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We study efficient and stable mechanisms in matching markets when
the number of agents is large and individuals’ preferences and priori-
ties are drawn randomly. When agents’ preferences are uncorrelated,
then both efficiency and stability can be achieved in an asymptotic
sense via standard mechanisms such as deferred acceptance and top
trading cycles. When agents’ preferences are correlated over objects,
however, these mechanisms are either inefficient or unstable, even in
an asymptotic sense. We propose a variant of deferred acceptance that
is asymptotically efficient, asymptotically stable, and asymptotically in-
centive compatible. This new mechanism performs well in a counter-
factual calibration based on New York City school choice data.
I. Introduction
Assigning indivisible resources, such as housing, public school seats, em-
ployment contracts, branch postings, and human organs, is an important
subject for modern market design. Two central goals in designing such
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matching markets are efficiency and stability. Pareto efficiency means
exhausting all gains from trade, a basic desideratum in any allocation prob-
lem. Stability means eliminating incentives for individuals to “block”—or
circumvent—a suggested assignment. Not only is stability crucial for the
long-term sustainability of amarket, as pointed out byRoth and Sotomayor
(1990), but it also guarantees a sense of fairness in eliminating so-called
justified envy.1 For instance, in the school choice context, eliminating jus-
tified envy means that no student would lose a school seat to another stu-
dent with a lower priority at that school.
Unfortunately, these two goals are incompatible (seeRoth 1982).Match-

ing mechanisms such as serial dictatorship and top trading cycles (TTC)
attain efficiency but fail to be stable. Meanwhile, stable mechanisms such
as Gale and Shapley’s deferred-acceptance (DA) algorithms do not guar-
antee efficiency. In light of the impossibility of achieving both goals, the
prevailing approach, particularly in the context of school choice, strives
to attain one objective with the minimum possible sacrifice of the other
goal. For instance, DA selects a stable matching that Pareto dominates all
other stable matchings for the proposing side (Gale and Shapley 1962).
Similarly, there is a sense in which TTC, which allows agents to trade their
priorities sequentially, satisfies efficiency at the minimal incidence of in-
stabilities (Abdulkadıroğlu et al. 2017b).2

While the trade-off between efficiency and stability is well understood,
it remains unclear how best to resolve the trade-off when both goals are
important. As noted above, the standard approach is to attain one goal at
the minimal sacrifice of the other. Whether this is the best way to resolve
the trade-off is far from clear. For instance, one can imagine amechanism
that is neither stable nor efficient but may be superior to DA and TTC be-
cause it involves very little loss on either objective.
The purpose of the current paper is to answer these questions and, in

the process, provide useful insights for practical market design. We address
1 See Balinski and Sönmez (1999) and Abdulkadıroğlu and Sönmez (2003). This fair-
ness property may be more important in applications such as school choice, where the sup-
ply side is under public control, so strategic blocking is not a serious concern.

2 Abdulkadıroğlu et al. (2017b) show that TTC is envy minimal in one-to-one matching,
in the sense that there is no efficient and strategy-proof mechanism that entails a smaller set
of blocking pairs than TTC (smaller in the set inclusion sense) for all preferences, strictly so
for some preferences.

New York University, Toronto, Wisconsin, the University of British Columbia, University Col-
legeLondon, SimonFraser,Microsoft, theKorea-America EconomicAssociationConference,
theNYCMarketDesignWorkshop, the Paris School of EconomicsMarket Design conference,
theWarwickMicro Theory conference, and theWorld-Class University Market Design confer-
ence for helpful comments. Both authors acknowledge financial support from the Global Re-
searchNetwork program through theMinistry of Education of the Republic of Korea and the
National Research Foundation (NRF) of Korea (NRF project number 2016S1A2A2912564).
Tercieux is grateful for the support from Agence National de la Recherche grant SCHOOL
CHOICE (ANR-12-JSH1-0004-01) as well as from EUR (Ecoles universitaires de recherche)
project ANR-17-EURE-0001.

This content downloaded from 160.039.031.189 on September 17, 2019 21:18:30 PM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



efficiency and stability in matching markets 000
these questions in a model that has two main features. First, we consider
markets that are “large” in the number of participants and the number
of object types. Large markets are clearly relevant in many settings. For in-
stance, in the US medical matching system, each year there are approxi-
mately 20,000 applicants for positions at 3,000–4,000 programs. In the
New York City (NYC) school choice, approximately 80,000 students ap-
ply each year to over 700 high school programs. Second, we assume that
agents’ preferences are generated randomly according to some reason-
able distributions. Specifically, we assume that each agent’s utility for
an object depends on a common component (that does not vary across
agents) and an idiosyncratic component that is independently drawn at
random (and thus varies across the agents) and that the agents’ priorities
over objects are drawn identically and independently.3

Our framework enables us to performmeaningful “quantitative” relax-
ations of the two desiderata: we can search formechanisms that are asymp-
totically efficient, in the sense that as the economy grows large, with high
probability (i.e., approaching one), the proportion of agents who would
gain discretely from a Pareto-improving assignment vanishes, and mecha-
nisms that are asymptotically stable, in the sense that in a sufficiently large
economy, with high probability, the proportion of agents who would have
justified envy toward a significant number of agents vanishes.
Our first set of findings pertains to the trade-off between DA and TTC.

We find that, when agents’ preferences for the objects are significantly
correlated, the efficiency loss from DA remains significant even when the
market grows large. Likewise, the instabilities in TTC do not disappear in
large markets. The potential inefficiencies of DA and instabilities of TTC
are well known from the existing literature; our novel finding here is that
they remain “quantitatively” significant (even) in a large market.
These findings can be explained in intuitive terms. Suppose that the ob-

jects come in two tiers, high quality and low quality, and that every high-
quality object is preferred to every low-quality object by each agent regard-
less of his idiosyncratic preferences. In this case, the (agent-proposing) DA
has all agents compete first for every high-quality object before they com-
pete for a low-quality object. Such competition means that in a stable
matching—including agent-optimal stable matching—the outcome is dic-
tated largely by how the objects rank the agents and not by how the agents
rank the objects. Hence, the competition among agents entails signifi-
cant welfare loss in the presence of the stability requirement.
Meanwhile, under TTC, many agents who are assigned low-quality ob-

jects exhibit justified envy toward a significant number of agents who ob-
tain high-quality objects. The reason is that, even in a large economy,
3 We discuss in Secs. V and VI how our results carry over to richer environments in which
agents’ priorities are correlated.
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many of these latter agents obtain high-quality objects through the trad-
ing of their priorities. Typically, these agents have high priorities with the
objects they are trading off, but they could well have very low priorities
with the objects they are trading in. For this reason, TTC is asymptotically
unstable.
Taken together, these two findings have an important practical market

design implication, as they suggest that the standard approach of achiev-
ing one goal with a minimal sacrifice of the other may not be the best.4

Motivated by these results, we develop a new mechanism, called DA
with circuit breaker (DACB), that is both asymptotically efficient and as-
ymptotically stable. This mechanismmodifies DA to prevent participants
from competing excessively. Specifically, all agents are ordered in some
manner (for instance, at random), and following that order, each agent
applies one at a time to the best object that has not yet rejected him.5 The
proposed object then accepts or rejects the applicant, much as in stan-
dard DA. If, at any point, an agent applies to an object that holds an ap-
plication, one agent is rejected, and the rejected agent in turn applies to
the best object among those that have not rejected him. This process con-
tinues until an agent makes a certain “threshold” number k of offers for
the first time. The stage is terminated at that point, and all tentative as-
signments up to that point become final. The next stage then begins with
the agent who was rejected at the end of the last stage applying to the best
remaining object and the number of proposals for that agent being reset
to zero. The stages proceed in this fashion until no rejection occurs.
This “staged” version of DA resembles standard DA except for one cru-

cial difference: the mechanism periodically terminates a stage and final-
izes the tentative assignment up to that point. The event triggering the
termination of a stage is an agent reaching a threshold number of offers.
Intuitively, the mechanism activates a “circuit breaker” whenever the com-
petition “overheats” to such an extent that an agent findshimself at the risk
of losing an object he ranks highly to an agent who ranks it relatively lowly
(more precisely, above the threshold rank). This feature ensures that each
object assigned at each stage goes to an agent who ranks it relatively highly
among the objects available at that stage.
Given the independent drawing of idiosyncratic shocks, the “right” k is

shown to be sublinear in n no less than log2(n), where n is the number of
agents. Given the threshold, DACB produces an assignment that is both
asymptotically stable and asymptotically efficient. The analytical case for
4 In combinatorial assignment problems where transfers are not allowed, Budish (2011)
makes a related point: he offers a market-like mechanism that makes relatively small com-
promises on efficiency and envy-freeness (while keeping desirable incentive properties),
whereas known mechanisms satisfy one of these two objectives exactly.

5 A version of DA in which offers are made according to a serial order was first intro-
duced by McVitie and Wilson (1971).

This content downloaded from 160.039.031.189 on September 17, 2019 21:18:30 PM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



efficiency and stability in matching markets 000
this mechanism rests on a limit analysis, but the mechanism performs
well even away from the limit. Our simulation shows that, even for a mod-
erately large market and a more general preference distribution, our
mechanism performs considerably better than DA in terms of utilitarian
welfare and entails significantly less stability loss than efficient mecha-
nisms such as TTC.
One potential concern about this mechanism is its incentive property.

While the mechanism is not strategy-proof, the incentive problem does
not appear to be severe. A manipulation incentive arises only when an
agent is in a position to trigger the circuit breaker, because the agent
may then wish to apply to a safer object instead of a more popular one
that has a high probability of rejecting him. The probability of this situa-
tion is one over the number of agents assigned in the current stage, which
is on the order of n; hence, with a sufficient number of participants, the
incentive issue is rather small.6 Formally, we show that the mechanism in-
duces truthful reporting as an e-Bayes-Nash equilibrium.
Finally, another potential concern with this mechanism is the required

bound on k ≥ log2ðnÞ. In practice, applicants are often constrained to
make a small number of applications, possibly below log2(n) (a case in
point is the high school assignment in NYC; see Sec. VI). To address such
a situation, we generalize our mechanism so that for each k, the termina-
tion of a stage is triggered only when at least j ≥ 1 agents have eachmade
more than k offers.We provide a joint condition on (k, j) that ensures that
the generalized version of DACB is both asymptotically stable and asymp-
totically efficient. In particular, the required k can be quite small for a suf-
ficiently large j.
To study how our findings apply to a realistic market, we use the pref-

erence data supplied by the NYC Department of Education for public
high school assignment during the 2009–10 school year. Their main
round employed a student-proposing DA in which each applicant sub-
mits a rank-order list (ROL) of up to 12 programs. Assuming the observed
ROLs to prevail under alternative algorithms, we find a significant trade-
off between efficiency and stability. First, on average 5,189 students would
be Pareto improved if they were rematched efficiently, starting from the
DA. Meanwhile, TTC would entail 18,943 students with justified envy.7
6 By contrast with Azevedo and Budish (2015), the number of preference types grows
without bound as the market grows large in our model. Hence, their result on “strategy-
proofness in the large” does not apply here. Nevertheless, it is simple to see from our argu-
ments that the DACB mechanism has a similar incentive property: truthful reporting is op-
timal in the limit economy against any independent and identical distribution of reports,
provided that the distribution is one of those allowed in our paper. See also remark 1.

