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We study stability of two-sided many-to-one matching in which firms’ preferences for
workers may exhibit complementarities. Although such preferences are known to jeop-
ardize stability in a finite market, we show that a stable matching exists in a large market
with a continuum of workers, provided that each firm’s choice is convex and changes
continuously as the set of available workers changes. We also study the existence and
structure of stable matchings under preferences exhibiting substitutability and indif-
ferences in a large market. Building on these results, we show that an approximately
stable matching exists in large finite economies. We extend our framework to ensure
a stable matching with desirable incentive and fairness properties in the presence of
indifferences in firms’ preferences.

KEYWORDS: Two-sided matching, stability, complementarity, strategy-proofness,
large economy.

1. INTRODUCTION

SINCE THE CELEBRATED WORK by Gale and Shapley (1962), matching theory has emerged
as a central tool for analyzing the design of matching markets. A key concept of the theory
is “stability”—the requirement that there be no incentives for participants to “block” (i.e.,
side-contract around) a prescribed matching. Eliminating blocks keeps markets robust
and promotes their long-term sustainability (Roth (2002)). Even when strategic blocking
is not a concern, as in the case of public school matching, stability is desirable from the
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fairness standpoint, for it eliminates so-called justified envy (Balinski and Sönmez (1999),
Abdulkadiroğlu and Sönmez (2003)).1

Unfortunately, a stable matching exists only under restrictive conditions. It is well
known that in two-sided many-to-one matching, stability is not guaranteed unless the pref-
erences of participants—for example, firms—are substitutable.2 In particular, the presence
of complementary preferences can lead to instability. This is a serious problem, given the
pervasiveness of complementary preferences. It is not uncommon for firms to seek work-
ers with complementary skills. In professional sports leagues, teams demand athletes that
complement one another in terms of their skills and roles, etc. Some public schools in
New York City seek diversity in their student bodies in terms of students’ skill levels.3
U.S. colleges tend to assemble classes that are complementary and diverse in terms of
their aptitudes, life backgrounds, and demographics. To better organize such markets,
one must understand the extent to which stability can be achieved in the presence of such
complementarities; otherwise, the applicability of matching theory will remain severely
limited.4

This paper takes a step forward in accommodating preference complementarities and
other forms of general preferences. In light of the existing non-existence results, this re-
quires us to weaken the notion of stability in some way. Our approach is to consider a
large market. Specifically, we consider a market that consists of a continuum of workers
on one side and a finite number of firms with a continuum of capacities on the other. We
then ask whether stability can be achieved in an “asymptotic” sense—that is, whether par-
ticipants’ incentives for blocking disappear as the economy grows large and approaches
the continuum economy in the limit. This weakening preserves the original spirit of sta-
bility: as long as the incentive for blocking is sufficiently weak, the instability and fairness
concerns will not be a serious obstacle to organizing matching markets.

Large market models are also of interest since many real-world matching markets are
large. School choice in a typical urban setting involves tens of thousands of students. Med-
ical matching involves approximately 35,000 and 9,000 doctors in the United States and
Japan, respectively. Aside from addressing complementary preferences, a large market
model also allows us to address several outstanding issues in finite markets. One such is-
sue is the multiplicity of stable matchings. While the set of stable matchings can be large
in finite economies, there is a sense in which the set shrinks as the market grows large. In-
deed, Azevedo and Leshno (2016) established that a stable matching is generically unique
in a continuum economy when firms have so-called responsive preferences, a special case
of substitutable preferences. To what extent such a result applies to more general prefer-
ences is an interesting issue that can be explored in a large market setting.

1In the school choice context, a student justifiably envies another if the former prefers the latter’s school
assignment to his and has a higher priority at that school. If a student has a sense of entitlement for his priority
(e.g., when it is given by his test score or grade), eliminating justified envy appears to be important.

2Substitutability here means that a firm’s demand for a worker never grows when more workers are avail-
able. More precisely, if a firm does not wish to hire a worker from a set of workers, then it never wishes to hire
that worker from a larger (in the sense of set inclusion) set of workers.

3 The so-called Educational Option programs in New York City high schools seek to fill 16% of seats with
high reading performers (as measured by the score on the 7th grade standardized reading test), 68% of seats
with middle reading performers, and the remaining 16% of seats with low reading performers (see Abdulka-
diroğlu, Pathak, and Roth (2005)).

4In particular, this limitation is important for many decentralized markets that might otherwise benefit from
centralization, such as the markets for college and graduate admissions. Decentralized college admissions may
entail inefficiencies and a lack of fairness (see Che and Koh (2016)). However, to centralize college admissions,
one must know how to deal with the potential instability arising from colleges’ complementary preferences.
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In addition to accommodating complementary preferences, we allow firms to be in-
different over different groups of workers. Indifferences may arise from firms’ limited
observations about workers’ characteristics or their unwillingness to distinguish workers
based on certain characteristics. Indifferences are particularly common in school choice,
as schools apply coarse priorities to ration their seats,5 in which case school preferences
encoding the priorities will exhibit indifference over students.

Our first result is to characterize a stable matching as a fixed point of a suitably defined
correspondence over measures of workers available to firms. This correspondence is rem-
iniscent of the tâtonnement process, in that it iteratively maps each profile of worker
types (in measure) available to firms to a new profile of available workers after processing
firms’ optimal choices on the former profile. Using this characterization, we establish the
existence of a stable matching in general environments. First, we show that a stable match-
ing exists if firms’ preferences exhibit continuity or, more precisely, if each firm’s choice
correspondence is upper hemicontinuous and convex-valued. This result is quite general
because these conditions are satisfied by a rich class of preferences, including those ex-
hibiting complementarities.6 The existence is established by means of the Kakutani–Fan–
Glicksberg fixed-point theorem—a generalization of Kakutani’s fixed-point theorem to
functional spaces—which, to the best of our knowledge, is new to the matching literature.

Second, we obtain existence under the assumption of substitutable (but not necessarily
continuous) preferences for firms. Substitutability means that firms reject more workers
as more workers become available to them, and this feature gives rise to the monotonic-
ity of our characterization map. While such monotonicity is known to admit a fixed point,
possible indifferences in firms’ preferences make it nontrivial to identify the exact forms of
substitutable preferences required for existence.7 We identify two different types of sub-
stitutable preferences with indifferences—a weak form leading to the existence of a sta-
ble matching and a strong form leading to the existence of side-optimal (i.e., firm-optimal
and worker-optimal) stable matchings. We also identify a condition under which a side-
optimal stable matching can be found via a generalized Gale–Shapley algorithm. Finally,
we also find a condition, richness, that guarantees the uniqueness of the stable matching,
thus generalizing the uniqueness result of Azevedo and Leshno (2016) beyond the special
case of responsive preferences. When firms have responsive preferences but face general
group-specific quotas (e.g., affirmative actions), our richness condition is implied by a full
support assumption on firms’ preferences, leading to a unique stable matching under that
assumption.

We next draw implications of our results from a continuum economy for “nearby” large
finite economies, assuming that each firm has a continuous utility function over the mea-
sure of workers it matches with. Specifically, we show that any large finite economy that is
sufficiently close to our continuum economy (in terms of the distribution of worker types)
admits a matching that is approximately stable in the sense that the incentives for blocking

5In the public school choice program in Boston prior to 2005, for instance, a student’s priority at a school
was based only on broad criteria, such as the student’s area of residence and whether he or she had any siblings
currently enrolled at that school. Consequently, at each school, many students were assigned the same priority
(Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005)).

6For instance, it allows for Leontief-type preferences with respect to alternative types of workers, in which
firms desire to hire each type of workers in equal size.

7If a firm’s preferences are responsive, an arbitrary resolution of indifferences—or tie-breaking—preserves
responsiveness and thus implies existence. For more general preferences, however, a random or arbitrary tie-
breaking of indifferences does not necessarily lead to a choice function that possesses the necessary properties
for existence.
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are arbitrarily small. The converse also holds: namely, if any approximately stable match-
ings defined over a sequence of large finite economies converge to a matching in the
limit continuum economy, then the limit matching constitutes an (exact) stable matching
in the continuum economy. In addition, approximately stable matchings in large finite
economies share similar structural properties (e.g., side-optimality and uniqueness) with
the stable matchings in the continuum economy. Our results thus suggest the usefulness
of the continuum economy as a tool for studying large finite economies.

Finally, we study the fairness and incentive properties of matching. Stability eliminates
justified envy and thus protects workers from being discriminated by a firm against the
workers it perceives as less desirable. However, stability alone is silent on the fairness of a
matching in terms of treating workers who are perceived by a firm as equivalent. This issue
is particularly relevant in school choice since schools evaluate students based on coarse
priorities. Kesten and Ünver (2014) showed that, given responsive preferences by schools
(i.e., firms in our model), it is possible to implement a matching that eliminates discrim-
ination among students enjoying the same priority. We show that this stronger notion
of fairness can be achieved even with general preferences, either in a continuum economy
or in a finite but “time-share” model in which schools/firms and students/workers can
share time or match probabilistically (see Sotomayor (1999), Alkan and Gale (2003), and
Kesten and Ünver (2014), among others). In addition, the mechanism implementing such
a strongly fair matching gives workers an incentive to truthfully reveal their preferences.

Relationship With the Literature

The present paper is connected with several strands of literature. Most importantly,
it is related to the growing literature on matching and market design in the traditions
of Gale and Shapley (1962) and Roth (1984). While substitutability has been recognized
in the literature as crucial for the existence of stable matchings (Kelso and Crawford
(1982), Roth (1985), Sönmez and Ünver (2010), Hatfield and Milgrom (2005), Hatfield
and Kojima (2008), Hatfield and Kominers (2017)), our paper shows that substitutability
is not necessary for the existence of a (approximately) stable matching when there are a
large number of agents on one side of the market.

Our study was inspired by recent research on matching with a continuum of agents
due to Abdulkadiroğlu, Che, and Yasuda (2015) and Azevedo and Leshno (2016).8 As in
the present study, these authors assumed that there are a finite number of firms and a
continuum of workers. In particular, Azevedo and Leshno (2016) showed the existence
and uniqueness of a stable matching in that setting. However, as opposed to the present
study, these authors assumed that firms have responsive preferences—which is a special
case of substitutability. Our contribution is to show that such restrictions are not necessary
for the existence of a stable matching in the continuum economy.

An independent and contemporaneous study by Azevedo and Hatfield (2018) (hence-
forth, AH) also analyzed matching with a continuum of agents.9 Consistent with our study,

8Various recent studies on large matching markets are also related but formally different, such as Roth
and Peranson (1999), Immorlica and Mahdian (2005), Kojima and Pathak (2009), Kojima and Manea (2010),
Manea (2009), Che and Kojima (2010), Lee (2017), Liu and Pycia (2016), Che and Tercieux (2018a, 2018b),
Ashlagi, Kanoria, and Leshno (2017), Miralles (2008), Miralles and Pycia (2017), Kojima, Pathak, and Roth
(2013), and Hatfield, Kojima, and Narita (2016).

9Although not as closely related, our study is also analogous to Azevedo, Weyl, and White (2013), who
demonstrated the existence of competitive equilibrium in an exchange economy with a continuum of agents
and indivisible objects.
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these authors found that a stable matching exists even when not all agents have substi-
tutable preferences. However, the two studies have several notable differences. First, AH
considered a continuum of firms each employing a finite number of workers; thus, they
considered a continuum of agents on both sides of the market. By contrast, the present
paper considers a finite number of firms that each employ a continuum of workers. These
two models thus provide complementary approaches for studying large markets, and they
are applicable to different environments.10 Second, AH assumed that there is a finite
number of both firm and worker types, which enables them to use Brouwer’s fixed-point
theorem to demonstrate the existence of a stable matching. By contrast, we place no re-
striction on the number of worker types and thus allow for both finite and infinite numbers
of types, and this generality in type spaces requires a topological fixed-point theorem from
functional analysis.11

Subsequent to the current work, Wu (2017) proved core existence in a class of games
he labeled convex matching games. While this domain contains both AH’s setup and a
special case of our setup, there are at least two differences. First, his core notion uses
“strong domination,” that is, a blocking coalition is required to make every agent in the
block strictly better off, while our blocking notion uses “weak domination,” which allows
indifferent agents to be part of a blocking coalition.12 This difference makes our notion
of stability stronger and not implied by his core existence result. Second, he assumed the
finiteness of agent types, and this is crucial for his proof method that relies on Scarf’s
lemma (Scarf (1967)).

Our paper joins the growing literature that characterizes a stable matching via a fixed
point of a suitably defined operator (see Adachi (2000), Fleiner (2003), Echenique and
Oviedo (2004, 2006), Hatfield and Milgrom (2005), Ostrovsky (2008), and Hatfield and
Kominers (2017), among others). This literature ensures monotonicity of fixed-point op-
erators by assuming substitutable preferences and obtains existence by applying Tarski’s
fixed-point theorem. By contrast, a significant part of our paper does not impose sub-
stitutability restrictions on preferences; instead, we rely on the continuum of workers—
along with continuity in firms’ preferences—to guarantee the continuity of the operator
(in an appropriately chosen topology). This approach allows us to use a generalization
of the Kakutani fixed-point theorem, a more familiar tool in traditional economic theory
that is used in existence proofs of general equilibrium and Nash equilibrium. Even for
substitutable preferences, we are able to generalize the condition for existence and other
properties of interest by accommodating indifferences.

The present paper is related to the literature on general equilibrium. With a finite num-
ber of consumers, the convexity of consumer preferences is key for establishing the exis-
tence of Walrasian equilibria (Arrow and Debreu (1954), McKenzie (1954, 1959)). With-

10For example, in the context of school choice, many school districts consist of a small number of schools
that each admit hundreds of students, which fits well with our approach. However, in a large school district
such as New York City, the number of schools is large compared with the number of students per school, and
the AH model may offer a good approximation.

11To the best of our knowledge, this type of mathematics has never been applied to two-sided matching, and
we view the introduction of these tools into the matching literature as one of our methodological contributions.
Our model also has the advantage of subsuming Azevedo and Leshno (2016) and many other studies that
assume a continuum of worker types. Moreover, the substantive issues studied in these papers are significantly
different. Indifferences in preferences, substitutable preferences, incentives, and fairness are studied only by
the present paper, while many-to-many matching, core, and general equilibrium are studied only by AH.

12In matching theory, weak domination is more standard. It appears to be more natural because, for in-
stance, strong domination does not allow a firm to form a block by combining new workers with existing work-
ers, whereas weak domination allows for such a block.
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out the convexity assumption, Aumann (1966) showed the existence in a continuum econ-
omy, while Starr (1969) showed the existence of an approximate equilibrium in a large
finite economy.13 Especially close to our study are models with clubs, most notably Ellick-
son, Grodal, Scotchmer, and Zame (1999, 2001).14 Similarly to our study, these papers
consider both large finite and continuum economies and show the existence of (approx-
imate) equilibria using Kakutani’s fixed-point theorem. Despite these similarities, there
are also a number of notable differences. First, Ellickson et al. (1999, 2001) assumed the
existence of private goods and transfers, neither of which is assumed in our model. More-
over, in their model, the size of clubs (groups) and the number of agent types are finite.
In this respect, their model is closer to AH’s model in which a continuum of firms each
hire a finite number of workers.

The current paper is also related to the literature on matching with couples. Like a firm
in our model, a couple can be seen as a single agent with complementary preferences
over contracts, and this complementarity may lead to non-existence (see Roth (1984)
and Klaus and Klijn (2005)). The large market existence results with couples by Kojima,
Pathak, and Roth (2013) and Ashlagi, Braverman, and Hassidim (2014) are of similar
spirit to the current paper. However, “couples” are the only source of complementarities
in these papers, and their results require the proportion of couples to be insignificant in
the large market, an assumption we do not make here.15

The remainder of this paper is organized as follows. Section 2 presents an example
to illustrate our main contributions. Section 3 describes a matching model in the contin-
uum economy. Section 4 provides a fixed-point characterization of stable matchings in the
continuum economy. Sections 5 and 6 provide the existence of a stable matching under
continuous and substitutable preferences, respectively. In Section 7, we explore implica-
tions of our existence results for approximately stable matchings in large finite economies.
In Section 8, we investigate fairness and strategy-proofness. Section 9 concludes.

2. ILLUSTRATIVE EXAMPLE

Before proceeding to our formal model, it is useful to illustrate the main issues and
the idea of the paper using simple examples. These examples will also serve as a tool for
explaining some technical concepts introduced in the model section.

We first consider a simple finite matching market to illustrate the non-existence prob-
lem caused by a complementary preference. Suppose that there are two firms, f1 and f2,
and two workers, θ and θ′. The agents have the following preferences:

θ : f1 � f2; f1 : {θ�θ′} � ∅;
θ′ : f2 � f1; f2 : {θ} � {

θ′} � ∅�
In other words, worker θ prefers f1 to f2, and worker θ′ prefers f2 to f1; firm f1 prefers
employing both workers to employing neither, which the firm in turn prefers to employ-
ing only one of the workers; and firm f2 prefers worker θ to θ′, whom it in turn prefers to

13See also a related result on an approximate core by Shapley and Shubik (1966).
14Although less close to our paper, other notable contributions include Ellickson (1979), Scotchmer and

Wooders (1987), Gilles and Scotchmer (1997), and Scotchmer and Shannon (2015) as well as a survey by
Sandler and Tschirhart (1997).

