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A Technical Preliminaries

In this section, we derive technical results that will be used frequently in the proofs.

Definition A.1. Define the following:

(i) m(a, b) := E[θ | θ ∈ [a, b] ] ∀ 0 ≤ a ≤ b ≤ 1;

(ii) γ(a) := max{θ ≥ a | θ ≤ m(a, θ) + S} ∀ a ∈ [0, 1];

(iii) m̊(a, b, c, d) := E[θ | θ ∈ [a, b] ∪ [c, d] ] ∀ 0 ≤ a ≤ b < c ≤ d ≤ 1;

(iv) γ̊(a, b, c) := max{θ ≥ a | θ ≤ m̊(a, b, c, θ) + S} ∀ 0 ≤ a ≤ b < c ≤ 1.

Given that θ is a continuous random variable, m and m̊ are well-defined and differentiable

with respect to every argument. Next, recall our log concavity assumption:

Assumption A.1 (Log-concavity). d2

dθ2
log f(θ) < 0 for all θ ∈ [0, 1].

Based on the above, we obtain the following results.

Lemma A.1. (i) ∂
∂a
m(a, b), ∂

∂b
m(a, b) ≤ 1 ∀ 0 ≤ a ≤ b ≤ 1; (ii) γ is a well-defined function and

∂
∂a
γ(a) ≤ 1 ∀ a ∈ [0, 1]; (iii) ∂

∂d
m̊(a, b, c, d) ≤ 1 ∀ 0 ≤ a ≤ b < c ≤ d ≤ 1; (iv) γ̊ is a well-defined

function.

Proof. See Bagnoli and Bergstrom (2005) for the proof of part (i).

For part (ii), note that (i) implies θ − m(a, θ) is increasing and continuous in θ for all

θ ≥ a. Thus γ(a) defined in Definition A.1-(ii) exists and is uniquely determined for every
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a ∈ [0, 1] as the minimum of the unique solution to θ −m(a, θ) = S and 1. To prove the second

part of (ii), first suppose γ(a) = m(a, γ(a))+S. Applying the implicit function theorem, we have
d
da
γ(a) =

∂
∂a
m(a,γ(a))

1− ∂
∂γ
m(a,γ(a))

. From Corollary 1 of Szalay (2012), we have ∂
∂a
m(a, b) + ∂

∂b
m(a, b) ≤ 1 for

all 0 ≤ a ≤ b ≤ 1 if f(·) is log-concave. This implies d
da
γ(a) =

∂
∂a
m(a,γ(a))

1− ∂
∂γ
m(a,γ(a))

≤ 1. If γ(a) = 1,

then γ(x) = 1 for all x > a, implying that the right derivative of γ(a) is 0 for all a ∈ [0, 1] such

that γ(a) = 1.

To prove part (iii), define F̌ (θ) := F (θ)− [F (c)− (F (b)− F (a))] for every θ ≥ c. F̌ (θ) is

log-concave as shown below:

d2 log F̌ (θ)

dθ2
=

d

dθ

(
f(θ)

F (θ)− [F (c)− (F (b)− F (a))]

)
=

d

dθ

(
f(θ)

F (θ)
× F (θ)

F (θ)− [F (c) + (F (b)− F (a))]

)
=

d

dθ

(
f(θ)

F (θ)
×
(

1 +
F (c) + (F (b)− F (a))

F (θ)− [F (c) + (F (b)− F (a))]

))
≤ 0.

In the above, the last inequality follows since 1 + F (c)+(F (b)−F (a))
F (θ)−[F (c)+(F (b)−F (a))]

is positive and decreasing

in θ, and f(θ)
F (θ)

is decreasing in θ by the log-concavity f(θ). Using the log-concavity of F̌ (θ), we

now show ∂m̊
∂d
≤ 1. Differentiating m̊ with respect to d, we have

∂m̊

∂d
= − f(d)

[(F (d)− F (c)) + (F (b)− F (a))]2

∫ b

a
θdF (θ) +

∂

∂d

(
1

(F (d)− F (c)) + (F (b)− F (a))

∫ d

c
θdF (θ)

)
<

∂

∂d

(
1

(F (d)− F (c)) + (F (b)− F (a))

∫ d

c
θdF (θ)

)
.

To prove ∂m̊
∂d
≤ 1, it suffices to show ∂

∂d

(
1

(F (d)−F (c))+(F (b)−F (a))

∫ d
c
θdF (θ)

)
≤ 1. Define a map

δ̌ : [c, 1]→ R as

δ̌(θ) := θ − 1

(F (θ)− F (c)) + (F (b)− F (a))

∫ θ

c

udF (u),

which is a variant of δ(θ) introduced by Bagnoli and Bergstrom (2005). Since m̊(a, b, c, θ) =
1

(F (θ)−F (c))+(F (b)−F (a))

∫ θ
c
udF (u), we need to show δ̌(θ) is increasing in θ. Since F̌ (θ) = (F (θ) −

F (c)) + (F (b) − F (a)), we have dF = dF̌ for all θ ≥ c. Thus δ̌(θ) can be rewritten as δ̌(θ) =

θ − 1
F̌ (θ)

∫ θ
c
udF̌ (u). Integrating

∫ θ
c
udF̌ (u) by parts yields

δ̌(θ) = θ −
θF̌ (θ)−

∫ θ
c
F̌ (u)du

F̌ (θ)
=

∫ θ
c
F̌ (u)du

F̌ (θ)
.
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From Theorem 1-(ii) in Bagnoli and Bergstrom (2005),
∫ θ
c
F̌ (u)du is log-concave for all θ ≥ c

if F̌ (u) is log-concave for all θ ≥ c. Thus
∫ θ
c F̌ (u)du

F̌ (θ)
is increasing in θ, which implies δ̌(θ) is also

increasing in θ.

Part (iv) follows from part (iii): since θ − m̊(a, b, c, θ) is increasing and continuous in θ,

γ̊(a, b, c) is the minimum of the unique solution to θ − m̊(a, b, c, θ) = S and 1. Q.E.D.

For future reference, we reproduce our regularity conditions below.

Assumption A.2 (Assumption 2 in the main text). (i) ∀ 0 < θ̃ < θ < 1, ∆(θ; θ̃, S) :=

m(θ̃, θ) + S − θ − (m(θ, γ(θ))−m(θ̃, θ)) is decreasing in θ;

(ii) If ∆(0; θ̃, S) ≥ 0, then ∆(0; θ̃, S ′) ≥ 0 for every S ′ > S and every θ̃ ∈ (0, 1);

(iii) For every 0 < θ̃ < θ < 1, 2m(θ̃, θ)−m(0, θ̃) is decreasing in θ̃;

(iv) θ∗0 −m(θ∗0, γ(θ∗0)) + S > 0 for every S > 0, where θ∗0 = γ(0);

(v) θ ≥ 2m(0, θ) for all θ ∈ [0, 1].

B Proofs for Section 3

Lemma 1. In any equilibrium without government interventions, there is a cutoff 0 ≤ θ1 ≤ 1

such that all types θ ≤ θ1 sell in each of the two periods at price m(0, θ1) and all types θ > θ1

hold out in t = 1 and are offered price m(θ1, γ(θ1)) in t = 2, which types θ ∈ [θ1, γ(θ1)) accept.

If θ1 = 1, then S ≥ 2(1− E[θ]).

Proof of Lemma 1. Fix a game with discount factor δ ∈ (0, 1) and fix an equilibrium of the

required form. Let (q1(θ), q2(θ)) be the units of the asset a type-θ firm sells in each of the two

periods and (t1(θ), θ2(θ)) be the corresponding transfers.

Step 1. There exists 0 ≤ θ̂ ≤ θ̌ ≤ θ̃ ≤ 1 such that q1(θ) = q2(θ) = 1 for θ < θ̂; q1(θ) = 1, q2(θ) = 0

for any θ ∈ (θ̂, θ̌); q1(θ) = 0, q2(θ) = 1 for any θ ∈ (θ̌, θ̃); and q1(θ) = q2(θ) = 0 for any θ > θ̃.