7 These figures are broadly in line with Abdulkadıroğlu, Pathak, and Roth’s (2009) anal-
ysis of the 2006–7 choice data. Note that their efficient matching does not coincide with
TTC. Instead, Abdulkadıroğlu et al. (2009) produce efficient matching by first running
DA and then running a Shapley-Scarf TTC based on the DA assignment.
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This result is consistent with our theoretical finding that the trade-offs do
not disappear when the two prominent mechanisms are employed in a
large market. Meanwhile, we show that DACB, with suitably chosen pa-
rameters, would span a range of outcomes on the efficiency-stability fron-
tier that are unattainable by the existing mechanisms. For reasons to be
explained in detail, however, relying on the observed ROLs understates
the trade-off between DA and TTC. We therefore performed structural
estimation of students’ preferences, using the method developed by
Abdulkadıroğlu, Agarwal, and Pathak (2017a), and simulated alterna-
tive algorithms based on these estimates. Under these counterfactual
analyses, TTC and DA perform considerably worse; for instance, about
29,293 students can be made better off from a Pareto-improving reas-
signment under DA, while 21,029 applicants would feel justified envy
under TTC.8 By contrast, DACB performs impressively. For instance, it
can yield an outcome considerably more efficient than DA with very little
sacrifice in stability.
The DACB mechanism bears some resemblance to features observed

in popular real-world matching algorithms. The “staged termination”
feature is present in the school assignment program in China (Chen and
Kesten 2017).More important, the feature that suppresses excessive com-
petition is present in the truncation of participants’ choice lists, which is
practiced in most real-world implementations of DA. We provide a ratio-
nale for this practice that is common in the actual implementation of DA
but has thus far been difficult to rationalize (see Haeringer and Klijn
2009, Calsamiglia, Haeringer, and Klijn 2010, Pathak and Sömez 2013,
and Ashlagi, Nikzad, and Romm 2015). Indeed, we show that DA with
an appropriate limit on the ROLs can, to some extent, achieve an asymp-
totically efficient and stable equilibrium outcome.
The present paper is related to the growing literature that studies large

matching markets, particularly those with a large number of object types
and randompreferences; see Immorlica andMahdian (2005), Kojima and
Pathak (2009), Lee (2017), Knuth (1997), Pittel (1989), Ashlagi, Braverman,
and Hassidim (2014), Ashlagi, Kanoria, and Leshno (2017), and Lee and
Yariv (2017). The first three papers are largely concerned with the incen-
tive issues arising in DA. The last five papers are concerned with the ranks
of the partners achieved by the agents on the two sides of themarket under
DA. In particular, the last three papers study the large-market efficiency
performance of DA, and their relationship with the current paper is dis-
cussed more fully below. Unlike these papers, our paper considers not
only DA but also other mechanisms and adopts broader perspectives
8 As we explain in Sec. VI, the significant differences in the counterfactual analyses are
attributed to the two methods that provide lower and upper bounds for the trade-off be-
tween DA and TTC.
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concerning both efficiency and stability.9 Finally, Che and Tercieux (2017,
2018) study large-market properties of Pareto-efficient mechanisms and
provide some preliminary observations for the current paper.
II. Model
Afinite set of agents are assigned a finite set of objects, at most one object
for each agent. Because our analysis will involve studying the limit of a
sequence of such finite economies as they become large, it is convenient
to index the economy by its size n. An n-economy En 5 ðI n,OnÞ consists of
agents In and objects On, where jI nj 5 jOnj 5 n. The assumption that these
sets are of equal size is purely for convenience. Our results hold even if
the sets are not of equal size, provided that they grow at the same rate.
For much of the analysis, we suppress the superscript n for notational
convenience.
A. Preliminaries
Throughout, we consider a general class of random preferences that al-
lows for a positive correlation among agents on the objects. Specifically,
each agent i ∈ I n receives utility from obtaining object type o ∈ On:

Ui oð Þ 5 U uo , yi,oð Þ,
where uo is a common value, and the idiosyncratic shock yi,o is a random var-
iable drawn independently and identically from [0, 1] according to the
uniform distribution.10

The common values take finite values fui, : : : , uKg such that u1 > : : : >
uK . For each n-economy, the objects On are partitioned into tiers,
fOn

1 , : : : ,O
n
Kg, such that each object in tier On

k yields a common value of uk

to the agent who is assigned it. We assume that the proportion of tier-k
objects, jOn

k j=n, converges to xk > 0, such that ok∈Kxk 5 1. We sometimes
use the notation O≥k to denote the set of objects in [‘≥kO‘. Similarly, let
O≤k ≔[‘≤kO‘. One can imagine an alternativemodel in which the common
9 Another strand of literature studying large matching markets considers a large num-
ber of agents matched with a finite number of object types (or firms/schools) on the other
side; see Che and Kojima (2010), Kojima and Manea (2010), Abdulkadıroğlu, Che, and
Yasuda (2015), Azevedo and Budish (2015), Azevedo and Leshno (2016), and Che, Kim,
and Kojima (2019), among others. The assumption of a finite number of object types makes
substantial differences for both the analysis and the insights. The two strands of large-
matching-market models capture issues that are relevant in different real-world settings
and thus complement one another.

10 The uniform-distribution assumption is without loss of generality, provided that the
type distribution is atomless and has full and bounded support, as one can always focus
on the quantile corresponding to the agent’s type as a normalized type and redefine the
payoff function as a function of the normalized type.
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value is drawn randomly from fui , : : : , uKg according to some distribution
that converges to fxi, : : : , xKg as n→∞. Such a treatment will yield the
same results as the current treatment, which can be regarded as consid-
ering each realization of such a random drawing.
We further assume that the function U(⋅, ⋅) takes values inR1, is strictly

increasing in the common value and idiosyncratic shock, and is contin-
uous in the latter. The utility of remaining unmatched is assumed to be
zero, which implies that each agent finds all objects acceptable.11

Next, the priorities agents have with different objects—or objects’ “pref-
erences” over agents—are drawn uniform randomly. Formally, we assume
that individual i achieves a priority score,

Vo ið Þ 5 V hi,oð Þ,
at object o ∈ O, where idiosyncratic shocks fhi,ogi,o are independently and
identically distributed (iid) random variables, each drawn uniformly from
[0, 1]. Although restrictive, the iid assumption captures a class of plausi-
ble circumstances under which a trade-off between the two objectives per-
sists and can be addressed more effectively by the novel mechanism we
propose. Further, as explained in Section V.A, our new mechanism can
be easily modified to accommodate correlations in agents’ priorities over
objects. The function V(⋅) takes values inR1 and is strictly increasing and
continuous. The utility of remaining unmatched is assumed to be zero,
which implies that all objects find all individuals acceptable.
Fix an n-economy. A matching m in an n-economy is a mapping

m : I →O [ f∅g, with the interpretation that agent i with mðiÞ 5 ∅ is un-
matched. In addition, mðiÞ ≠ mð jÞ for any j ≠ i whenever mðiÞ ≠ ∅ or
mð jÞ ≠ ∅. Let Mn denote the set of all matchings in an n-economy. All
of these objects depend on n, although their dependence is suppressed
for notational convenience.
Amatching mechanism is a function thatmaps states tomatchings, where

a state q 5 fyi,o , hi,ogi∈I ,o∈O consists of the realized profile fyi,ogi∈I ,o∈O of
the idiosyncratic component of agents’ payoffs and the realized profile
fhi,ogi∈I ,o∈O of agents’ priorities with the objects.12With a slight abuse of no-
tation, we use m 5 fmqðiÞgq∈Q,i∈I to denote a matching mechanism, which
selects a matching mq(⋅) in state q. The set of all states is denoted Q. Let
Mn denote the set of all matching mechanisms in an n-economy. For
11 This feature does not play a crucial role in our results, which hold, provided that a
linear fraction of objects are acceptable to all agents.

12 Note that matching mechanisms depend on cardinal preferences/priorities in our
model, whereas standard mechanisms such as TTC and DA depend only on ordinal pref-
erences and priorities. Obviously, cardinal preferences/priorities induce ordinal prefer-
ences/priorities, and the current treatment clearly encompasses these mechanisms. We fo-
cus on cardinal utilities and priorities to operationalize the asymptotic notions of efficiency
and stability. Our results do not depend on the particular cardinalization of utilities.
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convenience, we often suppress the dependence of the matching mech-
anism on q and Mn.
For a limit analysis, we are interested in a sequence {mn} of matching

mechanisms for the corresponding n-economies. We call such a sequence
a matching outcome.
B. Welfare and Fairness Concepts in Large Markets
A matching m ∈ Mn is Pareto efficient if there is no other matching
m0 ∈ Mn such that Uiðm0ðiÞÞ ≥ UiðmðiÞÞ for all i ∈ I and Uiðm0ðiÞÞ >UiðmðiÞÞ
for some i ∈ I . A matching mechanism m ∈ Mn is Pareto efficient if,
for each state q ∈ Q, the matching it induces, that is, mq(⋅), is Pareto effi-
cient. Let M*

n denote the set of all Pareto-efficient mechanisms in the n-
economy. Amatching m at a given state is stable if there is no pair (i, o) such
that UiðoÞ > UiðmðiÞÞ and VoðiÞ > VoðmðoÞÞ—that is, no pair wishes to match
with each other rather than their partners in matching m. A matching
mechanism m ∈ Mn is stable if, for each state q ∈ Q, the matching it in-
duces, mq(⋅), is stable.
Throughout, we invoke the following implication of Pareto efficiency.
Lemma 1. For any Pareto-efficient matching outcome {mn} (Che and

Tercieux 2018),

oi∈I Ui mn ið Þð Þ
n

→
p

o
K

k51

xkU uk , 1ð Þ:

Note that the right-hand side gives the (normalized) total utility that
would be obtained if all agents attained the highest possible idiosyncratic
value; hence, it is the utilitarian upper bound. The lemma states that the
aggregate utilities agents enjoy in any Pareto-efficient mechanism ap-
proach that bound in probability as n→∞. Recall that our model allows
for agents’ preferences to be correlated; in particular, agents tend to pre-
fer objects with a higher common value to ones with a lower common value.
The striking implication of lemma 1 is that this conflict of interests does not
cause a significant welfare loss if the allocation is Pareto efficient. As is seen
below, the same will not be the case with a stable matching.
We next discuss how efficiency and stability can be weakened in the

large-market setting. We say that a matching outcome {mn} is asymptotically
efficient if, for any e > 0 and any matching outcome fm0

ng that for each
n-economy Pareto dominates {mn},

Ie m0
njmnð Þj j
n

→
p
0

as n→∞, where Ieðm0
njmnÞ ≔ fi ∈ I jUiðmnðiÞÞ < Uiðm0

nðiÞÞ2 eg is the set
of agents who would benefit more than e by switching from mn to m0

n.
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In words, a matching outcome is asymptotically efficient if the fraction
of agents who could benefit discretely from any Pareto-improving re-
matching vanishes in probability as the economy grows large.
The notion of stability can be weakened in a similar way. We say that a

matching outcome {mn}n is asymptotically stable if, for any e > 0,

Je mnð Þj j
n n 2 1ð Þ →

p
0

asn→∞,where JeðmnÞ ≔ fði, oÞ ∈ I � OjUiðoÞ > UiðmnðiÞÞ 1 e and VoðiÞ >
VoðmnðoÞÞ 1 eg is the set of e-blocks—namely, the set of pairs of an agent
and an object who would each gain e or more from matching with each
other rather thanmatching according to mn. Asymptotic stability requires
that for any e > 0, the fraction of these e-blocks as a share of all nðn 2 1Þ
“possible” blocking pairs vanishes in probability as the economy grows
large. It is possible even in an asymptotically stable matching that some
agents are willing to e-block with a large number of objects, but the fraction
of such agents should vanish in probability.
This can be stated more formally. For any e > 0, let Ôi

eðmnÞ ≔
fo ∈ Ojði, oÞ ∈ JeðmnÞg be the set of objects agent i can form an e-block
with against mn. Then, a matching is asymptotically stable if and only if
the set of agents who can form an e-block with a nonvanishing fraction
of objects vanishes in probability, that is, for any e, d > 0:

