G with xG ě xF

that can be found by an upward iterative procedure starting with x1 “ xF for G.28

A symmetric conclusion holds if F is lower weak set monotonic and lower hemi-order-

continuous, and X´ is nonempty.

Proof. Given the symmetry, we only prove (i) and (ii). First, since x1 P X`, there exists

x2 P ty P F px1q : y ě x1u. By upper weak set monotonicity of F , if xn`1 P F pxnq and if

xn`1 ě xn, for any n P N, then there must exist xn`2 P ty P F pxn`1q : y ě xn`1u. We

27Note that the condition is weaker than upper hemi-continuity since the condition is required only for
pxnqn that is monotone. The condition can be seen also as a generalization of the order continuity defined
for a function to a correspondence. See Milgrom and Roberts (1990) for an order-continuous function.

28More specifically, there exists a weakly increasing sequence txnunPN such that x1 “ xF and xn`1 P

ty P X : y P Gpxnq, y ě xnu, for each n P N; and its limit xG “ limnÑ8 xn is well defined and is a fixed
point of G.
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thus obtain a nondecreasing sequence of txnunPN. Since X is a compact metric space, the

increasing sequence has a limit x˚ “ limnÑ8 xn. By the upper hemi-order-continuity of F ,

x˚ P F px˚q, proving (i). The proof of (ii) follows the same argument, once we redefine the

starting point x1 “ xF of the iterative procedure for operator G. �

Recall that upper hemi-order-continuity is trivially satisfied if X is finite. Hence, The-

orem 7 suggests a convenient and fast algorithm to identify a fixed point for finite X, even

without the standard set of assumptions required by the traditional Tarski approach.

One may recall that in the setting of Tarski and Zhou, a monotonic algorithm starting

from the largest and smallest elements finds the largest and smallest fixed points, respec-

tively, and may wonder if maximal and minimal points can be found in this way in our

context. The following example provides a negative answer to that question.29

Example 4. Suppose X “ t1, 2, 3u ˆ t1, 2u and F : X Ñ X is defined by: F pp1, 1qq “

tp1, 2q, p2, 1qu, F pp2, 1qq “ tp1, 2q, p3, 2qu, F pp1, 2qq “ tp2, 1q, p3, 2qu, F pp2, 2qq “ tp2, 2q, p3, 2qu,

F pp3, 1qq “ tp3, 2qu, and F pp3, 2qq “ tp3, 2qu. Note that F is both upper and lower weak

set monotonic. There are two fixed points tp2, 2q, p3, 2qu. Suppose that one iterates F as

suggested in Theorem 7, starting with the lowest point x1 “ p1, 1q. Then, no matter which

point one chooses along the iteration, the only fixed point one can reach is p3, 2q. But this

is not a minimal fixed point; p2, 2q is the unique minimal point and smaller than p3, 2q. The

minimal fixed point p2, 2q cannot be reached from any iterative application of F starting

from p1, 1q. See Figure 5.

p1, 1q p2, 1q p3, 1q

p1, 2q p2, 2q

p3, 2q

Figure 5: Every iteration fails to reach a minimal fixed point.

5.3 Games with Weak Strategic Complementarities

In this part, we apply our monotone comparative statics results and the fixed-point theo-

rem to strategic environments to establish the existence and comparative statics of Nash

29Example 9 in Online Appendix F.3 illustrates additional difficulty with iterative procedures.
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equilibrium. Our equilibrium theory is reminiscent of that of Milgrom and Shannon (1994)

who use their sMCS result to establish analogous results to ours—i.e., wMCS—in games

with strategic complementarities. Our approach applies to a broader class of games, called

games with weak strategic complementarities, in which the best response correspondences

are required to be only weak set monotonic. Given our results in the previous sections, the

existence and comparative statics of Nash equilibrium can be established even in games

where only weak set monotonicity (and not strong set monotonicity) holds. As mentioned

earlier, games with weak strategic complementarities even allow for players who have in-

complete preferences or players who are representatives of coalitions each of whom follows

the Pareto criterion to make a choice for a coalition he or she belongs to.

Consider a normal-form game Γ “ pI,X, pBiqiPIq, where I is a finite set of players,

X :“
Ś

iPI Si is a cartesian product of strategy sets Si, and Bi : S´i Ñ Si is a correspon-

dence interpreted as the best response correspondence for player i. We assume that Si is

partially ordered for each i and any cartesian product, e.g., X or S´i, is partially ordered

by the product order based on the relevant partial orders. We further assume that each Si

is a compact metric space inducing a natural topology and let X be endowed with the prod-

uct topology. Finally, we assume that each Bi is a nonempty-valued and compact-valued

correspondence. We call these basic properties.

Remark 3. Importantly, we do not necessarily require that the best response correspon-

dence Bi be based on maximization of a utility function ui : X Ñ R,

Bips´iq :“ arg max
siPSi

uipsi, s´iq. (7)

Indeed, our analysis is applicable when, for instance, the best response correspondence is

defined as the set of Pareto optimal choices by a group of agents or by a set of “multi-selves”

in the case of an agent with incomplete preferences (see Proposition 4 below). At the same

time, we also note that the best response correspondence based on utility maximization (7)

satisfies our requirements, namely nonemptiness and compactness, as long as ui is upper

semicontinuous in si.
30 For the case of Pareto optimal choices, recall that Propositions 2

and 3 establish nonemptiness and compactness.

A strategy profile s “ psiqiPI is a Nash equilibrium if si P Bips´iq for every i P I.

We call Γ a game with weak strategic complementarities if it satisfies the basic

properties and the following conditions:

30The compactness can be seen as follows. Let v˚i :“ maxsiPSi
uipsi, s´iq, and let tsni unPN be a sequence

with sni P Bips´iq for each n “ 1, ..., converging to some s˚i P Si. Then, by the upper semicontinuity,
uips

˚
i , s´iq ě lim supnÑ8 uips

n
i , s´iq “ v˚i .
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(1) for each i P I, Bi is upper weak set monotonic;

(2) there exists s “ psiqiPI P X such that for each i, s1i P Bips´iq for some s1i ě si.

Conditions (1) and (2) correspond to those required by the Fixed Point Theorem (Theo-

rem 5) for general correspondences. Condition (1) is satisfied if players are economic agents

who possess the preferences we imposed for the comparative statics results in the previous

section, as will be discussed later. Condition (2) is vacuously satisfied if there exists a

smallest element in each player’s strategy space, e.g., if the strategy space is a lattice.

The definition of games with weak strategic complementarities is general and rather

abstract. The following proposition offers two sufficient conditions for a game to exhibit

weak strategic complementarities.

Proposition 4. A game Γ “ pI,X, pBiqiPIq is a game with weak strategic complementarities

if it satisfies the basic properties and, for each player i P I,

(i). Bips´iq is given as the solution to utility maximization (7), Si is a lattice, and uip¨, s
1
´iq

weakly interval dominates uip¨, s´iq for any s1´i ě s´i, or

(ii). Bips´iq is given as the set of Pareto optimal choices for a collection of payoff functions

uips´iq,
31 Si is a lattice, and uips

1
´iq dominates uips´iq whenever s1´i ě s´i, in the

sense of Theorem 3 or Theorem 4.

With these preliminary concepts and results at hand, we now provide general existence

and comparative statics results:

Theorem 8. (i). A game Γ “ pI,X, pBiqiPIq with weak strategic complementarities has

a nonempty set of Nash equilibria.

(ii). Suppose that Γ “ pI,X, pBiqiPIq and Γ1 “ pI,X, pB1iqiPIq are both games with weak

strategic complementarities, and Bips´iq ěuws B
1
ips´iq for every i P I and s´i P

S´i. Then, the set of Nash equilibria in Γ upper weak set dominates the set of Nash

equilibria in Γ1. (A symmetric result based on the lower weak set comparison also

holds.)

Proof. Note first that Bips´iq is nonempty and compact. Due to this property and proper-

ties (1) and (2) of games with weak strategic complementarities, the mapping F : X Ñ X

defined by F psq :“ pBips´iqqiPI satisfies the requirement of Theorem 5. We thus conclude

31That is, for each i P I we have uipsi, s´iq :“ puijpsi, s´iqqjPJi
with a certain index set Ji, and Bips´iq

is the set of Pareto optimal choices for agents in Ji with utility functions puijpsi, s´iqqjPJi
.
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that there exists a fixed point s˚ P F ps˚q, which means that the set of Nash equilibria is

nonempty. Moreover, we note that F psq upper weak set dominates F 1psq :“ pB1ips´iqqiPI

for each s P X. Thus, all the conditions for Theorem 6 are satisfied, which implies the

comparative statics conclusion of item 2 of the theorem. �

6 Application to Matching Theory

In this section, we apply our theory to matching problems. As we will demonstrate below,

the techniques we developed in the previous sections prove useful for analyzing stable

matching under weaker assumptions than have been employed by the existing research.

We first establish the existence of a stable matching building on our fixed-point theorem

(Theorem 5). We then obtain comparative statics of stable matchings based on our general

wMCS result for fixed points (Theorem 6).

The main departure from the existing literature is the generality of agents’ choice corre-

spondences we allow for. Specifically, we relax the two main assumptions in the literature;

WARP and substitutability. These relaxed assumptions allow for indifferences or even

incompleteness of preferences. This generality plays an important role in our main appli-

cations.

6.1 A Motivating Example

We begin with a simple example that illustrates why a choice correspondence that does not

satisfy WARP may arise in matching settings.

Example 5. Consider a firm f with two divisions, δ and δ1. The firm is subject to a

budget constraint that compels it to hire at most one worker across the divisions, but the

firm does not have strict preferences over which division hires a worker when both divisions

have applicants. Each division has its own preferences over the workers. There are 3

workers, w, w1 and w2, who are all acceptable to both divisions, and division δ1 prefers w2

to w1. Then, if workers w and w1 apply to divisions δ and δ1, respectively, then the choice

of the firm from this set of applications tpw, δq, pw1, δ1qu would be either pw, δq or pw1, δ1q,

where pw, δq, for instance, denotes a contract specifying a matching between w and δ. If w2

applies to δ1 in addition, then the firm faces a set of applications tpw, δq, pw1, δ1q, pw2, δ1qu

and chooses either pw, δq or pw2, δ1q.

A few points are worth noting. First, a multidivisional organization facing such a

constraint as in this example may exhibit a choice behavior described by a (multi-valued)
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correspondence rather than a function. This is the case if the organization does not have

strict preferences over different ways to resolve preference conflicts among its divisions.

In the above example, either pw, δq or pw1, δ1q can be chosen from the set of applications

tpw, δq, pw1, δ1qu.

Second, a multidivisional organization’s choice behavior may violate WARP and thus

not admit any complete (possibly weak) preference relation that rationalizes it. To see

this, note that if the choice of firm f were rationalizable by a complete (possibly weak)

preference relation, then the firm must be indifferent between pw, δq and pw1, δ1q because

both of them are chosen from tpw, δq, pw1, δ1qu. However, pw1, δ1q is never chosen from

tpw, δq, pw1, δ1q, pw2, δ1qu even though pw, δq is. As we argue below, the associated choice

correspondence fails WARP. Intuitively, incompleteness of the underlying preferences arises

naturally in a multidivisional firm because the firm simply lacks a criterion to compare

placement in different divisions (e.g., between pw, δq and pw2, δ1q).