Proof. In pure strategy equilibrium, we have qi(θ) ∈ {0, 1} for each θ, i = 1, 2. The expected

discounted payoff for type-θ when imitating type-θ′ is u(θ′; θ) := q1(θ′)[S+ t1(θ′)]+ [1−q1(θ′)]θ+

δ[q2(θ′)(S+t2(θ′))+(1−q2(θ′))θ]. Let Q(·) := q1(·)+δq2(·) and t(·) := q1(·)t1(·)+δq2(·)t2(·). Since

we must have u(θ; θ) ≥ u(θ′; θ) for all θ, θ′ in equilibrium, it follows that (S− θ)[Q(θ)−Q(θ′)] ≥
t(θ′)− t(θ). Similarly we must have u(θ′; θ′) ≥ u(θ; θ′), which leads to (S − θ′)[Q(θ′)−Q(θ)] ≥
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t(θ)− t(θ′). Combining these two inequalities, we have (θ − θ′)[Q(θ)−Q(θ′)] ≤ 0. This implies

monotonicity: Q(θ) ≤ Q(θ′) for any θ ≥ θ′. Since qi(θ) ∈ {0, 1} for each θ, i = 1, 2, the

monotonicity implies the desired property.

Step 2. If θ̌ < 1, then those that hold out in t = 1 must be offered m(θ̌, γ(θ̌)) in equilibrium,

which is accepted by types θ ∈ (θ̌, γ(θ̌)) where γ(θ̌) > θ̌.

Proof. The belief in t = 2 for the holdouts is the truncated distribution of F on [θ̌, 1]. This is

essentially a one-shot problem with a truncated support. Thus the stated result follows from the

definition of γ.

Step 3. θ̂ = θ̌.

Proof. Suppose to the contrary that θ̂ < θ̌. Let p be the price offered in t = 1. By the zero

profit condition, p must be a break-even price for the types that accept it. Since type-θ̌ firm

must weakly prefer accepting p in t = 1 to not selling in either periods, we have

p+ S + δθ̌ ≥ (1 + δ)θ̌ ⇔ p+ S ≥ θ̌. (B.1)

This means that all firms accepting p in t = 1 will accept the same price p in t = 2 if that price

were offered in t = 2, with strict incentive for all firms with θ < θ̌. The fact that types θ ∈ (θ̂, θ̌)

choose not to sell in t = 2 means that the price offered in t = 2 to those that accept p in t = 1,

denoted by p−, is strictly less than p.

Suppose first θ̌ < 1. Then, by Step 2, an offer p2 := m(θ̌, γ(θ̌)) must be made in equilib-

rium to those that hold out in t = 1, which is accepted by types θ ∈ (θ̌, γ(θ̌)). Since type-θ̌ must

be indifferent between selling at p in t = 1 only and selling at p2 in t = 2 only, we must have

p+ S + δθ̌ = θ̌ + δ(p2 + S). (B.2)

In particular, p2 +S > θ̌, so p+S > θ̌. This means that, if a buyer deviates by offering p−ε > p−

for sufficiently small ε > 0 in t = 2 to those that accepted p in t = 1, then all of them must

accept that offer. The buyer makes a strictly positive profit with such a deviation since p is the

break-even price. We thus have a contradiction.

Suppose next θ̌ = 1, meaning that all types sell in t = 1. Here we invoke the D1 refinement

to derive a contradiction. In the candidate equilibrium, the payoff for type θ > θ̂ is p+S+δθ, and

the payoff for all types θ < θ̂ is some constant u∗, which must equal p+S+ δθ̂ since type-θ̂ must

be indifferent. Let U∗(θ) be the equilibrium payoff type-θ enjoys when the candidate equilibrium

is played: U∗(θ) := max{u∗, p+ S + δθ}. Suppose a type θ firm deviates by refusing the bailout
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in t = 1, and suppose a buyer offers p′2 to that deviating firm in t = 2. Type-θ’s deviation payoff

is then θ+δmax{p′2 +S, θ}. Thus, when type-θ deviates by choosing holdout, the set of market’s

offers in t = 2 that dominate the candidate equilibrium for type-θ is

D(holdout, θ) := {p′2|θ + δmax{p′2 + S, θ} ≥ max{u∗, p+ S + δθ}} .

Note that for fixed p′2, the payoff difference θ+ δmax{p′2 +S, θ}−max{u∗, p+S+ δθ} is strictly

increasing in θ, so the set D(holdout, θ) is nested in the sense that D(holdout, θ) ⊂ D(holdout, θ′)

for θ′ > θ. In other words, D(holdout, 1) is maximal, and more importantly, D(holdout, θ) is

not maximal if θ < 1. Given this, the D1 refinement entails that the belief by the market must

be supported on θ = 1 in case of holdout. Thus following the deviation, the market’s offer must

be p′2 = 1. This means that, for the market’s offer in the candidate equilibrium to satisfy D1,

type θ̌ = 1 must enjoy the payoff of at least 1 + δ(1 +S) in case of deviation to holdout from the

candidate equilibrium. Since type θ̌ = 1 chooses to sell in t = 1 in the candidate equilibrium, we

must have

p+ S + δ ≥ 1 + δ(1 + S), (B.3)

which implies p + S > 1. This in turn implies that in t = 2, a buyer can deviate by offering a

price slightly below p and induce acceptance from all types that accepted p in t = 1. Once again,

the buyer makes a strictly positive profit with such a deviation, hence a contradiction.

Step 4. All types θ < θ̂ = θ̌ (if is nonempty) are offered a single price in both periods equal to

m(0, θ̂). All types θ > θ̂ are offered price m(θ̂, γ(θ̂)), which is accepted by types θ ∈ (θ̂, γ(θ̂)).

Proof. Suppose there are two distinct prices p, p′ that are accepted by positive measures of firms.

By the zero profit condition, both prices must be breaking even for the types that accept them.

But then, no type will accept the lower price, hence a single price is offered to all types θ < θ̂.

The market’s break-even condition then pins down the price to m(0, θ̂). The second statement

follows from Step 2.

Step 5. If θ̂ = 1, then S ≥ 2(1− E[θ]).

Proof. Applying the D1 argument as in Step 3, type-θ̂’s equilibrium payoff (1+δ)(p+S) should not

be smaller than 1+δ(1+S) where p = m(0, 1) = E[θ] by Step 4. From (1+δ)(p+S) ≥ 1+δ(1+S)

follows the stated condition as δ → 1. Q.E.D.

Theorem 2.
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(i) There is an equilibrium in which firms with θ ≤ θ∗1 sell at price p∗1 := m(0, θ∗1) in both

periods, firms with θ ∈ (θ∗1, θ
∗
2) sell only in t = 2 at price p∗2 := m(θ∗1, θ

∗
2), and firms with

θ > θ∗2 never sell, where θ∗1 and θ∗2 are defined by ∆(θ∗1;S) = 0 and θ∗2 = γ(θ∗1), respectively.

We have θ∗1 ≤ θ∗0 ≤ θ∗2, hence p∗1 ≤ p∗0 ≤ p∗2, where the inequalities hold strictly if the cutoff

in the one-period model satisfies θ∗0 ∈ (0, 1). Given Assumption 1-(i), there is at most one

such equilibrium with an interior θ∗1.

(ii) Given Assumption 1-(ii), the t = 1 market in equilibrium is fully active if S ≥ S
∗
, suffers

from partial freeze if S ∈ (S∗, S
∗
), and full freeze if S < S∗, where S∗ and S

∗
are defined by

∆(0;S∗) = 0 and ∆(1;S
∗
) = 0, respectively, and satisfy S∗ > S0 and S

∗
> max{S0, S

∗}.