15Also see Pycia (2012) and Echenique and Yenmez (2007), who studied many-to-one matching with com-
plementarities and peer effects, and Nguyen and Vohra (2018), who studied how one can minimally modify
firms’ quotas to guarantee a stable matching in a problem with couples. These papers allow for complemen-
tarities, but they do not study large economies.
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employing neither. Firm f1 has a “complementary” (or more precisely, non-substitutable)
preference in the sense that availability of one worker causes it to demand the other. To
illustrate how complementary preferences cause instability in this example, recall that sta-
bility requires that there be no blocking coalition. Due to f1’s complementary preference,
it must employ either both workers or neither worker in any stable matching. In the for-
mer case, the matching is unstable since f2 must be unmatched and can form a blocking
coalition with type θ′ worker, who prefers firm f2 to firm f1. In the latter case, the match-
ing is also unstable since f2 will hire only θ, which leaves θ′ unemployed; this outcome
will be blocked by f1 forming a coalition with θ and θ′ that will benefit all members of the
coalition.

Can stability be restored if the market becomes large? If the market remains finite,
the answer is no. To illustrate this proposition, consider a scaled-up version of the above
model: there are q workers of type θ and q workers of type θ′, and they have the same
preferences as previously described. Firm f2 prefers type-θ workers to type-θ′ workers
and wishes to hire in that order but at most a total of q workers. Firm f1 has a comple-
mentary preference for hiring identical numbers of type-θ and type-θ′ workers (with no
capacity limit). Formally, if x and x′ are the numbers of available workers of types θ and
θ′, respectively, then firm f1 would choose min{x�x′} workers of each type.

When q is odd (including the original economy, where q = 1), a stable matching does
not exist.16 To illustrate this, first note that if firm f1 hires more than q/2 workers of
each type, then firm f2 has a vacant position to form a blocking coalition with a type-θ′

worker (who prefers f2 to f1). If f1 hires fewer than q/2 workers of each type, then some
workers will remain unmatched (because f2 hires at most q workers). If a type-θ worker
is unmatched, then f2 will form a blocking coalition with that worker. If a type-θ′ worker
is unmatched, then firm f1 will form a blocking coalition by hiring that worker and a θ
worker (possibly matched with f2).

Consequently, “exact” stability is not guaranteed, even in a large finite market. Never-
theless, approximate stability is achievable in the sense that the “magnitude” of instability
diminishes as the economy grows large. To illustrate this, let q be odd and consider a
matching:

Mq =
(

f1 f2
q+ 1

2
θ+ q+ 1

2
θ′ q− 1

2
θ+ q− 1

2
θ′

)
� (1)

where the notation here indicates that firms f1 and f2 are matched respectively to q+1
2 and

q−1
2 workers of each type (we will use an analogous notation throughout). This matching

is unstable because f2 has one vacant position it wants to fill and there is a type-θ′ worker
who is matched to f1 but prefers f2. However, this scenario is the only possible block of this
matching, and it involves only one worker. As the economy grows large, if one additional
worker becomes insignificant for firm f2 relative to its size, a property formalized later as
continuous preferences, then the payoff consequence of forming such a block must also
become insignificant. In this sense, the instability problem becomes insignificant.

This idea can be seen most clearly in the limit of the above economy. Suppose that
there is a unit mass of workers, half of whom are type θ and the other half of whom are

16We sketch the argument here; Section S.1 of the Supplemental Material (Che, Kim, and Kojima (2019))
provides the argument in fuller form. When q is even, a matching in which each firm hires q

2 of each type of
workers is stable.
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type θ′. Their preferences are the same as described above. Suppose that firm f1 wishes
to maximize min{x�x′}, where x and x′ are the measures of type-θ and type-θ′ workers,
respectively. Firm f2 can hire at most 1

2 of the workers, and it prefers to fill as much of this
quota as possible with type-θ workers and fill the remaining quota with type-θ′ workers. In
this economy, there is a (unique) stable matching in which each firm hires exactly one-half
of the workers of each type:

M =
(

f1 f2
1
4
θ+ 1

4
θ′ 1

4
θ+ 1

4
θ′

)
� (2)

To see that this matching is stable, note that any blocking coalition involving firm f1 re-
quires taking away a positive—and identical—measure of type-θ′ and type-θ workers from
firm f2, which is impossible because type-θ′ workers will object to it. Additionally, any
blocking coalition involving firm f2 requires that a positive measure of type-θ workers be
taken away from firm f1 and supplant the same measure of type-θ′ workers in f2’s work-
force, which is impossible because type-θ workers will object to it. Our analysis below will
demonstrate that the continuity of firms’ preferences, which will be defined more pre-
cisely, is responsible for guaranteeing the existence of a stable matching in the continuum
economy and approximate stability in the large finite economies in this example.

3. MODEL OF A CONTINUUM ECONOMY

Agents and Their Measures

There is a finite set F = {f1� � � � � fn} of firms and a mass of workers. Let ∅ be the
null firm, representing the possibility of not being matched with any firm, and define
F̃ := F ∪ {∅}. The workers are identified with types θ ∈ Θ, where Θ is a compact met-
ric space with metric dΘ. Let Σ denote a Borel σ-algebra of space Θ. Let X be the set
of all nonnegative measures such that, for any X ∈ X , X(Θ) ≤ 1. Assume that the entire
population of workers is distributed according to a nonnegative (Borel) measure G ∈ X
on (Θ�Σ). In other words, for any E ∈ Σ, G(E) is the measure of workers belonging to E.
For normalization, assume that G(Θ)= 1.

Any subset of the population or subpopulation is represented by a nonnegative mea-
sure X on (Θ�Σ) such that X(E) ≤ G(E) for all E ∈ Σ.17 Let X ⊂ X denote the set of
all subpopulations. We further say that a nonnegative measure X̃ ∈X is a subpopulation
of X ∈ X , denoted as X̃ �X , if X̃(E) ≤ X(E) for all E ∈ Σ. We let XX denote the set
of all subpopulations of X . Note that (X ��) is a partially ordered set.18 As usual, for any
two subpopulations (or measures) X�Y ∈ X , X + Y and X − Y denote their sum and
difference, respectively.

Given the partial order �, for any X�Y ∈ X , we define X ∨ Y (join) and X ∧ Y
(meet) to be the supremum and infimum of X and Y , respectively.19 Additionally, for

17In the case of finitely many types, we will use “measure” and “mass” interchangeably.
18The reflexivity, transitivity, and antisymmetry of the order are easy to check.
19For instance, X ∨Y is the smallest measure of which both X and Y are subpopulations. It can be shown

that for all E ∈ Σ,

(X ∨Y)(E) = sup
D∈Σ

X(E ∩D)+Y
(
E ∩Dc

)
�
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any X ′ ⊂X , let
∨

X ′ and
∧

X ′ denote the supremum and infimum of X ′, which are well
defined since the partially ordered set (X ��) is a complete lattice, as we show in Sec-
tion S.2.1 of the Supplemental Material.

EXAMPLE 1—Leading Example: Consider the example from the previous section,
henceforth called the leading example. Its limit economy is a continuum economy with
F = {f1� f2}, Θ = {θ�θ′}, and G({θ}) =G({θ′})= 1/2.20 Let X = (x�x′) and Y = (y� y ′) be
two measures in our leading example, where x and x′ are the measures of types θ and θ′,
respectively, under X , and likewise y and y ′ under Y . Then, their join and meet are mea-
sures X ∨Y = (max{x� y}�max{x′� y ′}) and X ∧Y = (min{x� y}�min{x′� y ′}), respectively.

EXAMPLE 2—Interval Economy: Consider a continuum economy with type space Θ =
[0�1] and suppose the measure G admits a bounded density g for all θ ∈ [0�1]. In this
case, it easily follows that for X�Y �G, their densities x and y are well defined.21 Then,
their join Z = (X ∨Y) and meet Z′ = (X ∧Y) admit densities z and z′ defined by z(θ) =
max{x(θ)� y(θ)} and z′(θ) = min{x(θ)� y(θ)} for all θ, respectively.

Consider the space of all (signed) measures (of bounded variation) on (Θ�Σ). We en-
dow this space with a weak-∗ topology and its subspace X with the relative topology.

Given a sequence of measures (Xk) and a measure X on (Θ�Σ), we write Xk
w∗−→ X to

indicate that (Xk) converges to X as k → ∞ under weak-∗ topology and simply say that
(Xk) weakly converges to X .22

Agents’ Preferences

We now describe agents’ preferences. Each worker is assumed to have a strict prefer-
ence over F̃ . Let a bijection P : {1� � � � � n + 1} → F̃ denote a worker’s preference, where
P(j) denotes the identity of the worker’s jth best alternative, and let P denote the (finite)
set of all possible worker preferences.

We write f �P f
′ to indicate that f is strictly preferred to f ′, according to P . (We some-

times write f �θ f
′ to express the preference of a particular type θ.) For each P ∈ P ,

let ΘP ⊂ Θ denote the set of all worker types whose preference is given by P , and as-
sume that ΘP is measurable and G(∂ΘP) = 0, where ∂ΘP denotes the boundary of ΘP .23

Because all worker types have strict preferences, Θ can be partitioned into the sets in
PΘ := {ΘP : P ∈P}.

We next describe firms’ preferences. We do so indirectly by defining a firm f ’s choice
correspondence Cf : X ⇒X , where Cf(X) ⊂ XX is a nonempty set of subpopulations of

20Henceforth, given any measure X , X(θ) will denote a measure of the singleton set {θ} to simplify notation.
21For instance, X is Lipschitz continuous, and thus its density is well defined, since |X([0� θ′])−X([0� θ])| ≤

|G([0� θ′])−G([0� θ])| ≤ ḡ|θ′ − θ|, where ḡ := sups g(s).
22We use the term “weak convergence” because it is common in statistics and mathematics, although weak-∗

convergence is a more appropriate term from the perspective of functional analysis. As is well known, Xk
w∗−→

X if
∫
Θ
hdXk → ∫

Θ
hdX for all bounded continuous functions h. See Theorem 12 in Appendix A for some

implications of this convergence.
23This is a technical assumption that facilitates our analysis. The assumption is satisfied if, for each P ∈ P , ΘP

is an open set such that G(
⋃

P∈P ΘP)=G(Θ): all agents, except for a measure-zero set, have strict preferences,
a standard assumption in the matching theory literature. The assumption that G(∂ΘP)= 0 is also satisfied if Θ
is discrete. To see it, note that ∂E := E ∩Ec , where E and Ec are the closures of E and Ec , respectively. Then,
we have E =E and Ec =Ec , so E ∩Ec =E ∩Ec = ∅. Hence, the assumption is satisfied.
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X for any X ∈X .24 We assume that Cf satisfies the revealed preference property: for any
X�X ′ ∈ X with X �X ′, if Cf(X

′)∩XX �= ∅, then Cf(X) = Cf(X
′)∩XX .25 Let Rf : X ⇒

X be a rejection correspondence defined by Rf(X) := {Y ∈X |Y =X −X ′ for some X ′ ∈
Cf(X)}. By convention, we let C∅(X)= {X}�∀X ∈X , meaning that R∅(X)(E)= 0 for all
X ∈ X and E ∈ Σ. We will call Cf (resp,. Rf ) a firm f ’s choice (resp., rejection) function
if |Cf(X)| = 1 for all X ∈X . In this case, we slightly abuse the notation to write a unique
outcome of the function without the set notation.

In our leading example, the choice correspondences of firms f1 and f2 are functions
respectively given by

Cf1

(
x1�x

′
1

) = (
min

{
x1�x

′
1

}
�min

{
x1�x

′
1

})
and

Cf2

(
x2�x

′
2

) =
(
x2�min

{
1
2

− x2�x
′
2

})
�

(3)

when xi ∈ [0� 1
2 ] of type-θ workers and x′

i ∈ [0� 1
2 ] of type-θ′ workers are available to firm

fi, i = 1�2.
In sum, a continuum economy is summarized as a tuple 	= (G�F�PΘ�CF).

Matching and Stability

A matching is M = (Mf)f∈F̃ such that Mf ∈ X for all f ∈ F̃ and
∑

f∈F̃ Mf = G. Firms’
choice correspondences can be used to define a binary relation describing firms’ prefer-
ences over matchings. For any two matchings, M and M ′, we say that firm f prefers M ′

f

to Mf if M ′
f ∈ Cf(M

′
f ∨Mf), and write M ′

f �f Mf .26 We also say that f strictly prefers M ′
f

to Mf if M ′
f �f Mf holds while Mf �f M

′
f does not, and write M ′

f �f Mf . The resulting
preference relation amounts to taking a minimal stance on the firms’ preferences, limit-
ing attention to those revealed via their choices. Given this preference relation, we denote
M ′ �F M if M ′

f �f Mf for all f ∈ F , and M ′ �F M if M ′ �F M and M ′
f �f Mf for some

f ∈ F .
To discuss workers’ welfare, fix any matching M and any firm f . Let

D�f (M) :=
∑
P∈P

∑
f ′∈F̃ :f ′�Pf

Mf ′(ΘP ∩ ·) and D�f (M) :=
∑
P∈P

∑
f ′∈F̃ :f ′�Pf

Mf ′(ΘP ∩ ·) (4)

denote the measure of workers assigned to firm f or better (according to their pref-
erences) and the measure of workers assigned to firm f or worse (again, according to
their preferences), respectively, where Mf ′(ΘP ∩·) denotes a measure that takes the value
Mf ′(ΘP ∩E) for each E ∈ Σ. Starting from M as a default matching, the latter measures
the number of workers who would rather match with f . Meanwhile, the former measure
is useful for characterizing the workers’ overall welfare. For any two matchings M and

24 Taking firms’ choices as a primitive offers flexibility with regard to the preferences over alternatives that
are not chosen. This approach is also adopted by other studies in matching theory, which include Alkan and
Gale (2003) and Aygün and Sönmez (2013), among others.

25This property must hold if the choice is made by a firm optimizing with a well-defined preference relation.
The property is often invoked in the matching theory literature (see Hatfield and Milgrom (2005), Fleiner
(2003), and Alkan and Gale (2003)). Recently, Aygün and Sönmez (2013) clarified the role of this property in
the context of matching with contracts.

26This relation is known as the Blair order in the literature (see Blair (1984)).



STABLE MATCHING IN LARGE ECONOMIES 75

M ′, we say that M ′ �Θ M if D�f (M) �D�f (M ′)�∀f ∈ F̃ and M ′ �Θ M if M ′ �Θ M and
D�f (M) �= D�f (M ′) for some f ∈ F̃ .27 In other words, for each firm f , if the measure of
workers assigned to f or better is larger in one matching than in the other, then we can
say that the workers’ overall welfare is higher in the former matching.

Equipped with these notions, we can define stability.

DEFINITION 1:A matching M is stable if
1. (Individual Rationality) For each f ∈ F , Mf ∈ Cf(Mf); for each P ∈ P , Mf(ΘP) =

0�∀f ≺P ∅; and
2. (No Blocking Coalition) No f ∈ F and M ′

f ∈ X exist such that M ′
f � D�f (M) and

M ′
f �f Mf .

Condition 1 requires that no firm wish to unilaterally drop any of its matched workers
and that each matched worker prefer being matched to being unmatched.28 Condition 1
requires that there be no firm and no set of workers who are not matched together but
prefer to be. When Condition 1 is violated by f and M ′

f , we say that f and M ′
f block M .

Two notions closely related to stability are group stability and Pareto efficiency. Group
stability requires that no group of firms and workers gain from blocking a matching.
Pareto efficiency requires that a matching not be Pareto-dominated or not blocked by
the all-inclusive coalition. As is standard in many-to-one matching, stability is equivalent
to group stability and implies Pareto efficiency. The formal statements and proofs are
given in Sections S.2.2 and S.2.3 of the Supplemental Material (Che, Kim, and Kojima
(2019)).

4. A CHARACTERIZATION OF STABLE MATCHING

This section characterizes stable matchings, which will serve as a tool for establishing
their existence in the subsequent sections. Stability exhausts the blocking opportunities
for all firms, which requires each firm to choose optimally from the workers “available”
to that firm. Hence, to identify a stable matching, one must identify the set of workers
available to each firm. This set is inherently of a fixed-point character: the availability of a
worker to a firm depends on the set of firms willing to match with her, but that set depends
in turn on firms’ optimization, given the workers “available” to them.

The preceding logic suggests that a stable matching is associated with a fixed point of
a mapping—or, more intuitively, a stationary point of a process that repeatedly revises
the set of available workers to the firms based on the preferences of the workers and the
firms. Formally, we define a map T :X n+1 ⇒X n+1 such that, for each X ∈X n+1,

T(X) :=
{
X̃ ∈X n+1

∣∣∣∣ there exists (Yf )f∈F̃ with Yf ∈ Rf(Xf )�∀f ∈ F̃� such that

X̃f (·)=
∑

P:P(1)=f

G(ΘP ∩ ·)+
∑

P:P(1) �=f

YfP− (ΘP ∩ ·)�∀f ∈ F̃

}
�

(5)

27Note that this comparison is made in the aggregate matching sense without keeping track of the identities
of workers who get better off with M ′.