Ie,d mnð Þj j
n

→
p
0

as n→∞, where Ie,dðmnÞ ≔ fi ∈ I jjÔi
eðmnÞj ≥ dng. If, as is plausible in

many circumstances, agents form e-blocks by randomly sampling a finite
number of potential partners (i.e., objects), asymptotic stability would
mean that only a vanishing proportion of agents will succeed in finding
blocking partners in a large market.
A similar implication can be drawn in terms of fairness. Asymptotic sta-

bility of matching implies that only a vanishing proportion of agents
would have (a discrete amount of) justified envy toward a nonvanishing
proportion of agents. If an individual becomes aggrieved from justifiably
envying, for example, someone from a random sample of finite agents
(e.g., friends or neighbors), then the property will guarantee that only a
vanishing fraction of individuals will suffer significant aggrievement as
the economy grows large.
C. Two Prominent Mechanisms
As mentioned above, the existing literature and school choice programs
in practice center on the following twomechanisms, and the trade-off be-
tween the two is an important part of our inquiry.
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1. The TTC Mechanism
The TTC algorithm, originally introduced by Shapley and Scarf (1974)
and later adapted by Abdulkadıroğlu and Sönmez (2003) to the school
choice context, has been an influential method for achieving efficiency.13

The mechanism has some notable applications. For instance, the TTC
mechanism was used until recently to assign students to public high
schools in the New Orleans school system. A version of TTC is also used
for kidney exchange among donor-patient pairs with incompatible do-
nor kidneys (see Sönmez and Ünver 2013).
The TTC algorithm (defined by Abdulkadıroğlu and Sönmez [2003])

proceeds in multiple rounds as follows. In round t 5 1, : : : , each individ-
ual i ∈ I points to his most preferred object. Each object o ∈ O points
to the individual who has the highest priority with that object. Because
the numbers of individuals and objects are finite, the directed graph thus
obtained has at least one cycle. Every individual who belongs to a cycle is
assigned the object at which he is pointing. The assigned individuals and
objects are then removed. The algorithm terminates when all individuals
have been assigned; otherwise, it proceeds to round t 1 1. This algorithm
terminates in finite rounds. The TTC mechanism selects a matching via
this algorithm for each realization of individuals’ preferences and ob-
jects’ priorities.
As is well known, the TTC mechanism is Pareto efficient and strategy-

proof (i.e., it is a dominant strategy for agents to report their preferences
truthfully). As mentioned above, TTC is unstable, but it is constrained-
stable in the sense that it is justified-envy-minimal among Pareto-efficient
and strategy-proof mechanisms (see Abdulkadıroğlu et al. 2017b).
2. The DA Mechanism
The best-known mechanism for attaining stability is the DA algorithm.
Since introduced by Gale and Shapley (1962), the mechanism has been
applied widely in a variety of contexts. The medical matching systems
in the United States and other countries adopt DA for assigning doctors
to hospitals for residency programs. The school systems in Boston and
NYC use DA to assign eighth-grade students to public high schools (see
Abdulkadıroğlu et al. 2005a, 2005b).
For our purpose, it is more convenient to define DA as proposed by

McVitie and Wilson (1971), proceeding in multiple steps as follows:

Step 0. Linearly order individuals in I from 1 to n.
Step 1. Let individual 1 make an offer to his favorite object in O. This

object tentatively holds individual 1; go to step 2.
13 The original idea is attributed to David Gale by Shapley and Scarf (1974).
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Step i ≥ 2: Let individual i make an offer to his favorite object o in O
from among the objects to which he has not yet made an
offer. If o does not have a tentatively accepted agent, then o
tentatively accepts i. If the algorithm is at step n, end the
algorithm; otherwise, iterate to step i 1 1. If, however, o
has a tentatively accepted agent—call him i*—object o
chooses between i and i* and tentatively accepts the one
with the higher priority (or the one more preferred by
o) and rejects the other. The rejected agent is named i,
and we return to the beginning of step i.

Note that the algorithm iterates to step i 1 1 only after all offers made
in step i are processed and there are no more rejections. The algorithm
terminates in n steps, with finite offers having beenmade. The DAmech-
anism selects a matching via this process for each realization of individu-
als’ preferences and objects’ priorities.
As is well known, the (agent-proposing) DAmechanism selects a stable

matching that Pareto dominates all other stable matchings, and it is also
strategy-proof (Dubins and Freedman 1981; Roth 1982). However, the
DA matching is not Pareto efficient, meaning that the agents may all be
better off from another matching (which is not stable).
III. Efficiency and Stability with
Uncorrelated Preferences
As a benchmark, we first consider the case in which the participants’ pref-
erences for the objects are uncorrelated. That is, the support of the com-
mon component of the agents’ utilities is degenerate, with a single tier
K 5 1 for the objects. This case has been considered extensively in the
computer science literature (Wilson 1972; Pittel 1989, 1992; Frieze and
Pittel 1995; Knuth 1997). In particular, those papers characterize the
asymptotics of the ranks enjoyed by individuals and by the objects under
DA. Specifically, let RDA

i denote the rank enjoyed by individual i under
DA; that is, RDA

i 5 ‘ if i obtains his ℓth-most-favorite object under DA.
Similarly, we let RDA

o denote the rank enjoyed by object o under DA. We
repeatedly utilize the following results.
Lemma 2. Assume K 5 1. Then,

Pr max
i∈I

RDA
i ≤ log2 nð Þ

� �
→ 1

as n→∞. In addition, for any d > 0,

Pr
1

noo∈O R
DA
o ≤ 1 1 dð Þ n

log nð Þ
� �

→ 1

as n→∞ (Pittel 1989, 1992).
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Since both log2(n) and n= logðnÞ are small relative to n as n→∞, this
lemma implies that the agents and objects both attain very high payoffs
in a large market. In fact, both DA and TTC involve little trade-off when
preferences are uncorrelated:
Theorem 1. If K 5 1, then any outcome of a Pareto-efficient mech-

anism, and hence that of TTC, is asymptotically stable, and the outcome
of DA is asymptotically efficient.14

Proof. The asymptotic stability of a Pareto-efficient mechanism fol-
lows from lemma 1, which implies that for any e > 0, the proportion of
the set Ieð~mÞ of agents who realize payoffs less than U ðu1, 1Þ 2 e in any
Pareto-efficient matching mechanism ~m ∈ M*

n vanishes in probability as
n→∞. Since Ie,dð~mÞ ⊂ Ieð~mÞ for any d ≥ 0, asymptotic stability then follows.
The asymptotic efficiency of DA is shown as follows. Let E1 be the event

that all agents are assigned objects in DA that they rank within log2(n). By
lemma 2, the probability of that event goes to one as n→∞. Now, fix any
small e > 0, and let E 2 be the event that all agents would receive a payoff
greater than U ðu1, 1Þ 2 e from each of their top log2(n) objects. Because
for any d > 0, log2ðnÞ ≤ djO1j 5 dn for a sufficiently large n, by lemma S1
(i) in online appendix S.1, the probability of that event goes to one as
n→∞. Clearly, whenever both events occur, all agents will receive a payoff
greater than U ðu1, 1Þ 2 e under DA. As the probability of both events oc-
curring goes to one, the DAmechanism is asymptotically efficient.15 QED
It is worth noting that the trade-offs of the two mechanisms do not dis-

appear qualitatively even in large markets: DA remains inefficient and
TTC remains unstable even as the market grows large. In fact, given ran-
dom priorities on the objects, the acyclicity conditions required for the
efficiency of DA and the stability of TTC, according to Ergin (2002)
and Kesten (2006), respectively, fail almost surely as the market grows
large. What theorem 1 suggests is that the trade-off disappears quantita-
tively, provided that the agents have uncorrelated preferences.
Uncorrelated preferencesmean that the conflicts that agentsmay have

over the goods disappear as the economy grows large, as each agent is in-
creasingly able to find an object that he likes that others do not. This, in
turn, implies that the agents can attain high payoffs, in fact, arbitrarily
14 Using Wilson (1972), one can show that the result of the theorem holds regardless of
the objects’ priorities. Hence, there is no need here to draw these randomly.

15 Our notion of efficiency focuses on one side of the market: the individuals’ side. It is
worth noting here that even if we were to focus only on the other side, the objects’ side, as-
ymptotic efficiency would still follow from the second part of lemma 2, despite our use of a
DA in which individuals are the proposers (see the proof of proposition 1 for a formal ar-
gument). This also implies that under a DA in which schools are the proposers, in our en-
vironment (in which priorities are drawn randomly), asymptotic efficiency on the individ-
ual side can be achieved. Thus, any stable mechanism is asymptotically efficient in this
context.
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close to their payoff upper bound, as n→∞ under DA. This eliminates
(probabilistically) the possibility that a significant fraction of agents can
be made discretely better off from rematching, thus explaining the as-
ymptotic efficiency of DA. Similarly, under TTC, the agents enjoy payoffs
that are arbitrarily close to their payoff upper bound as n→∞, which
guarantees that the number of agents who each would justifiably envy a
significant number of agents vanishes in the large market. Hence, TTC
is asymptotically stable.
IV. Efficiency and Stability under
General Preferences
We now consider our main model, in which agents’ preferences are cor-
related. In particular, we assume that some objects are regarded by “all”
agents as better than the other objects. This situation is common inmany
contexts such as school assignment, as students and parents tend to value
similar qualities about schools (teacher and peer qualities, safety, etc.).
To consider such an environment in a simple way, we suppose that the

objects are divided into two tiersO1 andO2, such that jI j 5 jO1j 1 jO2j 5
n. As assumed above, limn→∞ðjOkj=nÞ 5 xk > 0 for k 5 1, 2. Our argu-
ments in this section generalize in an obvious way to a case with more
than two tiers. In addition, we assume that every agent considers each
object in O1 to be better than each object in O2: U ðu1, 0Þ > U ðu 2, 1Þ.
In the school choice context, this feature corresponds to a situation
in which students agree on the preference rankings over schools across
different districts but may disagree on the rankings of schools within
each district. Agents’ priorities with objects are given by idiosyncratic
random shocks, as assumed above.
In this environment, we show that the standard trade-off between DA

and TTC extends to largemarkets even in the asymptotic sense—namely,
DA is not asymptotically efficient and TTC is not asymptotically stable.
A. Asymptotic Instability of TTC
Our first result is that, with correlated preferences, TTC fails to be as-
ymptotically stable.
Theorem 2. In our model with two tiers, the matching outcome of

TTC is not asymptotically stable.Moreprecisely, there exists e > 0 such that

Je TTCð Þj j
n n 2 1ð Þ →

p

0:

We provide the main idea of the proof here; the full proof is in online ap-
pendix S.2. In essence, the asymptotic instability of TTC arises from the key
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feature of this mechanism. In TTC, agents attain efficiency by “trading”
among themselves objects where they have high priorities. This process
entails instabilities because an agent could have a very low priority with
an object and yet could obtain it if he has a high priority with an object
that is demanded by another agent who has a high priority with the for-
mer object. This insight is well known but silent on the magnitude of the
instabilities for a large economy. Recall, for instance, that instabilities are
not significant in a large economy when agents’ preferences are uncor-
related. In that case, the agents’ preferences do not conflict with one an-
other, and they all attain close to their “bliss” payoffs in TTC, resulting in
only a vanishing proportion of agents justifiably envying any significant
number of agents.
The matters are different, however, when their preferences are corre-

lated. In the two-tier case, for instance, a large number of agents are as-
signed tier 2 objects, and they all envy the agents who obtain tier 1 objects.
The asymptotic stability of themechanism then depends on howmuch of
this envy is justified, namely, howmany of the envying agents have higher
priorities than those envied.
This latter question boils down to the length of the cycles through

which the latter agents are assigned in the TTC mechanism. Call a cycle
of length two—namely, an agent points to an object, which in turn points
back to that agent—a short cycle and any cycle of length greater than two a
long cycle. Intuitively, the agents who are assigned via short cycles are likely
to have high priorities with their assigned objects.16 By contrast, the
agents who are assigned via long cycles are unlikely to have high priori-
ties. Agents in the long cycles tend to have high priorities with the objects
they trade up (because the objects must have pointed to them), but they
could have very low priorities with the objects they trade in. For instance,
in figure 1, agent i need not have a high priority with b, although agent j
does. In fact, their priorities at the objects they eventually receive play no
(contributory) role in the formation of such a cycle.17 Hence, their prior-
ities with the objects they receive (in O1) are at best simple iid draws, and
hence each of them has a one-half probability of having a higher priority
than an agent who receives a tier 2 object. This suggests that any agent
receiving a tier 2 object will have, on average, a significant amount of jus-
tified envy toward a half of those who receive tier 1 objects via long cycles.
In figure 1, agent k (who receives a tier 2 object) has probability 1/2 of
having a higher priority at b than agent i.
16 In fact, any agent assigned via a short cycle cannot be a target of justified envy. Sup-
pose that i is assigned o via a short cycle. Then, any agent j with a higher priority at o than
i could have gotten o ahead of i, so j could not have envied i.