(iii) In addition, there is an equilibrium with full market freeze in t = 1 for any S.

Proof of Theorem 2. To prove (i), note first that the existence of cutoffs θ1 and θ2 was established

by Lemma 1. Thus it suffices to show θ1 ≤ θ0 ≤ θ2 with strict inequalities if θ∗0 ∈ (0, 1). Consider

the t = 1 cutoff θ1. If θ1 < 1, then it satisfies ∆(θ1, S) ≤ 0. Thus θ1 ≤ 2m(0, θ1)−m(θ1, γ(θ1)) +

S < m(0, θ1) + S since m(0, θ1) < m(θ1, γ(θ1)). Since θ∗0 := sup{θ|θ ≤ m(0, θ) + S}, we have

θ1 ≤ θ∗0 with strict inequality if θ∗0 < 1. If θ1 = 1, then ∆(θ1, S) ≥ 0 by the D1 refinement, which

in turn implies θ∗0 = 1. Next, the t = 2 cutoff θ2 = γ(θ1) satisfies θ2 ≤ m(θ1, γ(θ1)) + S. Since

θ1 ≥ 0, we have θ2 = γ(θ1) ≥ γ(0) = θ∗0, where the inequality is strict for θ∗0 < 1 and θ1 > 0.

For (ii), note that, by Assumption 1, θ1− 2m(0, θ1) +m(θ1, γ(θ1)) is strictly increasing in

θ1 for each S. Since θ1 < 1 satisfies ∆(θ1, S) ≤ 0, a unique θ1 can be found, which is increasing

in S. From this and the first claim follows the second claim.

For (iii), consider the candidate equilibrium in which the market in t = 1 completely

freezes. This means that, in t = 2, we have one period equilibrium with cutoff given by θ∗0

and price p0. In this equilibrium, the payoff for type θ ≤ θ∗0 is θ + δ(p0 + S) = θ + δθ∗0 and

the payoff for type θ > θ∗0 is (1 + δ)θ. Thus the equilibrium payoff for type θ is U∗(θ) =

max{θ + δθ∗0, (1 + δ)θ}. Suppose a buyer deviates and offers p1 in t = 1. Let p2 be the market’s

offer in t = 2 to those that accept the deviation offer p1. Then the payoff to type θ from accepting

p1 is p1 + S + δmax{p2 + S, θ}. As in the proof of Lemma 1, define the set

D(sell, θ) := {p2|p1 + S + δmax{p2 + S, θ} ≥ max{θ + δθ∗0, (1 + δ)θ}} .

For fixed p2, the payoff difference is strictly decreasing in θ, hence D(sell, 0) is maximal. Then

by the D1 refinement, the market’s belief must be supported on θ = 0 when a firm accepts a

deviation offer p1 in t = 1. Given this belief, no firm will accept p1 if p1 ≤ p0. If p1 > p0,
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then all types θ ≤ p1 + S accept the deviation offer p1. Then the buyer will lose money given

p1 > p0. Q.E.D.

C Proofs for Section 4

In Section C.1, we establish necessary conditions for various equilibria. Section C.2 presents the

main characterization of equilibria. To appreciate the main points, readers can skip Section C.1

and jump directly to Section C.2.

C.1 Necessary Conditions for Equilibria

We first characterize the various types of equilibria and derive necessary conditions for the

existence of each type of equilibria.

C.1.1 Equilibrium Cutoff Structure

Lemma 2. In any equilibrium, there are four possible cutoffs 0 ≤ θg ≤ θ1 ≤ θgø ≤ θ2 ≤ 1 such

that types θ ∈ Θg := [0, θg) sell to the government in t = 1 and to the market in t = 2, types

θ ∈ Θ1 := (θg, θ1) sell to the market in both periods, types θ ∈ Θgø := (θ1, θgø) sell only in t = 1

to the government, types θ ∈ Θ2 := (θgø, θ2) sell only in t = 2 to the market, and types θ > θ2

sell in neither period.

Proof of Lemma 2. Similar to the proof of Lemma 1, fix a game with discount factor δ ∈ (0, 1)

and the probability of market collapse ε ∈ (0, 1). Also, fix any equilibrium of the required form.

Let qg(θ) be the unit of the asset a type-θ firm sells to the government, (q1(θ), q2(θ)) be the units

of the asset the firm sells in each of the two periods, and (tg(θ), t1(θ), t2(θ)) be the corresponding

transfers. The expected payoff for a type-θ firm when playing as if it is type-θ′ is

u(θ′; θ) = qg(θ
′)
[
[S + tg(θ

′)] + εδθ
]

+ (1− qg(θ′))ε(1 + δ)θ

+ (1− ε){1− qg(θ′)}
[
q1(θ′){S + t1(θ)}+ {1− q1(θ′)}θ

]
+ (1− ε)δ

[
q2(θ′){S + t2(θ′)}+ {1− q2(θ′)}θ

]
.

Let Q(·) := qg(·)+(1−ε){1−qg(·)}q1(·)+(1−ε)δq2(·) and T (·) := qg(·)tg(·)+(1−ε){1−
qg(·)}q1(·)t1(·) + (1− ε)δq2(·)t2(·). Since u(θ; θ)−u(θ′; θ) ≥ 0 and u(θ′; θ′)−u(θ; θ′) ≥ 0 for every
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θ 6= θ′ in equilibrium, it follows that (S − θ)[Q(θ)−Q(θ′)] ≥ T (θ′)− T (θ) and (S − θ′)[Q(θ′)−
Q(θ)] ≥ T (θ) − T (θ′). Combining these inequalities, we have (θ′ − θ)[Q(θ) − Q(θ′)] ≥ 0, which

implies that Q(θ) is decreasing in θ. Since 1 > (1 − ε) > (1 − ε)δ and qj(θ) ∈ {0, 1} for every

j = g, 1, 2 in pure-strategy equilibrium, there exist cutoffs 0 ≤ θg ≤ θ1 ≤ θgø ≤ θ1ø ≤ θ2 ≤ 1

such that: (i) (qg(θ), q1(θ), q2(θ)) = (1, 0, 1) if θ ∈ [0, θg]; (ii) (qg(θ), q1(θ), q2(θ)) = (0, 1, 1) if

θ ∈ (θg, θ1]; (iii) (qg(θ), q1(θ), q2(θ)) = (1, 0, 0) if θ ∈ (θ1, θgø]; (iv) (qg(θ), q1(θ), q2(θ)) = (0, 1, 0) if

θ ∈ (θgø, θ1ø]; (v) (qg(θ), q1(θ), q2(θ)) = (0, 0, 1) if θ ∈ (θ1ø, θ2]; (vi) (qg(θ), q1(θ), q2(θ)) = (0, 0, 0)

if θ > θ2. Applying the same logic used for the proof of Step 3 in the proof of Lemma 1, it can

be shown that θgø = θ1ø. Thus any equilibrium must be characterized by the cutoff structure

0 ≤ θg ≤ θ1 ≤ θgø ≤ θ2 ≤ 1. Q.E.D.

In what follows, we describe the incentive compatibility constraints for firms in each type

of equilibria. Since the equilibria are characterized by a set of cutoff types by Lemma 2, we

derive conditions characterizing these cutoffs in each type of equilibria. Lastly, we find bailout

terms compatible with each type of equilibria.

C.1.2 Necessary Conditions for SBS Equilibrium

In this equilibrium, there exists θgø ∈ (0, θ2) and θ2 ≤ 1 such that: types θ ∈ [0, θgø] sell to the

government at price pg in t = 1 but cannot sell in t = 2 due to m(0, θgø) < I; types θ ∈ (θgø, θ2]

sell only in t = 2 at price m(θgø, θ2); the market fully freezes in t = 1 so no trade occurs.

We derive necessary conditions for each type to play the above equilibrium strategies.