28We note that the first part of Condition 1 (namely, Mf ∈ Cf (Mf ) for each f ∈ F) is implied by Condition
1. To see this, suppose Mf /∈ Cf (Mf ). Let M ′

f ∈ Cf (Mf ). Then, since M ′
f � Mf � D�f (M) and M ′

f �f Mf ,
Condition 1 is violated. We opted to write that condition to follow the convention in the literature and ease
the exposition.
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where f P
− ∈ F̃ , called the immediate predecessor of f at P , is a firm that is ranked imme-

diately above firm f according to P .29 This mapping takes a profile X of available workers
as input and returns a nonempty set of profiles of available workers. For each X ∈ X n+1,
T(X) is nonempty because Rf(X) is nonempty for each f ∈ F̃ by assumption.

To explain, fix a firm f . Consider first the worker types ΘP who rank f as their first-
best choice (i.e., f = P(1)). All such workers are available to f , which explains the first
term of (5). Consider next the worker types ΘP who rank f as their second-best choice
(i.e., f = P(2)). Within this group, only the workers rejected by their top-choice firm
P(1) = f P

− are available to f , which explains the second term of (5). Now, consider the
worker types ΘP who rank f as their third-best choice (i.e., f = P(3)). Within this group,
only the workers rejected by both their first- and second-choice firms, that is, P(1) and
P(2), would be available to f . To calculate the measure of these workers, however, one
may focus on those available to and rejected by P(2)= f P

− since, by the previous observa-
tion, the workers available to P(2) are those who were rejected by P(1). The analogous
explanation applies to all firms on workers’ rank order lists.

The map T can be interpreted as a tâtonnement process in which an auctioneer iter-
atively quotes firms’ “budgets” (in terms of the measures of available workers). As in a
classical Walrasian auction, the budget quotes are revised based on the preferences of the
market participants, reducing the budget for firm f when more workers are demanded
by the firms ranked above f and increasing the budget otherwise. Once the process con-
verges, one reaches a fixed point, having found the workers who are “truly” available to
firms—those who are compatible with the preferences of all market participants.

REMARK 1: The mapping T can be seen as mimicking Gale and Shapley’s deferred
acceptance algorithm (DA), particularly the worker-proposing one. To see this, consider
the case in which each Cf is a choice function. Then, we can write T as a profile (Tf )f∈F̃ ,
where, for each X ∈X n+1,

Tf (X)=
∑

P:P(1)=f

G(ΘP ∩ ·)+
∑

P:P(1) �=f

RfP− (XfP− )(ΘP ∩ ·)� (6)

For each firm f , this mapping returns the workers who are rejected by an immediate pre-
decessor of f . These are analogous to the workers who propose to firm f in the worker-
proposing DA algorithm, since they are those rejected by the immediate predecessor.
Indeed, this analogy becomes precise when the firms’ preferences are substitutable (i.e.,
when each Rf is monotonic): each iteration of the mapping T (starting from zero subpop-
ulations) coincides with the cumulative measures of workers proposing at a correspond-
ing step of worker-proposing DA. This result is shown in Section S.3 of the Supplemental
Material. Our fixed-point mapping resembles those developed in the context of finite
matching markets (e.g., see Adachi (2000), Hatfield and Milgrom (2005), and Echenique
and Oviedo (2006)), but the construction here differs since a continuum of workers draw
their types from a very rich space and are treated in aggregate terms without being distin-
guished by their identities.

We now present our main characterization theorem.

THEOREM 1: There exists a stable matching M with Xf = D�f (M)�∀f ∈ F̃ if and only if
(Xf )f∈F̃ is a fixed point of T (i.e., X ∈ T(X)).

29Formally, f P
− �P f and f ′ �P f P

− for any f ′ �P f .
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PROOF: See Appendix A. Q.E.D.

This characterization identifies the measures X of workers available to firms in a sta-
ble matching as a fixed point of T . A stable matching M = (Mf)f is then obtained as
firms’ optimal choices from X that satisfy Xf = D�f (M) for each f ∈ F̃ .30 This process is
illustrated in the next example.

EXAMPLE 3—Leading Example: Consider Example 1 again. The candidate measures
of available workers are denoted by a tuple X = (Xf1�Xf2) = (x1�x

′
1�x2�x

′
2) ∈ [0� 1

2 ]4,
where Xfi = (xi� x

′
i) is the measures of type-θ and type-θ′ workers available to fi. Since

f1 and f2 are the top choices for θ and θ′, respectively, all these workers are available
to the respective firms according to our T mapping. Thus, without loss we can set x1 =
G(θ) = 1

2 and x′
2 = G(θ′) = 1

2 and consider ( 1
2 �x

′
1�x2�

1
2) as our candidate measures. The

firms’ choice functions are then given by (3) while the fixed-point mapping in (6) is given
by T = (Tf1�Tf2), where

Tf1(X) :=
(

1
2
�Rf2

(
x2�

1
2

)(
θ′)) =

(
1
2
�x2

)
� (7)

Tf2(X) :=
(
Rf1

(
1
2
�x′

1

)
(θ)�

1
2

)
=

(
1
2

− x′
1�

1
2

)
� (8)

Thus, (x1�x
′
1;x2�x

′
2) is a fixed point of T if and only if (x1�x

′
1;x2�x

′
2) = ( 1

2 �x2; 1
2 − x′

1�
1
2),

or x1 = x′
2 = 1

2 and x′
1 = x2 = 1

4 . Each firm’s optimal choice from the fixed point—that is,
Cfi(Xfi) for each i = 1�2—then gives a (unique) stable matching M defined in (2).

In light of Theorem 1, the existence of a stable matching reduces to the existence of a
fixed point of T . The next two sections identify two sufficient conditions for the latter.

5. THE EXISTENCE OF A STABLE MATCHING IN THE CONTINUUM ECONOMY

Based on our characterization result, we now present the main existence result under
the standard continuity assumption on firms’ choice correspondences. We say that firm
f ’s choice correspondence Cf is upper hemicontinuous if, for any sequences (Xk)k∈N
and (X̃k)k∈N in X such that Xk w∗−→ X , X̃k w∗−→ X̃ , and X̃k ∈ Cf(X

k)�∀k, we have X̃ ∈
Cf(X).31 As suggested by the name, upper hemicontinuity means that a firm’s choice
changes continuously with the distribution of available workers. We say that Cf is convex-
valued if Cf(X) is a convex set for any X ∈X .32

DEFINITION 2: Firm f ∈ F has a continuous preference if Cf is upper hemicontinuous
and convex-valued.

30Importantly, an arbitrary selection from Cf (Xf ) for each f ∈ F at the fixed point X need not lead to a
matching, let alone a stable one. Care is needed to construct a stable matching. Equation (14) in Appendix A
provides a precise formula to obtain a stable matching M from a fixed point X of T . We thank a referee for
raising a question that led us to clarify this issue.

31This definition is often referred to as the “closed graph property,” which implies (the standard definition
of) upper hemicontinuity and closed-valuedness if the range space is compact, as is true in our case.

32By the familiar observation based on Berge’s maximum theorem (see Ok (2011) for instance), an upper
hemicontinuous and convex-valued choice correspondence arises when a firm has a utility function u : X → R

that is continuous (in weak-∗ topology) and quasi-concave.
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Many complementary preferences are compatible with continuous preferences. Recall
Example 3, for instance, in which firm f1 has a Leontief-type preference: it wishes to
hire an equal number of workers of types θ and θ′ (specifically, the firm wants to hire
type-θ workers only if type-θ′ workers are also available, and vice versa). As Example
3 shows, a stable matching exists despite the extreme complementarity. Also note that
firms’ preferences are clearly continuous; this is not a mere coincidence, as we now show
that continuity of firms’ preferences implies the existence of a stable matching:

THEOREM 2: If each firm f ∈ F has a continuous preference, then a stable matching exists.

PROOF: See Appendix A. Q.E.D.

Given the fixed-point characterization of stable matchings in Theorem 1, our proof
approach is to show that T has a fixed point. To this end, we first demonstrate that the
upper hemicontinuity of firm preferences implies that the mapping T is also upper hemi-
continuous. We also verify that X is a compact and convex set. Upper hemicontinuity of
T and compactness and convexity of X allow us to apply the Kakutani–Fan–Glicksberg
fixed-point theorem to guarantee that T has a fixed point.33 Then, the existence of a stable
matching follows from Theorem 1, which shows the equivalence between the set of stable
matchings and the set of fixed points of T .

Although the continuity assumption is quite general, including preferences not allowed
for in the existing literature, it is not without a restriction, as we illustrate next.

EXAMPLE 4—Role of Upper Hemicontinuity: Consider the following economy modi-
fied from Example 3: There are two firms f1 and f2, and two worker types, θ and θ′, each
with measure 1/2. Firm f1 wishes to hire exactly measure 1/2 of each type and prefers
to be unmatched otherwise. Firm f2’s preference is responsive subject to the capacity of
measure 1/2: it prefers type-θ to type-θ′ workers and prefers the latter to leaving a position
vacant. It follows that Cf1 violates upper hemicontinuity, while Cf2 does not. As before,
we assume

θ : f1 � f2;
θ′ : f2 � f1�

No stable matching exists in this environment, as shown in Section S.4 of the Supplemen-
tal Material.

The upper hemicontinuity assumption is important for the existence of a stable match-
ing; this example shows that non-existence can occur even if the choice function of only
one firm violates upper hemicontinuity. This example also suggests that non-existence
can reemerge when some “lumpiness” is reintroduced into the continuum economy (i.e.,
one firm can only hire a minimum mass of workers). However, this kind of lumpiness
may not be very natural in a continuum economy, which is unlike a finite economy where
lumpiness is a natural consequence of the indivisibility of each worker.

By comparison, the convex-valuedness may rule out some realistic situations:34

33For the Kakutani–Fan–Glicksberg fixed-point theorem, refer to Theorem 16.12 and Corollary 16.51 in
Aliprantis and Border (2006).

34In a classical competitive market context, Farrell (1959) studied how specialization and indivisibility can
lead to non-convexity and discussed its implications for the existence of equilibria.
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EXAMPLE 5—Role of Convex-Valuedness: Let us again modify Example 3 as follows.
The preferences of f1 and of the two worker types remain the same, while the masses
of type-θ and type-θ′ workers are 0.6 and 0.4, respectively. Firm f2 specializes in only
one type of workers and prefers hiring as many workers as possible: If x and x′ are the
available masses of the two types, then the firm only hires mass x of type θ if x > x′ and
only mass x′ of type θ′ if x < x′, but never desires to mix the two types. If x = x′, the
firm is indifferent between hiring either type of mass x (again without mixing types). It is
straightforward to verify that the choice correspondence corresponding to this preference
is upper hemicontinuous. However, it is not convex-valued since, for any x = x′ > 0, the
firm’s choice set contains (x�0) and (0�x) but not any (strict) convex combination of
them. Consequently, a stable matching does not exist in this case (see Section S.4 of the
Supplemental Material).

REMARK 2—Algorithm to Find a Fixed Point of T : It will be useful to have an al-
gorithm to find or at least approximate a stable matching, which is equivalent to ap-
proximating a fixed point of T . One such algorithm is the tâtonnement process, that is,
to apply T iteratively starting from an initial point X0 ∈ X n+1. Unfortunately, this algo-
rithm does not always work. To see this, consider the mapping T in (7) and (8), and let
φ1(x2) := Rf2(x2�

1
2)(θ

′) = x2 and φ2(x
′
1) := Rf1(

1
2 �x

′
1)(θ) = 1

2 − x′
1. Then, T is effectively

reduced to a mapping: (x′
1�x2) �→ (φ1(x2)�φ2(x

′
1)), which is depicted as in Figure 1(a).

While its fixed point exists (i.e., the intersection in Figure 1(a)), if one starts anywhere
else, say a point X0 in that figure, the algorithm gets trapped in a cycle.

The map T could work for other situations, however. For instance, modify Example 3
yet again so that the firm f1 would like to hire mass a < 1 of type-θ workers per unit mass
of type-θ′ workers. Then, the mapping (φ1�φ2) changes to the one in Figure 1(b), where
the tâtonnement process converges to a unique fixed point irrespective of the starting
point; see Figure 1(b).35 In fact, the composite map T 2 = T ◦ T in this modified example
is a contraction mapping, so the convergence result can be understood by invoking the
following generalized version of the contraction mapping theorem (see Chapter 3 of Ok
(2017) for instance):

FIGURE 1.—Fixed point of mapping T .

35See Section S.4 of the Supplemental Material for a detailed analysis.
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PROPOSITION 1: Suppose that T is singleton-valued and let T̃ = Tm denote a function
obtained from iterating T by m times. If T̃ is a contraction mapping, then, starting with any
X0 ∈X n+1, Xk := T̃ (Xk−1) converges to a unique fixed point of T as k→ ∞.

While the contraction mapping theorem provides a condition for our mapping T to
serve as an algorithm for finding its fixed point, it need not be the only condition. We will
later see another convergence result when firms have substitutable preferences (see Part
(ii) of Theorem 4).

6. SUBSTITUTABLE PREFERENCES

In this section, we study another class of preferences known as substitutable preferences
in the framework of a continuum economy. Although substitutable preferences have been
studied extensively, there are at least three reasons to study them in our context. First,
substitutable preferences yield useful results beyond existence, such as side-optimal sta-
ble matchings and a constructive algorithm, and it is interesting to see if these results
generalize to a large market. Further, as will be seen, substitutable preferences need not
be continuous, so the existence of a stable matching is not implied by Theorem 2. Sec-
ond, most existing studies on substitutable preferences are confined to the domain of
strict preferences.36 However, indifferences are a prevalent feature of many markets (see,
for instance, Abdulkadiroğlu, Pathak, and Roth (2009)), and yet little is known regard-
ing whether existence and other useful properties such as side-optimal stable matchings
hold in the weak preference domain.37 Third, the large market setting raises another im-
portant question—uniqueness. Azevedo and Leshno (2016) offered sufficient conditions
for a stable matching to be unique in the large economy but in the restricted domain of
“responsive” preferences. It is interesting to ask whether uniqueness extends to general
substitutable preferences.

6.1. Existence and Side-Optimality

To define substitutable preferences in our general domain, we need a few definitions.
Given a partial order �, a correspondence h :X ⇒X is said to be weak-set monotonic if it
satisfies the following: (i) for any X �X ′ and Z ∈ h(X), there is Z′ ∈ h(X ′) with Z �Z′;
(ii) for any X �X ′ and Z′ ∈ h(X ′), there is Z ∈ h(X) with Z �Z′.38

DEFINITION 3: Firm f ’s preference is weakly substitutable if Rf is weak-set monotonic.

The current definition preserves the well-known property of a firm becoming more se-
lective as more workers are available. The novelty here is that substitutability is defined
for a rejection correspondence (instead of a rejection function, as in the literature). In-
deed, the definition can be seen as a generalization of the standard notion: if Cf(X) is

36Sotomayor (1999) is a notable exception.
37Existence for general substitutable preferences is not clear, unlike the case of responsive preferences.

In the latter case, an arbitrary tie-breaking (e.g., random tie-breaking) preserves responsiveness, leading to
existence. To our knowledge, there is no straightforward generalization of this method to the general class of
substitutable preferences.

38The weak-set monotonicity is weaker than the strong-set monotonicity often used in monotone compara-
tive statics (e.g., Milgrom and Shannon (1994)).
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singleton-valued for all X ∈X , this notion collapses to the requirement that Rf be mono-
tonic in the underlying order �: Rf(X)�Rf(X

′) whenever X �X ′.
We now establish the existence result in the domain of weakly substitutable preferences:

THEOREM 3: If each firm’s preference is weakly substitutable and each Cf is closed-valued,
then a stable matching exists.39

PROOF: See Appendix B. Q.E.D.

As before, this result rests on the existence of a fixed point of the correspondence T
defined earlier. One can see that if firms have weakly substitutable preferences, then T
is weak-set monotonic. While Zhou (1994) extended Tarski’s well-known theorem to the
case of correspondences, his monotonicity condition is stronger than ours, so we instead
apply a recent result due to Li (2014) to prove the existence of a fixed point. The weak-
ening of the required condition is important in that it allows us to accommodate indiffer-
ences that arise naturally: for instance, consider a firm with a fixed quota that can be filled
with any mixture of multiple types, as featured in the next example.

EXAMPLE 6—Weak Substitutability: Suppose that there are three firms, f1� f2, and f3,
and two worker types, θ and θ′, and that the capacity of each firm and the mass of each
worker type are all equal to 1

2 . The workers’ preferences are

θ :f1 � f2 � f3;
θ′ :f1 � f3 � f2�

Firms f2 and f3 have responsive preferences: they both prefer θ to θ′ (i.e., they wish to
hire in that order up to the capacity of 1

2 ). Firm f1 is indifferent between the two types of
workers, and its preference is described by a choice correspondence:

Cf1

(
x�x′) =

{(
y� y ′) ∈ [0�x] × [

0�x′]|y + y ′ = min
{
x+ x′�

1
2

}}
�

This choice correspondence satisfies weak substitutability, as one can easily check. There
exists a continuum of stable matchings:40 for any z ∈ [0� 1

2 ], it is a stable matching for
firm f1 to hire mass z of type-θ workers and 1

2 − z of type-θ′ workers, for firm f2 to hire
mass 1

2 − z of type-θ workers, and for firm f3 to hire mass z of type-θ′ workers. Clearly,
as z increases, firm f2 becomes worse off and firm f3 becomes better off. Hence, the
firm-optimal stable matching does not exist, and neither does the worker-optimal stable

39The closed-valuedness is a mild condition that may hold even if the choice correspondence fails to be
upper hemicontinuous, as demonstrated by the example in footnote 40.