To our knowledge, few papers in matching research allow for choice correspondences,32

and none that we know of accommodates incomplete preferences. However, such preferences

are quite natural, as suggested by the above example of a firm with multiple divisions.

Similar issues may arise in matching problems with constraints such as Japanese medical

match (Kamada and Kojima, 2015). In that problem, the government imposes a maximum

number of doctors to be placed in each region of the country. If the government does

not specify how many positions each hospital in a given region must give up to satisfy

the joint constraint, the choice behavior of the set of hospitals in the region cannot be

described by a single-valued function, and the resulting choice correspondence (for the

region) cannot necessarily be rationalized by a complete preference relation, just as in the

case of a multidivisional organization in Example 5. As we show below, the theory of

matching, both in terms of existence and comparative statics, generalizes to such settings.

6.2 Model and Results

We now present our model. There are a finite set F of firms and a finite set W of workers,

as well as a finite set X of contracts. Each contract x P X is associated with one firm

xF P F and one worker xW P W . We will often write x to denote a singleton set X 1 “ txu.

Given a set X 1 Ă X of contracts, let X 1
f “ tx P X

1 : xF “ fu and X 1
w “ tx P X

1 : xW “ wu

denote the sets of contracts firm f and worker w are involved with within X 1, respectively.

32There are, of course, some exceptions. A number of papers—for instance, Erdil and Ergin (2008) and
Abdulkadiroğlu, Pathak and Roth (2009)—consider matching under responsive preferences with ties on
the side of schools. In many cases, however, tie-breaking allows the problem to be reduced to the case with
strict priorities.
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A set of contracts X 1 Ă X will be called an allocation if it contains at most one contract

for each worker.

Each agent a P F YW is endowed with a choice correspondence: Ca : 2X Ñ 2X

where, for each X 1 Ď X, CapX
1q is a nonempty family of subsets of X 1

a. Any element of

CapX
1q represents a set of contracts agent a chooses from X 1. The choice correspondence

Ca induces the rejection correspondence Ra : 2X Ñ 2X , defined by RapX
1q “ tZ : Z “

X 1
azY for some Y P CapX

1qu.

For any pair of allocations X 1 and X2, we say that agent a weakly prefers X2 to X 1

if X2
a P CapX

1
a YX2

aq, and write X2 ľa X
1.33 We say that a strictly prefers X2 to X 1 if

X2 ľa X
1 but not X 1 ľa X

2, and write X2 ąa X
1.

We focus on the many-to-one matching setup by assuming that the choice correspon-

dence of each worker w satisfies the following properties: for any X 1 Ď X, (i) X2 P CwpX
1q

implies X2 Ď X 1
w and |X2| ď 1; and (ii) X2 P CwpX

1q if H čw X
2, and tx1u čw X

2 for any

x1 P X 1
w. In words, each worker chooses at most one contract (possibly a null set) and any

such that is not dominated by any other contract (including remaining unemployed).

An economy is summarized as a tuple Γ “ pF,W,X, pCaqaPFYW q. An allocation Z is

stable if

(i). (Individual Rationality) Za P CapZq for every a P F YW , and

(ii). (No Blocking Coalition) Zf P Cf pZYUpZqq for every f P F , where UpZq :“ tx P X :

x ąxW x1, @x1 P ZxW u.
34

The key method for analyzing stable allocations is to associate them with fixed points of

suitably-defined correspondence (see Adachi (2000), Fleiner (2003), Echenique and Oviedo

(2004, 2006), and Hatfield and Milgrom (2005), for example). WARP has been crucial for

this purpose.35 Formally, a preference relation for agent a P F YW satisfies WARP if and

only if the associated choice correspondence Ca satisfies the following two conditions (see

Kreps (1988), for instance):

(i). Sen’s α: Y P CapX
2q and Y Ă X 1 Ă X2 ùñ Y P CapX

1q, and

(ii). Sen’s β: Y, Y 1 P CapX
1q and Y P CapX

2q for X 1 Ă X2 ùñ Y 1 P CapX
2q.

33This is the so-called “Blair order” introduced by Blair (1988).
34In Online Appendix G.1, we consider an alternative notion of stability and its relation with the present

stability notion under Sen’s α or WARP.
35See Hatfield and Milgrom (2005), Che, Kim and Kojima (2019), and Aygün and Sönmez (2013), among

others. We note that authors have invoked WARP under different names; the first two sets of authors call
it Revealed Preference, while the last set of authors, who highlight the importance of the condition, call it
Irrelevance of Rejected Contracts.
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In words, Sen’s α states that an optimal choice from a “bigger” set must be an optimal

choice from a “smaller” set that contains it. Sen’s β attributes non-uniqueness of choice

to indifferences: if multiple alternatives are optimal from a smaller set and one of them

is still optimal from a bigger set, the other(s) must also be optimal from the bigger set.

While the former remains compelling, the latter can easily fail in the context of multidivi-

sional organizations or of incomplete preferences. For instance, in our motivating example,

the firm chooses either pw, δq or pw1, δ1q from tpw, δq, pw1, δ1qu, and it chooses pw, δq from

tpw, δq, pw1, δ1q, pw2, δ1qu, but it never chooses the contract pw1, δ1q from the latter set, violat-

ing Sen’s β. Therefore, we shall relax WARP by dispensing with Sen’s β, insisting only on

Sen’s α. Indeed, Sen’s α is compatible with a wide variety of preferences with indifferences

or even incompleteness.36

We now proceed with a fixed-point characterization of stable allocations. Let CF pX
1q :“

tYfPFYf : Yf P Cf pX
1q, @f P F u and RF pX

1q :“ tYfPFYf : Yf P Rf pX
1q, @f P F u. Define

CW and RW analogously. Then, a fixed-point mapping (or correspondence) T : 2X ˆ 2X Ñ

2X ˆ 2X is defined as follows: For each pX 1, X2q P 2X ˆ 2X , T pX 1, X2q “ pT1pX
2q, T2pX

1qq,

where

T1pX
2
q “ tX̃ P 2X : X̃ “ XzỸ for some Ỹ P RW pX

2
qu,

T2pX
1
q “ tX̃ P 2X : X̃ “ XzỸ for some Ỹ P RF pX

1
qu.

Intuitively, we can think of T as iterating on sets X 1 and X2 of contracts available respec-

tively to firms and workers. For each pair pX 1, X2q, T1 returns sets of contracts that are

available to the firms after removing contracts workers reject out of X2, while T2 returns

sets of contracts that are available to the workers after removing contracts rejected by

firms out of X 1. Mapping T is is similar to fixed-point mappings used in the existing liter-

ature such as Hatfield and Milgrom (2005), except that it is generalized to handle choice

correspondences rather than choice functions.

Theorem 9. Suppose that Ca satisfies Sen’s α for each a P F YW . Then, there exists a

stable allocation Z if and only if pX 1, X2q is a fixed point of T , where Z P CF pX
1qXCW pX

2q.

Proof. See Appendix C. �

As will become clear, our fixed-point characterization is crucial for both existence and

comparative statics of stable allocations. We first use it and apply Theorem 5 to establish

36Eliaz and Ok (2006) introduce an axiom called weak axiom of revealed non-inferiority (WARNI) that
are consistent with incomplete preferences. In Online Appendix G.2, we show that Sen’s α is implied by
WARNI.
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existence of stable allocations. To this end, we consider a partially ordered set p2X ,ěq,

where the order ě is given by “set inclusion” operator; i.e., X2 ě X 1 if X2 Ą X 1. The

associated upper and lower weak set orders over families of sets of contracts are defined

based on this primitive (set inclusion) order. The monotonicity of correspondence f :

2X Ñ 2X is defined accordingly: that is, f is upper weak set monotonic if for X 1 Ă

X2 Ă X, Y 1 P fpX 1q implies there exists Y 2 Ą Y 1 such that Y 2 P fpX2q; and similarly

for lower weak set monotonicity. For the product set 2X ˆ 2X , we endow the following

order: pX2, Y 2q ě pX 1, Y 1q if X2 Ą X 1 and Y 2 Ă Y 1. The monotonicity of correspondence

f : 2X ˆ 2X Ñ 2X ˆ 2X is then defined according to this order.

The next step is to invoke an appropriate assumption on agents’ choice correspondences

to ensure that T “ pT1, T2q is weak set monotonic. Specifically, we assume that, for each

a P F YW , the choice correspondence Cap¨q is weakly substitutable, i.e., Ra is weak set

monotonic. A standard notion of substitutability considers a choice function—rather than a

choice correspondence—and requires the associated rejection function to be monotonic (e.g.,

Hatfield and Milgrom (2005)). One way to generalize this notion to choice correspondences

would be to require that the rejection correspondences to be complete sublattice valued

and monotonic in the strong set order—the condition Che, Kim and Kojima (2019) labels

substitutability. However, this condition proves too restrictive to accommodate even the

most common form of indifferences:

Example 6. A firm f has one position and is willing to fill it via any one of three contracts,

x, y, and z. The resulting rejection correspondence is not sublattice-valued: Rf ptx, yuq “

ttxu, tyuu and txu _ tyu “ tx, yu R Rf ptx, yuq. It is not strong set monotonic, either:

ty, zu P Rf ptx, y, zuq, txu P Rf ptx, yuq, and ty, zu_ txu “ tx, y, zu R Rf ptx, y, zuq. We thus

conclude that Cf is not substitutable. Nevertheless, Rf is weak set monotonic, as can be

checked easily, so Cf is weakly substitutable.

By contrast, weak substitutability is quite weak. Nevertheless, it is sufficient for exis-

tence, as we show now.

Theorem 10. Suppose that Ca satisfies Sen’s α and is weakly substitutable for each a P

F YW . Then, a stable allocation exists.

Proof. See Appendix C. �

To the best of our knowledge, the current existence result is the most general of its

kind, requiring very weak preferences conditions that allow for both indifferences and in-
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completeness.37 At the same time, an astute reader may notice that no claim is made

in the above theorem about the existence of worker- and firm-optimal stable allocations,

which are often shown to exist under substituble preferences. Indeed, such “side-optimal”

allocations are not guaranteed to exist in the presence of indifferences.38 Formally, this can

be attributed to the fact that our fixed-point theorem (Theorem 5) does not guarantee the

lattice structure for the fixed-point set.39

We now turn to our marquee result: monotone comparative statics of stable allocations.

To this end, we say that choice correspondence Ca is weakly more permissive than C 1a if,

for each set of contracts X 1, RapX
1q ďws R

1
apX

1q. In words, an agent with Ca rejects fewer

contracts than an agent with C 1a.
40 We let ľa and ľ1

a denote the (possibly incomplete)

preferences associated with Ca and C 1a, respectively; and similarly for T and T 1.41

Theorem 11. Consider two economies Γ “ pF,W,X, pCaqaPFYW q and Γ1 “ pF,W,X, pC 1aqaPFYW q

such that Cw is weakly more permissive than C 1w for each w P W while C 1f is weakly more

permissive than Cf for each f P F . Then,

(i). for each stable allocation Z in Γ, there exists a stable allocation Z 1 in Γ1 such that

Zf ľf Z
1
f for each f P F and Z 1w ľ1

w Zw for each w P W , and

(ii). for each stable allocation Z 1 in Γ1, there exists a stable allocation Z in Γ such that

Zf ľf Z
1
f for each f P F and Z 1w ľ1

w Zw for each w P W .