The payoffs from playing the equilibrium strategies across the two periods are pg + S + θ for all

θ ∈ [0, θgø], and θ+m(θgø, θ2) + S for all θ ∈ (θgø, θ2]. Since type θgø is indifferent between these

choices, we must have m(θgø, θ2) = pg. Meanwhile, type θ2 must be the highest type that will be

induced to sell in t = 2. It must follow that θ2 = γ(θgø), where γ is defined in Definition A.1-(ii).

Thus we have the following conditions that determine the marginal types θgø and θ2:

θ2 = γ(θgø); (C.1)

pg = m(θgø, γ(θgø)). (C.2)

By Lemma A.1, θgø and θ2 are uniquely determined by pg. Moreover, since both γ(θ) and

m(θ, γ(θ)) are differentiable and increasing in θ, we have d
dpg
θgø > 0. The case in which all firms

sell to the government in t = 1 (i.e., θgø = 1) can be supported if and only if pg ≥ m(1, γ(1)) = 1.

The reason is the following. Applying the same argument used to prove Lemma 1, one can easily

see that the worst off-the-path belief consistent with D1 for a deviator (one who holds out) is
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θgø = 1. Given the belief, no firm deviates if and only if pg ≥ m(1, γ(1)) = 1. Since we restrict

pg ≤ 1, such a case (θgø = 1) can be observed only if pg = 1.

In addition, the SBS equilibrium requires that types θ ∈ [0, θgø] cannot sell in t = 2, hence

m(0, θgø) < I. (C.3)

Furthermore, either of the following constraints on θgø must hold:

θgø < I, (C.4)

θgø −m(θgø, γ(θgø)) + S ≤ 0. (C.5)

To see why, suppose the t = 1 market opens after the bailout and a buyer deviates and

offers p′1 ≥ I. Since the belief in t = 1 is that only the types θ > θgø are available for asset sales,

the firms accepting p′1 are assigned the off-the-path belief as being the worst of the available

types (i.e., θ = θgø).

First, suppose θgø < I. Given the off-the-path belief, firms that deviate and sell at price

p′1 cannot sell in t = 2, hence the total payoff from the deviation equals p′1 + S + θ. Clearly p′1 >

m(θgø, γ(θgø)) for, otherwise, the deviating firms will not sell at p′1. But if p′1 > m(θgø, γ(θgø)),

then all types θ ∈ (θgø, (p
′
1 + S) ∧ 1] will sell at p′1, and m(θgø, (p

′
1 + S) ∧ 1) − p′1 > 0 from the

definition of γ(·). Thus no buyers in t = 1 deviate if θgø < I.

Second, suppose θgø ≥ I. Given the off-the-path belief above, firms selling at p′1 can sell at

price θgø in t = 2. Thus the total payoff to the deviating firm is p′1 +S + max{θ, θgø +S}. In the

above, we showed that p′1 > m(θgø, γ(θgø)) is not possible. If p′1 ≤ m(θgø, γ(θgø)), then types θ >

θgø+S do not sell at p′1 since p′1+S+max{θ, θgø+S} = p′1+S+θ < θ+max{m(θgø, γ(θgø))+S, θ}.
On the contrary, types θ ∈ (θgø, θgø+S] sell at p′1 if and only if p′1+θgø+2S ≥ θ+m(θgø, γ(θgø))+S,

or equivalently p′1 ≥ θ+m(θgø, γ(θgø))− θgø− S. Let θ′1 := p′1 + (θgø−m(θgø, γ(θgø)) + S). Then

types θ ∈ (θgø, θ
′
1] sell to the deviating buyer, so the deviating buyer gets the expected payoff

m(θgø, θ
′
1) − p′1. Since

dθ′1
dp′1

= 1 and hence d
dp′1

(m(θgø, θ
′
1) − p′1) < 0, we have m(θgø, θ

′
1) − p′1 < 0

for any p′1 ≤ m(θgø, γ(θgø)) if and only if m(θgø, θ
′
1) − p′1 ≤ 0 at p′1 = m(θgø, γ(θgø)) − S. Since

m(θgø, θ
′
1)− p′1 = θgø −m(θgø, γ(θgø)) + S, we must have θgø −m(θgø, γ(θgø)) + S ≤ 0.

Let P SBS denote the range of pgs for which SBS equilibrium exists.

Lemma C.1. If P SBS in non-empty, it is a convex set such that pg > p∗0 for all pg ∈ P SBS.

Proof. Since m(θ, γ(θ)) is increasing in θ, θSBSgø (pg) is increasing in pg if θSBSgø is well-defined.
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Hence there exists p̃SBSg such that θSBSgø (pg) satisfies (C.3) if and only if pg < p̃SBSg . Furthermore,

since p∗0 = m(0, θ∗0) = m(0, γ(0)), we have pg > p∗0 for θSBSgø (pg) > 0. Lastly, since θ−m(θ, γ(θ))+S

is increasing in θ, there exists p̂SBSg such that: (i) if (C.4) binds but (C.5) does not, then

θSBSgø (pg) satisfies (C.4) if and only if pg < p̂SBSg ; (ii) if (C.5) binds but (C.4) does not, then

θSBSgø (pg) satisfies (C.5) if and only if pg ≤ p̂SBSg . Therefore, P SBS = (p∗0, p̃
SBS
g ) if (C.3) binds,

P SBS = (p∗0, p̂
SBS
g ] if (C.4) binds, and P SBS = (p∗0, p̂

SBS
g ) if (C.5) binds. Q.E.D.

For every pg ∈ P SBS, we let θSBSgø (pg) denote the marginal type determined by (C.2). For

expositional convenience, we may occasionally abbreviate θSBSgø (pg) to θSBSgø .

C.1.3 Necessary Conditions for MBS Equilibrium

In this equilibrium, there exist θg ∈ (0, θ2) and θ2 ≤ 1 such that: types θ ∈ [0, θg] sell to the

government at price pg in t = 1 and to the market at price m(0, θg) in t = 2; types θ ∈ (θg, θ2]

sell only in t = 2 at price m(θg, θ2); no asset trade occurs in the t = 1 market.

In equilibrium, the total payoffs for the firms are pg + m(0, θg) + 2S for all θ ∈ [0, θg],

θ + m(θg, θ2) + S for all θ ∈ (θg, θ2], and 2θ for all θ > θ2. For expositional ease, we treat the

case in which θ2 is interior (so it is characterized by an indifference condition). As one can see

clearly, our characterization also works for the boundary case θ2 = 1. From type θg’s indifference

condition, we have pg+m(0, θg)+S−θg−m(θg, θ2) = 0. Similarly, type θ2’s indifference condition

leads to θ2 = m(θg, θ2) + S = γ(θg). Thus we have the following conditions that determine θg

and θ2:

θ2 = γ(θg), (C.6)

pg = θg −m(0, θg)− S +m(θg, γ(θg)). (C.7)

Since θ−m(0, θ) +m(θ, γ(θ)) is continuous and increasing in θ, the marginal type θg is uniquely

determined by and increasing in pg. If pg is very large in that pg ≥ 1−m(0, 1)−S+m(1, γ(1)) =

2− E[θ]− S, then we assign θg = 1. Such an assignment is supported by the off-the-path belief

at the t = 2 market that the holdouts in t = 1 are perceived as the highest type θ = 1. Once

again, one can check this is the only belief that satisfies the D1 refinement.

In addition, the bailout recipients also sell in t = 2. Thus, we have

m(0, θg) ≥ I. (C.8)

Furthermore, the t = 1 market freezes completely. From the analysis of SBS equilibrium (recall
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(C.4) and (C.5)), we showed that the t = 1 market freezes fully if and only if either θg < I or

θg −m(θg, γ(θg)) + S ≤ 0. Since θg > m(0, θg) ≥ I from (C.8), the latter condition must hold:

θg −m(θg, γ(θg)) + S ≤ 0. (C.9)

Lastly, all types θ ∈ [0, θg] sell assets at price m(0, θg) in t = 2. Thus we must have θg ≤
m(0, θg) + S, or equivalently

θg ≤ θ∗0. (C.10)

Lemma C.2. There exist pMBS
g

≤ pMBS
g such that (C.7) admits a unique θg that satisfies (C.8)

– (C.10) if and only if pg ∈ [pMBS
g

, pMBS
g ].