17 If anything, the role of their priorities is negative. That an agent is assigned via a long
cycle, as opposed to a short cycle, means that she does not have the highest priority with the
object she receives in that round.
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The crucial part of the proof of theorem2 is to show that the number of
agents assigned tier 1 objects via long cycles is significant—that is, the
number does not vanish in probability as n→∞. While this result is intu-
itive, its proof is not trivial. By an appropriate extension of “randommap-
ping theory” (see Bollobás 2001), we can compute the expected number
of tier 1 objects that are assigned via long cycles in the first round of TTC.
But these objects comprise a vanishing proportion of n as the market be-
comes large. However, extending the random mapping analysis to the
subsequent rounds of TTC is difficult, because the distribution of the
preferences and priorities of the agents remaining after the first round
depends on the specific realization of the first round of TTC. In particu-
lar, their preferences for the remaining tier 1 objects are no longer iid.
This conditioning issue requires a deeper understanding of the precise
random structure through which the algorithm evolves over rounds.
We do this in Che and Tercieux (2017). In particular, we establish that
the number of objects (and thus of agents) assigned in each round of
TTC follows a simple Markov chain, implying that the number of agents
cleared in each round is not subject to the conditioning issue. However,
the composition of the cycles, in particular short versus long cycles, is sub-
ject to the conditioning issue. Nevertheless, in online appendix S.3, we
are able to bound the number of short cycles formed in each round of
TTC, and this bound, combined with theMarkov property of the number
of objects assigned in each round, produces the result.
FIG. 1.—Possible justified envy by k toward j
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B. Asymptotic Inefficiency of DA
Given correlated preferences, we also find that the inefficiency of DA is
significant in the large market.
Theorem 3. In our two-tier model, the matching outcome of DA

is not asymptotically efficient. More precisely, there exist e > 0 and a
matching outcome m that Pareto dominates DA in each n-economy such
that

Ie mð jDAj Þj
n

→
p
0:

as n→∞.
The DA matching Pareto dominates all other stable matchings, as

shown by Gale and Shapley (1962). Hence, any matching outcome m that
Pareto dominates DA and satisfies the property stated in theorem 3 will
Pareto dominate any stable matching outcome and satisfy the same prop-
erty. Thus, we obtain the following corollary.
Corollary 1. Any stable matching outcome fails to be asymptotically

efficient in our two-tier model.
The proof of theorem 3 is in online appendix S.4; we explain its intu-

ition here. When the agents’ preferences are correlated, agents tend to
compete excessively for the same set of objects, and this competition re-
sults in a significant welfare loss under a stable mechanism. To see this
intuition more clearly, recall that all agents prefer every object in O1 to
any object in O2. This means that in the DA, they all first apply for objects
inO1 before they ever apply for any object inO2. The first phase of the DA
is then effectively a submarket consisting of all agents and tier 1 objects
with random preferences and priorities. As there is an excess of agents
of size jI j 2 jO1j, which grows linearly in n, even those agents who are for-
tunate enough to receive tier 1 objects must have competed to such an
extent that they would have suffered a significant welfare loss.18

Indeed, note that each of the agents who is eventually assigned an ob-
ject inO2 must havemade FO1F offers to the objects inO1 before he/she is
rejected by all of them. This means that each object in O1 must receive at
least jI j 2 jO1j offers. Then, from an agent’s perspective, to be assigned
an object in O1, he must survive competition from at least jI j 2 jO1j 5
jO2j other agents. The odds of this equal 1=ðjO2j 1 1Þ, as the agents are
all ex ante symmetric. Hence, the odds that an agent is rejected by his
top dn choices, for any d > 0, is at least
18 This result is obtained by Ashlagi et al. (2014, 2017), building on the algorithm orig-
inally developed by Knuth, Motwani, and Pittel (1990) and Immorlica and Mahdian (2005).
Here, we provide a direct proof that is much simpler. This proof is sketched here and
detailed in online app. S.4
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O2j j 1 1

� �dn

→
1

e

� �d=x2

, (1)

because jO2j=n→ x2 as n→∞. Note that this probability approaches one
as d becomes sufficiently small. This probability is not conditional on an
agent being assigned a tier 1 object. However, each agent is assigned a
tier 1 object with positive probability (close to x1 > 0). Hence, for the un-
conditional probability of an agent making at least dn offers to be close to
one, the probability of making that many offers even conditional on re-
ceiving a tier 1 object must also be positive. As shown more precisely in
online appendix S.4, therefore, even those agents who are fortunate
enough to receive tier 1 objects must suffer a significant number of rejec-
tions with nonvanishing probability. These agents will therefore attain
payoffs that are, on average, bounded away from U(u1, 1).
This outcome is inconsistent with asymptotic efficiency. To see this,

suppose that, once objects are assigned through DA, the Shapley-Scarf
TTC is run, with their DA assignment serving as the agents’ initial endow-
ment. The resulting reassignment Pareto dominates the DA assignment.
Further, it is Pareto efficient. Then, by lemma 1, with probability going to
one, a fraction arbitrarily close to one of agents assigned to O1 objects en-
joy payoffs arbitrarily close to U(u1, 1) when the market grows large. This
implies that a significant number of agents will enjoy a significant welfare
gain from a Pareto-dominating reassignment.19

It is worth emphasizing that the significant welfare loss under DA is
caused by the excessive competition forced upon the agents. This obser-
vation serves as a key motivation for designing a new mechanism that, as
we show next, is asymptotically efficient and asymptotically stable.
V. DACB
As we just saw, the twomost prominentmechanisms fail to achieve asymp-
totic efficiency and asymptotic stability. Is there amechanism that satisfies
both properties? We next propose one such mechanism.20 To be more
precise, we define a class ofmechanisms indexed by some positive integer
k (allowed to be∞). For a given k, the newmechanism thenmodifies (the
19 This result is related to that of Ashlagi and Nikzad (2015), who show that many pairs
of students would benefit from directly exchanging assignments ex post when there is a
shortage of seats. Besides the “types” of reassignment, the notion of welfare gain is differ-
ent, however: we focus on the agents who would benefit “discretely” from reassignment.

20 The feasibility of attaining both asymptotic efficiency and asymptotic stability can be
seen directly by appealing to the Erdös-Renyi theorem. Exploiting this theorem, one can
construct a mechanism that is asymptotically efficient and asymptotically stable. However,
this mechanism would not be desirable, for several reasons. In particular, as we discuss in
online app. S.5, it would not have good incentive properties. By contrast, the mechanism
that is proposed here does have a good incentive property, as we show below.
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McVitie-Wilson version of) DA to finalize tentative assignments whenever
an agent has made k offers for the first time. We show below how k can be
chosen to achieve our goal. For further applicability, we generalize the
mechanism so that the assignment is triggered when a certain number
j ≥ 1 of agents have each made k offers.21 For expositional clarity, we be-
gin with the simplest version and present the generalized version in a sec-
ond step.
A. Basic Algorithm
Given a value k, the DACB mechanism begins by collecting agents’ pref-
erence rankings of objects. Next, the agents are given serial orders 1, : : : , n.
We do not specify how the serial orders of the agents are determined, ex-
cept to assume that they admit basic uncertainty from the agents’ per-
spective: for each k 5 1, : : : , n, the probability that any agent i receives
the serial order k goes to zero as n→∞. This property holds trivially if
the agents’ serial orders are chosen uniform randomly but holds much
more generally, for instance, even when an agent could anticipate this
distribution to some extent based on his priorities.
Given the agents’ preference rankings and serial orders, DACB with in-

dex k is defined recursively on triplets: the sets Î and Ô of remaining
agents and objects, respectively, and a counter for each agent that records
the number of offers he has made so far. We first initialize Î 5 I and
Ô 5 O and set the counter for each agent to zero.
Step i ≥ 1.—The agent with index i (i.e., ith-lowest serial order) in Î ap-

plies to his favorite object o among those in Ô to which he has not yet ap-
plied. The counter for that agent increases by one. If o is not tentatively
holding any agent, then o tentatively holds that agent, and the algorithm
iterates to step i 1 1. (The algorithm is terminated if no more students
are left or if i 5 n.) If o is already holding an agent tentatively, it tenta-
tively accepts the agent with a higher priority and rejects the other. There
are two cases to consider.

1. Suppose that the counter for the agent who has just applied is
equal to k. Then each agent who is tentatively assigned an object
in steps 1, : : : , i is assigned that object. Reset Ô to be the set of un-
assigned objects and Î to be the set of unassigned agents. Reset the
counter for the agent rejected at step i to zero. If Î is nonempty, re-
turn to step 1; otherwise, terminate the algorithm.
21 The extended version of DACB has the additional benefit of making the mechanism
robust when there are (a small number of) agents who may act irrationally and trigger the
circuit breaker prematurely. Clearly, the extended version of the DACB algorithm is not
significantly affected by the presence of such agents.
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2. Suppose that the counter for the agent who has just applied is
strictly below k. Then, if he has applied to an already-matched ob-
ject, we return to the beginning of step i, where—instead of the
agent with serial order i—the agent rejected by o makes an offer.

The steps 1, : : : , i, taken until a threshold k is reached, are called a stage.
Specifically, a stage begins whenever Ô is reset, and the stages are num-
bered 1, 2, : : : , serially. Each stage has finite steps, and there will be finite
stages. This algorithm modifies the McVitie and Wilson (1971) version of
DA such that tentative assignments are periodically finalized.
The DACBmechanism spans a broad range ofmechanisms indexed by

k. If k 5 1, then each stage consists of one step, wherein an agent acts
as a dictator with respect to the objects remaining at that stage. Hence,
with k 5 1, theDACB reduces to a serial-dictatorshipmechanism. A serial
dictatorship is efficient but obviously fails to satisfy (even asymptotic) sta-
bility because it completely ignores agents’ priorities with the objects. By
contrast, if k 5 1∞, then the DACB mechanism coincides with the DA
mechanism. As demonstrated above, DA is stable but fails to be asymptot-
ically efficient. Thus, intuitively, k should be sufficiently large that agents
compete enough (otherwise, we would not achieve asymptotic stability)
but sufficiently small that they do not compete excessively (otherwise,
the outcome would not be asymptotically efficient).
The next theorem provides the relevant lower and upper bounds on k

to ensure that the DACB mechanism attains both asymptotic efficiency
and asymptotic stability.
Theorem 4. If kðnÞ ≥ log2ðnÞ and kðnÞ 5 oðnÞ, then the matching

outcome of DACB is asymptotically efficient and asymptotically stable.22

Proof. See the appendix.
Theorem 4 shows that DACB is superior to DA and TTC in large mar-

kets when the designer cares about both asymptotic efficiency and asymp-
totic stability.
Roughly speaking, the idea of DACB is to endogenously segment the