Proof. See Appendix C. �

37One may wonder if our general approach based on choice correspondenses is important for existence
of stable allocation. It may be tempting instead to work with choice functions obtained after breaking ties
in some manner. Indeed, such an approach works if, for instance in school choice, schools have responsive
preferences with ties (i.e., coarse priorities); one can then arbitrarily break ties in schools’ preferences and
apply the existence result with strict preferences. This “trick” does not work, however, if school preferences
are non-responsive (but are weakly substitutable), since breaking ties in a arbitrary manner may not
preserve the substitutability for the resulting choice function. For example, consider a set of contracts
X “ tx, yu and a firm f which has the following choice correspondence: Cf ptx, yuq “ ttx, yu, txu, tyuu;

Cf ptzuq “ ttzu,Hu for z “ x, y. Suppose tie-breaking selects the choice function C̃f : C̃f ptx, yuq “ ttx, yuu;

C̃f ptzuq “ tHu for z “ x, y. This function violates substitutability, even though the original choice
correspondence is weakly substitutable. Tie-breaking is even less useful for comparative statics, since
no simple tie-breaking method may “discover” the entire set of stable allocations, which is required for
monotone comparative statics.

38Recall Example 6. Suppose every worker prefers to work for f instead of being unemployed. Then,
there are three stable allocations; f hiring any one of three workers. None of them is worker optimal.

39On the other hand, substitutable preferences guarantee existence of side optimal stable matching even
in the presence of indifferences. See Che, Kim and Kojima (2019).

40For any worker w, a change in choice correspondences has a particularly simple form. Specifically,
suppose that Cw is weakly more permissive than C 1w. Then, for any X 1 Ď X, either CwpX

1q “ C 1wpX
1q or

C 1wpX
1q “ tHu. See Online Appendix G.3 for detail.

41Recall that ľa and ľ1a are the preferences defined by Blair (partial) order.
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The basic idea of the proof is to utilize the fixed-point characterization of stable allo-

cations by the mapping T . We first establish that the fixed-point mapping “shifts up” in

the weak set order sense with the change of choice correspondences. By Theorem 6, this

implies that the set of fixed points “increases” in the weak set order. This gives rise to the

desired comparative statics properties of stable allocations.

Theorem 11 generalizes various comparative statics results in the existing literature from

the cases of choice functions to choice correspondences.42 As such, it implies a number of

standard results. For instance, a stable allocation becomes more favorable to one side when

it becomes more “scarce” or when there is more competition from the other side:

Corollary 2. Suppose that a worker exits the market or a new firm enters the market.

Then, for each stable allocation in the original market, there exists a stable allocation in

the new market in which all the remaining workers are weakly better off and all the existing

firms are weakly worse off. A symmetric result, though in the opposite direction, holds if a

worker enters the market or a firm exits a market.

Proof. See Appendix C. �

The entry/exit of agents in this Corollary corresponds to their choice correspondences

becoming more/less permissive. For instance, an agent exiting a market corresponds to

that agent having a less permissive correspondence than before (in fact, she rejects every

contract). Therefore, all remaining agents from the same side become weakly better off

and those from the opposite side become weakly worse off in some new stable allocation by

Theorem 11.

Aside from these standard comparative statics, the generality of Theorem 11 enables us

to obtain new kinds of comparative statics results. For instance, if the internal constraint

of a multidivisional firm is relaxed (e.g., a hiring budget increases), then all the workers are

made weakly better off while all the other firms are made worse off in at least one new stable

matching. A similar monotone comparative statics holds in matching with constraints.

Suppose, for example, in the Japanese medical matching, the maximum number of doctors

that can be hired by hospitals in a region increases. Then, the choice correspondence

representing that region becomes more permissive, so the doctors are weakly better off in

at least one (weakly) stable matching. These new comparative statics results are formalized

and proven in Online Appendices G.4 and G.5.

42There are many comparative statics results for choice functions in various formulations and generality.
See Gale and Sotomayor (1985a,b), Crawford (1991), Konishi and Ünver (2006), Echenique and Yenmez
(2015), and Chambers and Yenmez (2017), for instance.
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6.3 Applications

The present framework subsumes environments beyond those analyzed in existing research.

Let us describe two applications of our approach in informal manners here. The formal

treatments are relegated to Online Appendices G.4 and G.5.

(i). Multidivional Organization: Consider an organization, such as large firms, that

has multiple divisions.43 Such an organization may face a total hiring budget and

may decide to allot positions across divisions within that budget. Given the allotted

positions, each division chooses the best applicants according to its own linear pref-

erence order. The firm with multiple divisions described in Example 5 is a concrete

example.

In Online Appendix G.4, we construct a choice correspondence that captures these

features. The organization’s choice is not necessarily described as a function, but

as a correspondence—the organization may find indifferent or incomparable two al-

lotments of positions across different divisions as long as both of them satisfy the

organization’s internal constraint. This feature leads to the failure of conditions as-

sumed in existing studies, but we show that the organization’s choice correspondence

still satisfies both Sen’s α and weak substitutability. Hence, Theorems 10 and 11

allow us to establish the existence of a stable matching as well as wMCS property.

(ii). Matching with Constraints: Consider a problem of matching with constraints,

such as medical match faced with a government-imposed cap on the number of doctors

in each region or in each medical specialty. Kamada and Kojima (2017) present a

model of matching with constraints, introduce a concept called weak stability, and

establish the existence of a weakly stable matching.44

We prove the existence of a weakly stable matching as a corollary of Theorem 10. The

basic idea of the proof is to associate the model of matching with constraints with an

auxiliary model of matching with contracts between doctors and the “hospital side,” a

consortium that jointly chooses among applicants to different hospitals.45 Intuitively,

43This class of choice correspondences considered here is similar in spirit to a multidivisional choice
function with flexible allotments analyzed by Hatfield, Kominers and Westkamp (2017), but neither is
more general than the other.

44Alternative concepts of stability, including weak stability, are defined by Kamada and Kojima (2015,
2017, 2018). Weak stability has advantages over others such as existence under mild conditions and an
axiomatic characterization (Kamada and Kojima, 2017).

45To our knowledge, Kamada and Kojima (2015) is the first to associate matching with constraints to
matching with contracts, and this technique has been used in subsequent studies such as Kamada and
Kojima (2018, 2019), Goto et al. (2014a), Goto et al. (2014b), and Kojima, Tamura and Yokoo (2018).
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we exploit the fact that the hospital side’s choice behavior under constraints works in

a manner that is analogous to that of a multidivisional organization. Choice behavior

of the hospital side is not necessarily a function but a correspondence because there

is some degree of freedom as to how many positions are allotted to different hospitals

given the joint constraint. These features can be readily incorporated into our model.

More formally, we verify that the hospital side’s choice correspondence satisfies both

Sen’s α and weak substitutability. Moreover, we establish that a matching is weakly

stable in the given model of matching with constraints if and only if a corresponding

allocation in the auxiliary model of matching with constraints is a stable allocation.

These results imply that a weakly stable matching exists.

While the existence of a weakly stable matching has been established before, our tech-

nique allows us to obtain a novel comparative statics result with respect to changes

in constraints. While such results were hitherto unvailable, they are a natural conse-

quence of our approach and can be obtained as a corollary of Theorem 11.

However, our approach is different from theirs in at least two respects. First, all the other works focus
on choice functions rather than choice correspondences, making it impossible to connect their approach to
weak stability. Second, the class of constraints we consider are more general than those studied in any of
the above papers. Both of these differences are crucial for our analysis, and our analysis capitalizes heavily
on the generality of the present model which allows for choice correspondences under Sen’s α and weak
substitutability.
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A Proofs for Section 4

Proof of Proposition 2. To prepare for the proof of the proposition, we begin with the

following lemma.

Lemma 3. x P P puq if and only if x P Φpxq, where Φpxq :“
Ş

iPI Φipxq and Φipxq :“

arg maxyPU´ipxq
uipyq.

46

That is, x P P puq if and only if x is a fixed point of correspondence Φ. The proof of

this lemma is straightforward; x P
Ş

iPI Φipxq if and only if there exist no i and y such that

uipyq ą uipxq and ujpyq ě ujpxq for all j ‰ i.

We now prove the proposition: nonemptiness of P puq. To this end, fix any x0 P X.

Let I “ t1, . . . , nu and define xi and Xi recursively as follows: Xi “ XjPItx̃ P X |ujpx̃q ě

ujpxi´1qu and xi P arg maxx̃PXi
uipx̃q. Note that the existence of the maximizer xi is guar-

anteed by the assumption that u1 is USC and the fact that uj being USC for all j implies

Xi is closed and thus compact since X is compact. We shall show that xn is a fixed point

of Φ, which by Lemma 3 implies xn is Pareto optimal. To do so, observe that for all i P I,

uipxnq “ ¨ ¨ ¨ “ uipxiq ě uipxi´1q ě ¨ ¨ ¨ ě uipx1q ě uipx0q. (8)

We thus have xn P U´ipxnq Ă Xi, @i P I, which implies xn P Φipxnq, @i P I, so xn P Φpxnq,

as desired. �

Proof of Lemma 1. To begin, we note that ui is continuous for each i P I since ui is

concave and USC.

To proceed with the proof, we work with the utility space. Define the set

U :“ tpu1, ..., u|I|q P R|I| : Dx P X such that ui P rmin
yPX

uipyq, uipxqs, @i P Iu

of utility vectors (note that minyPX uipyq exists because ui is continuous and X is compact).

Since ui is concave for each i, U is convex. Further, since each ui is continuous and X is

compact, U is compact, so it is closed and bounded. Likewise, let

UpP puqq :“ tu P U : there exists x P P puq such that uipxq “ ui for every i P Iu

be the utility vectors associated with all the Pareto optimal choices. It sufficies to prove

that u P UpP puqq if and only if there exists λ :“ pλ1, ..., λ|I|q P R|I|`` and a partition

46Recall that U´ipxq is defined prior to Proposition 3.
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I “ tI1, ..., Inu of I such that

u P Um :“ arg max
uPUm´1

ÿ

iPIm

λiui, (9)

where U0 :“ U (the reason for this is that each u P Um is attained by some x P X).

The “if” direction is obvious (see Proposition 16.E.2 of Mas-Colell et al. (1995)). Thus,

we shall show the “only if” direction in the remainder. To do so, first notice that, by

convexity of U and Proposition 16.E.2 of Mas-Colell et al. (1995), there exists λ1 P R|I|`
with λ1 ‰ 0 such that u P arg maxu1PU λ

1 ¨ u1 :“ Û1. Let I1 :“ ti P I : λ1
i ą 0u. Note that I1

is nonempty because λ1 ‰ 0.

Let Ũ1 be the projection of Û1 to IzI1, that is, Ũ1 :“ tu P R|IzI1| : Dv P Û1, @i P IzI1, ui “

viu. Û1 is convex because U is convex and λ1 ¨ u is a linear function of u, so Ũ1 is convex as

well. Now, denoting the projection of u to IzI1 as ũ1 and applying Proposition 16.E.2 of

Mas-Colell et al. (1995) to Ũ1, we conclude that there exists λ2 P R|IzI1|` with λ2 ‰ 0 such

that ũ1 P arg maxu1PŨ1
λ2 ¨ u1 “: Û2. Let I2 :“ ti P IzI1 : λ2

i ą 0u. Note that I2 is nonempty

because λ2 ‰ 0.

Proceeding inductively, we obtain a partition of I, I1, I2, . . . , In. Set I “ tI1, . . . , Inu.