Proof. Since θ −m(0, θ) +m(θ, γ(θ))− S is increasing in θ, θMBS
g (pg) is increasing in pg if well-

defined. Moreover, since m(0, θ) is increasing in θ, there exists pMBS
g

such that θMBS
g (pg) is well-

defined and satisfies (C.8) if and only if pg ≥ pMBS
g

. Furthermore, since θ−m(0, θ)+S is increasing

in θ, there exists pMBS
g such that θMBS

g (pg) (if well-defined) satisfies (C.9) and (C.10) if and only

if pg ≤ pMBS
g . Putting all these results together, we have PMBS = [pMBS

g
, pMBS

g ]. Q.E.D.

For every pg ∈ [pMBS
g

, pMBS
g ], we let θMBS

g (pg) denote the marginal type θg determined

by (C.7). For expositional convenience, we may abbreviate θMBS
g (pg) to θMBS

g . We also let

PMBS := [pMBS
g

, pMBS
g ].

C.1.4 Necessary Conditions for MR Equilibrium

In this equilibrium, a positive measure of firms sell to the market in t = 1 (in addition to a

positive measure of firms selling to the government). Bailout rejuvenates the t = 1 market.

There are two possible types of MR equilibria: MR1 in which Θg,Θ1,Θ2 6= ∅, but Θgø = ∅, and

MR2 in which Θg,Θ1,Θgø,Θ2 6= ∅.

MR1 equilibrium: In this equilibrium, there exist 0 < θg < θ1 ≤ θ2 ≤ 1 such that:

types θ ∈ [0, θg] sell to the government in t = 1, and to the market in t = 2 at price m(0, θg);

types θ ∈ (θg, θ1] sell to the market at price m(θg, θ1) in both periods; types θ ∈ (θ1, θ2] sell to

the market at price m(θ1, θ2) only in t = 2; types θ > θ2 do not sell in either period.

In equilibrium, firms’ total payoffs are pg +m(0, θg)+2S for all θ ∈ [0, θg], 2m(θg, θ1)+2S

for all θ ∈ (θg, θ1], θ+m(θ1, θ2) + S for all θ ∈ (θ1, θ2], and 2θ for all θ > θ2. From these payoffs,
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it is straightforward to see the three marginal types must satisfy relevant incentive constraints

(i.e., indifference in the case of an interior solution):

pg = 2m(θg, θ1)−m(0, θg); (C.11)

θ1 = max{θ ∈ [θg, 1] |m(θg, θ) + S − θ − (m(θ, γ(θ))−m(θg, θ)) ≥ 0}; (C.12)

θ2 = γ(θ1). (C.13)

(C.11) is the indifference condition for type-θg firm, (C.12) that for type-θ1 firm, and (C.13)

that that for type-θ2 firm. Assumption A.2-(i) ensures that θ1 is uniquely determined by θg. As

before (C.12) allows for the possibility that θ1 = 1. The D1 refinement suggests that if θ1 = 1,

the worst off-the-path belief for a deviating holdout firm is θ1 = 1, so (C.12) ensures that given

that belief, no firm wishes to deviate.

There are additional necessary conditions for the MR1 equilibrium. First, types θ ∈ [0, θg]

should be able to finance their projects in t = 2 (an implication of Lemma 2):

m(0, θg) ≥ I. (C.14)

Second, types θ ∈ (θ1, γ(θ1)] must prefer selling only in t = 2 to either selling to the market or

selling to the government in t = 1, which requires m(θ1, γ(θ1)) ≥ m(θg, θ1) and m(θ1, γ(θ1)) ≥ pg.

Since the first inequality holds trivially, we only state the second condition:

m(θ1, γ(θ1)) ≥ pg. (C.15)

The conditions (C.11) – (C.15) will be used later when characterizing the set of bailout terms

that support the MR1 equilibrium. One can also see that the same conditions are also sufficient

for MR1 to arise.

Lemma C.3.

(i) There exists p̌MR1
g such that (C.11) and (C.12) admit a unique (θg, θ1) that satisfies 0 <

θg < θ1 ≤ 1 if and only if pg > p̌MR1
g .

(ii) There exists pMR1
g
≥ p̌MR1

g such that θg determined by (C.11) and (C.12) satisfies (C.14) if

and only if pg ≥ pMR1
g

.

Proof. We first prove part (i). Given Assumption A.2-(iii), (C.11) defines θ1 as a decreasing

function of θg, labelled θ̃1(θg), whenever well-defined. Furthermore, given Assumption A.2-(i),
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0 θg

θ1
θ1 = max{θ > θg : 2m(θg , θ)− θ −m(θ, γ(θ)) + S ≥ 0}

pg = 2m(θg , θ1)−m(0, θg)

p′g = 2m(θg , θ1)−m(0, θg)

no intersection if pg is too low

p′g > pg

θMR1
1

θMR1
g

Figure 1 – Characterization of θMR1
g and θMR1

1

(C.12) defines θ1 as an increasing function of θg, labelled θI1(θg), whenever well-defined. In fact,

there exists θg < 1 such that θI1(θg) is well-defined if and only if θg > θg.
1 Therefore, (θg, θ1)

satisfying (C.11) and (C.12), if well-defined, is characterized by a unique point of intersection

between θ̃1(θg) and θI1(θg). Moreover, it can be shown that θ̃1(θg) shifts up as pg increases, which

is also illustrated in Figure 1. Lastly, one can find that there exists a pg ≤ 1 such that θ̃1(θg)

and θI1(θg) intersect.2 Putting all results together, there exists p̌MR1
g such that two curves θ̃1(θg)

and θI1(θg) intersect at a unique point if and only if pg > p̌MR1
g .

We next prove part (ii). Since θ̃1(θg) shifts up as pg increases, θg determined by (C.11)

and (C.12), is increasing in pg for all pg > pMR1
g

. Therefore, there exists pMR1
g
≥ p̌MR1

g such that

θg determined by (C.11) and (C.12) satisfies m(0, θg) ≥ I if and only if pg ≥ pMR1
g

. Q.E.D.

For any pg > p̌MR1
g , let θMR1

g (pg) and θMR1
1 (pg) denote the marginal types θg and θ1

determined by (C.11) and (C.12). For expositional convenience, we may abbreviate θMR1
g (pg)

and θMR1
1 (pg) to θMR1

g and θMR1
1 , respectively.

1From Assumption A.2-(i), θI1(θg) is well-defined if and only if θg −m(θg, γ(θg)) +S > 0. Since θ−m(θ, γ(θ))
is increasing in θ and 1−m(1, γ(1)) + S = S > 0, there exists θg < 1 such that θg −m(θg, γ(θg)) + S > 0 if and
only if θg > θg.

2To show this, we prove that there exists pg at which θ̃1(θg) = θI1(θg). From the definitions of θ̃1(·) and θI1(·),
θ̃1(θg) = θI1(θg) is equivalent to

pg = (θg −m(θg, γ(θg))− S) +m(θg, γ(θg)). (C.16)

Since θg < θ∗0 from Assumption A.2-(iv) and θg < 1, there exists pg < 1 that solves (C.16).
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MR2 equilibrium: In this equilibrium, there exist 0 < θg < θ1 < θgø ≤ θ2 ≤ 1 such

that: types θ ∈ [0, θg] sell to the government in t = 1 and to the market in t = 2 at price m(0, θg);

types θ ∈ (θg, θ1] sell to the market at price m(θg, θ1) in both periods; types θ ∈ (θ1, θgø] sell to

the government in t = 1 but do not sell in t = 2; types θ ∈ (θgø, θ2] sell at price m(θgø, θ2) only

in t = 2; types θ > θ2 do not sell in either period.