market into “balanced” submarkets. To appreciate this idea, consider a
thought experiment wherein the designer partitions agents (e.g., ran-
domly) into K groups with the number of agents Ik in group k 5
1, : : : , K set equal to FOkF; the designer then runs DA separately for each
submarket consisting of Ik and Ok. Lemma 2 then implies that, with high
probability,23 all except for a vanishing fraction of agents would enjoy id-
iosyncratic payoffs and priorities arbitrarily close to the upper bounds in
22 Recall that kðnÞ 5 oðnÞ means that limn→∞ðkðnÞ=nÞ 5 0.
23 For a sequence of events En, we say that this sequence occurs with high probability if Pr(En)

converges to one as n goes to infinity.
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each submarket.24 Asymptotic efficiency and asymptotic stability would
thus follow. In particular, the segmentation avoids the significant welfare
loss that would result from excessive competition for top-tier objects
under DA (without segmentation). In practice, however, such a precise
segmentation would be difficult to achieve, because the designer would
not know the exact preference structure of the agents; for instance, the
designer would not know exactly which set of objects belongs to the
top tier, which set belongs to the second tier, and so on. Moreover, such
an exogenous segmentation could be highly susceptible to possible mis-
specification of segments by the designer. DACB, with its periodic clear-
ing of markets, achieves the necessary segmentation of the market en-
dogenously, without exact knowledge about agents’ preferences by the
designer.
How the segmentation works under DACB—namely, the proof of the-

orem 4—is explained as follows. First, as k(n) is sublinear in n (i.e.,
kðnÞ 5 oðnÞ), with probability approaching one as n→∞, all agents
find their k(n) most preferred objects to be in O1 (see lemma S1 in online
app. S.1). Therefore, all first FO1F agents in termsof serial order would com-
pete for objects in O1. Since kðnÞ ≥ log2ðnÞ, lemma 2 implies that,
with high probability, the first FO1F steps of DACB would proceed without
the threshold k(n) being reached by any agent, meaning that with high
probability, the first FO1F steps would proceed precisely the same as if
DA were run on the “hypothetical” submarket consisting of the first FO1F
agents and the objects O1. It then follows that, with high probability, the
entire O1 would be assigned without triggering the termination of the
first stage.
Next comes step jO1j 1 1. By then, with high probability, all objects in

O1 are assigned, and hence, given the first observation (i.e., that all agents
find their k(n) most preferred objects to be in O1), some agent must be
rejected at least k(n) times before step jO1j 1 1 concludes, and thus the
end of stage 1 must be triggered at that step. Since, with high probability,
all payoffs of objects in O1 are arbitrarily close to the upper bound by the
end of step FO1F (by the second part of lemma 2), this must also be the
case by the end of step jO1j 1 1, because these objects will have received
even more offers. Further, by definition, all the jO1j 1 1 agents (except
for one) participating in this stage will be matched to one of their k(n)
top choices. Because k(n) is sublinear in n, by the end of stage 1, these
agents will still receive payoffs arbitrarily close to their upper bound when
24 Recall from lemma 2 that all individuals and objects, except for a fraction vanishing in
probability, enjoy ranks that are sublinear in n. This, in turn, implies that all but a vanishing
fraction of these agents attain idiosyncratic payoffs arbitrarily close to the upper bounds
(see lemma S1 in online app. S.1 and lemma 3 in the appendix).
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matched to tier 1 objects (this is proven in online app. S.1). Although the
first stage is likely to end at step jO1j 1 1 and thus involves onemore agent
than the number of objects, the resulting market is “approximately” bal-
anced, and the competition among agents is still moderate because of the
offer bound k(n).25 The same observation applies to the subsequent stages,
suggesting that a segmentation of the market into balanced submarkets
would emerge endogenously under DACB.
Several remarks are in order on the parameter k(n). Unlike the exog-

enous segmentation, the threshold k(n) does not depend on the precise
tier structure of the objects and thus can be implemented without know-
ing it. Second, there is a fairly broad range of k(n) that produces asymp-
totic efficiency and asymptotic stability. Thismeans that the performance
of DACB is robust to the possible misspecification of k(n) on the part of
the designer. Third, the precise range of k(n) will certainly depend on the
preference structure, whichmay depart from that assumed in ourmodel,
but, as we illustrate in Section VI, it can be fine-tuned to a specific market
based on a careful study of its data. Fourth, as proven in online appen-
dix S.7, the convergence is pretty fast. More specifically, the probability
that the DACB with a suitably chosen k(n) achieves any desired degree
of efficiency and stability converges at a rate faster than 1=n. In addition,
we have performed numerous simulations of the alternative mechanisms
for a range ofmarket sizes, and they have shown that DACB performs well
in terms of efficiency and stability even for moderate-size markets. The
simulation results are available in online appendix S.11.1.
While our analysis has assumed that agents’ priorities over objects are

uncorrelated, one can handle correlations in priorities by appropriately
selecting the serial order of agents in DACB. Suppose, for instance, that
agents’ priorities—more precisely, objects’ utilities over agents—consist
of common values in finite tiers and randomly drawn idiosyncratic com-
ponents, just like agents’utilities over objects. Then, the designer can run
DACB with a serial order reflecting their priorities: namely, agents with
higher common values (high tier) are ordered ahead of agents with lower
common values (low tier). The asymptotic efficiency and the asymptotic
stability of DACB are then preserved. Of course, this approach requires
knowledge about agents’ priorities by the designer. Such knowledge is of-
ten available. In school choice, students’ priorities are public informa-
tion and known to the school system (designer). Further, our simulations
with randomly generated data, provided in online appendix S.11.2, show
25 Ashlagi et al. (2017) show that a small imbalance of only one agent is enough to in-
crease the average rank enjoyed by the agent from the order of log n to n= logðnÞ. While
even the latter rank will give rise to a high payoff in our setup, the first stage of DACB dif-
fers from DA with a small imbalance. Because of the bound on the offer, the maximal rank
to be enjoyed by the (matched) agents is k(n), which differs from n= logðnÞ.

This content downloaded from 160.039.031.189 on September 17, 2019 21:18:30 PM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



efficiency and stability in matching markets 000
that our results, again with the serial order chosen similarly, are robust to
more general forms of priorities (and preferences).26

One potential drawback of DACB is that it is not strategy-proof. In par-
ticular, the agent who is eventually unassigned at each stage may wish to
misreport his preferences by including among his k best-ranked objects a
“safe” item that is outside his top k favorite objects but is unlikely to be
popular with other agents. Suchmisreporting could benefit the agent be-
cause the safe itemmay not have received any other offer and thus would
accept him, whereas truthful reporting leaves him unassigned at that
stage and results in the agent receiving a possibly worse object.27

However, the odds of becoming such an agent are roughly one over the
number of agents assigned in the stage; hence, for an appropriate choice
of k and given the basic uncertainty over one’s serial order, the odds are
very small from the perspective of each agent in a large economy. Hence,
the incentive problemwith theDACB is not very serious. To formalize this
idea, we study the Bayesian game induced by DACB. In this game, the set
of types for each agent corresponds to his vector of cardinal utilities, that
is, fUiðoÞgo∈O , or equivalently, yi ≔ fyi,ogo∈O . These values are drawn ac-
cording to the distributions assumed thus far. The underlying informa-
tional environment is Bayesian: each agent knows only his ownpreferences,
labeled his “type,” and knows the distribution of others’ preferences and
the distribution of priorities (including his own).
DACB is an ordinal mechanism; that is, it maps profiles of ordinal pref-

erences reported by the agents and agents’ priorities with objects into
matchings. In the game induced by DACB, the set of actions by agent i of
a given type yi is the set of all possible ordinal preferences the agent may
report. A typical element of that set is denoted Pi. Each type yi induces
an ordinal preference that we denote Pi 5 P ðyiÞ. This is interpreted as
26 When agents’ priorities over objects are perfectly correlated, DA and TTC are both
equivalent to serial dictatorship, where the ordering is given by the common ranking of
agents by the objects. Obviously, the outcome is efficient and stable. Interestingly, it is im-
plemented by DACB for any possible k where the serial order is also given by the common
ranking.

27 This observation can bemade precise. Suppose that there are four agents and four ob-
jects. Agent 1 prefers o 1 most and o 2 secondmost, but he has the lowest priority with each of
these two objects. Agent 1’s third-most-preferred object is o 3, but he enjoys the highest pri-
ority with that object. Agents 2 and 3 rank o 2 and o 3, respectively, at the top of their prefer-
ence lists, while agent 4 ranks o1 first. Consider DACB with k 5 2 for this economy. Suppose
first that all agents report truthfully, including agent 1. One can verify that agent 1 triggers
the end of stage 1 and is assigned o 4. Specifically, in the first three steps, agents 1, 2, and 3
apply to o 1, o 2, and o 3, respectively, and are tentatively accepted by them. In step 4, agent 4
applies to o 1, which keeps him and rejects agent 1. Agent 1 then applies to o 2 and is rejected,
at which point stage 1 ends. In stage 2, agent 1 is assigned object o 4. Suppose next that agent 1
misreports by ranking o 3 among his twomost favorite objects. Then, he can guarantee himself
o 3. In sum, agent 1 benefits frommisreporting his preference, suggesting that truthful report-
ing is not a Bayes-Nash equilibrium behavior. Nevertheless, we argue below that in the large
economy, truthful reporting is an e-Bayes-Nash equilibrium.
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the truthful report of agent i of type yi. Given any e > 0, truth telling is an
interim e-Bayes-Nash equilibrium if, for each agent i, each type yi, and any
possible report of ordinal preferences P 0

i, we have

E Ui DACBi P yið Þ, �ð Þð Þjyi½ � ≥ E Ui DACBi P
0
i, �ð Þð Þjyi½ � 2 e,

where Ui(DACB(Pi, ⋅)) denotes the utility that i receives when he reports
Pi.
Theorem 5. Fix any e > 0. Then, under DACB with kðnÞ ≥ log2ðnÞ

and kðnÞ 5 oðnÞ, there exists N > 0 such that for all n > N , truth telling
is an interim e-Bayes-Nash equilibrium.
Proof. See online appendix S.8.
Remark 1 (Virtual asymptotic strategy-proofness). It is easy to see from

our argument that a stronger incentive property can be obtained. Suppose
that agents draw their reports according to any arbitrary iid distribution
that lies in the class of distributions allowed by the current model, hence
not necessarily truthfully.28 Fix any e > 0. Then, under DACB with kðnÞ ≥
log2ðnÞ and kðnÞ 5 oðnÞ, there exists N > 0 such that for all n > N , truth
telling is an (interim) e–best response against any such strategy (which is
not necessarily truthful). This is reminiscent of Azevedo and Budish’s
(2015) notion of “strategy-proofness in the large.”
Thus far, the informational environment assumes that each agent knows

only his own preferences. One could assume further that the agent’s
private information contains some additional information, such as his
priorities. In such a case, agent i’s type would be a pair ðyi, hiÞ ≔
ðfyi,ogo∈O , fhi,ogo∈OÞ. Note that DACB still has good incentive properties
even in this richer context. Indeed, given any k(n) (i.e., kðnÞ ≥ log2ðnÞ
and kðnÞ 5 oðnÞ), for any e > 0, it is an ex ante e-Bayes-Nash equilibrium
to report truthfully when the number of agents is large enough.29