Also, define λ P R|I|`` by setting λi “ λmi for each i P Im. Then, by construction of I and λ,

it follows that u P Um for each m (where Um is defined by equation (9) given I and λ). �

Proof of Lemma 2. Consider any x0 that is not Pareto optimal. One can find xn as in

the proof of Proposition 2. Then, xn is Pareto optimal while it must Pareto dominate x0

by (8). �

Proof of Proposition 3. Given the continuity of ui, @i P I, it is routine to see that

U´ip¨q is upper hemicontinuous for each i P I. Since U´ip¨q is also lower hemicontinuous,

it is continuous. Since ui is continuous, by Berge’s theorem of maximum, Φip¨q is upper

hemicontinuous.

To prove the compactness of P puq, it suffices to show that P puq “
Ş

iPI Φipxq is closed

since X Ą P puq is compact. To this end, consider any sequence pxmqmPN with xm P P puq

for every m P N that converges to x. Since xm P P puq, by the characterization in Lemma

3, xm P Φipxmq for all i P I. Since Φip¨q is upper hemicontinuous and xm Ñ x as m Ñ 8,

we must have x P Φipxq for all i P I. We thus have x P P puq, proving that P puq is closed.

�
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B Proof of Theorem 5

The existence of a fixed point follows from Corollary 3.7 of Li (2014). Here we provide a

simpler independent proof. Our proof builds on Theorem 1.1 of Smithson (1971), which

introduces the following condition:

Condition III. Let F : X Ñ X and let C be a chain in X. Suppose that there

is a nondecreasing function g : C Ñ X such that gpxq P F pxq for all x P C. If

x0 “ supX C, then there exists y0 P F px0q such that gpxq ď y0 for all x P C.

Theorem 1.1 of Smithson (1971) is reproduced as follows (with the terminologies com-

parable to those of the present paper):

Theorem 12 (Smithson (1971)). Let X be a (nonempty) partially ordered set in which

each nonempty chain has a least upper bound. Suppose a self-correspondence F : X Ñ X

is upper weak set monotonic and X` is nonempty. Further, F satisfies Condition III. Then,

F has a fixed point.

Note first that since X is a compact metric space, it is chain complete by Theorem 2.3

of Li (2014), which implies that each nonempty chain has a least upper bound. The crucial

part of proof is that the compactness of X, together with closed-valuedness of F , implies

condition III.

Lemma 4. Given the conditions of Theorem 5, F satisfies Condition III.

Proof. Let X, F , C, g, and x0 “ supX C as stated in the hypothesis of Condition III.

Define correspondence H : X Ñ X as follows: for each x P C,

Hpxq :“ ty P F px0q : y ě gpxqu.

We observe that Hpxq is a closed set for each x. This is because Hpxq “ F pxq X Gpxq

where Gpxq :“ ty P X : y ě gpxqu, F pxq is a closed set by assumption, Gpxq is a closed set

by the assumptio of natural topology, and an intersection of two closed sets is closed.

Since X is compact by assumption, and a closed subset of a compact space is compact,

Hpxq is compact. Now,

Claim 1. For any finite subset C 1 of C, XxPC1Hpxq ‰ H.

Proof. Let C 1 “ tx1, x2, . . . , xnu where x1 ď x2 ď ¨ ¨ ¨ ď xn. Then, by upper weak set

monotonicity of F , for each yn P F pxnq, there exists y0 P F px0q with yn ď y0. In particular,
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take yn “ gpxnq, and we obtain y0 ě gpxnq for some y0 P F px0q. Because g is nondecreasing,

this implies y0 ě gpxq for each x P C 1. Therefore y0 P XxPC1Hpxq. �

Thus, by finite intersection property, we conclude that XxPCHpxq is nonempty. This

concludes the proof. �

Lemma 4 and Theorem 12 imply that F has a fixed point. We next prove the existence

of a maximal fixed point.

Lemma 5. A maximal fixed point exists.

Proof. Let EpF q denote the set of all fixed points for F . Observe first that Xf is nonempty

due to Theorem 5. Consider any chain Xc Ď Xf . We show below that Xc has an upper

bound in Xf , which will imply by Zorn’s lemma that Xf has a maximal point.

To begin, let X 1
ěx :“ X 1 X tx1 P X : x1 ě xu for any X 1 Ď X and x P X. Note that for

any closed set X 1, X 1
ěx is closed as it is an intersection of two closed sets. Note also that

since X is chain complete, there is a supremum of Xc, denoted y, in X. Then, for each

x P Xc, F pyqěx is closed and nonempty due to the fact that x P F pxq, y ě x, and F is

upper weak set monotonic. Consider now a collection of sets pF pyqěxqxPXc and observe that

it satisfies the finite intersection property (that is, any finite subcollection has non-empty

intersection). The compactness of X then implies that XxPXcF pyqěx is nonempty, which in

turn implies that F pyqěy is also nonempty since F pyqěy “ XxPXcF pyqěx. Let us define a

correspondence Gpxq :“ F pxqěy. By the fact that F pyqěy is nonempty and F is upper weak

set monotonic, G is a closed-valued, nonempty self-map on subspace Xěy, so it admits a

fixed point in Xěy by Theorem 5. Clearly, this point is also a fixed point of F and thus an

upper bound of Xc, as desired. �

The proof for the existence of a fixed point and a minimal fixed point under the alter-

native assumptions is symmetric and thus omitted.

C Proofs for Section 6

Proof of Theorem 9. For any set X 1 Ď X, the (strict) upper contour set of X 1 for

workers is denoted as UpX 1q :“ tx P X : x ąxW x1, @x1 P X 1
xW
u.

The “only if” direction. Consider any stable allocation Z, and let X 1 “ Z Y UpZq and

X2 “ XzUpZq. We prove that pX 1, X2q is a fixed point of T .

By stability of Z, we have Zf P Cf pX
1q, @f P F̃ and thus Z P CF pX

1q, which means

UpZq P RF pX
1q or X2 “ XzUpZq P T2pX

1q.
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Observe next that for each w P W , X2 “ XzUpZq implies there is no x P X2
w such

that x ąw Zw. Thus, we have Zw P CwpX
2q for each w P W or Z P CW pX

2q. Letting

Ỹ “ X2zZ, we have Ỹ P RW pX
2q. Note also that Ỹ “ X2zZ “ X2XZc “ XXUpZqcXZc “

X X pZ Y UpZqqc “ XzX 1. Thus, X 1 “ X2zỸ , which means X 1 P T1pX
2q, as desired.

The “if” direction. Consider any pX 1, X2q such that pX 1, X2q P T pX 1, X2q, that is,

X 1 P T1pX
2q and X2 P T2pX

1q. Then, XzX 1 P RW pX
2q and XzX2 P RF pX

1q. Letting

Ỹ “ XzX 1 and Z “ X2zỸ , we have Z P CW pX
2q. Let us show that Z is a stable

allocation.

Note first that Z “ X2zỸ “ X2X Ỹ c “ X2XX 1 “ X 1XpXzX2qc “ X 1zpXzX2q, which

means that Z P CF pX
1q since XzX2 P RF pX

1q.

It is clear that Z is an allocation, since Z P CW pX
2q implies that Z contains at most

one contract for each worker w P W . Also, given Zw P CwpX
2q and Z Ă X2, Sen’s α

implies that Zw P CwpZq, i.e., Z is individually rational for w. The individual rationality

for firms is implied by the absence of blocking coalitions, which we will show below.

To show that Z admits no blocking coalition, suppose for contradiction that there exists

f P F such that Zf R Cf pZ Y UpZqq. Note that UpZq Ď XzX2 since, given Zw P CwpX
2q,

any x ąw Zw for each w P W cannot belong to X2. Then, Z Y UpZq Ď X 1 since Z Ď X 1

and UpZq Ď XzX2 Ď X 1. Given this and the assumption that Zf R Cf pZ Y UpZqq, Sen’s

α implies Zf R Cf pX
1q, a contradiction. Now that Zf P Cf pZ Y UpZqq, Sen’s α implies

Zf P Cf pZq, i.e., the individual rationality for firms �

Proof of Theorem 10. We first prove the following claim:

Claim 2. Suppose Ca is weakly substitutable for each a P F YW . Then, T is both upper

and lower weak set monotonic.

Proof. To prove the upper weak set monotonicity of T , consider any pX 1, X2q ď pY 1, Y 2q,

and any pX̃ 1, X̃2q such that X̃ 1 P T1pX
1, X2q and X̃2 P T2pX

1, X2q. Then, there are some

Ŷ 1 P RW pX
2q and Ŷ 2 P RF pX

1q such that X̃ 1 “ XzŶ 1 and X̃2 “ XzŶ 2. Since X2 Ą Y 2 and

RW is lower weak set monotonic, we can find Ẑ 1 Ă Ŷ 1 such that Ẑ 1 P RW pY
2q. Also, since

X 1 Ă Y 1 and RF is upper weak set monotonic, we can find Ẑ2 Ą Ŷ 2 such that Ẑ2 P RF pY
1q.

Letting Ỹ 1 “ XzẐ 1 and Ỹ 2 “ XzẐ2, we have Ỹ 1 P T1pY
1, Y 2q and Ỹ 2 P T2pY

1, Y 2q. Also,

Ỹ 1 Ą X̃ 1 and Ỹ 2 Ă X̃2 or pỸ 1, Ỹ 2q ě pX̃ 1, X̃2q, proving the upper weak monotonicity of T .

The proof for the lower weak monotonicity is analogous and hence omitted. �

To complete the proof of the theorem, we endow the family of subsets of contracts with

the discrete topology. Then, it is straightforward to see that this set is nonempty, partially
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ordered and compact. Moreover, the self-correspondence T is upper weak set monotonic

by Claim 2, and it is clearly closed-valued. Furthermore, set X 1 “ X2 “ H. Then, there

exist X̃ P T1pX
2q and Ỹ P T2pX

1q such that X̃ and Ỹ are weakly larger than X 1 and X2,

respectively. Therefore, by Theorem 5, there exists a fixed point pX 1, X2q of T . Finally by

Lemma 9, we conclude that there exists a stable allocation. �

Proof of Theorem 11. We first establish the following result:

Lemma 6. T pX 1, X2q ěws T
1pX 1, X2q, @pX 1, X2q.

Proof. To prove that T lower weak set dominates T 1, consider any pX 1, X2q and pX̃ 1, X̃2q

such that pX̃ 1, X̃2q P T pX 1, X2q, which means that there are some Y 1 P RW pX
2q and

Y 2 P RF pX
1q such that X̃ 1 “ XzY 1 and X̃2 “ XzY 2.

Since Cw being weakly more permissive than C 1w for each w P W implies R1W pX
2q upper

weak set dominates RW pX
2q, there is some Ỹ 1 P R1W pX

2q such that Y 1 Ă Ỹ 1. Also, since

C 1f being weakly more permissive than Cf for each f P F implies RF pX
1q lower weak set

dominates R1F pX
1q, there is some Ỹ 2 P R1F pX

1q such that Ỹ 2 Ă Y 2. Letting X̂ 1 “ XzỸ 1

and X̂2 “ XzỸ 2, we have found X̂ 1 P T 11pX
1, X2q and X̂2 P T 12pX

1, X2q such that X̂ 1 Ă X̃ 1

and X̂2 Ą X̃2, as desired.

Proving that T upper weak set dominates T 1 is analogous and hence omitted. �

We only provide the proof for (i) while the proof for (ii) is omitted since it is analogous.