40In this example, firms’ preferences satisfy the conditions of Theorem 2, so Theorem 3 is not needed for
showing the existence of a stable matching. However, one can easily obtain an example in which the latter
theorem applies while the former does not. In Example 6, suppose that firm f1 is instead endowed with a
choice correspondence defined as follows: for some x̄ ∈ [0�1/2],

Cf1

(
x�x′) =

{{(
x�x′)} if x′ < x̄�{(
0� y ′)|y ′ ∈ [

x̄� x′]} if x′ ≥ x̄�

This correspondence fails to be upper hemicontinuous, rendering Theorem 2 inapplicable, but the conditions
of Theorem 3 are satisfied, as can be checked easily.
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matching since firm f1 hires type-θ and type-θ′ workers in different proportions across
different stable matchings.41

We next introduce a stronger notion of substitutability that would restore side-
optimality. We say a set X ′ ⊂ X of subpopulations is a complete sublattice if X ′ contains
both

∨
Z and

∧
Z for every set Z ⊂X ′.42

DEFINITION 4: Firm f ’s preference is substitutable if (i) Rf is weak-set monotonic and
(ii) for any X ∈X , Rf(X) is a complete sublattice.43

When Cf is singleton-valued, the condition reduces to the standard notion of substi-
tutability, so the distinction between the two different versions of substitutability disap-
pears. Nevertheless, the requirements for substitutable preferences are stronger in the
current weak preference domain. In particular, (ii) is a strong requirement that prefer-
ences such as those described by Cf1 in Example 6 fail.44

At the same time, substitutable preferences do accommodate certain types of indiffer-
ences. Imagine, for instance, a school that has a selective program with a limited quota
and a general program with flexible quotas. For the selective program, the school admits
students in the order of their scores up to its quota. Once the quota is reached, the school
may admit students for the general program with flexible quotas and without considera-
tion of their scores. To our knowledge, the next result is the first to establish the existence
of side-optimal stable matchings in the weak preference domain.45

THEOREM 4:Suppose that each firm’s preference is substitutable. Then, the following results
hold: letting M∗ denote the set of stable matchings,

(i) (Side-Optimal Stable Matching) There exist stable matchings, M�M ∈ M∗, that are
firm-optimal/worker-pessimal and firm-pessimal/worker-optimal, respectively, in the follow-
ing senses: If M ∈M∗, then M �Θ M �F M and M �Θ M �F M .

(ii) (Generalized Gale–Shapley) If, in addition, Cf is order-continuous for each f ,46 then
the limit of the algorithm that iteratively applies T starting with Xf = G�∀f ∈ F̃ , produces a
firm-optimal stable matching, and the limit of the algorithm that iteratively applies T starting
with Xf = 0�∀f ∈ F̃ , produces a worker-optimal stable matching, where T(X) := ∨

T(X)
and T(X) := ∧

T(X) for any X ∈X n+1.

41Both firm-optimal and worker-optimal stable matchings are defined in Theorem 4(i).
42Authors use different terminologies for the same property: Topkis (1998) called it subcomplete sublattice

and Zhou (1994) called it closed sublattice.
43This condition is weaker than Zhou (1994)’s which requires strong-set monotonicity in place of (i). Our

substitutability guarantees side-optimality but not a complete lattice, which Zhou’s condition guarantees. See
Example S1 in Section S.5 of the Supplemental Material for the case in which our substitutability condition
holds while the strong-set monotonicity fails, causing the lattice structure to fail.

44To see this, note Z = {( 1
2 �0)� (0� 1

2 )} ⊂ Rf1(
1
2 �

1
2 ), but

∨
Z = ( 1

2 �
1
2 ) /∈ Rf1(

1
2 �

1
2 ), so Rf1 is not a sublattice

(let alone a complete one).
45Theorem 4 does not require closed-valuedness of the choice correspondences, which Theorem 3 requires.

It is often the case, however, that Part (ii) of the substitutability (i.e., the complete sublattice property) implies
closed-valuedness. For instance, the relation holds if there are finitely many worker types so X is a subset of a
finite-dimensional Euclidean space.

46A correspondence C is order-continuous if C(Xk)
w∗−→ C(X) for any increasing sequence Xk

w∗−→ X , and

C(Xk)
w∗−→ C(X) for any decreasing sequence Xk

w∗−→ X , where C(X) = ∨
C(X) and C(X) = ∧

C(X) for
any X ∈ X .
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PROOF: See Appendix B. Q.E.D.

While the existence of firm-optimal and worker-optimal stable matchings is well known
for the strict preference domain, no such result is previously known for the weak pref-
erence domain. In fact, the received wisdom is that firms’ indifferences are incompatible
with the presence of side-optimal stable matchings even in a more restrictive domain such
as responsive preferences. Theorems 3 and 4, taken together with Example 6, clarify the
types of indifferences that permit the existence of side-optimal stable matchings and those
that do not. In particular, responsive preferences with indifferences (studied by Abdulka-
diroğlu, Pathak, and Roth (2009) and Erdil and Ergin (2008), for instance) satisfy weak
substitutability but fail substitutability and, consistent with Theorems 3 and 4, guarantee
the existence of a stable matching but not a side-optimal one.

The second part of Theorem 4 shows that a generalized version of Gale–Shapley’s de-
ferred acceptance algorithm finds a side-optimal stable matching but only with the addi-
tional (order-) continuity assumption.47 Without this continuity property, the algorithm
may get “stuck” at an unstable matching (Example S2 in Section S.5 of the Supplemental
Material illustrates this point).

Next, we adapt another well-known condition to our context:

DEFINITION 5: Firm f ’s preference exhibits the law of aggregate demand (or LoAD) if,
for any X�X ′ ∈X with X �X ′, supCf(X)(Θ)≤ infCf(X

′)(Θ).48

Given LoAD and substitutability, we show that the total measure of workers employed
by each firm in any stable matching is uniquely pinned down:

THEOREM 5—Rural Hospital: If each firm’s preference is substitutable and satisfies
LoAD, then, for any M ∈M∗, we have Mf(Θ) =Mf(Θ)�∀f ∈ F and M∅ =M∅.

PROOF: See Appendix B. Q.E.D.

REMARK 3—Finite Economy: While the results are established for our continuum
economy model, they apply to finite economy models with little modification. For in-
stance, the order-continuity required for Theorem 4(ii) would be satisfied vacuously in
the finite economy. To the extent that these results were obtained in the extant litera-
ture for strict preferences, the current results would amount to their extensions to more
general preferences in the finite economy context.

6.2. Uniqueness of Stable Matching

Azevedo and Leshno (2016) established the uniqueness of a stable matching in a con-
tinuum economy when firms have responsive preferences. We now investigate the extent
to which the uniqueness result extends to the general substitutable preferences environ-
ment. The uniqueness question is important not only for the continuum economy but also

47This result is reminiscent of the well-known property of a supermodular game whereby, given the order-
continuity property, iterative deletion of strictly dominated strategies starting from the “largest” and “smallest”
strategies produces the largest and smallest Nash equilibria, respectively. See Milgrom and Roberts (1990) and
Milgrom and Shannon (1994).

48This property is an adaptation of a property that appears in the literature, including Hatfield and Milgrom
(2005), Alkan (2002), and Fleiner (2003).
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for the large finite one, as will be shown in the next section. Expanding the domain beyond
responsive preferences helps to identify the underlying condition that drives uniqueness.

In this section, we assume that each firm’s choice is not only substitutable but also
unique, that is, each Cf is a choice function. The substitutability condition guarantees
existence of the worker-optimal stable matching M . For any matching M , firm f , and
subset F ′ of firms, we let Mf

F ′ be a subpopulation of workers defined by

M
f

F ′(E) :=
∑
P∈P

∑
f ′:f�Pf

′�f ′ /∈F ′
Mf ′(ΘP ∩E) for each E ∈ Σ�

In words, this is the measure of workers who are matched outside firms F ′ and available
to firm f under M (excluding those matched with f ).49 Consider the following property:

DEFINITION 6—Rich Preferences: The preferences are rich if, for any individually
rational matching M̂ �= M such that M̂ �F M , there exists f ∗ ∈ F such that Mf ∗ �=
Cf ∗((Mf ∗ + M̂

f ∗
F̄
)∧G), where F̄ := {f ∈ F |M̂f �f Mf }.

The condition is explained as follows. Consider any individually rational matching M̂
that is preferred to the worker-optimal stable matching M by all firms and strictly so by
firms in F̄ ⊂ F . Then, the richness condition requires that at matching M , there must exist
a firm f ∗ that would be happy to match with some workers who are not hired by the firms
in F̄ and are willing to match with f ∗ under M̂ . Since firms are more selective at M̂ than
at M , it is intuitive that in the latter matching, a firm would demand some workers whom
the more selective firms would not demand in the former matching. The presence of such
worker types requires richness in the preference palettes of firms and workers—hence
the name. This point will be seen more clearly in the next section when one considers
(a general class of) responsive preferences.

THEOREM 6: Suppose that each firm’s preference is substitutable and satisfies LoAD. If
the preferences are rich, then a unique stable matching exists.

PROOF: See Appendix B. Q.E.D.

Both richness and substitutability are necessary for the uniqueness result, as one can
construct counterexamples without much difficulty. LoAD is also indispensable for the
uniqueness, as demonstrated by Example S3 in the Supplemental Material. (Recall that
the LoAD is trivially satisfied by the responsive preferences of Azevedo and Leshno
(2016).)

While rich preferences may not be easy to check, one can show that the condition is
implied by a full-support condition in a general class of environments that nests Azevedo
and Leshno (2016) as a special case, as demonstrated below.

Responsive Preferences With Submodular Quotas

Suppose that firms have responsive preferences but may face quotas on the number
of workers they can hire from different groups of workers. Such group-specific quotas,

49Note that this is a valid subpopulation, or a measure, since it is the sum of a finite number of measures.
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which are typically based on socio-economic status or other characteristics, may arise
from affirmative action or diversity considerations. The resulting preferences (or choice
functions) may violate responsiveness but nonetheless satisfy substitutability.

Assume that there is a finite set T of “ethnic types” that describe worker characteristics
such as ethnicity, gender, and socio-economic status, such that type θ is assigned an ethnic
type τ(θ) via some measurable function τ : Θ → T . For each t ∈ T , a (measurable) set
Θt := {θ ∈ Θ|τ(θ)= t} of agents has an ethnic type t. Each firm f faces a quota constraint
given by function Qf : 2T → R+ such that, for each T ′ ⊂ T , Qf (T ′) is a maximum quota
(in terms of the measure of workers) the firm f can hire from the ethnic types in T ′. We
assume that Qf (∅) = 0, Qf (T ) > 0, and Qf is submodular: for any T ′�T ′′ ⊂ T ,

Qf

(
T ′) +Qf

(
T ′′) ≥Qf

(
T ′ ∪ T ′′) +Qf

(
T ′ ∩ T ′′)�

Submodularity allows for the most general form of group-specific quotas that encom-
passes all existing models: for instance, it holds if the firm faces arbitrary quotas on a
hierarchical family of subsets of T .50 This case includes a familiar case studied by many
authors (Abdulkadiroğlu and Sönmez (2003), for instance) in which the family forms a
partition of T . Subject to the quotas, each firm has responsive preferences given by a (mea-
surable) score function sf : Θ → [0�1] such that f prefers type-θ to type-θ′ workers if
and only if sf (θ) > sf (θ

′). For simplicity, we assume that no positive mass of types has an
identical score.51

Clearly, this class of preferences subsumes pure responsive preferences considered by
Azevedo and Leshno (2016) as a special case, but includes preferences that fail their
condition. We can show that these preferences satisfy both substitutability and LoAD:

LEMMA 1: A firm f with responsive preferences facing submodular quotas exhibits a choice
function that satisfies substitutability and LoAD.52

PROOF: See Section S.6.2 of the Supplemental Material. Q.E.D.

Specifically, Section S.6 of the Supplemental Material provides an algorithm that finds
the choice function for a firm with this type of preference and shows that the choice
function satisfies substitutability and LoAD. Given the prevalence of group-specific con-
straints, this lemma, which is highly nontrivial, may be of interest in its own right. For
instance, since the choice of each firm is a function, substitutability implies that the set
of stable matchings has a lattice structure, a conclusion that does not hold under general
choice correspondence, even with substitutability.

Next, we generalize the full-support condition of Azevedo and Leshno (2016) to the
current setup:

DEFINITION 7: The worker population has a full support if, for each preference P ∈P ,
any ethnic type t ∈ T , and for any nonempty open cube set S ⊂ [0�1]n, the worker types

Θt
P(S) := {

θ ∈ΘP ∩Θt|(sf (θ))f∈F ∈ S
}

have a positive measure, that is, G(Θt
P(S)) > 0.

50A family of sets is hierarchical if, for any sets T ′�T ′′, either T ′ ∩ T ′′ = ∅, T ′ ⊂ T ′′, or T ′′ ⊂ T ′. See Che,
Kim, and Mierendorff (2013) for the proof of this result.

51This assumption is maintained by Azevedo and Leshno (2016), for instance.
52Section S.6.4 of the Supplemental Material presents an example in which the substitutability fails due to

the quota constraints, which are not submodular.
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Note that this condition boils down to that of Azevedo and Leshno (2016) if T is a
singleton set.

PROPOSITION 2: Suppose that each firm f ∈ F has responsive preferences and faces sub-
modular quotas. Then, the full-support condition implies the richness condition.

PROOF: See Section S.6.3 of the Supplemental Material. Q.E.D.

Combining Lemma 1, Proposition 2, and Theorem 6, we conclude as follows:

COROLLARY 1: Suppose that each firm f ∈ F has responsive preferences and faces sub-
modular quotas. If the full-support condition holds, then a unique stable matching exists.

Since the model of Azevedo and Leshno (2016) constitutes a special case of submodular
quotas, their uniqueness result in Theorem 1-1 is implied by this corollary.

7. APPROXIMATE STABILITY IN FINITE ECONOMIES

In Section 2, we observed that a finite economy, however large, may not possess a stable
matching, while a large finite economy admits a matching that is stable in an approximate
sense. Motivated by this observation and building on our findings in the continuum econ-
omy, we formalize here the notion of approximate stability and demonstrate that the set of
approximately stable matchings in large finite economies inherits the desirable properties
of stable matching in a “nearby” continuum economy. Specifically, the set is nonempty,
contains (approximately) firm-optimal and worker-optimal matchings, and consists of vir-
tually unique matching whenever the corresponding property is true for the continuum
economy. These results suggest that a continuum economy provides a good framework
for analyzing large finite economies, which is useful since a continuum economy often
permits a more tractable analysis, as demonstrated by Azevedo and Leshno (2016).

To analyze economies of finite sizes, we consider a sequence of economies (	q)q∈N in-
dexed by the total number of workers q ∈ N. In each economy 	q, there is a fixed set of n
firms, f1� � � � � fn, that does not vary with q. As before, each worker has a type in Θ. The
worker distribution is normalized with the economy’s size. Formally, let the (normalized)
population Gq of workers in 	q be defined so that Gq(E) represents the number of work-
ers with types in E divided by q. A (discrete) measure Xq is feasible in economy 	q if
Xq �Gq, and it is a measure whose value for any E is a multiple of 1/q. Let X q denote
the set of all feasible subpopulations in 	q. Note that Gq, and thus every Xq ∈X q, belongs
to X , although it need not be a subpopulation of G and therefore may not belong to X .
Let us say that a sequence of economies (	q)q∈N converges to a continuum economy 	 if

Gq w∗−→ G.
To formalize approximate stability, we first represent each firm f ’s preference by a

cardinal utility function uf : X → R defined over normalized distributions of workers it
matches with. This utility function represents a firm’s preference for each finite econ-
omy 	q as well as for the continuum economy 	.53 We assume that uf is continuous in

53The assumption that the same utility function applies to both finite and limit economies is made for con-
venience. The results in this section hold if, for instance, the utilities in finite economies converge uniformly to
the utility in the continuum economy.
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weak-∗ topology.54 Then, firm f chooses a feasible subpopulation that maximizes uf in
the respective economies. Specifically, in the continuum economy 	, the firm’s choice
correspondence is given by

Cf(X)= arg max
X ′�X

uf

(
X ′)� ∀X ∈X � (9)

In each finite economy 	q, it is given by

C
q
f (X) := arg max

X ′�X�X ′∈Xq

uf

(
X ′)� ∀X ∈X q� (10)

All our results in this section rely on the existence of a stable matching in the continuum
economy, which holds if each uf is such that Cf defined in (9) satisfies the conditions in
Theorem 2 or in Theorem 3. For instance, the conditions in Theorem 2 are satisfied if
each uf is quasi-concave in addition to being continuous, since Cf is then convex-valued
and upper hemicontinuous.55

A matching in finite economy 	q is Mq = (M
q
f )f∈F̃ such that M

q
f ∈ X q for all f ∈ F̃

and
∑

f∈F̃ M
q
f = Gq. The measure of available workers for each firm f at matching Mq ∈

(X q)n+1 is D�f (Mq), where D�f (·) is defined as in (4).56 Note that because each M
q
f is a

multiple of 1/q, D�f (Mq) is feasible in 	q. We now define ε-stability in the finite economy
	q.