To see this, fix k 5 1, : : : , K and agent with serial order i ∈ fjO≤k21j1
2, : : : , jO≤kj 1 1g (with the convention that jO≤0j 1 2 5 1 and jO≤K j 1 1 5 n).
As shown in theorem 4, given truthful reporting by all agents, the agent
is assigned one of his k(n) most preferred objects in Ok—and hence en-
joys a payoff arbitrarily close to U(uk, 1)—with high probability. Further,
given truthful reporting by the other agents, with high probability, stage
k 0 < k ends before agent i takes his turn, irrespective of his behavior.
These two facts imply that a deviation from truthful behavior cannot make
28 More precisely, let f~yiogo be a collection of iid random variables drawn from an arbi-
trary distribution in [0, 1]. For any k and o ∈ Ok , draw U ðuo , ~yioÞ. Then, the admissible strat-
egy is to report the ordering induced by the realized cardinal utilities. Note that f~yiogo

and {yio}o are all independent.
29 Truthful reporting means reporting one’s true preferences irrespective of one’s prior-

ities. Such a behavior is an ex ante e-Bayes-Nash equilibrium if for any e > 0, the gain from
deviating from that behavior is less than e ex ante (i.e., before the realization of prefer-
ences and priorities) for an n that is sufficiently large.
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the deviating agent e-better off in ex ante terms for sufficiently large n.
Hence, truthful reporting is an ex ante e-Bayes-Nash equilibrium. This
does not imply that all types (yi, hi) have incentives for reporting truthfully,
but it does imply that “almost all” types of agents will have incentives for
truth telling.
B. Extended Algorithm
In many real-world matching mechanisms, applicants are allowed or
willing to list only a small number of objects. A case in point is the NYC
school choice, wherein an applicant can rank only 12 choices in his/
her application. In such cases, our lower bound on k(n) stated in theo-
rem 4 may in some instances be too large. Hence, we consider a generali-
zation of our mechanism under which a significantly smaller lower bound
can be achieved.
The new version of DACB collects preference rankings from agents

and assigns them serial orders in the same manner as above. However,
it is indexed by two integers j and k. Termination of a stage is now trig-
geredwhenever there are j individuals, each havingmade at least k offers.
In other words, we allow up to j 2 1 individuals to make more than k of-
fers before the circuit breaker is activated. Obviously, when j 5 1, we re-
turn to our original version of DACB. Under this version of DACB in-
dexed by j(n) and k(n) (where n is the size of the market), we obtain
the following result.
Theorem 6. If lim infn→∞ð jðnÞkðnÞ=n logðnÞÞ > 1 and j(n) and k(n)

are o(n), then the matching outcome of DACB is asymptotically efficient
and asymptotically stable.
Proof. See online appendix S.9.
Remark 2 (relationship with theorem 4). Theorem 4 is not a special

case of theorem 6. Indeed, for jðnÞ 5 1, the above theorem gives nlog(n)
as a lower bound on k(n), which is obviously much greater than log2(n)
and, more generally, has no bite because, trivially, agents rank at most
n objects. Theorem 6 is therefore useful only for a sufficiently large j. Fi-
nally, the arguments in the proof of each of these two results are distinct.
The new feature of DACB with (k, j), j ≫ 1, is that among those taking

turns in stage k, up to j agents will likely fail to receive objects in Ok.
However, as the market grows large, j becomes very small relative to the
number of agents assigned during that stage. Hence, given (a suitable
generalization of) basic uncertainty regarding the serial order, each agent
finds the odds of being one of such agents or unmatched negligible in the
large economy. This feature ensures that the extended algorithm retains
the same desirable incentive properties as the basic algorithm. Specifically,
in online appendix S.9, we show that theorem5extends toDACBwith (k, j),
satisfying the condition of theorem 6 (see theorem S4 in online app. S.9.2).
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One may be also interested in how the “optimal” choice (k, j) may de-
pend on the correlation of preferences. While our limit results do not
distinguish alternative choices of these parameters, our simulation, per-
formed in online appendix S.11.3, reveals that increased correlation in
agents’ preferences tends to exacerbate inefficiencies more than instabil-
ity.30 This suggests that a designer facing amarket with higher preference
correlationmay choose lower values of k and j to attain the same trade-off
between efficiency and stability. Of course, the precise choice of design
parameters such as k and j can be tailored to the empirical characteristics
of the market. We illustrate such a possibility in Section VI.
C. DA with Constrained ROLs
Themain featureofDACB—namely, limitingparticipants’ choices—is rem-
iniscent of mechanisms employed in some centralized matching proce-
dure. A prominent example is the DA with constrained ROLs (hereafter
DAC), a variant of DA in which applicants’ ROLs cannot exceed a fixed
length. While DAC is very common in practice,31 authors have found it dif-
ficult to rationalize the constraint on choices.32 Our perspective recognizes
one redeeming quality of this practice in limiting theharmful effect of com-
petition. Indeed, we can show, at least in a two-tier model, that the DAC ad-
mits an e-Bayesian Nash equilibrium whose outcome is asymptotically effi-
cient and asymptotically stable, provided that the constraint is chosen
appropriately. This offers some justification for the use of DAC.
To begin, consider DAC with length chosen at k(n) for each n-economy.

Then, for each n-economy, DAC induces a Bayesian game in which each
agent i’s type comprises a vector yi ≔ ðyioÞo , and his (pure) strategy maps
his type to an ROL of k(n) objects. We are interested in the matching out-
come inducedby the sequence of strategy profiles adopted by the agents for
all n-economies.
Theorem 7. Assume that K 5 2. Consider the DAC with length k(n).

Let kðnÞ 5 oðnÞ and satisfy kðnÞ=log2ðnÞ→∞ as n→∞. There is a se-
quence of strategy profiles satisfying the following properties: (1) for
any e > 0 and n large enough, the strategy profile for each n-economy
is an ex ante e-Bayes Nash equilibrium, and (2) the induced matching
outcome is asymptotically efficient and asymptotically stable.
While theorem7 suggests thatDACmayhave abenefit similar toDACB’s,

we view the former as inferior to the latter in several respects. First, DAC
30 As is shown in online app. S.11.3, with increased correlation in preferences, DACB
performs worse in both efficiency and stability in absolute terms, but its performance im-
proves in relative terms when compared with DA or TTC.

31 For example, Chicago, NYC, Ghana, Spain, and Turkey adopt DAC in school assign-
ment. See Fack, Grenet, and He (2015) for references.

32 Calsamiglia et al. (2010) find in their laboratory experiment that constrained choices
lead to preference manipulations and unstable matchings. In light of these problems, the
practice is viewed as puzzling (see, e.g., Pathak 2017).
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does not induce agents to report truthfully about their preferences. In
other words, strategic behavior on the part of agents is necessary to achieve
the desirable outcome.33 By contrast, DACB is virtually strategy-proof, in
the sense discussed in remark 1, and hence requires little strategic coor-
dination among agents. Second, the consequence of a strategic mistake
under DAC can be severe for an agent who may simply be unassigned. In
DACB, such a risk is mitigated by the feature that those unassigned in any
given stage can still participate in the subsequent stage with an additional
“budget” of k offers. Finally, theorem 7 requires the length of ROLs to be
at least log2(n), which is often impractically large.We expect themechanism
to perform much worse when the constraint is more realistic. By contrast,
DACB can be adapted to work with a “small” number of choices, as sug-
gested in Section V.B.
Remark 3 (Chinese parallel mechanism). As we have pointed out, a

drawback of DAC is that once a student exhausts her (constrained) ROL,
she is unassigned. DACB mitigates this risk by “replenishing” the choice
quota for students unassigned after each stage. Alternatively, one can re-
peat DAC in multiple stages: in each stage, all remaining agents partici-
pate in a DAC with some length k. This is precisely what Chen and Kesten
(2017) call a (symmetric) Chinese parallel mechanism.34 A result similar
to theorem 7 would apply to this mechanism for an appropriately chosen
k. While this mechanism mitigates the strategic risks facing participants
better than DAC, it will not eliminate them, particularly for a realistic level
of k. By comparison, the (extended)DACBmechanism virtually eliminates
the risk and thus incentivizes the agents to report truthfully.35
VI. Field Application: NYC School Choice
Thus far, we have considered a large one-to-one matching market (in the
limiting sense) with a class of random preferences and priorities. Real-
world matching markets often depart from this model; for instance,
school choice involves many-to-one matching. Further, the size of the
market may not be very large. Our theory may not apply exactly in these
33 Note further that the notion of equilibrium here is an “ex ante” e-Bayesian Nash equilib-
rium, which is not as satisfactory as the “interim” e-Bayesian Nash equilibrium used for DACB.

34 As noted by Chen and Kesten (2017), the mechanisms used for assigning students to
Chinese universities are slightly different. College programs are partitioned into several
tiers differing in “prestige.” And the Chinese parallel mechanism is run first for the first-
tier (most prestigious) colleges. Next, those unassigned move to the second round, where
the same mechanism is run for the second-tier colleges. The same process is repeated for
each subsequent tier. See Wu and Zhong (2014) for additional details.

35 More precisely, under the Chinese parallel mechanism, if all agents were to report
truthfully, a significant number of agents (i.e., linear in n) would be active (i.e., make of-
fers) but end up unassigned in each round (except for the final) for any k(n) sublinear in
n. This means that each participant faces a significant incentive to manipulate preferences
by moving up safe items in his ROL. By contrast, in DACB, only a small (sublinear) number
of active agents are unassigned in each stage when reporting truthfully.

This content downloaded from 160.039.031.189 on September 17, 2019 21:18:30 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



000 journal of political economy

All
settings. Nevertheless, it is interesting to assess whether DACB could offer
amore desirable compromise on the trade-off between efficiency and sta-
bility in such a case. We thus study the school choice in NYC.
InNYC, each year approximately 80,000middle school students (mostly

eighth-graders) are assigned to over 700 public high school programs
through a centralized matching process. The process involves multiple
rounds, but the main round employs the DA algorithm to assign partici-
pants to programs in several categories: screened, limited unscreened,
unscreened, ed-op, zoned, and audition.36 Each participant in the main
roundmay submit anROLof up to 12 programs, and each program ranks
applicants—who listed the program in their ROLs—according to its pri-
ority criteria, which dependon the type of the program. Thepriorities are
coarse for many programs, and ties are broken by a single (uniform) lot-
tery for all programs.37

Our analysis focuses on themain round of the 2009–10 assignment.We
calibrate the performances of DACB with several (k, j)’s against DA and
TTC as benchmarks. In so doing, we take two different approaches.

• Counterfactual based on observed ROLs. This approach postulates
that applicants would submit the same ROLs under counterfactual
scenarios as they submitted under the NYC matching.

• Counterfactual based on structural estimates of preferences. This
approach structurally estimates the preferences of applicants and
simulates their ROLs under counterfactual scenarios, assuming that
all programs are acceptable.

The first approach essentially rests on the following two assumptions:
(1) the programs in the ROL are truthfully ranked and dominate all other
unranked ones, and (2) the unranked programs are not acceptable for the
applicants. Assumption 1, often called weak truth telling, is a standard as-
sumption made when dealing with a strategy-proof mechanism such as DA.38

Assumption 2 ismore controversial, since the presence of a supplementary
36 Assignment to the so-called specialized exam schools is processed through the first
round, which takes place before the main round. Since 2010, the first round and the main
round have been merged into a single round, but the process for the main round remains
unchanged.

37 It is known that if none of the schools strictly rank students, DA with a single tiebreaking
rule is efficient.However, for arbitrary coarse priorities, DAwith single tiebreakingmay not be
efficient and may not even yield a student-optimal stable matching. See, for instance, exam-
ple 1 in Abdulkadıroğlu et al. (2009).