Let Z be a stable allocation in economy Γ. By the “only if” part of Theorem 9, there exists

a fixed point pX 1, X2q of T such that Z P CF pX
1q X CW pX

2q. Because T (upper) weak set

dominates T 1 by Lemma 6, Theorem 6 implies that there exists a fixed point pX̃ 1, X̃2q of

T 1 such that pX 1, X2q ě pX̃ 1, X̃2q or X 1 Ą X̃ 1 and X2 Ă X̃2. By the “if” part of Theorem

9, there exists a stable allocation Z 1 in economy Γ1 such that Z 1 P C 1F pX̃
1q X C 1W pX̃

2q.

Therefore, for each f P F , Z 1f Ď X̃ 1
f Ď X 1

f and thus Zf Y Z 1f Ď X 1
f . Given this and

Zf P Cf pX
1q, Sen’s α implies Zf P Cf pZf YZ

1
f q, meaning Zf ľf Z

1
f . Also, for each w P W ,

Zw Ď X2
w Ď X̃2

w and thus Zw Y Z 1w Ď X̃2
w. Given this and Z 1w P C

1
wpX̃

2q, Sen’s α implies

Z 1w P C
1
wpZw Y Z

1
wq, meaning Z 1w ľ1

w Zw. �

Proof of Corollary 2. Letting Γ̃ denote the original economy, suppose that a worker w̃

exists or a firm f̃ enters the market, which results in a new economy Γ̃1. Let W and F

denote the set of all workers and all firms including w̃ and f̃ , respectively. Let C̃a denote

the choice correspondence of each agent a P W Y F . Now, in order to apply Theorem 11,

let us define the two economies Γ and Γ1 as follows: in Γ, Cf̃ pX
1q “ tHu, @X 1 Ă X while

Ca “ C̃a for all a ‰ f̃ ; in Γ1, C 1w̃pX
1q “ tHu, @X 1 Ă X while Ca “ C̃a for all a ‰ w̃.
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First, the sets of stable allocation in Γ̃ and Γ̃1 coincide with those in Γ and Γ1, respectively.

Second, Cw is weakly more permissive than C 1w for each w P W while C 1f is weakly more

permissive than Cf for each f P F . Thus, the desired result follows from applying Theorem

11. �
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Abdulkadiroğlu, Atila, and Tayfun Sönmez. 1998. “Random Serial Dictatorship and

the Core from Random Endowments in House Allocation Problems.” Econometrica,

66: 689–701.
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D Supplemental Results for Section 3

As in Section 3, we assume that MX 1pfq to be well defined for every subinterval X 1 of X,

for u, v. Recall that v interval dominates u, or v ąI u, if, for any x1, x2 P X, x2 ď x1 such

that upx2q ě upxq and vpx1q ě vpxq, @x P Jpx1, x2q,

upx2q ě pąqupx1 ^ x2q ñ vpx1 _ x2q ě pąqvpx1q.

We first note that this notion reduces to Quah and Strulovici (2009)’s interval dominance

order when X is totally-ordered (the case they focused on). To avoid confusion, we say v

QS interval dominates u if, for any x1, x2 P X, x1 ă x2 such that upx2q ě upxq, @x P rx1, x2s,

upx2q ě pąqupx1q ñ vpx2q ě pąqvpx1q.

Lemma 7. Assume that X is totally ordered. Then, the interval dominance and QS interval

dominance are equivalent.

Proof. Clearly, the QS interval dominance implies the interval dominance. To show the con-

verse, consider any x1, x2, x2 č x1 such that upx2q ě upxq, @x P rx1, x2s. We must have x2 ą

x1 since X is totally ordered. The result would be immediate if x1 P arg maxxPrx1,x2s vpxq.

Let us thus assume x1 R arg maxxPrx1,x2s vpxq. Since MX 1pfq is well defined for every subin-

terval X 1, there exists some x̂ P rx1, x2s such that x̂ P arg maxxPrx1,x2s vpxq, which means

vpx̂q ě vpxq, @x P rx̂, x2s. The interval dominance then implies vpx2q “ vpx̂_ x2q ě vpx̂q ą

vpx1q, as desired. �

Now consider any complete lattice X (that is not necessarily totally ordered). The

following characterization holds.

Theorem 13. Assume X is a complete lattice. Function v interval dominates u if and

only if, for every subinterval X 1 of X,

MX 1puq ďss MX 1pvq. (10)

Proof. The “only if” direction. Suppose to the contrary that z2 P MX 1puq and z1 P

MX 1pvq for some subinterval X 1, but either z2 _ z1 R MX 1pvq or z2 ^ z1 R MX 1puq. Clearly,

upz2q ě upxq and vpz1q ě vpxq, @x P Jpz1, z2q. Since v ľI u, upz2q ě upz1 ^ z2q ñ vpz1 _

z2q ě vpz1q, so z2 _ z1 PMX 1pvq. Hence, it must be z2 ^ z1 RMX 1puq, or upz2q ą upz1 ^ z2q.

Again by interval dominance, this means vpz1 _ z2q ą vpz1q, which yields a contradiction.
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The “if” direction. Consider any x2, x1, x2 ď x1, and upx2q ě upxq and vpx1q ě vpxq for

all x P Jpx1, x2q. Since x2 P MJpx1,x2qpuq and x1 P MJpx1,x2qpvq, (10) implies that x1 ^ x2 P

MJpx1,x2qpuq and x1_x2 PMJpx1,x2qpvq, which means upx1^x2q ě upx2q and vpx1_x2q ě vpx1q.

Then, (6) follows. �

In the multidimensional setup, Quah and Strulovici (2007) consider an additional con-

dition, I-quasisupermodularity, to obtain sMCS result: u is I-quasisupermodular if, for

any x1, x2 P X such that upx1q ě upxq, @x P rx1 ^ x2, x1s, upx1q ě pąqupx1 ^ x2q implies

upx1 _ x2q ě pąqupx2q. They then establish the following result:

Proposition 5. Assume that X is a lattice. If v : X Ñ R QS interval dominates u : X Ñ R
and if either u or v is I-quasisupermodular, then (10) holds.

We show that the interval dominance condition is weaker than QS interval dominance

plus I-quasisupermodularity.

Lemma 8. Assume that X is a lattice. If v : X Ñ R QS interval dominates f : X Ñ R
and either u or v is I-quasisupermodular, then v interval dominates u.

Proof. Consider any x1, x2 P X with x2 ď x1 such that upx2q ě upxq and vpx1q ě vpxq for all

x P Jpx1, x2q. Suppose that upx2q ě upx1^ x2q, so vpx2q ě vpx1^ x2q due to the fact that v

QS interval dominates u. We aim to show that vpx1 _ x2q ě vpx1q while upx2q “ upx1 ^ x2q

(that is, upx2q č upx1 ^ x2q).

Assume first that v is I-quasisupermodular. Since upx2q ě upxq, @x P rx1 ^ x2, x2s,

QS interval dominance of v over u implies vpx2q ě vpxq, @x P rx1 ^ x2, x2s. Given this,

v being I-quasisupermodular implies vpx1 _ x2q ě vpx1q. If upx2q ą upx1 ^ x2q, then

gpx2q ą vpx1 ^ x2q and thus vpx1 _ x2q ą vpx1q, which is a contradiction to the hypothesis

that vpx1q ě vpxq, @x P Jpx1, x2q.

Assume next that u is I-quasisupermodular. Consider any x P rx1 ^ x2, x2s. Since

upx2q ě upyq, @y P rx1 ^ x, x2s and since u is I-quasisupermodular, we have upx2q “ upx2 _

xq ě upxq. Since this inequality holds for any x P rx1^x2, x2s and since upx2q ě upx1^x2q,

applying I-quasisupermodularity of u once again implies upx1_x2q ě upx1q. Given this, QS

interval dominance of g over f implies vpx1 _ x2q ě vpx1q. Again, a contradiction arises if

upx2q ą upx1 ^ x2q, since then upx1 _ x2q ą upx1q so vpx1 _ x2q ą vpx1q. �
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E Supplemental Results for Section 4

E.1 Role of Compactness for Lemma 2

To highlight the role of compactness for Lemma 2, we present the following example.

Suppose X “ p0, 1q with the Euclidean topology, so X is not compact. Suppose

u1pxq “

#

2´ x if x ă 1{2

3´ x if x ě 1{2.
and u2pxq “ 1´ x for all x.

See Figure 6. Note that P puq “ t1
2
u. Any x P p0, 1

2
q is Pareto dominated by x1 P p0, xq, but

is not Pareto dominated by an alternative in P puq, contrary to Lemma 2.

3

2

1

0 11
2

xx

u2

u1

Figure 6: Failure of Lemma 2 for non-compact X.

E.2 Sufficient Conditions for Lower Hemi-Continuity of a Corre-

spondence

Lower hemicontinuity of U´ip¨q can be further clarified and motivated by the following

sufficient conditions:
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Proposition 6. Utility functions u defined on a convex set X are regular if ui is upper

hemicontinuous for each i P I and either (i) for each i P I, ui is strictly quasi-concave,47

or (ii) for each i P I, the correspondence U´ip¨q is continuous in the Hausdorff topology.48

Proof. To prove (i), for any i P I, consider a sequence txnu converging to x and suppose

y P U´ipxq. We will show that there exists a sequence tynu that converges to y and

yn P U´ipxnq for each n. To begin, if y “ x, then the conclusion is obvious by setting

yn “ xn for each n. So let us assume y ‰ x.

Now, consider zm :“ λmx ` p1 ´ λmqy, where λm P p0, 1q converges monotonically to

0 as m Ñ 8. Since each utility function uj, j ‰ k, is strictly quasi-concave, y ‰ x, and

ujpyq ě ujpxq because y P U´ipxq, we have that ujpzmq ą mintujpyq, ujpxqu “ ujpxq for each

j ‰ k. This property, the upper hemicontinuity of the utility functions, and the assumption

that xn Ñ x imply that, for each m P N, there exists Npmq P N such that zm P U´ipxnq

for all n ą Npmq. Without loss of generality, take Npmq to be strictly increasing in m so

that Npmq Ñ 8 as m Ñ 8. Let mpnq :“ suptm P N : n ą Npmqu whenever the set is

nonempty, and let n0 be the smallest integer such that the set tm P N : n0 ą Npmqu is

nonempty (note that n0 exists because for any n ą Np1q, the set includes 1 by definition).

Note that mpnq is a finite integer because Npmq is strictly increasing and hence the set

tm P N : n ą Npmqu is a finite set and that mpnq Ñ 8 as n Ñ 8. Now, define yn :“ xn

for n ă n0 and yn “ zmpnq for all n ě n0. Then, yn P U´ipxnq for each n, and yn Ñ y. We

have thus proven that U´ip¨q is LHC.