DEFINITION 8: For any ε > 0, a matching Mq ∈ (X q)n+1 is ε-stable in economy 	q if
(i) for each f ∈ F , Mq

f ∈ C
q
f (M

q
f ); (ii) for each P ∈ P , Mq

f (ΘP) = 0�∀f ≺P ∅; and (iii)
uf (M̃

q) < uf (M
q
f )+ ε for any f ∈ F and M̃q ∈X q with M̃q �D�f (Mq).57

Conditions (i) and (ii) of this definition are analogous to the corresponding conditions
for exact stability, so ε-stability relaxes stability only with respect to Condition (iii). Specif-
ically, an ε-stable matching could be blocked, but if so, the gain from blocking must be
small for any firm.58 An ε-stable matching will be robust against blocks if a rematching

54To guarantee the existence of such a utility function, we may assume, as in Remark 24, that each firm
is endowed with a complete, continuous preference relation. Then, because the set of alternatives X is a
compact metric space, this preference can be represented by a continuous utility function according to the
Debreu representation theorem (Debreu (1954)).

55The upper hemicontinuity is an implication of Berge’s maximum theorem.
56To be precise, D�f (Mq) is given as in (4) with G and M being replaced by Gq and Mq , respectively.
57Approximate stability might be defined slightly differently. Say a matching Mq is ε-distance stable if (i)

and (ii) of Definition 8 hold and (iii’) d(M̃
q
f �M

q
f ) < ε for any coalition f and M̃

q
f ∈ X q that blocks Mq in

the sense that M̃
q
f � D�f (Mq) and uf (M̃

q
f ) > uf (M

q
f ), where d(·� ·) is the Lévy–Prokhorov metric (which

metrizes the weak-∗ topology). In other words, if a matching Mq is ε-distance stable, then the distance of any
alternative matching a firm proposes for blocking must be within ε from the original matching. One advantage
of this concept is that it is ordinal, that is, we need not endow the firms with cardinal utility functions to
formalize the notion. Note that the notion also requires the ε bound for any blocking coalition, not just the
“optimal” blocking coalition as defined in Definition 1-1, making the notion of ε-distance stability more robust.
In Section S.7.2 of the Supplemental Material, we prove the existence of ε-distance stable matching (under an
additional mild assumption).

58Note that the Conditions (i) and (iii) are asymmetric in the sense that the matching should be precisely
optimal against the blocking by an individual firm alone and only approximately optimal against the blocking
by a coalition. We adopt this asymmetry because blocking with workers outside the firm is presumably more
difficult for a firm to implement than retaining or firing its own workers.
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process requires cost (at least of ε) for the firm to initiate a block, which seems sensible
when there are some frictions in the market.

Our main result of this section follows:

THEOREM 7: Suppose a sequence of economies (	q)q∈N converges to a continuum econ-
omy 	 which admits a stable matching M . Then, for any ε > 0, there exists Q ∈ N such that,
for all q >Q, there is an ε-stable matching Mq in 	q.59

PROOF: See Appendix C. Q.E.D.

This result implies that a large finite market admits an approximately stable match-
ing even with non-substitutable preferences. Interestingly, a converse of Theorem 7 also
holds:

THEOREM 8: Suppose a sequence of matchings (Mq)q∈N converges to M and has the prop-
erty that, for every ε > 0, there exists Q ∈ N such that, for all q >Q, Mq is ε-stable in 	q. Then,
M is stable in 	.60

PROOF: See Appendix C. Q.E.D.

This result implies that the behavior of large finite economies is well approximated by
the continuum economy in the sense that by studying the latter, we will not “miss” any
approximately stable matching in the former.

EXAMPLE 7: Recall the finite economy in Section 2, where there are q workers of each
type.61 Recall its limit economy admits a unique stable matching ( 1

4 �
1
4 �

1
4 �

1
4). If the index

q is odd, then a stable matching does not exist. As we have already seen, the matching Mq

defined in (1) is ε-stable in 	q for sufficiently large q and converges to the (unique) stable
matching in 	.62 Also, as Theorem 8 indicates, any ε-stable matching in 	q for sufficiently
large q must be close to the stable matching M in 	 defined in (2). For instance, any
matching that is bounded away from M will be subject to a block that increases either
firm’s utility by more than a small ε.

The approximately stable matching established in Theorem 7 can be shown to possess
other properties inherited from the structure of stable matchings in the continuum econ-
omy. To this end, we relax the notion of side-optimality.

59We note that Mq need not converge to M . In fact, there can be a stable matching in 	 that does not have
any nearby approximate stable matching in large finite economy 	q (refer to Section S.7.3 of the Supplemental
Material for an example), meaning that the (approximately) stable matching correspondence is not “lower
hemicontinuous.” This is the case because the exact individual rationality, that is, Condition (i) of Definition
8, can make a firm’s choice in the finite economy never close to a certain stable matching in the continuum
economy. If this condition is relaxed analogously to Condition (iii), then any stable matching in the continuum
economy can be approximated by ε-stable matchings in large finite economies.

60This result is reminiscent of the upper hemicontinuity of Nash equilibrium correspondence (see, for in-
stance, Fudenberg and Tirole (1991)). However, Theorem 8 establishes a more robust result in the sense that
the convergence occurs even for “approximately” stable matchings in nearby economies.

61With a slight abuse of notation, this example assumes that there are a total of 2q workers (q workers of θ
and θ′ each) rather than q. Of course, this assumption is made for purely expositional purposes.

62This matching is also ε-distance stable since the only profitable block involves f2 taking a single worker of
type θ′ away from firm f1.
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DEFINITION 9:For ε > 0, a matching Mq is an ε-firm-optimal stable matching in 	q if
there is δ ∈ (0� ε) such that

1. Mq is δ-stable in 	q, and
2. for any matching M̂q that is δ-stable in 	q, uf (M

q
f )≥ uf (M̂

q
f )− ε�∀f ∈ F .

DEFINITION 10:For ε > 0, a matching Mq is an ε-worker-optimal stable matching in 	q

if there is δ ∈ (0� ε) such that
1. Mq is δ-stable in 	q, and
2. for any matching M̂q that is δ-stable in 	q,

D�f
(
Mq

)(
Eε

) ≥D�f
(
M̂q

)
(E)− ε� ∀f ∈ F�∀E ∈ Σ�

where Eε := {θ ∈Θ|∃θ′ ∈ E such that dΘ(θ�θ′) < ε} is the ε-neighborhood of E.

The ε-firm-optimality requires that the matching itself be approximately stable and that
there be no other approximately stable matchings that make any firm better off by more
than ε. The ε-worker-optimality can be seen as a natural extension of worker optimality,
that is, Mq �Θ M̂q, for the concept collapses to the latter if ε = 0. We now prove the
existence of approximately side-optimal matchings in large finite economies.63

THEOREM 9:Suppose that a sequence of finite economies (	q)q∈N converges to a continuum
economy 	. Fix any ε > 0.

(i) If there is a firm-optimal stable matching in 	, then there is Q ∈ N such that, for all
q >Q, an ε-firm-optimal stable matching in 	q exists.

(ii) If there is a worker-optimal stable matching M in 	 and Cf(Mf)= {Mf }�∀f ∈ F (i.e.,
for each firm f , Mf is its unique choice at M), then there is Q ∈ N such that, for all q > Q,
an ε-worker-optimal stable matching in 	q exists.64

PROOF: See Appendix C. Q.E.D.

Finally, we show that if there is a unique stable matching in the limit economy 	, then
the approximately stable matching is virtually unique in any sufficiently large finite econ-
omy.

THEOREM 10: Suppose that a sequence of finite economies (	q)q∈N converges to a con-
tinuum economy 	 which has a unique stable matching M . Then, the approximately stable
matching of a large finite economy is “virtually unique” in the following sense: for any ε > 0,

63This result will be particularly useful when preferences are substitutable in a continuum economy but not
in finite economies that converge to that economy. Delacrétaz, Kominers, and Teytelboym (2016) offered one
such example in their study of refugee resettlement. Translated into our setup, there are three worker types, θ,
θ′, and θ′′, and a firm f with capacity κ (or κ units of seats), which has a responsive preference with θ � θ′ � θ′′.
Each worker of types θ and θ′′ occupies one seat, while a type-θ′ worker occupies two seats. As Delacrétaz,
Kominers, and Teytelboym (2016) showed, firm f ’s preference is not substitutable in finite economies, which is
largely a result of the integer problem that disappears in a continuum economy. To see it, suppose that a contin-
uum of workers X = (x�x′�x′′) is available. Then, firm f ’s choice function is given by Cf (X)(θ) = min{x�κ},
Cf (X)(θ′) = min{x′� κ−Cf (X)(θ)

2 }, and Cf (X)(θ′′) = min{x′′�κ−Cf (X)(θ)− 2Cf (X)(θ′)}. It is straightforward
to check that this choice function represents a substitutable preference.

64Section S.7.3 of the Supplemental Material presents an example in which the result does not hold without
the extra assumption, Cf (Mf )= {Mf }�∀f ∈ F̃ .
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there are Q ∈ N and δ ∈ (0� ε) such that, for every q >Q and for every δ-stable matching M̂q

in 	q, we have d(M�M̂q) < ε.65

PROOF: See Appendix C. Q.E.D.

This result, together with Theorem 6, leads to the following generalization of the con-
vergence result (Theorem 2) in Azevedo and Leshno (2016).

COROLLARY 2: Suppose that in the continuum economy 	, firm preferences are substi-
tutable and satisfy LoAD, and that the preferences are rich. Then, the approximately stable
matching of any large finite economy 	q that converges to 	 is virtually unique.

8. STRONG STABILITY AND STRATEGY-PROOFNESS

Stability promotes fairness by eliminating justified envy for workers. However, stability
alone may not guarantee fair treatment of workers if a firm is indifferent over worker
types that are unobservable or regarded as indistinguishable by the firm. The following
example illustrates this point.

EXAMPLE 8: There are two firms f1 and f2, and a unit mass of workers of the following
types:

θ : f1 � f2 � ∅;
θ′ : f2 � f1 � ∅;
θ′′ : f2 � ∅ � f1�

The type distribution is given by G(θ) = 1/2 and G(θ′) = 1/4 = G(θ′′). (Note that this
example is the same as our leading example except that a mass of 1/4 of type-θ′ workers
now have a new preference θ′′.)

Both firms are indifferent between type-θ′ and type-θ′′ workers; they differ only in their
own preferences for firms. Firm f1 wishes to maximize min{x�x′ +x′′}, where x, x′, and x′′

are the measures of workers with types θ, θ′, and θ′′, respectively. Firm f2 has a responsive
preference with a capacity of 1/2 and prefers type θ to type θ′ or θ′′.

Consider first a mechanism that maps G to matching

M =
(

f1 f2
1
4
θ+ 1

4
θ′ 1

4
θ+ 1

4
θ′′

)
�

This matching is stable, which can be seen by the fact that the firms are matched with
the same measures of productivity types as in the stable matching in Example 3. Observe,
however, that this matching treats the type-θ′ and type-θ′′ workers differently—the former
workers match with f1 and the latter workers match with f2 (which they both prefer)—
despite the fact that the firms perceive them as equivalent. This lack of “fairness” leads
to an incentive problem: type-θ′ workers have an incentive to (mis)report their type as θ′′

and thereby match with f2 instead of f1.

65This finding implies that all stable matchings in any sufficiently large finite economy are also close to one
another.
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These problems can be addressed by another mechanism that maps G to a matching

M̄ =
(

f1 f2
1
6
θ+ 1

6
θ′ 1

3
θ+ 1

12
θ′ + 1

12
θ′′

)
�

Like M , this matching is stable, but in addition, firm f2 treats type-θ′ and type-θ′′ workers
identically in this matching. Further, neither type-θ′ nor type-θ′′ workers have incentives
to misreport.

The fairness issue illustrated in this example is particularly relevant for school choice
because schools evaluate students based on coarse priorities. Fairness demands that stu-
dents who enjoy the same priorities be treated equally without any discrimination. This
requirement calls for what Kesten and Ünver (2014) labeled strong stability, a condition
satisfied by the second matching in the above example. As illustrated, strong stability is
closely related to strategy-proofness for workers in a large economy. We thus address both
issues here.

8.1. Strong Stability and Strategy-Proofness in a Large Economy

We begin by adapting our model to address the issues at hand. First, we denote each
worker’s type as a pair θ = (a�P), where a denotes the worker’s productivity or skill and
P describes her preferences over firms and the outside option, as above. We assume that
worker preferences do not affect firm preferences and are private information, whereas
productivity types may affect firm preferences and are observable to the firms (and to
the mechanism designer). Let A and P be the sets of productivity and preference types,
respectively, and Θ = A × P . We assume that A is a finite set, which implies that Θ is
a finite set, so the population G of worker types is a discrete measure.66 We continue to
assume that there is a continuum of workers.

The firms’ preferences are also adapted for our environment. For each firm f ∈ F ,
worker types Θ are partitioned into Pf := {Θ1

f � � � � �Θ
Kf

f } such that f is indifferent across
all types within each indifference class Θk

f ⊂ Θ, for k ∈ If := {1� � � � �Kf }. Since a firm dif-
ferentiates workers based only on their productivity types, we require that if (a�P) ∈ Θk

f

for some P ∈ Pf , then (a�P ′) ∈ Θk
f for all P ′ ∈ Pf . At the same time, a firm can be indif-

ferent across multiple productivity types in ways that are arbitrary and may differ across
firms. We assume that each firm has a unique optimal choice in terms of the measure of
workers in each indifference class, and let Λk

f : X → R+ denote firm f ’s unique choice
of the total measure of workers in each indifference class Θk

f , k ∈ If ,67 which induces a

66The finiteness of A is necessitated by our use of weak-∗ topology and the construction of strong stability
and strategy-proof mechanisms below. To illustrate the difficulty caused by infinite A, suppose that A is a unit
interval and G has a well-defined density. Our construction below would require that the density associated
with firms’ choice mappings satisfy a certain population proportionality property. Convergence in our weak-
∗ topology does not preserve this restriction on density. Consequently, the operator T may violate upper
hemicontinuity, which may result in the failure of the nonempty-valuedness of our solution. It may be possible
to address this issue by strengthening the topology, but whether the resulting space satisfies the conditions that
would guarantee the existence of a stable matching remains an open question.

67Specifically, we assume that for each X � G, Λk
f (X) ∈ [0�∑θ∈Θk

f
X(θ)] and Λk

f (X
′) = Λk

f (X) when-

ever
∑

θ∈Θk′
f
X ′(θ) = ∑

θ∈Θk′
f
X(θ) for all k′ ∈ If . We also assume that Λk

f (X
′) = Λk

f (X) whenever Λk′
f (X) ≤∑

θ∈Θk′
f
X ′(θ) ≤ ∑

θ∈Θk′
f
X(θ) for all k′ ∈ If , which captures the revealed preference property.
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choice correspondence

Cf(X)=
{
Y �X

∣∣∣∣ ∑
θ∈Θk

f

Y(θ) =Λk
f (X)�∀k ∈ If

}
(11)

for each X ∈ X . Continuity and substitutability of preferences can be defined in terms
of Λk

f . If Λk
f (·) is continuous for each k ∈ If (in the Euclidean topology), then the in-

duced correspondence Cf is upper hemicontinuous and convex-valued. In that case, we
simply say that a firm f ’s preference is continuous. Another case of interest is when∑

θ∈Θk
f
X(θ) − Λk

f (X) is nondecreasing in (X(θ))θ∈Θ for each k ∈ If . In this case, the in-
duced correspondence Cf is weakly substitutable, and we simply call a firm f ’s preference
weakly substitutable.

As before, a matching is described by a profile M = (Mf)f∈F̃ of subpopulations of work-
ers matched with alternative firms or the null firm. We assume that all workers of the
same (reported) type are treated identically ex ante. Hence, given matching M , a worker
of type (a�P) in the support of G is matched to f ∈ F̃ with probability Mf (a�P)

G(a�P)
. Note that∑

f∈F̃
Mf (a�P)

G(a�P)
= 1 holds by construction, giving rise to a valid probability distribution over

F̃ . A mechanism is a function ϕ that maps any G ∈X to a matching.
We now introduce a strong notion of stability proposed by Kesten and Ünver (2014):

DEFINITION 11: A matching M is strongly stable if (i) it is stable and (ii) for any f ∈ F ,
k ∈ If , and θ�θ′ ∈ Θk

f , if Mf (θ)

G(θ)
<

Mf (θ
′)

G(θ′) , then
∑

f ′∈F̃ :f ′≺θf
Mf ′(θ) = 0.

In words, strong stability requires that if a worker of type θ is assigned a firm f with
strictly lower probability than another type θ′ in the same indifference class for firm f ,
then the type-θ worker should never be assigned any firm f ′ that the worker ranks be-
low f . In that sense, discrimination among workers in the same priority class should not
occur.

Strategy-proofness can be defined via a stochastic dominance order, as proposed by
Bogomolnaia and Moulin (2001).