As before, (θg, θ1, θgø, θ2) must satisfy the following conditions:

pg = 2m(θg, θ1)−m(0, θg); (C.11)

θ1 = m(0, θg) + S; (C.17)

pg = m(θgø, γ(θgø)); (C.18)

θ2 = γ(θgø). (C.19)

Similar to the boundary case of the SBS equilibrium, the case in which all firms sell in t = 1

(i.e., θgø = 1) can be supported if and only if pg ≥ m(1, γ(1)) = 1. Indeed, the worst off-the-path

belief consistent with D1 for a deviator (one who holds out) is θgø = 1. Given this belief, no firm

deviates if and only if pg ≥ 1. Since we restrict pg ≤ 1, such a case (θgø = 1) can be observed

only for pg = 1.

As before, the marginal type θg must also satisfy (C.14). Note that (C.14) implies

m(θgø, γ(θgø)) > m(θg, θ1) > I.

Second, since Θgø 6= ∅, we must have

θ1 < θgø. (C.20)

Lemma C.4. There exist pMR2
g

and pMR2
g such that (C.11) and (C.17) admit a unique (θg, θ1)

that satisfies 0 < θg < θ1 and (C.14) if and only if pg ∈ [pMR2
g

, pMR2
g ).

Proof. Similar to the proof of Lemma C.3, (C.11) defines θ1 as a decreasing function of θg, labelled

θ̃1(θg), whenever well-defined. Moreover, (C.17) defines θ1 as an increasing function of θg, labelled

θII1 (θg), whenever well-defined. Therefore, (θg, θ1) satisfying (C.11) and (C.17), if well-defined,

is characterized by a unique point of intersection between θ̃1(θg) and θII1 (θg). Moreover, one can
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0 θg

θ1

θMR2
1

θMR2
g

θ1 = m(0, θg) + S

pg = 2m(θg , θ1)−m(0, θg)

p′g = 2m(θg , θ1)−m(0, θg)

p′g > pg

no intersection if pg is too low

no intersection if pg is too high

Figure 2 – Characterization of θMR2
g and θMR2

1

find that there exists pg ≤ 1 at which θ̃1(θg) and θII1 (θg) intersect.3 Since θ̃1(θg) shifts up as

pg increases, there exists p̌MR2
g such that (C.11) and (C.17) admit a unique (θg, θ1) satisfying

θg > 0 if and only if pg > p̌MR2
g . Furthermore, as depicted in Figure 2, θg determined by (C.11)

and (C.17) is increasing in pg for all pg > p̌MR2
g . Since θII1 (θg) ≤ θg for all θg ≥ θ∗0, there exists

pMR2
g > p̌MR2

g such that (θg, θ1) determined by (C.11) and (C.17) satisfies 0 < θg < θ1 if and only

if pg ∈ (p̌MR2
g , pMR2

g ). Lastly, there exists pMR2
g

> p̌MR2
g such that θg determined by (C.11) and

(C.17) satisfies (C.14) if and only if pg ≥ pMR2
g

. Q.E.D.

For any pg > p̌MR2
g , let θMR2

g (pg), θ
MR2
1 (pg), and θMR2

gø (pg) denote the marginal types θg,

θ1, and θgø determined by (C.11), (C.17), and (C.18). For expositional convenience, we may

abbreviate θMR1
g (pg), θ

MR1
1 (pg), and θMR2

gø (pg) to θMR1
g , θMR1

1 , and θMR2
gø , respectively.

Lemma C.5. Fix pg. Suppose both (θMR1
g (pg), θ

MR1
1 (pg)) and (θMR2

g (pg), θ
MR2
1 (pg)) are well-

defined at that pg. If the former violates (C.15), then the latter satisfies (C.20). Conversely, if

the former satisfies (C.20), then the latter violates (C.15).

Proof. We first establish some technical results used in the proof.

3We first show that if MR2 equilibrium exists, then it requires S < 1. Suppose to the contrary MR2 equilibrium
exists for some S ≥ 1. Then θII1 (θg) = 1 for all θg ≥ 0, so any (θg, θ1) satisfying (C.17) violates (C.20), a

contradiction. We next show that there exists pg at which θ̃1(0) = θII1 (0). From the definitions of θ̃1(·) and

θII1 (·), θ̃1(0) = θII1 (0) is equivalent to pg = 2m(0, S). Since 1 > S > 2m(0, S) from Assumption A.2-(v),

θ̃1(0) = θII1 (0) at pg = 2m(0, S) < 1. Thus, there is a unique point of intersection between θ̃1(θg) and θII1 (θg) for
any pg ∈ (2m(0, S), 1), as is also seen in Figure 2.
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Claim 1. Suppose θg and θ1 satisfy (C.11) and (C.12). Then θg and θ1 satisfy (C.15) if and

only if θ1 ≤ m(0, θg) + S.

Proof. Suppose there exist θg and θ1 determined by (C.11) and (C.12) that satisfy (C.15). Then

we have

θ1 ≤ 2m(θg, θ1)−m(θ1, γ(θ1)) + S

= pg +m(0, θg)−m(θ1, γ(θ1)) + S

= m(0, θg) + S + (pg −m(θ1, γ(θ1)))

≤ m(0, θg) + S,

where the first inequality follows from (C.12), the second equality follows from (C.11), and the

last inequality follows from (C.15). Conversely, one can show that if θg and θ1 satisfy (C.11) and

(C.12), then θ1 ≤ m(0, θg) + S is sufficient for them to satisfy (C.15). Q.E.D.

Claim 2. Suppose θg, θ1, and θgø satisfy (C.11), (C.17), and (C.18). Then θ1 and θgø satisfy

(C.20) if and only if 2m(θg, θ1)− θ1 −m(θ1, γ(θ1)) + S > 0.

Proof. Suppose there exist θg, θ1, and θgø that satisfy (C.11) – (C.18) and also (C.20). Then we

have

0 = m(0, θg)− θ1 + S

= 2m(θg, θ1)− θ1 − pg + S

= 2m(θg, θ1)− θ1 −m(θgø, γ(θgø)) + S

< 2m(θg, θ1)− θ1 −m(θ1, γ(θ1)) + S,

where the first equality follows from (C.17), the second equality follows from (C.11), the third

equality follows from (C.18), and the last inequality follows from (C.20). Conversely, one can

also show that if θg, θ1, and θgø satisfy (C.11) – (C.18), then 2m(θg, θ1)−θ1−m(θ1, γ(θ1))+S > 0

is sufficient for them to satisfy (C.20). Q.E.D.

Fix a pg at which both (θMR1
g (pg), θ

MR1
1 (pg)) and (θMR2

g (pg), θ
MR2
1 (pg)) are well-defined.

Recall θ̃1(θg), θ
I
1(θg), and θII1 (θg) from the proofs of Lemma C.3 and Lemma C.4, which are the

functions of θg corresponding to (C.11), (C.12), and (C.17), respectively.