For (ii), consider again, for any i P I, a sequence txnu converging to x, and suppose

y P U´ipxq. By the convergence of U´ipxnq in Hausdorff topology, dHpU´ipxnq, U´ipxqq Ñ 0

as n Ñ 8. Since y P U´ipxq, this implies that for any ε ą 0, infzPU´ipxnq dpz, yq ă ε{2 for

any sufficiently large n, so there exists yn P U´ipxnq with the property that dpyn, yq ă ε for

any sufficiently large n. This proves that U´ip¨q is LHC. �

E.3 Role of Compactness for wMCS of POC

Let X “ p0, 1q with the Euclidean topology as well as the standard order and

u1pxq “

#

2´ x if x ă 1{2

3´ x if x ě 1{2,
and u2pxq “ 1´ x for all x,

47That is, for any x, x1 P X with x ‰ x1 and λ P p0, 1q, uipλx` p1´ λqx
1q ą mintuipxq, uipx

1qu.
48More precisely, the continuity in Hausdorff topology means dHpU´ipxq, U´ipx

1qq Ñ 0 as dpx, x1q Ñ 0,
where dp¨, ¨q is the metric defined on X and dHp¨, ¨q is the Hausdorff metric: for Y,Z Ă X, dHpY,Zq :“
maxt supyPY infzPZ dpy, zq, supzPZ infyPY dpy, zq u.
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v1pxq “

$

’

&

’

%

x if x ă 1{4
1
2
´ x if x P r1{4, 1{2q

1
2
` x if x ě 1{2

and v2pxq “

$

’

&

’

%

x if x ă 1{4
1
2
´ x if x P r1{4, 1{2q

1
4
px´ 1

2
q if x ě 1{2

.

Observe that v single-crossing dominates u but X is not compact. Observe also that

P puq “ t1
2
u while P pvq “ t1

4
u, so P pvq fails to weak set dominate P puq. See Figure 7.

v2

v1

3

2

1

0 11
2

1
4

xx

u2

u1

Figure 7: wMCS of POC in Theorem 4 fails due to non-compactness of X.

This example can be slightly modified to show that the conclusion of Theorem 4 cannot

be strengthened to give the sMCS of POC. To do so, let X “ r0, 1s (so that X is now

compact) and observe that P puq “ t0, 1
2
u, P pvq “ t1

4
, 1u. The domination relation between

P puq and P pvq holds in the weak set order, but not in the strong set order; 1
2
^ 1

4
R P puq

and 1
2
_ 1

4
R P pvq.

F Supplemental Results for Section 5

F.1 Comparison of Conditions between Theorem 5 and Zhou

(1994)’s theorem

Among the advantages of our fixed-point theorem compared to previous results of Tarski

and Zhou (1994) is the fact that we impose only weak assumptions regarding order struc-
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tures. At the same time, our theorem requires certain topological conditions which the

existing results do not impose. A natural question is how restrictive those additional topo-

logical conditions are. They turn out to be mild in many, if not all, environments of interest,

as formally stated in the following theorem.

Theorem 14. Suppose X is (i) a subset of Rn (endowed with Euclidean topology); or (ii) a

set of bounded nonnegative measures defined on a finite set, endowed with weak convergence

topology; or (iii) a subset of a family of equicontinuous and pointwise bounded functions

F Ă CrΘs defined on compact metric space Θ endowed with topology induced by uniform

norm. Then, the following results hold.

• If X is a complete lattice, then X is compact.

• If Y is a complete sublattice of X, then Y is closed.

Proof. (i) and (ii) follow from Frink (1942), who proves that a complete lattice is compact

in the interval topology, since the Euclidean topology and weak convergence topology on

measures defined on finite sample space reduce to the interval topology.49

For (iii), the spaceX is a subset of F Ă CpΘq, which is a complete lattice. By the Arzela-

Ascoli’s theorem, F is relatively compact under the uniform convergence topology. Hence,

for both results, it suffices to show that X is closed. Consider any sequence txnu, xn P X,

that converges to x. We show that x P X. To this end, let zn :“ suptxk|k “ n, n` 1, ....u.

Now consider x1;“ inftzn|n “ 1, ...u. Since X is a complete lattice, x1 is well defined and

contained in X. Further, zn is nonincreasing, so zn converges to x1, i.e., x1 “ limnÑ8 zn.

It suffices to show therefore that x1 “ x, or zn converges to x. To this end, note first that

since xk Ñ x in uniform norm, for any ε ą 0, there exists N large enough such that, for

any k ě N , we have ||xk ´ x|| ă ε. It thus follows that

||zn ´ x|| “ sup
θPΘ

|znpθq ´ xpθq|

“ sup
θPΘ

| sup
kěn

xkpθq ´ xpθq|

ď sup
θPΘ

sup
kěn

|xkpθq ´ xpθq|

“ sup
kěn

sup
θPΘ

|xkpθq ´ xpθq|

“ sup
kěn

||xk ´ x|| ă ε.

49Theorem 2.3.1 of Topkis (1998) shows the result and for the Euclidean space. For the converse,
Birkhoff (1967) (and Theorem 2.3.1 of Topkis (1998) for the Euclidean space) shows that a lattice that is
compact in its interval topology is complete.
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Theorem 14 demonstrates that the conditions required by Theorem 5 are typically

weaker than those required by Zhou’s theorem. In fact, the proof of Theorem 5 for cases

(i) and (ii) makes it clear that, due to Frink (1942), the desired conclusions hold generally

under interval topology, even beyond cases (i) and (ii). However, the same conclusions do

not hold for every space X, as illustrated by the following example:

Example 7. Let P be the set of all nonnegative measures defined on the Borel sets in r0, 1s

such that P pr0, 1sq P r0, 1s for all P P P . Endow P with the weak convergence topology

and the partial order Ą such that P 1 Ą P if P 1pEq ě P pEq for each Borel set E Ă r0, 1s.

In this space, there is no relationship between compactness and complete lattice.

A complete lattice need not be either closed or compact: Consider the following

subset P 1 of P defined by

P 1 “ tP u Y tP u Y
`

Y
8
k“1P

k
˘

,

where P pEq “ λpEq, the Lebesque measure of E, P pEq “ 0, for all Borel sets E Ă r0, 1s,

and for each k “ 1, ....,

P k
pEq :“

#

λpEq if E Ă p i´1
2k
, i

2k
q, i odd ď k;

0 if E Ă p i´1
2k
, i

2k
q, i even ď k;

One can see that P 1 is a complete lattice: no two elements in Y8k“1P
k are ordered, so any

subset of that set has P as the least upper bound and P as the greatest lower bound. At the

same time, we can see that P k converges to P ˚ in weak topology, where P ˚pEq “ 1
2
λpEq.

This can be seen by the fact that the cumulative distribution functions associated with

P k converges to P ˚ pointwise, which is sufficient for weak convergence. Since P ˚ R P 1,
the set P 1 is not closed. Since P (endowed with weak convergence topology) is Hausdorff,

closedness is necessary for compactness. Hence, P 1 is not compact.

A compact subset of P need not be a lattice: Consider

P2 “ tP ˚u Y
`

Y
8
k“1P

k
˘

.

Since P is compact by Alaoglu’s theorem and since P2 is closed as seen above, P2 is

compact. Yet, the set is not even a lattice.
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F.2 Existence of Minimal/Maximal Fixed Points

Example 8 (Non-compactness of the (maximal or minimal) fixed-point set). Consider a

domain X “ r0, 1s2 and let

A “ tpx, yq P X |x` y “ 1u,

B “ tpx, yq |x` y “ 3{4, x P r1{4, 1{2su Y tpx, 0q |x P r1{2, 1su Y tp0, yq | y P r1{2, 1su.

Define

F px, yq “

$

&

%

A if x` y ě 1 and px, yq ‰ p1{2, 1{2q

B otherwise.

This correspondence satisfies all the conditions for Theorem 5, being both upper and lower

weak set monotonic (in the usual vector-space order). The set of maximal fixed point is

tpx, yq |x`y “ 1 and px, yq ‰ p1{2, 1{2qu, which is not closed (and thus not compact). The

set of minimal fixed point is tpx, yq |x ` y “ 3{4, x P p1{4, 1{2qu Y tp1{2, 0qu Y tp0, 1{2qu,

which is not closed either.

F.3 Example of difficulty for iterative algorithms

Even when an iterative procedure can find an extremal fixed point, it may not be easily

computable. More specifically, a minimal fixed point may not be reached for some selection

from the correspondence, even if the selection is restricted to be among the minimal points

of the correspondence (which is sufficient for reaching the smallest—and hence minimal—

fixed point in the settings of Tarski and Zhou).

Example 9. Suppose X “ t1, 2u2. Suppose F : X Ñ X is defined by: F pp1, 1qq “

tp1, 2q, p2, 1qu, F pp2, 1qq “ tp2, 1q, p2, 2qu, F pp1, 2qq “ tp2, 2qu, F pp2, 2qq “ tp2, 2qu. Note

that F is both upper and lower weak set monotonic. There are two fixed points tp2, 1q, p2, 2qu.

If one iterates F on an arbitrary selection of a minimal point of F , then one could proceed

as follows: starting at x1 “ p1, 1q, then proceeding to x2 “ p1, 2q P F pp1, 1qq, and finally

terminating at a fixed point x3 “ p2, 2q P F pp1, 2qq, which is clearly not a minimal fixed

point. See Figure 8.
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p1, 1q p2, 1q

p1, 2q p2, 2q

Figure 8: Fixed points reached are sensitive to selection.

G Supplemental Results for Section 6

G.1 An alternative stability notion

We consider an alternative definition of a stable allocation. More specifically, consider the

following condition of no blocking coalition:

(ii’) (No Blocking Coalition) There exist no f P F and allocation Y Ď X such that

Yf ąf Zf and x ąxW ZxW for each x P YfzZf .
50

The condition (ii’) is based on the pairwise comparison between the two alternatives avail-

able to the firm, that is, Z is considered to admit no blocking coalition if it is not dominated

by any other allocation Y available to the firm. Though this condition looks similar to the

one often adopted in the existing literature, our view is that there can be multiple ways to

extend the stability notion when one tries to accommodate general indifferent/incomplete

preference. In fact, our condition (ii) implies condition (ii’) if Sen’s α holds, so our stability

notion is stronger than the one based on (ii’). To see this, suppose that (ii) holds and

consider any Y Ď X such that x ąxW ZxW for each x P YfzZf . Then, Zf YYf Ď Z YUpZq.

Since Zf P Cf pZ Y UpZqq by condition (ii), this and Sen’s α imply Zf P Cf pZf Y Yf q.

Therefore, we cannot have Yf ąf Zf , so condition (ii’) holds, as desired. The following

example shows that the converse need not hold, however:

Example 10. Suppose that there are one firm, f , three contracts x, y, and z associated

with f , and three workers xW , yW , and zW associated with x, y, and z, respectively.

The firm’s choice correspondence is given as follows: Cf ptx, y, zuq “ ttxuu; Cf ptx, yuq “

ttxu, tyuu; Cf ptx, zuq “ ttxuu; Cf pty, zuq “ ttyuu; Cf ptx̃uq “ ttx̃uu for x̃ “ x, y, z. Each

worker strictly prefers working for f to being unemployed. One stable allocation, based on

50Note that the relationship ą here is the Blair order.
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(ii’), is Z :“ tyu, since there exists no set of contracts Y such that Y ąf Z. However, Z

is not stable according to our notion based on (ii) since UpZq “ tx, zu and thus Cf pZ Y

UpZqq “ ttxuu.

In the above example, Cf violates Sen’s β, as can be checked easily. If each firm’s choice

correspondence satisfies both Sen’s α and β (or equivalently WARP), then the two stability

notions are equivalent:

Lemma 9. If each Cf satisfies WARP, then the stability notion based on condition (ii) is

equivalent to the one based on (ii’).