DEFINITION 12: A mechanism ϕ is strategy-proof for workers if, for each (reported)
population G ∈X , productivity type a ∈ A, and preference types P and P ′ in P such that
both (a�P) and (a�P ′) are in the support of G, and f ∈ F̃ , we have

∑
f ′ :f ′�Pf

ϕf ′(G)(a�P)

G(a�P)
≥

∑
f ′ :f ′�Pf

ϕf ′(G)
(
a�P ′)

G
(
a�P ′) � (12)

In words, strategy-proofness means that truthful reporting induces a random assign-
ment for each worker that first-order stochastically dominates any random assignment
that would result from untruthful reporting. Note that a worker can misreport only her
preference type and not her productivity type (recall that a worker’s productivity type
determines firms’ preferences regarding her).68

68Note also that unlike in finite population models, the worker cannot alter the population G by unilaterally
misreporting her preferences because there is a continuum of workers. Further, we impose restriction (12)



STABLE MATCHING IN LARGE ECONOMIES 93

We are now ready to state our main result. Our approach is to establish the exis-
tence of a stable matching that satisfies an additional property. Say that a matching M
is population-proportional if, for each f ∈ F and k ∈ If , there is some αk

f ∈ [0�1] such
that

Mf(θ) = min
{
D�f (M)(θ)�αk

fG(θ)
}
� ∀θ ∈ Θk

f � (13)

In other words, the measure of workers hired by firm f from the indifference class Θk
f

is given by the same proportion αk
f of G(θ) for all θ ∈ Θk

f , unless the measure of worker
types θ available to f is less than the proportion αk

f of G(θ), in which case the entire
available measure of that type is assigned to that firm. In short, a population-proportional
matching seeks to match a firm with workers of different types in proportion to their
population sizes at G whenever possible, if they belong to the same indifference class of
the firm. The stability and population proportionality of a mechanism translate into the
desired fairness and incentive properties, as shown by the following result.

LEMMA 2: (i) If a matching is stable and population-proportional, then it is strongly stable.
(ii) If a mechanism ϕ implements a strongly stable matching for every measure in X , then

the mechanism is strategy-proof for workers.

PROOF: See Section S.8 of the Supplemental Material. Q.E.D.

We now present the main result of this section.

THEOREM 11: If each firm’s preference is continuous or if each firm’s preference is weakly
substitutable, then there exists a matching that is stable and population-proportional. There-
fore, given that the domain satisfies either property, there exists a mechanism that implements
a strongly stable matching and is strategy-proof.

PROOF: See Section S.8 of the Supplemental Material. Q.E.D.

Recall that the workers of the same reported type receive the same ex ante assignment.
By Lemma 2, strong stability and strategy-proofness will be achieved if each firm’s choice
were to respect population proportionality. A key step of proof is therefore to select an
optimal choice C̃f ∈ Cf that induces population proportionality for each f . The selection
C̃f is then shown to satisfy the conditions of Theorems 2 and 3, given the continuity or
weak substitutability conditions. Thus, a stable matching exists in the hypothetical con-
tinuum economy in which firms have preferences represented by the choice functions C̃f .
The final step is to show that the stable matching of the hypothetical economy is stable in
the original economy and satisfies population proportionality.

This result establishes the existence of a matching mechanism that satisfies strong sta-
bility and strategy-proofness for workers in a large economy environment.69 In contrast to

only for types (a�P) and (a�P ′) that are in the support of G. For the true worker type (a�P), this is the
same assumption as in the standard strategy-proofness concept for finite markets. We do not impose any
condition for misreporting a measure-zero type because if ϕ is individually rational (which is the case for stable
mechanisms), then the incentives for misreporting as a measure-zero type can be eliminated by specifying the
mechanism to assign a worker reporting such a type to the null firm with probability 1.

69Even with a continuum of workers, no stable mechanism is strategy-proof for firms. See an example in
Section S.8.2 of the Supplemental Material.
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the existing literature, our result holds under general firm preferences that may involve
indifferences and/or complementarities.

8.2. Applications to Time Share/Probabilistic Matching Models

Our model introduced in Section 8.1 has a connection with time share and probabilistic
matching models. In these models, a finite set of workers contracts with a finite set of
firms for time shares or for probabilities with which they match. Probabilistic matching is
often used in allocation problems without money, such as school choice, while time share
models have been proposed as a solution to labor matching markets in which part-time
jobs are available (see Biró, Fleiner, and Irving (2013), for instance).

Our model in Section 8.1 can be reinterpreted as a time share model. Let Θ be the
finite set of workers whose shares firms may contract for, as opposed to the finite types of a
continuum of workers. The measure G(θ) represents the total endowment of time or the
probability that a worker θ has available for matching. A matching M describes the time
or probability Mf(θ) that a worker θ and a firm f are matched.

The partition Pf then describes firm f ’s set of indifference classes, where each class de-
scribes the set of workers that the firm considers equivalent. The function Λf = (Λk

f )k∈If
describes the time shares that firm f wishes to choose from available time shares in al-
ternative indifference classes. On the worker side, for each worker θ ∈ ΘP , the first-order
stochastic dominance induced by P describes the worker’s preference in evaluating lotter-
ies. With this reinterpretation, Definition 11 provides an appropriate notion of a strongly
stable matching.70 The following result is immediate:

COROLLARY 3: The (reinterpreted) time share model admits a strongly stable—and thus
stable—matching if either each firm’s preference is continuous or it is weakly substitutable.71

This result generalizes the existence of a strongly stable matching in the school choice
problem studied by Kesten and Ünver (2014), where schools may regard multiple students
as having the same priority. They showed the existence of a strongly stable probabilistic
matching (which they called strong ex ante stability) under the assumption that schools
have responsive preferences with ties. Our contribution is to extend the existence to gen-
eral preferences that may violate responsiveness. Our result might be useful for school
choice environments in which schools may need a balanced student body in terms of gen-
der, ethnicity, income, or skill (recall footnote 3).

9. CONCLUSION

Complementarity, although prevalent in matching markets, has been known to be a
source of difficulties in designing desirable mechanisms. The present paper took a step

70The notion of strong stability in Definition 11 requires the proportion of time spent with a firm out of the
total endowment to be equalized among workers that the firm considers equivalent. This notion is sensible in
the context of a time share model, particularly when G(θ) is the same across all workers, as with school choice
(where each student has a unit demand). When G(θ) is different across θ’s, however, one could consider an
alternative notion, such as one that equalizes the absolute amount of time (not divided by G(θ)) that a worker
spends with a firm. Our analysis can be easily modified to prove the existence of matching that satisfies this
alternative notion of strong stability.

71Unlike the continuum model, population proportionality does not guarantee strategy-proofness. As shown
by Kesten and Ünver (2014), strategy-proofness is generally impossible to attain in time share/probabilistic
models with finite numbers of workers.
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toward addressing these difficulties by considering large economies. We find that com-
plementarity need not jeopardize stability in a large market. First, as long as preferences
are continuous or substitutable, a stable matching exists in a limit continuum economy.
Second, with such preferences, there exists an approximately stable matching in a large
finite economy. We used this framework to show that there is a stable mechanism that is
strategy-proof for workers and satisfies an additional fairness property, strong stability.

The scope of our analysis can be extended in two directions. First, we can introduce
“contracts,” namely, allowing each firm-worker pair to match under alternative contracts,
as done by Hatfield and Milgrom (2005) in the context of substitutable preferences. As
in our baseline model, we focus on the measures of workers matched with alternative
firms as basic units of analysis. However, unlike our main model, the measures of workers
matching with a firm under alternative contract terms should be distinguished and thus
described as a multidimensional vector. With this enrichment of the underlying space,
our method can be extended to yield existence in this setup.72 This result is provided in
Section S.9 of the Supplemental Material.

Second, while we have considered the model in which a finite number of “large” firms
match with a continuum of workers, we can extend our framework to study a model in
which a continuum of “small” firms match with a continuum of workers, as has been stud-
ied by AH. Take their main model and for simplicity consider the pure matching case (i.e.,
without contracts) in which each worker demands at most one position. Like AH, assume
that the set of firm types is finite. Then, one can interpret the entire mass of firms of each
given type as a single “large” firm and “build” an aggregate choice correspondence for that
fictitious large firm from optimal choices of infinitesimal firms (of the same type), say by
maximizing their aggregate welfare. The aggregate choice correspondence constructed in
this way is shown to satisfy the continuity condition required for the existence of a sta-
ble matching in Theorem 2. Therefore, our model can recover the existence result for a
certain special case of AH. The specific result is described in Section S.10 of the Supple-
mental Material.

To the best of our knowledge, this paper is the first to analyze matching in a continuum
economy with the level of generality presented here. As such, our paper may pose as many
questions as it answers. One issue worth pursuing is the computation of a stable matching.
The existence of a stable matching, as established in this paper, is clearly necessary to find
a desired mechanism, but practical implementation requires an algorithm. Although our
fixed-point mapping provides one such algorithm when the mapping is contractionary
or monotonic (i.e., preferences are substitutable), studying the computationally efficient
and generally applicable algorithms to find stable matchings would be an interesting and
challenging future research topic.

APPENDIX A: PROOFS OF THEOREM 1 AND THEOREM 2

PROOF OF THEOREM 1: (“Only if” Part): Suppose that M is a stable matching, and let
X = (Xf )f∈F̃ with Xf =D�f (M)�∀f ∈ F̃ . We prove that X is a fixed point of T . Let us first
show that for each f ∈ F̃ , Xf ∈ X . It is clear that as each Mf ′(ΘP ∩ ·) is nonnegative and

72Nevertheless, the generalization is more than mechanical. Since the measure of workers a firm matches
with under a contract term depends on the measure of workers the same firm matches with under a different
contract term, special care is needed to define the choice function and the measure of workers available to a
firm under a particular contract term.



96 Y.-K. CHE, J. KIM, AND F. KOJIMA

countably additive, so is Xf(·). It is also clear that since (Mf )f∈F̃ is a matching, Xf �G.
Thus, we have Xf ∈X .

We next claim that Mf ∈ Cf(Xf ) for all f ∈ F̃ . This is immediate for f = ∅ since M∅ �
X∅ = C∅(X∅). To prove the claim for f �= ∅, suppose for a contradiction that Mf /∈ Cf(Xf ),
which means that there is some M ′

f ∈ Cf(Xf ) such that M ′
f �= Mf . Note that Mf �Xf and

thus (M ′
f ∨ Mf) � Xf . Then, by revealed preference, we have Mf /∈ Cf(M

′
f ∨ Mf) and

M ′
f ∈ Cf(M

′
f ∨ Mf), or equivalently, M ′

f �f Mf , which means that M is unstable since
M ′

f �Xf =D�f (M), yielding the desired contradiction.
We next prove X ∈ T(X). The fact that Mf ∈ Cf(Xf )�∀f ∈ F̃ means that Xf − Mf ∈

Rf(Xf )�∀f ∈ F̃ . We set Yf =Xf −Mf for each f ∈ F̃ and obtain, for any E ∈ Σ,∑
P:P(1)=f

G(ΘP ∩E)+
∑

P:P(1) �=f

YfP− (ΘP ∩E)

=
∑

P:P(1)=f

G(ΘP ∩E)+
∑

P:P(1) �=f

(
XfP− (ΘP ∩E)−MfP− (ΘP ∩E)

)

=
∑

P:P(1)=f

G(ΘP ∩E)+
∑

P:P(1) �=f

( ∑
f ′∈F̃ :f ′�Pf

P−

Mf ′(ΘP ∩E)−MfP− (ΘP ∩E)

)

=
∑
P∈P

∑
f ′∈F̃ :f ′�Pf

Mf ′(ΘP ∩E) =Xf(E)�

where the second and fourth equalities follow from the definition of XfP− and Xf , respec-
tively, while the third follows from the fact that f P

− is an immediate predecessor of f and∑
f ′∈F̃ :f ′�PP(1)

Mf ′(ΘP ∩ E) = G(ΘP ∩ E). The above equation holds for every firm f ∈ F̃ ,
so we conclude that X ∈ T(X), that is, X is a fixed point of T .

(“If” Part): Let us first introduce some notation. Let f P
+ denote an immediate successor

of f ∈ F̃ at P ∈P : that is, f P
+ ≺P f , and for any f ′ ≺P f , f ′ �P f

P
+ . Note that for any f� f̃ ∈ F̃ ,

f = f̃ P
− if and only if f̃ = f P

+ .
Suppose now that X ∈X n+1 is a fixed point of T . For each firm f ∈ F̃ and E ∈ Σ, define

Mf(E)= Xf(E)−
∑

P:P(n+1) �=f

XfP+ (ΘP ∩E)� (14)

where P(n+ 1) is the least preferred firm according to P .
We first verify that for each f ∈ F̃ , Mf ∈ X . First, it is clear that for each f ∈ F̃ , Mf is

countably additive as both Xf(·) and XfP+ (ΘP ∩ ·) are countably additive. It is also clear
that for each f ∈ F̃ , Mf �Xf . To see that Mf(E)≥ 0�∀E ∈ Σ, observe from (14) that

Mf(E)=
∑
P:P∈P

Xf(ΘP ∩E)−
∑

P:P(n+1) �=f

XfP+ (ΘP ∩E)

≥
∑

P:P(n+1) �=f

(
Xf(ΘP ∩E)−XfP+ (ΘP ∩E)

) ≥ 0�

where the inequality holds since X ∈ T(X) means that there is some Yf ∈ Rf(Xf ) such
that XfP+ (ΘP ∩ ·)= Yf(ΘP ∩ ·) for each P ∈P , and thus XfP+ (ΘP ∩ ·)�Xf(ΘP ∩ ·).
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Let us next show that for all f ∈ F̃ , P ∈P , and E ∈ Σ,

Xf(ΘP ∩E)=
∑

f ′∈F̃ :f ′�Pf

Mf ′(ΘP ∩E)� (15)

which means that Xf = D�f (M). To do so, fix any P ∈ P and consider first a firm f =
P(n+1) (i.e., a firm ranked lowest at P). By (14), Mf(ΘP ∩E) =Xf(ΘP ∩E) and thus (15)
holds for such f . Consider next any f �= P(n+ 1), and assume for an inductive argument
that (15) holds true for f P

+ , so XfP+ (ΘP ∩E)= ∑
f ′∈F̃ :f ′�Pf

P+ Mf ′(ΘP ∩E). Then, by (14), we
have

Xf(ΘP ∩E)= Mf(ΘP ∩E)+XfP+ (ΘP ∩E)= Mf(ΘP ∩E)+
∑

f ′∈F̃ :f ′�Pf
P+

Mf ′(ΘP ∩E)

=
∑

f ′∈F̃ :f ′�Pf

Mf ′(ΘP ∩E)�

as desired.
To show that M = (Mf )f∈F̃ is a matching, let f = P(1) and note that by definition of T ,

if X̃ ∈ T(X), then X̃f (ΘP ∩ ·)=G(ΘP ∩ ·). Since X ∈ T(X), we have, for any E ∈ Σ,

G(ΘP ∩E)= Xf(ΘP ∩E) =
∑

f ′∈F̃ :f ′�Pf

Mf ′(ΘP ∩E) =
∑
f ′∈F̃

Mf ′(ΘP ∩E)�

where the second equality follows from (15). Since the above equation holds for every
P ∈P , M is a matching.

We now prove that (Mf )f∈F̃ is stable. As noted by footnote 28, the first part of Con-
dition 1 is implied by Condition 1, which we check below. To prove the second part of
Condition 1 of Definition 1, note first that C∅(X∅)= {X∅} and thus R∅ = 0. Fix any P ∈P
and assume ∅ �= P(n+ 1), since there is nothing to prove if ∅ = P(n+ 1). Consider a firm
f such that f P

− = ∅. Then, X being a fixed point of T means Xf(ΘP)=RfP− (ΘP)= 0, which
implies by (15) that 0 =Xf(ΘP)= ∑

f ′ :f ′�Pf
Mf ′(ΘP)= ∑

f ′ :f ′≺P∅ Mf ′(ΘP), as desired.
It only remains to check Condition 1 of Definition 1. Suppose for a contradiction that

it fails. Then, there exist f and M ′
f such that

M ′
f �D�f (M)� M ′

f ∈Cf

(
M ′

f ∨Mf

)
� and Mf /∈Cf

(
M ′

f ∨Mf

)
� (16)

So M ′
f �D�f (M)= Xf . Since then Mf � (M ′

f ∨Mf)�Xf and Mf ∈ Cf(Xf ), the revealed
preference property implies Mf ∈Cf(M

′
f ∨Mf), contradicting (16). We have thus proven

that M is stable. Q.E.D.

PROOF OF THEOREM 2: We establish the compactness of X and the upper hemicon-
tinuity of T in Lemma 3 and Lemma 4 below. To do so, recall that X is endowed with
weak-∗ topology. The notion of convergence in this topology, that is, weak convergence,
can be stated as follows: A sequence of measures (Xk)k∈N in X weakly converges to a

measure X ∈X , written as Xk
w∗−→X , if and only if

∫
Θ
hdXk → ∫

Θ
hdX for all h ∈C(Θ),

where C(Θ) is the space of all continuous functions defined on Θ. The next result pro-
vides some conditions that are equivalent to weak convergence.
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THEOREM 12:Let X and (Xk)k∈N be finite measures on Σ.73 The following conditions are
equivalent:74

(a) Xk
w∗−→ X;

(b)
∫
Θ
hdXk → ∫

Θ
hdX for all h ∈ Cu(Θ), where Cu(Θ) is the space of all uniformly

continuous functions defined on Θ;
(c) lim infk Xk(A) ≥X(A) for every open set A ⊂ Θ, and Xk(Θ)→ X(Θ);
(d) lim supk Xk(A) ≤X(A) for every closed set A⊂ Θ, and Xk(Θ) →X(Θ);
(e) Xk(A)→ X(A) for every set A ∈ Σ such that X(∂A)= 0 (∂A denotes the boundary

of A).