If (θMR1
g (pg), θ

MR1
1 (pg)) violates (C.15), then we have θMR1

1 (pg) > m(0, θMR1
g (pg))+S from

Claim 1. This implies θ̃1(θMR1
g (pg)) > θII1 (θMR1

g (pg)). Furthermore, we have shown in Lemma C.4
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0 θg

θ1
θ1 = max{θ > θg : 2m(θg , θ)− θ −m(θ, γ(θ)) + S ≥ 0}

pg = 2m(θg , θ1)−m(0, θg)
θMR2
1

θMR2
g

θMR1
1

θMR1
g

θ1 = m(0, θg) + S

(a) θ̃1(θMR1
g ) > θII1 (θMR1

g ), or equivalently,

θ̃1(θMR2
g ) < θI1(θMR2

g )

0 θg

θ1
θ1 = max{θ > θg : 2m(θg , θ)− θ −m(θ, γ(θ)) + S ≥ 0}

pg = 2m(θg , θ1)−m(0, θg)

θMR2
1

θMR2
g

θMR1
1

θMR1
g

θ1 = m(0, θg) + S

(b) θ̃1(θMR1
g ) ≤ θII1 (θMR1

g ), or equivalently,

θ̃1(θMR2
g ) ≥ θI1(θMR2

g )

Figure 3 – pg ∈ PMR supports only one type of MR equilibria.

that θ̃1(θg) is decreasing in θg and θII1 (θg) is increasing in θg if they are well-defined. Thus we

have θMR1
g (pg) < θMR2

g (pg) and θMR1
1 (pg) > θMR2

1 (pg) as illustrated by Figure 3a. Moreover, we

have shown in the proof of Lemma C.3 that θI1(θg) is increasing in θg if it is well-defined. Hence,

we have θI1(θMR2
g (pg)) > θI1(θMR1

g (pg)) = θMR1
g (pg) > θMR2

1 (pg), which implies

2m(θMR2
g (pg), θ

MR2
1 (pg))− θMR2

1 (pg)−m(θMR2
1 (pg), γ(θMR2

1 (pg))) + S > 0.

Therefore, (θMR2
g (pg), θ

MR2
1 (pg)) satisfies (C.20) by Claim 2.

Conversely, If (θMR1
g (pg), θ

MR1
1 (pg)) satisfies (C.15), we have θMR1

1 (pg) ≤ m(0, θMR1
g (pg))+

S from Claim 1. This implies θ̃1(θMR1
g (pg)) ≤ θII1 (θMR1

g (pg)). Since θ̃1(θg) is decreasing in θg

and θII1 (θg) is increasing in θg if θ̃1 and θII1 are well-defined, we have θMR1
g (pg) ≥ θMR2

g (pg) and

θMR1
1 (pg) ≤ θMR2

1 (pg) as illustrated by Figure 3b. When θMR1
1 (pg) < 1, we have 2m(θMR1

g , θMR1
1 )−

θMR1
1 −m(θMR1

1 , γ(θMR1
1 )) + S = 0. Then, by Assumption A.2-(i), we have

2m(θMR2
g (pg), θ

MR2
1 (pg))− θMR2

1 (pg)−m(θMR2
1 (pg), γ(θMR2

1 (pg))) + S ≤ 0,

which implies that (θMR2
g (pg), θ

MR2
1 (pg)) violates (C.20) by Claim 2. When θMR1

1 (pg) = 1, we
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must have θMR2
1 (pg) = 1: otherwise, we have θMR1

1 (pg) > m(0, θMR2
g (pg)) + S. This implies

1 = θMR2
1 (pg) ≥ θMR2

gø (pg). Then (θMR2
1 (pg), θ

MR2
gø (pg)) violates (C.20). Q.E.D.

The following observation follows immediately from the above.

Corollary C.1. At most one of MR1 and MR2 exists for any given pg.

In what follows, we characterize the range of bailout terms that admit either type of MR

equilibria, denoted by PMR. Specifically, we show that PMR is a convex set.

Lemma C.6. PMR is a convex set, whenever it is non-empty.

Proof.

Step 1. MR equilibrium cannot exist for any pg ≥ pMR2
g .

Fix pg ≥ pMR2
g . Clearly, MR2 cannot exist by Lemma C.4. Suppose (θMR1

g (pg), θ
MR1
1 (pg))

exists and satisfies θMR1
1 (pg) ≤ m(0, θMR1

g (pg)) + S, which is equivalent to θ̃1(θMR1
g (pg)) ≤

θII1 (θMR1
g (pg)), where θ̃1 and θII1 are functions of θg corresponding to (C.11) and (C.17) re-

spectively, as in the proof of Lemma C.4. Recall also that θ̃1(θg) is decreasing in θg and θII1 (θg)

is increasing in θg. These properties imply that (θMR2
g (pg), θ

MR2
1 (pg)) also exists at the same pg

as depicted by Figure 3b, a contradiction to Corollary C.1. Therefore, if (θMR1
g (pg), θ

MR1
1 (pg))

exists, we must have θMR1
1 (pg) > m(0, θMR1

g (pg)) +S. By Lemma C.5, the last inequality implies

(θMR1
g (pg), θ

MR1
1 (pg)) violates (C.15), so MR1 cannot exist, a contradiction.

Step 2. MR equilibrium exists for every pg ∈ (pMR1
g

, 1] ∩ [pMR2
g

, pMR2
g ).

Fix pg ∈ (pMR1
g

, 1]∩ [pMR2
g

, pMR2
g ). By Lemma C.3 and C.4, both (θMR1

g (pg), θ
MR1
1 (pg)) and

(θMR2
g (pg), θ

MR2
1 (pg)) are well-defined. Furthermore, both θMR1

g (pg) and θMR2
g (pg) satisfy (C.14).

If θMR1
1 (pg) ≤ m(0, θMR1

g (pg)) + S, then by Claim 1, (θMR1
g (pg), θ

MR1
1 (pg)) satisfies (C.15), and

MR1 exists. Otherwise, by Lemma C.5, (θMR2
g (pg), θ

MR2
1 (pg)) satisfies (C.20), and MR2 exists.

Step 3. If pMR1
g

< pMR2
g

, then MR1 exists for every pg ∈ (pMR1
g

, pMR2
g

).

Fix pg ∈ (pMR1
g

, pMR2
g

). Since pg > pMR1
g

, it follows from Lemma C.3 that there exists

(θMR1
g (pg), θ

MR1
1 (pg)) that satisfies m(0, θMR1

g (pg)) ≥ I. Suppose θMR1
1 (pg) > m(0, θMR1

g (pg))+S,

or equivalently, θ̃1(θMR1
g (pg)) > θII1 (θMR1

g (pg)). Since pg < pMR2
g , the inequality θ̃1(θMR1

g (pg)) >

θII1 (θMR1
g (pg)) and Lemma C.4 ensure that (θMR2

g (pg), θ
MR2
1 (pg)) is well-defined. The same in-

equality also implies θMR2
g (pg) > θMR1

g (pg), as is seen in Figure 3a. However, θMR2
g (pg) > θMR1

g (pg)
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implies m(0, θMR2
g (pg)) > m(0, θMR1

g (pg)) ≥ I, which contradicts pg < pMR2
g

. We thus conclude

that θMR1
1 (pg) ≤ m(0, θMR1

g (pg)) + S. By Lemma C.5, (θMR1
g (pg), θ

MR1
1 (pg)) satisfies (C.15), so

MR1 exists.

Step 4. Suppose pMR2
g
≤ pMR1

g
< pMR2

g , then MR equilibrium exists for every pg ∈ [pMR2
g

, pMR1
g

]

if and only if

2m(θMR2
g (pMR2

g
), θMR2

1 (pMR2

g
))− θMR2

1 (pMR2

g
)−m(θMR2

1 (pMR2

g
), γ(θMR2

1 (pMR2

g
))) + S ≥ 0

(C.21)

The proof is tedious and therefore omitted, but it is available from the authors.

Step 5. Suppose pMR1
g

≥ pMR2
g . Proceeding similarly as in Step 4 and applying Step 1 and 2,

one can find that every pg ∈ [pMR2
g

, pMR2
g ) supports MR equilibrium if (C.21) holds, but no

pg ∈ [pMR2
g

, pMR2
g ) supports MR equilibrium otherwise.