Proof. It suffices to prove that (ii’) implies (ii) under WARP. Consider any f and Z sat-

isfying (ii’). Consider Z 1 P Cf pZ Y UpZqq. Then, by Sen’s α, Z 1 P Cf pZ Y Z 1q, which

implies Zf P Cf pZ Y Z
1q since otherwise we would have Z 1 ąf Zf and x ąxW ZxW for each

x P Z 1fzZf , violating (ii’). This implies Zf P Cf pZ Y UpZqq by Sen’s β. �

G.2 Sen’s α and WARNI

Consider the following condition due to Eliaz and Ok (2006) adapted to our matching

environment. We say that choice correspondence Cf satisfies WARNI (weak axiom of

revealed non-inferiority) if, for any X 1 Ď X and Z Ď X 1, if, for every Y P Cf pX
1q, there

exists X2 Ď X with Z P Cf pX
2q and Y Ď X2, then Z P Cf pX

1q. Eliaz and Ok (2006) show

that WARNI implies that the choice correspondence can be rationalized by an acyclic, if

possibly incomplete, binary relation. The following result establishes that WARNI implies

Sen’s α.

Proposition 7. If Ca satisfies WARNI, then it satisfies Sen’s α.

Proof. Consider any X 1 Ă X2 and Z P CapX
2q with Z Ď X 1. Note that for any Y P

CapX
1q, we have Y Ă X 1 Ă X2, which means the hypothesis of WARNI is satisfied. Thus,

Z P CapX
1q, as required by Sen’s α. �

The following example demonstrates that the converse of Proposition 7 does not hold:

Example 11. Let X “ tx1, x2, x3, x4, x5, x6u, and the choice correspondence Cf of firm f

is defined as follows:

(i). tx1, x2u P Cf pX
1q if and only if tx1, x2u Ď X 1 and tx3, x4u Ę X 1,

(ii). tx3, x4u P Cf pX
1q if and only if tx3, x4u Ď X 1 and tx5, x6u Ę X 1,
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(iii). tx5, x6u P Cf pX
1q if and only if tx5, x6u Ď X 1 and tx1, x2u Ę X 1,

(iv). txu P Cf pX
1q for every x P X 1, and

(v). no other set is in Cf pX
1q.

By inspection, one can verify that Cf satisfies Sen’s α. Meanwhile, the choice correspon-

dence Cf violates WARNI. To see this point, consider X 1 “ tx1, x2, x3, x4, x5, x6u and

Z “ tx1, x2u. Any Y P Cf pX
1q is a singleton set, i.e., a set of the form txu. Thus, the

hypothesis part of WARNI, Z “ tx1, x2u P Cf ptxu Y tx1, x2uq, is satisfied for X 1 and Z.

However, tx1, x2u R Cf pX
1q by definition.

Note that the choice correspondence Cf in this example features a cyclic binary relation

tx1, x2u ąf tx5, x6u ąf tx3, x4u ąf tx1, x2u.
51 This example suggests that our theory based

on Sen’s α might prove useful even in applications in which WARNI fails and, related, the

choice behavior may not even be rationalizable by acyclic preference relations.

G.3 Implication of a change in workers’ choice correspondence

Lemma 10. If C 1w is weakly more permissive than C2w, then, for any X 1 Ď X, either

C 1wpX
1q “ C2wpX

1q or C2wpX
1q “ tHu.

Proof. We only need to show that if C2wpX
1q ‰ tHu (that is, some contract in X 1 is

acceptable to w according to ľ1
w), then C 1wpX

1q “ C2wpX
1q. Consider any x P C 1wpX

1q and

note that X 1ztxu P R1wpX
1q. Given that C2wpX

1q ‰ tHu implies |X̃| “ |X 1| ´ 1 for all

X̃ P R2wpX
1q, we must have x P C2wpX

1q since otherwise there would be no X̃ P R2wpX
1q

such that X 1ztxu Ď X̃. Conversely, consider any x P C2wpX
1q. Since X 1ztxu P R2wpX

1q and

since there has to be some X̃ P R1wpX
1q such that X̃ Ď X 1ztxu with |X̃| ě |X 1| ´ 1, we

must have X 1ztxu P R1wpX
1q or x P C 1wpX

1q, as desired. �

G.4 Multidivisional organizations (internal constraints)

Consider an organization that has multiple divisions. The organization does not have a

strict preference relation over outcomes, and its choice behavior is not described by a single-

valued choice function. Rather, the organization has a choice correspondence. We continue

to refer to the organization as a hospital for consistency, but such a multidivisional structure

51We note that Eliaz and Ok (2006) show that WARNI implies that a choice correspondence can be
rationalized by a transitive (and hence acyclic) binary relation.
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is prevalent in many organizations, ranging from for-profit firms to non-profit organizations

and government.

Formally, we assume that the hospital h is associated with a finite set of divisions ∆h

and an internal constraint fh : Z|∆h|

` Ñ t0, 1u such that fhpwq ě fhpw
1q whenever w ď w1

and fhp0q “ 1, where the argument 0 of fh is the zero vector and Z` is the set of nonnegative

integers. The interpretation is that each coordinate in w corresponds to a division of the

firm, and that the number in that coordinate represents the number of doctors matched to

that division. We say that w is feasible if fhpwq “ 1 and w is infeasible if fhpwq “ 0. The

monotonicity property of fh means that if w1 is feasible then any w with a weakly fewer

doctors in each division must be feasible for the hospital as well. Let ∆ :“
Ť

hPH ∆h.

Internal constraints in organizations may represent budget constraints and availability

of office space and other resources. The hospital may be able to use some resources in

a flexible manner across divisions, but the profile of the numbers of the hire in different

divisions needs to satisfy the overall constraints represented by the internal constraint fh.

For each hospital h and its internal constraint fh, we define a correspondence, called

quasi-choice correspondence, C̃h : Z|∆h|

` Ñ Z|∆h|

` by C̃hpwq “ tw1 : w1 ď w, fhpw
1q “

1, and pEw2 ď w,w1 ă w2, fhpw
2q “ 1qu, that is, the set of all vectors that are weakly

smaller than w, feasible, and maximal among all vectors that are weakly smaller than w

and feasible.

We assume that each hospital h has a choice correspondence Chp¨q over all subsets of

D ˆ∆h. Each division δ P ∆h of the hospital has a preference relation ąδ over the set of

doctors and the outside option, DYtHu. For any X 1 Ă Dˆ∆h, let wpX 1q :“ pwδpX
1qqδP∆h

be the vector such that wδpX
1q “ |tpd, δq P X 1 : d ąδ Hu|. For each X 1, the choice

correspondence ChpX
1q is defined by

ChpX
1
q “

#

X2 : Dw P C̃hpwpX
1
qq, X2

“
ď

δP∆h

tpd, δq P X 1 : |td1 P D : pd1, δq P X 1, d1 ľδ du| ď wδu

+

.

(11)

That is, in any of the chosen subsets of contracts, there exists a vector w P C̃hpwpX
1qq such

that each division δ P ∆h chooses its wδ most preferred contracts from acceptable contracts

in X 1.

A matching problem with multidivisional hospitals is defined by a tuple Γ “ pD,H, p∆hqhPH , pąa

qaPDY∆, pfhqhPHq.
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Claim 3. Choice correspondence Chp¨q defined by relation (11) satisfies Sen’s α.52

Proof. Consider any Y Ă X 1 Ă X2 such that Y P ChpX
2q. Then clearly Y is individually

rational for divisions. Also, by construction, the set Y has the property that wpY q is a

maximal vector among those that are weakly smaller than wpX2q, and for each division

δ, δ is matched under Y to its wδpY q most preferred contracts among those in X2 by

construction. Given that wpX 1q ď wpX2q and Y Ă X 1, Y satisfies the same property with

respect to X 1. Thus, Y P ChpX
1q, as desired. �

Claim 4. Choice correspondence Chp¨q defined above satisfies the weak substitutes condi-

tion.

Proof. Let us first show that the rejection correspondence Rhp¨q associated with Chp¨q

satisfies upper weak set monotonicity. Let X 1 and X2 be two sets of contracts, with

X 1 Ď X2, and Y 1 P ChpX
1q. Then there exists w1 P C̃hpwpX

1qq such that, for each δ P ∆h,

Y 1δ “ tpd, δq P X
1 : |td1 P D|pd1, δq P X 1, d1 ľδ du| ď w1δu .

By the definition of wp¨q and the assumption that X 1 Ď X2 it follows that wpX 1q ď wpX2q,

so there exists w2 P C̃hpwpX
2qq such that w2 ě w1. Let Y 2 P ChpX

2q be the chosen set of

contracts associated with w2, so for each δ P ∆h,

Y 2δ “ tpd, δq P X
2 : |td1 P D|pd1, δq P X2, d1 ľδ du| ď w2δu .

Consider two cases.

(i). Suppose w2δ ą w1δ. Then w1δ “ wδpX
1q because otherwise w1δ ă wδpX

1q and fhpw
1
δ `

1, w´δq ě fhpw
2q “ 1, contradicting the maximality of w1. Therefore, every contract

in X 1 of the form pd, δq such that d ąδ H is in Y 1.

(ii). Suppose w2δ “ w1δ. Then, by the definition of Chp¨q, any contract pd, δq P X 1zY 1 is also

in X2zY 2—recall that the division δ chooses its w2δ “ w1δ most preferred contracts

from X 1
δ and X2

δ at Y 1 and Y 2, respectively, and X 1
δ Ď X2

δ .

Therefore pX 1zY 1q Ď pX2zY 2q as desired. The proof for lower weak set monotonicity is

analogous and hence omitted. �

It follows from those claims that a stable allocation exists.

52We note that the choice correspondence considered here does not necessarily satisfy WARP. See
Example 5 for a choice correspondences within the class considered here that violates WARP.
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Corollary 3. A stable allocation exists in any matching problem with multidivisional hos-

pitals.

We say that an internal constraint f 1h is weakly more permissive than constraint fh

if f 1hpwq ě fhpwq for every w. With this notion at hand, we are now ready to present a

comparative statics result with respect to constraints.

Corollary 4. Consider two matching problems with multidivisional hospitals Γ “ pD,H, p∆hqhPH , pąa

qaPDY∆, pfhqhPHq and Γ1 “ pD,H, p∆hqhPH , pąaqaPDY∆, pf
1
hqhPHq such that f 1h is weakly more

permissive than fh for each h P H. Then,

(i). for each stable matching µ in Γ, there exists a stable matching µ1 in Γ1 such that

µ1d ľd µd for each d P D, and

(ii). for each stable matching µ1 in Γ1, there exists a stable matching µ in Γ such that

µ1d ľd µd for each d P D.

Proof. For each h, let Ch and C1h be given by relation (11) with the corresponding quasi-

choice rules C̃h and C̃1h defined by C̃hpwq “ tw
1 : w1 ď w, fhpw

1q “ 1, and pEw2 ď w,w1 ă

w2, fhpw
2q “ 1qu and C̃1hpwq “ tw

1 : w1 ď w, f 1hpw
1q “ 1, and pEw2 ď w,w1 ă w2, f 1hpw

2q “

1qu. By inspection, it follows that C1h is weakly more permissive than Ch for each h. This

fact and Theorem 11 imply the desired conclusion. �

G.5 Matching with constraints

In this section, we consider a model of matching with constraints (Kamada and Kojima,

2015, 2017, 2018). Based on our fixed-point characterization and comparative statics re-

sults, we reproduce an existing result and obtain a new result.