LEMMA 3: The space X is convex and compact. Also, for any X ∈X , XX is compact.

PROOF: Convexity of X follows trivially. To prove the compactness of X , let C(Θ)∗

denote the dual (Banach) space of C(Θ) and note that C(Θ)∗ is the space of all (signed)
measures on (Θ�Σ), given Θ is a compact metric space.75 Then, by Alaoglu’s theorem, the
closed unit ball of C(Θ)∗, denoted U∗, is weak-∗ compact.76 Clearly, X is a subspace of U∗

since, for any X ∈ X , ‖X‖ = X(Θ) ≤ G(Θ) = 1. The compactness of X will thus follow
if X is shown to be a closed set. To prove this, we prove that for any sequence (Xk)k∈N in

X and X ∈ C(Θ)∗ such that Xk
w∗−→ X , we must have X ∈ X , which will be shown if we

prove that 0 ≤ X(E) ≤ G(E) for any E ∈ Σ. Let us first make the following observation:
every finite (Borel) measure X on the metric space Θ is normal,77 which means that for
any set E ∈ Σ,

X(E)= inf
{
X(O) :E ⊂O and O ∈ Σ is open

}
(17)

= sup
{
X(F) : F ⊂E and F ∈ Σ is closed

}
� (18)

To show first that X(E) ≤ G(E), consider any open set O ∈ Σ such that E ⊂ O. Then,
since Xk ∈X for every k, we must have Xk(O)≤G(O) for every k, which, combined with
(c) of Theorem 12 above, implies that X(O) ≤ lim infk Xk(O) ≤ G(O). Given (17), this
means that X(E)≤G(E).

To show next that X(E) ≥ 0, consider any closed set F ∈ Σ such that F ⊂ E. Since
Xk ∈ X for every k, we must have Xk(F) ≥ 0, which, combined with (d) of Theorem 12
above, implies that X(F)≥ lim supk Xk(F) ≥ 0. Given (18), this means X(E)≥ 0.

73We note that this result can be established without having to assume that X is nonnegative, as long as all
Xk’s are nonnegative.

74This theorem is a modified version of “Portmanteau theorem” that is modified to deal with any finite (i.e.,
not necessarily probability) measures. See Theorem 2.8.1 of Ash and Doléans-Dade (2009) for this result, for
instance.

75More precisely, C(Θ)∗ is isometrically isomorphic to the space of all signed measures on (Θ�Σ) according
to the Riesz representation theorem (see Royden and Fitzpatrick (2010), for instance).

76The closed unit ball is defined as U∗ := {X ∈C∗(Θ) : ‖X‖ ≤ 1}, where ‖X‖ is the dual norm, that is,

‖X‖ = sup
{∣∣∣∣

∫
Θ

hdX

∣∣∣∣ : h ∈ C(Θ) and max
θ∈Θ

∣∣h(θ)∣∣ ≤ 1
}
�

If X is a nonnegative measure, then the supremum is achieved by taking h ≡ 1, and thus ‖X‖ = X(Θ). It is
well known (see Royden and Fitzpatrick (2010), for instance) that if C(Θ)∗ is infinite dimensional, then U∗

is not compact under the norm topology (i.e., the topology induced by the dual norm). On the other hand,
U∗ is compact under the weak-∗ topology, which follows from Alaoglu’s theorem (see Royden and Fitzpatrick
(2010), for instance).

77See Theorem 12.5 of Aliprantis and Border (2006).
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The proof for the compactness of XX is analogous and hence omitted. Q.E.D.

LEMMA 4: The map T is a correspondence from X n+1 to itself. Also, it is nonempty- and
convex-valued, and upper hemicontinuous.

PROOF: To show that T maps from X n+1 to itself, observe that for any X ∈ X n+1 and
X̃ ∈ Tf (X), there is Yf ∈Rf(Xf ) for each f ∈ F̃ such that, for all E ∈ Σ,

X̃(E)=
∑
P∈P

YfP− (ΘP ∩E) ≤
∑
P∈P

XfP− (ΘP ∩E)≤
∑
P∈P

G(ΘP ∩E)= G(E)�

which means that X̃ ∈ X , as desired. (Here and from now on, we adopt the convention
that for any measure X , XfP− = G when P(1)= f .)

As noted earlier, the correspondence T is nonempty-valued. To prove that T is convex-
valued, it suffices to show that, for each f ∈ F̃ , Rf is convex-valued. Consider any X ∈ X
and Y ′�Y ′′ ∈ Rf(X). There are some X ′�X ′′ ∈ Cf(X) satisfying Y ′ = X − X ′ and Y ′′ =
X −X ′′. Then, the convexity of Cf(X) implies that, for any λ ∈ [0�1], λX ′ + (1 − λ)X ′′ ∈
Cf(X) so λY ′ + (1 − λ)Y ′′ =X − (λX ′ + (1 − λ)X ′′) ∈ Rf(X).

To establish the upper hemicontinuity of T , we first establish the following claim:

CLAIM 1: For any sequence (Xk)k∈N ⊂ X that weakly converges to X ∈ X , a sequence
(Xk(ΘP ∩ ·))k∈N also weakly converges to X(ΘP ∩ ·) for all P ∈P .

PROOF: Let XP and XP
k denote X(ΘP ∩ ·) and Xk(ΘP ∩ ·), respectively. Note first that

for any X ∈ X , we have XP ∈ X for all P ∈ P . Due to Theorem 12, it suffices to show
that XP and (XP

k )k∈N satisfy Condition (c) of Theorem 12. To do so, consider any open set
O ⊂ Θ. Then, letting Θ◦

P denote the interior of ΘP ,

lim inf
k
XP

k (O)= lim inf
k
Xk

(
Θ◦

P ∩O
) +Xk(∂ΘP ∩O)

= lim inf
k
Xk

(
Θ◦

P ∩O
) ≥ X

(
Θ◦

P ∩O
) =XP(O)�

where the second equality follows from the fact that Xk(∂ΘP ∩ O) ≤ Xk(∂ΘP) ≤
G(∂ΘP) = 0, the lone inequality from Xk

w∗−→ X , (c) of Theorem 12, and the fact that
∂Θ◦

P ∩ O is an open set, and the last equality from repeating the first two equalities with
X instead of Xk. Also, we have

XP
k (Θ)= Xk(ΘP)→X(ΘP)= XP(Θ)�

where the convergence is due to Xk
w∗−→ X , (e) of Theorem 12, and the fact that

X(∂ΘP) ≤ G(∂ΘP) = 0. Thus, the two requirements in Condition (c) of Theorem 12 are

satisfied, so XP
k

w∗−→ XP , as desired. Q.E.D.

It is also straightforward to observe that if Cf is upper hemicontinuous, then Rf is also
upper hemicontinuous.

We now prove the upper hemicontinuity of T by considering any sequences (Xk)k∈N
and (X̃k)k∈N in X n+1 weakly converging to some X and X̃ in X n+1, respectively, such that
X̃k ∈ T(Xk) for each k. To show that X̃ ∈ T(X), let Xk�f and X̃k�f denote the components



100 Y.-K. CHE, J. KIM, AND F. KOJIMA

of Xk and X̃k, respectively, that correspond to f ∈ F̃ . Then, we can find Yk�f ∈ Rf(Xk�f )
for each k and f such that

X̃k�f (·)=
∑
P∈P

Yk�fP− (ΘP ∩ ·)� (19)

Consider a converging subsequence (Yk(m)�f )m∈N of (Yk�f )k∈N, and its limit Yf for each
firm f ∈ F̃ . (Note that such a subsequence must exist since (Yk�f ) lies in the compact

set X .) By Claim 1, Yk(m)�f (ΘP ∩ ·) w∗−→ Yf(ΘP ∩ ·) for all P ∈ P . Given this and (19),

we have X̃k(m)�f (·) w∗−→ ∑
P∈P YfP− (ΘP ∩ ·), which implies X̃f (·) = ∑

P∈P YfP− (ΘP ∩ ·) since
(X̃k�f ), and thus (X̃k(m)�f ), converges to X̃f . Meanwhile, we have Yf ∈ Rf(Xf ) since Rf is
upper hemicontinuous, since (Xk(m)�f ) and (Yk(m)�f ) converge to Xf and Yf , respectively,
and since Yk(m)�f ∈ Rf(Xk(m)�f ) for all m. We thus conclude that X̃ ∈ T(X), as desired.

Q.E.D.

Lemmas 3 and 4 show that T is nonempty- and convex-valued, and upper hemicontin-
uous while it is a mapping from the convex, compact space X n+1 into itself, which implies
that T is also closed-valued. Thus, we can invoke Kakutani–Fan–Glicksberg’s fixed-point
theorem to conclude that the mapping T has a nonempty set of fixed points. Q.E.D.

APPENDIX B: PROOFS FOR SECTION 6

PROOF OF THEOREM 3: Recall from Lemma S1 that the partially ordered set (X ��),
and thus the partially ordered set (X n+1��F̃ ), is a complete lattice, where XF̃ �F̃ X ′

F̃
if

Xf �X ′
f for all f ∈ F̃ . If each Cf is closed-valued, so are each Rf and T , as one can easily

verify. Also, if each Rf is weak-set monotonic, so is T in the ordered set (X n+1��F̃ ).
Note also that X n+1 is a compact set due to Lemma 3. Thus, if all firms have weakly
substitutable preferences with closed-valued choice correspondences, then T has a fixed
point according to Corollary 3.7 of Li (2014), which implies existence of a stable matching
due to Theorem 1. Q.E.D.

PROOF OF THEOREM 4: Proof of Part (i): Note first that by substitutability, each Rf is
weak-set monotonic while Rf(X) is a complete sublattice for any X ∈ X , and that these
properties are inherited by T . Given this, the proof of Theorem 1 in Zhou (1994) shows
that the set of fixed points of T , denoted X ∗, contains the largest and smallest elements,
X = sup�

F̃
X ∗ and X = inf�

F̃
X ∗.78 Let M and M be the stable matchings associated with

X and X , respectively, given by Theorem 1. We only establish that M is firm-optimal and
worker-pessimal, since the result for M can be established analogously. Recall from our
characterization theorem that for any stable matching M , there is some X ∈X ∗ such that
Xf =D�f (M) and Mf ∈Cf(Xf ) for all f ∈ F̃ . We thus have Mf �Xf �Xf , which implies
that Mf ∈ Cf(Mf ∨Mf) by revealed preference since Mf ∈Cf(Xf ) and (Mf ∨Mf)�Xf .
Thus, Mf �f Mf for each f ∈ F , as desired. To show that M �Θ M�∀M ∈ M∗, fix any

78Zhou (1994)’s theorem requires the strong-set monotonicity, but some inspection of its proof reveals that
the weak-set monotonicity is sufficient for existence of largest and smallest fixed points.
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M ∈ M∗ and consider X ∈ X ∗ such that Xf = D�f (M) for all f ∈ F̃ . Then, for all P ∈ P
and f ∈ F̃\{P(n+ 1)},

XfP+ (ΘP ∩E) =D�fP+ (M)(ΘP ∩E) =
∑

f ′∈F̃ :f ′≺Pf

Mf ′(ΘP ∩E)� ∀E ∈ Σ�

where f P
+ is an immediate successor of f ∈ F̃ at P ∈P , as defined earlier. Similarly, for X ,

we have XfP+ (ΘP ∩E)= ∑
f ′∈F̃ :f ′≺Pf

Mf ′(ΘP ∩E). Given this and the fact that X �F̃ X ,

∑
f ′∈F̃ :f ′�Pf

Mf ′(ΘP ∩E) =G(ΘP ∩E)−XfP+ (ΘP ∩E)

≤G(ΘP ∩E)−XfP+ (ΘP ∩E) (20)

=
∑

f ′∈F̃ :f ′�Pf

Mf ′(ΘP ∩E)

for all E ∈ Σ, and for all P ∈ P and f ∈ F̃\{P(n + 1)}. Note that (20) also holds for
f = P(n+ 1) since both LHS and RHS are then equal to G(ΘP ∩E).

Proof of Part (ii): Note that for any X ∈ X , each Rf(X), and thus T(X), is a complete
sublattice. Then, T must be monotonic since, for any X � X ′, we have T(X) ∈ T(X)
and T(X ′) ∈ T(X ′), which implies by upper weak-set monotonicity that there exists Y ∈
T(X ′) such that T(X) � Y , and then T(X) � T(X ′) by the definition of T(X ′). Now
let X0 = (X0

f )f∈F̃ with X0
f = G�∀f ∈ F̃ . Define recursively Xn = T(Xn−1) for each n ≥ 1.

The sequence (Xn)n∈N is decreasing since X1 �X0 and X2 = T(X1)� T(X0) = X1 and
so on, which implies that it has a limit point, denoted X∗. Because each Cf is order-

continuous, we have Rf(X
n
f ) = Xn

f −Cf(X
n
f )

w∗−→ X∗
f −Cf(X

∗
f ) = Rf(X

∗
f ), which implies

that Xn+1 = T(Xn)
w∗−→ T(X∗). Since Xn+1 w∗−→ X∗, we must have T(X∗) = X∗. To show

that X∗ = X , consider any X ∈ X ∗. Then, X �X0 and thus X � T(X) � T(X0) = X1.
Repeating this way, we obtain X �Xn�∀n, which implies that X �X∗ and thus X∗ = X .
By the proof of Part (i), a stable matching associated with X is firm-optimal. The proof
for worker-optimal stable matching is analogous and thus omitted. Q.E.D.

PROOF OF THEOREM 5: Let M be any stable matching. Then, by Theorem 1, there
exists X ∈X ∗ such that Mf ∈ Cf(Xf ) for each f ∈ F . Since X �F̃ X , LoAD implies

Mf(Θ) ≥ infCf(Xf )(Θ) ≥ supCf(Xf )(Θ)≥ Mf(Θ)� ∀f ∈ F� (21)

Next since M is worker-pessimal, (20) holds for any f ∈ F̃ . Let wP := ∅P
− be the imme-

diate predecessor of ∅ (i.e., the worst individually rational firm) for types in ΘP . Then,
setting f = wP in (20), we obtain∑

f ′∈F
Mf ′(ΘP ∩E)=

∑
f ′∈F̃ :f ′�PwP

Mf ′(ΘP ∩E)

≤
∑

f ′∈F̃ :f ′�PwP

Mf ′(ΘP ∩E) =
∑
f ′∈F

Mf ′(ΘP ∩E)� ∀E ∈ Σ�
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or equivalently, ∑
f ′∈F

Mf ′(E)≤
∑
f ′∈F

Mf ′(E)� ∀E ∈ Σ� (22)

Since this inequality must hold with E = Θ, combining it with (21) implies that Mf(Θ) =
Mf(Θ) for all f ∈ F , as desired.

Further, we must have
∑

f∈F Mf = ∑
f∈F Mf . Otherwise, by (22), we must have∑

f ′∈F Mf ′(E) <
∑

f ′∈F Mf ′(E) for some E ∈ Σ. Also, by (22),
∑

f ′∈F Mf ′(Ec) ≤∑
f ′∈F Mf ′(Ec). Combining these two inequalities, we obtain

∑
f ′∈F Mf ′(Θ) <∑

f ′∈F Mf ′(Θ), which contradicts (21). Last,
∑

f∈F Mf = ∑
f∈F Mf means M∅ = M∅.

Q.E.D.

PROOF OF THEOREM 6: Suppose otherwise. Then there exists a stable matching M
that differs from the worker-optimal stable matching M . Let X and X be respectively
fixed points of T such that Mf = Cf(Xf ), Mf = Cf(Xf ), and Xf �Xf , for each f ∈ F .

First of all, since Xf �Xf for each f ∈ F , we have (Mf ∨Mf)�Xf . Revealed prefer-
ence then implies that, for each f ∈ F ,

Mf = Cf(Mf ∨Mf)

or M �F M . Moreover, since M �= M , the set F̄ := {f ∈ F |Mf �f Mf } is nonempty. But
then by the rich preferences, there exists f ∗ ∈ F such that

Mf ∗ �= Cf ∗
((
Mf ∗ +M

f ∗
F̄

) ∧G
)
�

For each f ∈ F \ F̄ , Mf = Mf , by the definition of F̄ , and Theorem 5 guarantees that
M∅ = M∅. Consequently, we have, for each E ∈ Σ, that

M
f ∗
F̄
(E)=

∑
P∈P

∑
f ′ :f ∗�Pf

′�f ′ /∈F̄
Mf ′(ΘP ∩E)=

∑
P∈P

∑
f ′ :f ∗�Pf

′�f ′ /∈F̄
Mf ′(ΘP ∩E) =M

f ∗
F̄
(E)�

It then follows that (Mf ∗ + M
f ∗
F̄
) ∧ G = (Mf ∗ + M

f ∗
F̄
) ∧ G = Mf ∗ + M

f ∗
F̄

(since M is a
matching), so

Mf ∗ �= Cf ∗
(
Mf ∗ +M

f ∗
F̄

)
� (23)

Letting M̂f ∗ := Cf ∗(Mf ∗ + M
f ∗
F̄
), we have M̂f ∗ � (Mf ∗ ∨ M̂f ∗) � (Mf ∗ + M

f ∗
F̄
). Revealed

preference then implies that

M̂f ∗ = Cf ∗(Mf ∗ ∨ M̂f ∗)�

Then, by (23), we have M̂f ∗ �f ∗ Mf ∗ . Further, M̂f ∗ � (Mf ∗ +M
f ∗
F̄
)�D�f ∗

(M). We there-
fore have a contradiction to the stability of M . Q.E.D.