38 This assumption is not entirely innocuous, however, since the strategy-proofness of
DA does not apply when the applicants’ ROLs are truncated (see Haeringer and Klijn
2009). Nevertheless, about 80 percent of participants do not fill up their ROLs, suggesting
that the truncation is not binding. A similar approach is followed by Abdulkadıroğlu et al.
(2009, 2017a, 2017b).
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round means that some applicants may not list all acceptable programs in
themain round. In fact, as many as 5,241 students out of 5,611 unassigned
by the end of the main round listed new additional programs in a supple-
mentary round. For this reason, the observed ROLs do not typically in-
clude all acceptable programs. In other words, this method postulates
too “short” an ROL for an applicant. As is seen below, the short ROLs will
understate the effect of competition and therefore the trade-off between
efficiency and stability and the performance of DACB.
This problem motivates the second approach—the structural estima-

tion method based on Abdulkadıroğlu et al. (2017a)—which invokes
only the weak-truth-telling assumption 1. Under this approach, we first
estimate (random) utilities as functions of student and program charac-
teristics and then use the estimates to “draw” the applicants’ ROLs. One
advantage of this approach is that we can actually represent the true DA,
without any constraints on ROLs or a follow-up supplementary round, just
as considered in the theory. At the same time, since Abdulkadıroğlu et al.
(2017a) do not consider outside options, the simulated/predicted ROLs
would include all programs, including those that applicants may find un-
acceptable. Hence, thismethod posits too “long” an ROL for an applicant.
As is seen below, this feature will tend to overstate the effect of competition
and therefore the trade-off between efficiency and stability and the perfor-
mance of DACB.
In sum, the two approaches allow us to provide (lower and upper)

bounds on the relative performance of DACB and the trade-off between
DA and TTC. We thus view them as mutually complementary. We now
present the results for each of the two approaches described above.39
A. Comparison of Mechanisms Based on Observed ROLs
Table 1 describes average performances of alternative algorithms accord-
ing to various measures.40

The first row describes, for each mechanism, the average number of
students who can be made better off from a Pareto-improving reassign-
ment of the original outcome using the Shapley-Scarf TTC. This number
39 A student’s priorities at alternative NYC schools are likely to be correlated. As we sug-
gested above, in such an environment, one can improve the performance of DACB by ad-
justing the agents’ serial orders to reflect their average priorities. In the subsequent anal-
ysis, we ignore this possibility and simply employ a random serial ordering. In a previous
version of this work (Che and Tercieux 2015), we also measured the performance of DACB
when the serial order reflects the agents’ priorities. As expected, the performance is signif-
icantly better. In this sense, the subsequent results understate the potential benefit of the
DACB if one can “optimize” serial orders.

40 The average here is taken over 100 independent draws of a single lottery used to break
ties in schools’ priorities. In particular, this means that the values reported for DA do not
coincide with the realized outcome in 2009–10 assignment.
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is zero for an efficient matching algorithm such as TTC. Arguably, the
larger this number is, themore inefficient amatching is. Hence, this num-
ber can be interpreted as ameasure of inefficiency. The second row counts
the number of agents with justified envy (i.e., who are part of at least one
blocking pair) in each mechanism. Obviously, DA admits no such agent.
As expected, TTC may admit a large number of agents with justified envy.41

DACB provides a compromise between DA and TTC, yielding higher ef-
ficiency than DA and lower instability (i.e., fewer incidences of justified
envy) than TTC.
As noted, DACB is flexible enough to admit many new options to the

designer’s arsenal of policy tools. Figure 2A depicts the range of ways in
which the trade-off between efficiency and stability is resolved via DACB
with various (k, j)’s. In these figures, efficiency (the vertical axis) is mea-
sured as the percentage of agents who cannot bemade better off through
Pareto-improving reallocation, while stability (the horizontal axis) is mea-
sured as the percentage of students who do not have any justified envy.42

Not surprisingly, DA and TTC occupy the southeast and northwest
extreme corners of the figure. Between the two, DACB with various (k, j)
values spans a rich array of compromises between the objectives. As ex-
pected, the efficiency of DACB increases as k falls, while its stability
TABLE 1
Efficiency and Stability of Alternative Mechanisms

DA

DACB

TTC
(k 5 2,

j 5 20,000)
(k 5 4,

j 5 2,000)
(k 5 6,
j 5 1)

Pareto improvable (n) 5,189.89 3,654.19 2,409.60 449.43 0
(241.98) (80.07) (65.56) (64.89)

Students with envy (n) 0 2,041.05 4,620.43 13,268.26 18,943.21
(179.83) (251.46) (502.03) (324.67)

Assigned to top choice (n) 40,370.88 41,696.43 42,966.22 45,098.69 45,109.77
(389.10) (239.16) (208.03) (190.77) (200.80)

Unassigned (n) 4,362.98 4,645.11 4,978.56 5,601.75 5,624.98
(166.72) (175.51) (176.47) (161.91) (158.68)
41 Serial dictatorship, whic
school priorities and admits

42 Specifically, efficiency
where the number of Pareto
are better off when running
ourpercentage is definedby1
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FIG. 2.—Efficiency versus stability, based on two methods (in ordinal measures): A, ob-
served ROLs; B, structural estimates. The shape of each coordinate corresponds to k, while
the associated integer refers to parameter j.
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increases as k rises. The “frontier” is outside the linear segment between
DA andTTC, suggesting that the outcomes of DACBare superior to a sim-
ple convexification of DA and TTC.
As we have already argued, the short ROLs observed in the data mean

that the exercise understates the true competition that applicants will
have under unrestricted DA. Thus, our calibration potentially overstates
the efficiency performance of DA. Likewise, the short ROLs also mean
that our calibration is likely to “miss” incidences of justified envy that will
arise under TTC, meaning it overstates the stability of TTC. Overall, the
calibration may understate the magnitude of the trade-off between effi-
ciency and stability and therefore understate the relative performance
of DACB.
In sum, the above results can be interpreted as conservative estimates

of the trade-off between DA and TTC and the benefits achievable from
DACB.
B. Comparison of Mechanisms Based
on Structural Estimates
In this section, we use demand estimation for school programs to draw
applicants’ROLs. To this end, we estimate a random-utility model. In this
model, the utility of student i for school program j is given by

uij 5 dj 1o
‘

a‘z‘i x
‘
j 1o

k

gk
i x

k
j 2 dij 1 eij , (2)

where dj 5 xjb 1 yj , xj is a vector of program j ’s observed characteristics,
zi is a vector of observed students’ characteristics, yj is a program-specific
unobserved vertical characteristic, gi captures idiosyncratic tastes for pro-
gram characteristics, and eij captures idiosyncratic tastes for programs.
Finally, dij is the distance measured in miles between student i’s and pro-
gram j’s geographic locations. We further assume that gi ∼ Nð0, ΣgÞ, yj ∼
Nð0, j2

yÞ, and eij ∼ Nð0, j2
e Þ. The vector of parameters that we estimate is

(a, b, Σg, j2
y, j

2
e). As noted by Abdulkadıroğlu et al. (2017a), this model is

an ordered-choice version of the model used by Rossi, McCulloch, and
Allenby (1996), who show that these distributional assumptions allow for
estimation via Gibbs sampling.43 The specification treats distance as a nu-
meraire: the coefficient21 on distance is a scale normalization (assuming
that students dislike to travel) that allows us to measure utility in distance
units. We use the same location normalization as Abdulkadıroğlu et al.
(2017a): a student’s utility for a school is equal to zero if the school is lo-
cated at zero distance from his home and if his student characteristics and
43 See the appendix of Abdulkadıroğlu et al. (2017a) for details.
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the school characteristics are all zero. Hence, this normalization facilitates
comparison with their results and thus interpretation of our results. Also,
given that we are mainly interested in comparisons across mechanisms, a
particular choice of location normalization is irrelevant.
School program characteristics include the math achievement of the

student body, the percentage of students receiving subsidized lunch, the
percentage of white students, the size of ninth grade, a dummy indicat-
ing a language-focused program (coded as Asian, Spanish, or others),
and a dummy on the program type.44 Student characteristics include aca-
demic performance (inmath and English), ethnicity, subsidized-lunch sta-
tus, neighborhood income, proficiency in English, and special-education
status.
Our estimates are reported in online appendix S.13. They are largely

consistent with those found by Abdulkadıroğlu et al. (2017a), based on
2003–4 data. More important, the sign and magnitude of parameters
are reasonable and intuitive.We use these estimates to draw each student’s
ROLs according to equation (2) as well as his/her priorities (which in-
cludes a single tiebreaking lottery).45 With these as inputs, we simulate al-
ternative algorithms, including DA (without truncation and without the
supplementary round), TTC, andDACBwith various (k, j)’s.We compute
the average performance of each mechanism over 100 realizations of
these random draws.
Table 2 reports the analogs of table 1. The first three rows are the same

as the corresponding rows in table 1, measuring the number of students
who can be made better off by a Pareto-improving reassignment, the
number of students with justified envy, and the number of students get-
ting their top choice, all averaged over 100 iterations.46

The “competition” effect of long lists is apparent: TTC performs con-
siderably worse in stability than in table 1 (2,000 more applicants would
suffer justified envy), andDAperforms considerably worse than in table 1
(about 25,000more students would benefit from a Pareto improvement).
In particular, this means that the DA employed in NYC performs much
44 The NYC high school directory describes numerous program types. As in Abdulkadıroğlu
et al. (2017a), these program types were aggregated into different categories: arts, humanities/
interdisciplinary, business/accounting, math/science, career, vocational, government/law,
zoned, and others.

45 There are two reasons why students’ priorities are random. First, priorities at school
programs can be coarse, and we use a single tiebreaking rule to break ties. Second, as ex-
plained in the supplementary material (see online app. S.12), we had to estimate the dis-
tribution of priorities of students (as a function of students’ observables) at schools that are
not in their observed ROLs.

46 As explained in online app. S.12, the number of seats equals the number of students.
Since we assume that students rank all programs in our counterfactual analysis, there are
no unassigned students under the mechanisms we study.
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better in efficiency than the “true” DA simulated in table 2, suggesting
that the NYC mechanism might already provide a compromise between
efficiency and stability.47 Of course, DACB is expected to perform this
role, and it does impressively, as can be seen in the threemiddle columns.
For instance, DACB with ðk, jÞ 5 ð8, 3,000Þ yields considerably higher
welfare with very little sacrifice in stability, compared with DA. In general,
figure 2B promises a much more significant improvement to be achiev-
able by DACB, compared with figure 2A.
So far, we have used our cardinal-utility estimates only to predict ordi-

nal performances of alternative mechanisms. We can also measure their
performances in cardinal utilities. The penultimate row of table 2 mea-
sures the average (utilitarian) welfare of students for each mechanism,
and the last rowmeasures the average justified envy in terms of utility gain
from fulfilling one’s justified envy.48 Figure 3 replicates figure 2B, using car-
dinal measures of efficiency and stability. Here again, DACB with various
(k, j)’s spans a rich array of compromises between efficiency and stability.
TABLE 2
Efficiency and Stability of Alternative Mechanisms

DA

DACB

TTC
(k 5 8,

j 5 3,000)
(k 5 4,

j 5 8,000)
(k 5 4,
j 5 200)

Pareto improvable (n) 29,293.28 18,382.59 9,931.34
1,299.98

(62.09) 0
(339.54) (141.92) (101.85)

Students with envy (n) 0 703.73 1,963.13 15,329.54 21,029.31
(20.33) (32.89) (162.49) (250.66)

Assigned to top choice (n) 23,823.26 30,671.82 36,502.27 43,674.35 44,060.72
(215.65) (102.43) (71.70) (64.08) (48.77)

Average welfare 22.63 21.93 21.60 21.38 21.31
(.031) (.006) (.006) (.008) (.005)

Average justified envy 0 .11 .25 .99 1.28
(.004) (.006) (.011) (.018)
47 Strictly speaking, to m
should also look at the out
worst-case approach and ad
to the number of Pareto-im
considerably smaller than t
table 2.