Let there be a finite set of doctors D and a finite set of hospitals H. Each doctor d has

a strict preference relation ąd over the set of hospitals and the option of being unmatched

(being unmatched is denoted by ø). For any h, h1 P H Y tøu, we write h ľd h
1 if and only

if h ąd h
1 or h “ h1. Each hospital h has a strict preference relation ąh over the set of

subsets of doctors. For any D1, D2 Ď D, we write D1 ľh D
2 if and only if D1 ąh D

2 or

D1 “ D2. We denote by ą“ pąiqiPDYH the preference profile of all doctors and hospitals.

Doctor d is said to be acceptable to h if d ąh ø. Similarly, h is acceptable to d if

h ąd ø.

Each hospital h P H is endowed with a capacity qh, which is a nonnegative integer.

We say that preference relation ąh is responsive with capacity qh (Roth, 1985) if
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(i). For any D1 Ď D with |D1| ď qh, d P DzD
1 and d1 P D1, pD1 Y dqzd1 ľh D

1 if and only

if d ľh d
1,

(ii). For any D1 Ď D with |D1| ď qh and d1 P D1, D1 ľh D
1zd1 if and only if d1 ľh H, and

(iii). H ąh D
1 for any D1 Ď D with |D1| ą qh.

In words, preference relation ąh is responsive with a capacity if the ranking of a doctor (or

the option of keeping a position vacant) is independent of her colleagues, and any set of

doctors exceeding its capacity is unacceptable. We assume that preferences of each hospital

h are responsive with some capacity qh.

A matching µ is a mapping that satisfies (i) µd P H Y tHu for all d P D, (ii) µh Ď D

for all h P H, and (iii) for any d P D and h P H, µd “ h if and only if d P µh. That is, a

matching simply specifies which doctor is assigned to which hospital (if any).

A feasibility constraint is a map f : Z|H|` Ñ t0, 1u such that fpwq ě fpw1q whenever

w ď w1 and fp0q “ 1, where the argument 0 of f is the zero vector and Z` is the set

of nonnegative integers. The interpretation is that each coordinate in w corresponds to

a hospital, and the number in that coordinate represents the number of doctors matched

to that hospital. fpwq “ 1 means that w is feasible and fpwq “ 0 means it is not. If

w1 is feasible then any w with a weakly fewer doctors in each hospital must be feasible,

too. In this model, we say that matching µ is feasible if and only if fpwpµqq “ 1, where

wpµq :“ p|µh|qhPH is a vector of nonnegative integers indexed by hospitals whose coordinate

corresponding to h is |µh|. The feasibility constraint distinguishes the current environment

from the standard model. We allow for (though do not require) fpp|qh|qhPHq “ 0, that is,

it may be infeasible for all the hospitals to fill their capacities. In order to guarantee that

all feasible matchings respect capacities of the hospitals, we assume that fpwq “ 1 implies

w ď p|qh|qhPH . A matching problem with constraints is summarized by Γ “ pD,H, pąa

qaPDYH , pqhqhPH , fq.

To accommodate the feasibility constraint, we introduce a new stability concept that

generalizes the standard notion. For that purpose, we first define two basic concepts. A

matching µ is individually rational if (i) for each d P D, µd ľd ø, and (ii) for each h P H,

d ľh ø for all d P µh, and |µh| ď qh. That is, no agent is matched with an unacceptable

partner and each hospital’s capacity is respected.

Given matching µ, a pair pd, hq of a doctor and a hospital is called a blocking pair if

h ąd µd and either (i) |µh| ă qh and d ąh ø, or (ii) d ąh d
1 for some d1 P µh. In words,

a blocking pair is a pair of a doctor and a hospital who want to be matched with each

other (possibly rejecting their partners in the prescribed matching) rather than following
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the proposed matching.

Definition 1. Fix a feasibility constraint f . A matching µ is weakly stable if it is

feasible, individually rational, and if pd, hq is a blocking pair then (i) fpwpµq` ehq “ 0 and

(ii) d1 ąh d for all doctors d1 P µh.

The notion of weak stability relaxes the standard definition of stability by tolerating

certain blocking pairs, but impose restrictions on what kind of blocking pairs can remain.

Kamada and Kojima (2017) provide a detailed discussion and axiomatic characterization

of weak stability, so we refer interested readers to that paper.

Theorem 15. A weakly stable matching exists.

Proof. We relate our model to the matching model with contracts in the previous subsec-

tion. Let there be two types of agents, doctors in D and the “hospital side”. Note that

we regard the entire hospital side, instead of each hospital, as an agent in this model (thus

there are |D| ` 1 agents in total). There is a set of contracts X “ D ˆH.

For each doctor d, her preferences ąd over ptdu ˆHq Y tøu are given as follows.53 We

assume pd, hq ąd pd, h
1q in this model if and only if h ąd h

1 in the original model, and

pd, hq ąd ø in this model if and only if h ąd ø in the original model.

We define a correspondence, called quasi-choice correspondence, C̃H : Z|H|` Ñ Z|H|` by

C̃Hpwq “ tw
1 : w1 ď w, fpw1q “ 1, and pEw2 ď w,w1 ă w2, fpw2q “ 1qu, that is, the set of

all vectors that are weakly smaller than w, feasible, and maximal among all vectors that

are weakly smaller than w and feasible.

For the hospital side, we assume that it has preferences and its associated choice corre-

spondence CHp¨q over all subsets of DˆH. For any X 1 Ă DˆH, let wpX 1q :“ pwhpX
1qqhPH

be the vector such that whpX
1q “ |tpd, hq P X 1|d ąh Hu|. For each X 1, the choice corre-

spondence CHpX
1q is defined by

CHpX
1
q “

#

X2 : Dw P C̃HpwpX
1
qq, X2

“
ď

hPH

tpd, hq P X 1 : |td1 P D|pd1, hq P X 1, d1 ľh du| ď whu

+

.

(12)

That is, in any of the chosen subsets of contracts, there exists a vector w P C̃HpwpX
1qq such

that each hospital h P H chooses its wh most preferred contracts from acceptable contracts

in X 1.

53We abuse notation and use the same notation ąd for preferences of doctor d both in the original model
with constraints and in the associated model with contracts.
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Claim 5. Choice correspondence CHp¨q defined above satisfies Sen’s α and weak substi-

tutability.

Proof. We note that the choice correspondence given by relation (12) is within the class

of choice correspondences given by relation (11), with the “hospital side” H in (12) taking

the role of the multidivisional hospital in (11) and each hospital in H in (12) taking the

role of divisions of the hospital in (11). Thus, Sen’s α and weak substitutability follow from

Claims 3 and 4, respectively. �

Given any individually rational set of contracts X 1, define a corresponding matching

µpX 1q in the original model by setting µdpX
1q “ h if and only if pd, hq P X 1 and µdpX

1q “ ø

if and only if no contract associated with d is in X 1. For any individually rational X 1, µpX 1q

is well-defined because each doctor receives at most one contract at such X 1.

Claim 6. X 1 is a stable allocation in the associated model with contracts if and only if the

corresponding matching µpX 1q is a weakly stable matching in the original model.

Proof. The “only if” direction. Suppose that X 1 is a stable allocation in the associated

model with contracts and denote µ :“ µpX 1q. Individual rationality of µ is obvious from

the construction of µ. Suppose that pd2, h2q is a blocking pair of µ. This implies that

pd2, h2q P UpX 1q. Then, because X 1 is a stable allocation, it must then follow that (a)

fpwpX 1q ` eh2q “ 0 and (b) |td1 P D : pd1, h2q P X 1, d1 ľh2 d
2u| ą wh2pX

1q. To show this,

note first that the individual rationality of X 1 implies the existence of w P C̃HpwpX
1qq such

that for each h P H,

X 1
h “

!

pd, hq P X 1 : |td1 P D | pd1, hq P X 1, d1 ľh du| ď wh

)

,

which then implies that for each h P H, wh “ whpX
1q (since wh ď whpX

1q and the

cardinality of the set in the RHS of the above equality cannot exceed wh). Thus, we

must have C̃HpwpX
1qq “ twpX 1qu. Now let X2 “ X 1 Y tpd2, h2qu. Suppose for con-

tradiction that (a) does not hold, which implies that fpwpX2qq “ 1 so C̃HpwpX
2qq “

twpX2qu. Then wpX 1q is not maximal given X 1 Y UpX 1q, a contradiction to stability

of X 1. Suppose for another contradiction that (a) does hold but (b) does not. Since

C̃HpwpX
1qq “ twpX 1qu, this implies C̃HpwpX

2qq “ twpX 1qu. Given this and the fact

that |td1 P D : pd1, h2q P X 1, d1 ľh2 d
2u| ď wh2pX

1q, for any Y 2 P CHpX
2q, we must have

pd2, h2q P Y 2. This implies X 1 R CHpX
1 Y UpX 1qq, a contradiction.

The “if” direction. Suppose that X 1 is not a stable allocation in the associated model

with contracts and denote µ :“ µpX 1q. If X 1 is not individually rational, then clearly
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µ is not individually rational in the original problem with constraints. Thus, suppose

that X 1 is individually rational and that X 1 R CHpX
1 Y UpX 1qq. First, note that for any

pd, hq P UpX 1qzX 1, pd, hq ąd X
1
d, so h ąd µd in the matching problem with constraints. If

there exists any d such that pd, hq P UpX 1qzX 1 and d ąh d
1 for for some d1 P µh, then clearly

pd, hq is the kind of block for µ in the original matching model with constraints which

makes µ fail weak stability. So, for all d with pd, hq P UpX 1qzX 1, suppose that d1 ąh d for

all d1 P µd. Then the only way that X 1 R CHpX
1 Y UpX 1qq is that wpX 1q is not maximal,

so there exists pd, hq P UpX 1qzX 1 such that wpX 1 Y tpd, hquq “ wpX 1q ` eh “ wpµq ` eh is

feasible, that is, fpwpµq ` ehq “ 1. This and the fact that d ąh H imply that µ is not

weakly stable, as desired. �

Theorem 10 and Claims 5 and 6 complete the proof. �

We say that constraint f 1 is weakly more permissive than constraint f if f 1pwq ě

fpwq for every w. With this notion at hand, we are now ready to present a comparative

statics result with respect to constraints.

Theorem 16. Consider two matching problems with constraints Γ “ pD,H, pąaqaPDYH , pqhqhPH , fq

and Γ1 “ pD,H, pąaqaPDYH , pqhqhPH , f
1q such that f 1 is weakly more permissive than f .

Then,

(i). for each weakly stable matching µ in Γ, there exists a weakly stable matching µ1 in Γ1

such that µ1d ľd µd for each d P D, and

(ii). for each weakly stable matching µ1 in Γ1, there exists a weakly stable matching µ in Γ

such that µ1d ľd µd for each d P D.

Proof. By Claim 6, the sets of weakly stable matchings in Γ and Γ1 correspond to stable

matchings in the associated matching problems with contracts with the hospital sides’

choice correspondences CH and C1H , respectively, where CH and C1H are given by relation

(12) with the corresponding quasi-choice rules C̃H and C̃1H defined by C̃Hpwq “ tw
1 : w1 ď

w, fpw1q “ 1, and pEw2 ď w,w1 ă w2, fpw2q “ 1qu and C̃1Hpwq “ tw
1 : w1 ď w, f 1pw1q “

1, and pEw2 ď w,w1 ă w2, f 1pw2q “ 1qu. By inspection, it follows that C1H is weakly more

permissive than CH . This fact, Claim 6, and Theorem 11 imply the desired conclusion. �
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