APPENDIX C: PROOFS FOR SECTION 7

PROOF OF THEOREM 7: Let 	 be the limit continuum economy to which the sequence
(	q)q∈N converges. For any population G, fix a sequence (Gq)q∈N of finite-economy pop-
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ulations such that Gq w∗−→ G. Let Θq = {θq
1� θ

q
2� � � � � θ

q
q̄} ⊂ Θ be the support for Gq.79 For

each firm f ∈ F̃ , define Θf to be the set of types that find firm f acceptable, that is,
Θf := ⋃

P∈P:f�P∅ ΘP (let Θ∅ = Θ by convention). Let Θf denote the closure of Θf with
respect to the topology on Θ. We first prove a few preliminary results, whose proofs are
provided in Section S.7.1 of the Supplemental Material.

LEMMA 5: For any r > 0, there is a finite number of open balls, B1� � � � �BL, in Θ that have
radius smaller than r with a boundary of zero measure (i.e. G(∂B�) = 0�∀�) and cover Θf

for each f ∈ F .

LEMMA 6: Consider any X�Y ∈ X such that X(Θ\Θf) = 0 for some f ∈ F̃ and X � Y ,

and consider any sequence (Y q)q∈N such that Yq ∈ X q and Yq w∗−→ Y .80 Then, there exists a

sequence (Xq)q∈N such that Xq ∈X q, Xq w∗−→ X , Xq � Yq, and Xq(Θ\Θf)= 0 for all q.

LEMMA 7: For any two sequences (Xq)q∈N and (Yq)q∈N such that Xq�Yq ∈ X q, Xq �
Yq�∀q, Xq w∗−→ X , and Yq w∗−→ Y , we have X � Y .

Using these lemmas, we establish the following two lemmas:

LEMMA 8: For any stable matching M in 	 and ε > 0, there is Q ∈ N such that, for any
q >Q, one can construct a matching Mq = (M

q
f )f∈F̃ that is feasible and individually rational

in 	q, and satisfies

uf (Mf ) < uf

(
M

q
f

) + ε

2
� ∀f ∈ F� (24)

PROOF: In any finite economy 	q, let us construct a matching M̃q = (M̃
q
f )f∈F̃ as follows:

order the firms in F by f1� � � � � fn, and
1. define M̃

q
f1

as Xq in Lemma 6 with X =Mf1 , Y =G, and Yq = Gq;81

2. define M̃
q
f2

as Xq in Lemma 6 with X = Mf2 , Y = G−Mf1 , and Yq =Gq − M̃
q
f1

(this

is possible since Gq − M̃
q
f1

w∗−→ G−Mf1 );
3. in general, for each fk ∈ F̃ , define inductively M̃

q
fk

as Xq in Lemma 6 with X = Mfk ,
Y =G− ∑

k′<kMfk′ , and Yq = Gq − ∑
k′<k M̃

q
fk′ ;

and define M̃
q
∅ = Gq − ∑

f∈F M̃
q
f .

By Lemma 6, M̃q is feasible in 	q and individually rational for workers while M̃q w∗−→
M . To ensure the individual rationality for firms, we construct another matching Mq =
(M

q
f )f∈F̃ as follows: for each f ∈ F , select any M

q
f ∈ C

q
f (M̃

q
f ), and then set M

q
∅ = Gq −∑

f∈F M
q
f . By revealed preference, we have M

q
f ∈ C

q
f (M

q
f ) and thus Mq is individually

rational for firms. Also, the individual rationality of Mq for workers follows immediately
from the individual rationality of M̃q and the fact that M

q
f � M̃

q
f for all f ∈ F . By the

79Note that we allow for the possibility that there are multiple workers of the same type even in finite
economies, so q̄ may be strictly smaller than q.

80Note that if f = ∅, then Θ\Θf = ∅. Thus, the restriction that X(Θ\Θf ) = 0 becomes vacuous.
81Note that Mf(Θ\Θf ) = 0 for all f ∈ F since M is individually rational, so Lemma 6 can be applied.
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continuity of uf ’s and the fact M̃q
f

w∗−→ Mf , we can find sufficiently large Q ∈ N such that,
for all q >Q,

uf (Mf) < uf

(
M̃

q
f

) + ε

2
≤ uf

(
M

q
f

) + ε

2
� ∀f ∈ F�

where the second inequality holds since M
q
f ∈C

q
f (M̃

q
f ). Q.E.D.

LEMMA 9: The matching Mq constructed in Lemma 8 is ε-stable in 	q for all q > Q,
where Q is identified in Lemma 8.

PROOF: Let D�f (Mq) be the subpopulation of workers in economy 	q who weakly pre-

fer f to their match in Mq.82 Since Mq w∗−→ M , we have D�f (Mq)
w∗−→ D�f (M).83 Choose

any M̃q
f ∈Cf(D

�f (Mq)). In words, M̃q
f is the most profitable block of Mq for f in the con-

tinuum economy, that is, the optimal deviation in a situation where the current matching
is Mq, but the firm can deviate to any subpopulation, not just a discrete distribution. Then,
we must have

uf

(
M̃

q
f

)
< uf(Mf)+ ε

2
� (25)

for any sufficiently large q. Otherwise, we could find some subsequence (M̂
q
f )q∈N of se-

quence (M̃
q
f )q∈N for which

uf

(
M̂

q
f

) ≥ uf (Mf )+ ε

2
� ∀q� (26)

We can assume that (M̂q
f )q∈N is converging to some M̂f (by choosing a further subsequence

if necessary). Then, the above-mentioned property that D�f (Mq)
w∗−→D�f (M) and upper

hemicontinuity of Cf imply M̂f ∈ Cf(D
�f (M)) and thus uf (M̂f ) = uf (Mf) since Mf ∈

Cf(D
�f (M)) (due to stability of M), which contradicts (26).

Now let M ′
f be the most profitable block of Mq for f in economy 	q. Then, M ′

f is the
optimal deviation facing the same population Gq and matching Mq as when computing
M̃

q
f but with an additional restriction that the deviation is feasible in 	q (multiples of 1/q),

so uf (M
′
f )≤ uf (M̃

q
f ). This and inequality (25) imply

uf

(
M ′

f

)
< uf(Mf)+ ε

2
� (27)

Combining inequalities (24) and (27), we get uf (M
′
f ) < uf (M

q
f )+ε, completing the proof.

Q.E.D.

Theorem 7 then follows from the existence of stable matching M in 	 and Lemmas 8
and 9. Q.E.D.

82To be precise, D�f (Mq) is given as in (4) with G and X being replaced by Gq and Mq , respectively.
83This convergence can be shown using an argument similar to that which we have used to establish the

continuity of Ψ in the proof of Lemma 4.
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PROOF OF THEOREM 8: The proof that M is a matching in 	 is straightforward and
thus omitted. We first show that M is individually rational. First of all, since Mq is individ-
ually rational for workers, we have M

q
f (ΘP) = 0 for all f ∈ F and P ∈P such that ∅ �P f ,

which implies that Mf(ΘP) = 0 since M
q
f

w∗−→ Mf and Mf(∂ΘP) ≤ G(∂ΘP) = 0. Thus, M
is also individually rational for workers. To show that M is individually rational for firms,
suppose for a contradiction that there are some f ∈ F and M̂f ∈ X such that M̂f � Mf

and uf (M̂f )− uf (Mf)= 3ε for some ε > 0. We then prove the following claim:

CLAIM 2: For all sufficiently large q, there exists a subpopulation M̂
q
f in 	q such that M̂q

f �
D�f (Mq) and uf (M̂

q
f ) > uf (M̂f )− ε.

PROOF: We use Lemma 6 with Y = D�f (M), Yq = D�f (Mq), and X = M̂f . By the

continuity of D�f (·) and the assumption that Mq w∗−→ M , we have Yq w∗−→ Y . Also, we
have X = M̂f �Mf �D�f (M) = Y . Lemma 6 then implies that there exists a sequence

(M̂
q
f )q∈N such that M̂q

f ∈ X q, M̂q
f

w∗−→ X = M̂f , and M̂
q
f � Yq = D�f (Mq). Then, by the

continuity of uf , we have uf (M̂
q
f ) > uf (M̂f )− ε for all sufficiently large q. Q.E.D.

Since Mq w∗−→ M and uf is continuous, we have that, for all sufficiently large q,

uf

(
M

q
f

)
< uf(Mf)+ ε = uf (M̂f )− 2ε < uf

(
M̂

q
f

) − ε� (28)

where the second inequality follows from Claim 2. This contradicts ε-stability of Mq in 	q.
To prove that there is no blocking coalition, suppose for a contradiction that there exist

a firm f ∈ F and subpopulation M̂f such that M̂f �D�f (M) and uf (M̂f ) − uf (Mf) = 3ε
for some ε > 0. By Claim 2, for all sufficiently large q, there exists a subpopulation M̂

q
f in

	q such that M̂q
f �D�f (Mq) and uf (M̂

q
f ) > uf (M̂f ) − ε. Then, the same inequality as in

(28) establishes the desired contradiction. Q.E.D.

Let us here state a variant of Theorem 8 for later use, whose proof is essentially the
same as that of Theorem 8:

THEOREM 1: Let (Mqk)k∈N be a sequence of matchings converging to M such that for
every ε > 0, there exists K ∈ N such that, for all k >K, Mqk is ε-stable in 	qk . Then, M is
stable in 	.

PROOF OF THEOREM 9: First let us state a mathematical fact:

LEMMA 10—Heine–Cantor Theorem: Let h : A → B be a continuous function between
two metric spaces A and B, and suppose A is compact. Then, h is uniformly continuous.

Since the space of all subpopulations of G is metrizable by the Lévy–Prokhorov metric,
and it is compact, the Heine–Cantor theorem applies to our setting.

We also need the following result:
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LEMMA 11: For every ε > 0, there exist δ ∈ (0� ε) and Q′ ∈ N such that, for every q > Q′

and every matching Mq that is δ-stable in 	q, there exists a stable matching M in 	 such that
d(Mq�M) < ε, where d(·� ·) is the product Lévy–Prokhorov metric.84

PROOF: Suppose for contradiction that the conclusion of the statement does not hold.
Then there exists ε > 0 with the following property: for every δ ∈ (0� ε) and Q′ ∈ N, there
exist q > Q′ and Mq that is δ-stable in 	q such that d(Mq�M) ≥ ε for every M that is
stable in 	. This implies there exists a decreasing sequence (δk)k which converges to 0 and
(Mqk)k such that Mqk is δk-stable in 	qk , d(Mqk�M)≥ ε for every stable matching M in 	,
and limk q

k = ∞. Without loss of generality, assume Mqk converges to some matching M̂

(because the sequence lies in a sequentially compact space). Then d(M̂�M)≥ ε for every
stable matching M ∈ 	, so M̂ is not stable in 	. This is a contradiction to Theorem 1.

Q.E.D.

Proof of Part (i): Given an arbitrary ε > 0, let η> 0 be a constant such that, for any two
matchings M and M ′, d(M�M ′) < η implies |uf (Mf) − uf (M

′
f )| < ε/2 for every f ∈ F .

(Recall that uf is continuous. Therefore, it is uniformly continuous by the Heine–Cantor
theorem.) Without loss, one can assume η< ε.

For η > 0 defined in the last paragraph, choose δ ∈ (0�η) and Q′ as described in the
statement of Lemma 11. (Note that δ < ε since δ < η< ε.) More precisely, δ and Q′ have
the property that for every q > Q′ and every matching M̂q that is δ-stable in 	q, there
exists a stable matching M in 	 such that d(M̂q�M) < η. Given this δ, by Lemma 8 and
Lemma 9, there is Q>Q′ such that, for all q >Q, there exists a matching Mq in 	q which
is δ-stable in 	q and satisfies

uf

(
M

q
f

)
> uf(Mf)− δ

2
> uf(Mf)− ε

2
� (29)

CLAIM 3: uf (Mf) > uf (M̂
q
f )− ε/2 for any δ-stable matching M̂q in 	q.

PROOF: By the argument in the last paragraph, there exists a stable matching M in 	

with d(M̂q�M) < η. So, by construction of η (and uniform continuity of uf ), we obtain
uf (Mf) > uf (M̂

q
f )− ε/2. Meanwhile, by firm optimality of M̄ , we have uf (Mf)≤ uf (Mf).

Combining these inequalities, we obtain the desired inequality. Q.E.D.

Then, the desired conclusion holds for any q > Q since, by (29) and Claim 3, we have
uf (M

q
f ) > uf (Mf)− ε/2 > uf(M̂

q
f )− ε.

Proof of Part (ii): Note first that each mapping D�f (·) is continuous, and hence uni-
formly continuous (see footnote 83). Thus, given an arbitrary ε > 0, one can choose η ∈
(0� ε) such that, for any M�M ′ ∈ X n+1, d(M�M ′) < η implies d(D�f (M)�D�f (M ′)) < ε

2

for all f ∈ F̃ . By Lemma 11, for the chosen η, one can find δ ∈ (0�η) and Q′ ∈ N such that,

84The Lévy–Prokhorov metric on space X is defined as follows: for any X�Y ∈ X ,

d(X�Y) := inf
{
ε > 0|X(E)≤ Y

(
Eε

) + ε and Y(E)≤ X
(
Eε

) + ε for all E ∈ Σ
}
�

where Eε := {θ ∈ Θ|∃θ′ ∈ E such that dΘ(θ�θ′) < ε} with dΘ being a metric for the space Θ. Here, we abuse
notation since d is used to denote both the Lévy–Prokhorov metric and its product metric. Note that the choice
of product metric is inconsequential since it is defined on a finite-dimensional space.
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for every q >Q′ and every δ-stable matching M̂q in 	q, there is a stable matching M̃q in 	

such that d(M̂q� M̃q) < η. By definition of η, we must have d(D�f (M̃q)�D�f (M̂q)) < ε
2 .

Next, given that Cf(Mf)= {Mf } for each f ∈ F , Lemma S5 of the Supplemental Mate-

rial implies that there is a sequence (Mq)q∈N such that Mq w∗−→ M , where Mq is a feasible
and individually rational matching in 	q. Choose now εδ > 0 such that, for any subpop-
ulations M�M ′ ∈ X , d(M�M ′) < εδ implies |uf (M) − uf (M

′)| < δ. By Lemma S6 of the
Supplemental Material, one can find Q′′ ∈ N such that for all q > Q′′, Mq is εδ-distance
stable: that is, for any M ′ ∈ X q such that M ′ �D�f (Mq) and uf (M

′) > uf (M
q
f ), we have

d(M ′�Mq
f ) < εδ. This implies by the definition of εδ that uf (M

q
f ) + δ > uf (M

′). In other
words, Mq is δ-stable for all q >Q′′, as required by Condition 1 of Definition 10. To satisfy
Condition 2, using the fact that Mq converges to M , we can choose Q> max{Q′�Q′′} such
that, for all q >Q, we have d(D�f (Mq)�D�f (M)) < ε

2 for all f ∈ F̃ , which implies

D�f (M)(E)≤ D�f
(
Mq

)(
E

ε
2
) + ε

2
�∀E ∈ Σ� ∀f ∈ F̃� (30)

by the fact that d is the Lévy–Prokhorov metric (refer to footnote 84 for the definition of
d and Eε). Then, for any q >Q and for any f ∈ F̃ and E ∈ Σ,(

D�f
(
M̂q

)
(E)− ε

2

)
− ε

2
≤ D�f

(
M̃q

)(
E

ε
2
) − ε

2

≤ D�f (M)
(
E

ε
2
) − ε

2
≤D�f

(
Mq

)((
E

ε
2
) ε

2
) ≤ D�f

(
Mq

)(
Eε

)
�

where the first inequality follows since d(D�f (M̃q)�D�f (M̂q)) < ε
2 , the second inequality

from the worker-optimality of M and stability of M̃q in 	, the third inequality from (30),
and the last inequality from the fact that (E

ε
2 )

ε
2 ⊂ Eε (which can be easily verified).

Q.E.D.

PROOF OF THEOREM 10: Suppose not for contradiction. Then, there must be a se-
quence (δk�qk)k∈N with δk ↘ 0 and qk ↗ ∞ such that M̂qk is δk-stable and d(M�M̂qk)≥ ε

for all k. Then, one can find a subsequence (qkm)m∈N such that M̂qkm converges to some
M̂ (since the sequence lies in a sequentially compact space), which must be stable in 	

due to Theorem 1. Since d(M�M̂qkm ) ≥ ε for all m, we must have d(M�M̂) ≥ ε, which
contradicts the uniqueness of stable matching in 	. Q.E.D.
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