48 For each student, we c
most preferred school prog
over all students.
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As with figure 2B, the “frontier” is significantly curved, suggesting the
potential for DACB to act as a desirable compromise on efficiency and
stability.
To conclude, these outcomes provide a rich set of new choices from

which a policy maker can choose. A careful study of data, as illustrated
here, could help a policy maker to tailor the design of DACB to fit his/
her sense of the social weighting of the two objectives.
VII. Concluding Remarks
The current paper has studied the trade-off between efficiency and stabil-
ity—two desiderata in market design—in large markets. Each of the two
standarddesign alternatives,Gale andShapley’s deferred acceptance (DA)
and top trading cycles (TTC), satisfies one property but fails to satisfy the
other. Considering a plausible class of situations in which individual agents
FIG. 3.—Efficiency versus stability, based on structural estimates (in cardinal measures).
The shape of each coordinate corresponds to k, while the associated integer refers to
parameter j.
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have preferences drawn randomly according to commonand idiosyncratic
shocks and priorities drawn in an iid fashion, we show that these failures—
the inefficiency of DA and the instability of TTC—remain significant even
in large markets.
Wehave therefore proposed a newmechanism,DAwith a circuit breaker

(DACB), whichmodifiesDA to keep agents from competing excessively for
overdemanded objects—a root cause of DA’s significant efficiency loss in a
large market. Specifically, the proposedmechanism builds onMcVitie and
Wilson’s (1971) version of DA, in which agents make offers one at a time
along a predetermined serial order. However, during the process, when-
ever an agentmakes a certain threshold number of offers for the first time,
the process is stopped, andwhat had been a tentative assignment up to that
point is finalized. Thereafter, a new stage of the serialized process is begun
with the remaining agents and objects, again with the same circuit-breaker
feature, and this process is repeated until all agents are processed.We have
shown that DACB with suitably chosen parameters k and j achieves both
efficiency and stability in an approximate sense as the economy grows
large, and it induces truth telling in an e-Bayes-Nash equilibrium.
Although our analytical model is not without restriction, our analysis

of the NYC school choice data validates our overall findings. Specifically,
we have found that the inefficiencies of DA and instabilities of TTC are
significant and that DACB offers viable compromises on the trade-off be-
tween efficiency and stability. In addition, the numerous simulations we
performed (available in online app. S.11) confirm that the main results
holdwell beyond the settingwe study and inparticular formarket sizes that
are quite moderate. In that respect, it is interesting to compare our results
with those obtained by Lee and Yariv (2017). They show that stable mech-
anisms are asymptotically efficient in a balanced market if the agents’
preferences and priorities have common shocks distributed continuously
over an interval. By contrast, Ashlagi et al. (2017) and the current paper
note that DA is likely to be asymptotically inefficient when there is com-
petition among agents for desirable objects—either because of a scarcity of
objects (when there is imbalance) or because of a positive correlation in
agents’ preferences. Indeed, online appendix S.11.2 shows that the ineffi-
ciency of DA vanishes very slowly even in the environment of Lee and Yariv
(2017) and that the magnitude of the difference between DACB and DA
can be considerable for realistic market sizes. Recall also our analysis of
NYC school choice, which shows that DA entails a significant efficiency loss
compared withDACB.49 Finally, and potentiallymore important, our results
regarding the asymptotic efficiency and asymptotic stability of DACB are ro-
bust to the introduction of market imbalances, which is not the case for
DA.
49 See also Che and Tercieux (2018) for a discussion of the inefficiencies of DA in the Lee
and Yariv (2017) environment, particularly compared with standard efficient mechanisms.
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Another important design parameter of DACB is the threshold num-
ber of offers that triggers assignment.Here, again, it can be optimized rel-
ative to the detailed features of the market in question. While theoretical
results show that DACB achieves an asymptotically efficient and stable
outcome when the market grows arbitrarily large, for a finite market,
there will always remain some (potentially small) trade-off between the
two objectives. Our calibration work on NYC, as well as our simulations
reported in online appendix S.11, shows that DACB offers a range of pos-
sible compromises between efficiency and stability, depending on the
specific value of the trigger chosen by the designer. Thus, the serial order
of agents and the condition that triggers the circuit breaker can be fine-
tuned toward the specifics of a given market.
Finally, our proposedmechanism shares several features ofmechanisms

that are already in use. As discussed, the truncation of the ROLs is another
common feature employed inmany centralizedmatching procedures (see
Haeringer and Klijn 2009, Calsamiglia et al. 2010, and Ashlagi et al. 2015).
The “staged” clearing of markets is observed in matching markets such as
college admissions inChina. To some extent, NYC is also using such staged
clearing: DA with truncation is used in a first round and, in a supplemen-
tary round, it is again used for unmatched students and remaining seats.
The current paper sheds some light on the roles that these features may
play, particularly in mitigating the harmful effect of excessive competition
among participants, and suggests a method for harnessing these features
without jeopardizing participants’ incentives.
Appendix

Proof of Theorem 4

Fix any kðnÞ ≥ log2ðnÞ and kðnÞ 5 oðnÞ. The following proposition is crucial for
the proof.

Proposition 1. Fix any k ≥ 1. As n→∞, with probability approaching one,
stage k of the DACB ends at step jOk j 1 1, and the set of assigned objects at that
stage is Ok. In addition, for any e > 0,

i ∈ Ikf jUi DACB ið Þð Þ ≥ U uk , 1ð Þ 2 ej gj
Ikj j →

p
1,

where Ik ≔ fi ∈ I jDACBðiÞ ∈ Okg. Similarly,

o ∈ Okf jVo DACB oð Þð Þ ≥ V 1ð Þ 2 ej gj
Okj j →

p
1:

Recall that lemma 2 gives a sense in which, in the uncorrelated case, the aver-
age rank achieved by objects under DA is small relative to the size of the market.
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In the sequel, we will need the following lemma, which shows the implications of
this for the values of Vo(DA(o)) in such an environment.

Lemma 3. Fix any e > 0. In the uncorrelated case,

o ∈ Of jVo DA oð Þð Þ ≥ V 1ð Þ 2 ej gj
Oj j →

p
1:

Proof. Fix e, g > 0. We first claim that, with probability going to one, the pro-
portion of objects inO that achieve a rank below ½2=ð1 2 gÞ�jOj= logðjOjÞ is greater
than g. To prove this, suppose to the contrary that with probability bounded away
from zero, as the market grows, the proportion of objects enjoying ranks above
½2=ð1 2 gÞ�jOj= logðjOjÞ is greater than 1 2 g. Then, with probability bounded
away from zero, as the market grows,

1

Oj joo∈O R
DA
o >

1

Oj j 1 2 gð Þ Oj j 2

1 2 g

Oj j
log Oj jð Þ

� �
5

2 Oj j
log Oj jð Þ ,

which yields a contradiction to lemma 2. Hence, with probability going to one,
the proportion of objects in O enjoying ranks below ½2=ð1 2 gÞ�jOj= logðjOjÞ is
larger than g. Since, for any d > 0, jOj= logðjOjÞ ≤ djI j for a sufficiently large n,
by lemma S1(iii) we must also have that, with probability going to one, the pro-
portion of objects o in O with VoðDAðoÞÞ ≥ 1 2 e is above g. QED

Proof of proposition 1.—We focus on k 5 1; the other cases can be treated in ex-
actly the same way.

First, consider the submarket that consists of the FO1F first agents (according to
the ordering given in the definition of DACB) and of all objects in O1. If we were
to run standard DA just for this submarket, then because preferences are drawn
in an iid fashion, by lemma 2, with probability approaching one as n→∞, all
agents would have made fewer than log2(n) offers at the end of (standard) DA.

Consider now the original market. For any d > 0, as kðnÞ 5 oðnÞ, we must have
kðnÞ ≤ djO1j for any sufficiently large n. Hence, by lemma S1(ii), the event that all
agents’ k(n) favorite objects are in O1 has probability approaching one as n→∞.
Let us condition on this event, labeled E. Given this conditioning event E, under
DACB, no object outside O1 would receive an offer before someone reaches his
k(n)th offer.

We first show that, conditional on E, all objects in O1 are assigned by the end of
stage 1 with probability approaching one as n→∞. Note that under our condi-
tioning event E, the distribution of individuals’ preferences over objects in O1

is the same as the unconditional one (and the same is true for the distribution
of objects’ priorities over individuals). Given event E, provided that all agents
have made fewer than k(n) offers, the FO1F first steps of DACB proceed exactly
in the same way as in DA in the submarket composed of the FO1F first agents (ac-
cording to the ordering used inDACB) and all objects inO1. Since kðnÞ ≥ log2ðnÞ,
by lemma 2, with probability going to one as n→∞, we reach the end of step FO1F
of DACB before stage 1 ends (i.e., before any agent has applied to his log2ðnÞ ≤
kðnÞ most favorite object). Thus, with probability going to one, the outcome
thus far coincides with that attained in DA in the submarket composed of the
FO1F first agents and all objects in O1. This implies that, conditional on E, with
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probability going to one, all objects in O1 are assigned, and thus, step jO1j 1 1
must be triggered.

We next show that, conditional on E, stage 1 ends at step jO1j 1 1 with proba-
bility approaching one as n→∞. Since not all of the first jO1j 1 1 agents can re-
ceive objects in O1, given E, once step jO1j 1 1 is reached, some agent must reach
his k(n)th offer, having made offers only to objects in O1 until then.

Now recall that PrðEÞ→ 1 as n→∞. Combining the preceding observations,
therefore, the probability that the circuit breaker is triggered during step
jO1j 1 1, thus ending stage 1, after all objects in O1 have been assigned by then,
goes to one as n→∞. This completes the proof of the first part of proposition 1.

Now, we turn to the second part of the proof of proposition 1. (Recall that we
are still considering k 5 1.)Wefix any e and g < 1 andwish to show that, as n→∞,

Pr
i ∈ I1f jUi DACB ið Þð Þ ≥ U u1, 1ð Þ 2 ej gj

I1j j > g

� �
→ 1

and

Pr
o ∈ O1f jVo DACB oð Þð Þ ≥ V 1ð Þ 2 ej gj

O1j j > g

� �
→ 1:

In the sequel, we condition on event E. First, by construction, every matched in-
dividual in stage 1 obtains an object within his/her k(n) most favorite objects,
which by lemma S1(i) implies that, with probability going to one, they all enjoy
payoffs above U ðu1, 1Þ 2 e.50 This proves the first statement.

We next prove the second statement, again for k 5 1. As we have shown, with
high probability, the first FO1F steps (i.e., stage 1) of DACB proceed exactly the
same way as in DA in the submarket that consists of the FO1F first agents and all
objects in O1, where individuals’ preferences and objects’ priorities are drawn ac-
cording to the unconditional distribution (which in this submarket is uncorre-
lated). According to lemma 3, under DA in this submarket, with probability going
to one, the proportion of objects o inO1 with VoðDAðoÞÞ ≥ 1 2 e is above g. Because
objects in O1 will have received even more offers at the end of stage 1 of DACB
than under the DA in the corresponding subeconomy, it must still be the case
that, at the end of that stage, with probability going to one, the proportion of ob-
jects inO1 for whichV ðDACBðoÞÞ ≥ 1 2 e is abovegwhenn is large enough. Thus,
for k 5 1, the second statement in proposition 1 is proven, provided that our con-
ditioning event E holds. Because this event has probability going to one as n→∞,
the result must hold even without the conditioning. Thus, we have proven prop-
osition 1 for the case k 5 1.

Consider next stage k > 1. The objects remaining in stage k have received no
offers in stages j 5 1, : : : , k 2 1 (otherwise, the objects would have been assigned
during those stages). Hence, by the principle of deferred decisions, we can assume
that the individuals’ preferences over those objects are yet to be drawn at the begin-
ning of stage k. Similarly, we can assume that the priorities of those objects are also
yet to be drawn. In other words, conditional on stage k 2 1 being complete, we can
50 Note that this implies Prðfi ∈ I1jUiðDACBðiÞÞ ≥ U ðu1, 1Þ 2 eg 5 I1Þ→ 1 as n→∞.
Hence, part of the statement of proposition 1 can be strengthened.
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assume without loss of generality that the distribution of preferences and priorities
is the same as the unconditional one. Thus, we can proceed inductively to complete
the proof. QED

Given proposition 1, theorem 4 follows straightforwardly. The first statement
means that, with high probability, all but a vanishing fraction of agents realize ar-
bitrarily close to the highest idiosyncratic payoff. This implies that the proportion
of the agents who would benefit discretely from a Pareto-dominating reassign-
ment of DACBmust vanish in probability. This observation, together with the sec-
ond statement of proposition 1, implies that the fraction of agent-object pairs that
would gain discretely from blocking the DACB matching also vanishes in proba-
bility. The formal proof is in online appendix S.6.
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