Combining all the results above together, we conclude that: PMR = (pMR1
g

, pMR2
g ) if

pMR1
g

< pMR2
g

; PMR = [pMR2
g

, pMR2
g ) if pMR1

g
∈ [pMR2

g
, pMR2

g ) and (C.21) holds; PMR = (pMR1
g

, pMR2
g )

if pMR1
g
∈ [pMR2

g
, pMR2

g ) but (C.21) does not hold; PMR = [pMR2
g

, pMR2
g ) if pMR1

g
≥ pMR2

g and (C.21)

holds; PMR = ∅ if pMR1
g
≥ pMR2

g but (C.21) does not hold. Q.E.D.

The following lemma describes an important property of PMR, which will be used in the

proof of Theorem 3.

Lemma C.7. If PMBS 6= ∅ and PMR 6= ∅, then supPMBS = inf PMR.

Proof. Recall from Lemma C.2 that supPMBS = pMBS
g . Since the condition (C.10) binds at

pg = pMBS
g , we have

θMBS
g (pMBS

g )−m(θMBS
g (pMBS

g ), γ(θMBS
g (pMBS

g ))) + S = 0. (C.22)

It follows that θMBS
g (pMBS

g ) = θg, where θg, as defined in the proof of Lemma C.3-(i), is a lower

bound of θg such that (C.12) is well-defined. Since θMBS
g (pg) satisfies (C.7), (C.22) also implies

pMBS
g = 2θMBS

g (pMBS
g )−m(0, θMBS

g (pMBS
g )) = 2m(θMBS

g (pMBS
g ), θMBS

g (pMBS
g ))−m(0, θMBS

g (pMBS
g )).

(C.23)
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Since θMBS
g (pMBS

g ) = θg, (C.23) implies that (θMR1
g (pg), θ

MR1
1 (pg)), the unique intersection be-

tween two curves θ̃1(θg) and θI1(θg), exists if and only if pg > pMBS
g , and thus pMBS

g = p̌MR1
g .

Since θI1(θg), if well-defined, is increasing in θg, θ
MR1
g (pg)−m(θMR1

g (pg), γ(θMR1
g (pg)))+S >

0 for all pg > p̌MR1
g . Since θ−m(θ, γ(θ)) is increasing in θ, we have θMR1

g (pg) > θMBS
g (pMBS

g ) for

all pg > pMBS
g = p̌MR1

g from (C.22). By (C.8), we have m(0, θMR1
g (pg)) > I for all pg > p̌MR1

g ,

which implies pMBS
g = pMR1

g
by Lemma C.3. Furthermore, that pMBS

g = p̌MR1
g implies that even if

(θMR2
g (pg), θ

MR2
1 (pg)) exists for some pg ≤ pMBS

g , we have θMR2
g (pg)−m(θMR2

g (pg), γ(θMR2
g (pg)))+

S ≤ 0. Thus

2m(θMR2
g (pg), θ

MR2
1 (pg))− θMR2

1 (pg)−m(θMR2
1 (pg), γ(θMR2

1 (pg))) + S < 0,

where the strict inequality follows from Assumption A.2-(i). Hence, (θMR2
g (pg), θ

MR2
1 (pg)) violates

(C.20) by Claim 2. Therefore, we have inf PMR = pMR1
g

, and thus pMBS
g = pMR1

g
= inf PMR.

Q.E.D.

C.1.5 Necessary Conditions for Equilibria under the Market Shutdown in t = 1

In equilibrium, there exist θg ∈ (0, θ2) and θ2 ≤ 1 such that types θ ∈ [0, θg] sell to the government

at price pg in t = 1 and sell to the market at price m(0, θg ∧ θ∗0) in t = 2 if m(0, θg) ≥ I; and

types θ ∈ (θg, θ2) sell only in t = 2 at price m(θg, θ2).

As before, we derive conditions for such an equilibrium to exist. There are three types of

equilibria: (i) m(0, θg) < I; (ii) m(0, θg) ≥ I and θg ≤ θ∗0; (iii) θg > θ∗0.

In case (i), types θ ∈ [0, θg] cannot sell in t = 2. Thus, as in SBS, we must have:

θ2 = γ(θg),

pg = m(θg, γ(θg)),

s.t. m(0, θg) < I,

which are same the as (C.1) – (C.3). However, the conditions (C.4) and (C.5) are no longer

necessary since t = 1 market is shut down. With the D1 refinement, the case θg = 1 arises if and

only if pg ≥ m(1, γ(1)) = 1 and E[θ] = m(0, 1) < I.

In case (ii), all types θ ∈ [0, θg] sell in t = 2 at price m(0, θg). Since this equilibrium has
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the same structure as MBS equilibrium, θg and θ2 satisfy

θ2 = γ(θg),

pg +m(0, θg) + S = θg +m(θg, γ(θg)),

subject to

m(0, θg) ≥ I,

θg ≤ θ∗0,

which are the same as (C.6) – (C.8) and (C.10). Given that the t = 1 market is shut down, the

condition (C.9) is no longer necessary. With the D1 refinement, the case θg = 1 can be supported

if and only if pg ≥ 1 +m(1, γ(1))−m(0, 1)− S = 2− E[θ]− S and θ∗0 = 1.

Lastly, consider case (iii), where types θ ∈ [0, θg] sell to the government in t = 1, but only

types θ ∈ [0, θ∗0] sell at price m(0, θ∗0) in t = 2. In this equilibrium, θg and θ2 satisfy

θ2 = γ(θg),

pg = m(θg, γ(θg)),

s.t. θg > θ∗0.

With the D1 refinement, the case θg = 1 can be supported if and only if pg ≥ m(1, γ(1)) = 1.

Using the conditions above and proceeding similarly as in the proof of Theorem 3-(ii)

below, one can show that the above conditions on θg and θ2 are also sufficient to support each

type of the equilibria. For later use, we let θsdg (pg) denote the marginal types satisfying the

conditions for each alternative type of equilibria. To avoid expositional complexity, θsdg (pg) can

be occasionally abbreviated to θsdg . Note that θsdg (pg) is continuous and increasing in pg if θsdg (pg)

is well-defined at such pg.

C.2 Proofs of Theorem 3 and Proposition 2 – 4

Theorem 3. There exists an interval of bailout terms P k ⊂ R+ that supports alternative equi-

librium types k = NR,SBS,MBS,MR, described as follows:

(i) No Response (NR): If pg ∈ PNR, then there exists an equilibrium in which no firm

accepts the government offer and the outcome in Theorem 2 prevails.
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(ii) No Market Rejuvenation

• Severe Bailout Stigma (SBS): If pg ∈ P SBS, then there exists an equilibrium with

Θg = Θ1 = ∅,Θgø,Θ2 6= ∅.

• Moderate Bailout Stigma (MBS): If pg ∈ PMBS, then there exists an equilibrium

with Θg,Θ2 6= ∅,Θ1 = Θgø = ∅.

(iii) Market Rejuvenation (MR): If pg ∈ PMR, then there exists an equilibrium with Θ1 6= ∅.

Specifically, PNR = [0, p∗2], inf P SBS = p∗0, and supPMBS ≤ inf PMR, meaning an MR equilib-

rium requires a strictly higher pg than does an MBS equilibrium.

Proof of Theorem 3. We first state a lemma that will be used in the proof.

Lemma C.8. Suppose buyers in t = 2 believe that types θ ∈ [a, b] offer assets for sale. Then

buyers offer the price m(a, γ(a) ∧ b). If m(a, γ(a) ∧ b) ≥ I, then types θ ∈ [a, γ(a) ∧ b] sell their

assets. If m(a, γ(a) ∧ b) < I, then the t = 2 market fully freezes.

Proof. See Proposition 1 of Tirole (2012). Q.E.D.

Proof of Theorem 3-(i).

Suppose pg ≤ p∗2. Recall p∗2 is defined in Theorem 2-(i). Consider the strategies specified in

Theorem 3-(i). The beliefs on the equilibrium path are given by the Bayes’ rule. The off-the-path

belief for firms which accept the bailout in t = 1 is θ = 0, and such a belief satisfies D1. Given

these beliefs, type θ’s payoff from accepting the bailout is pg + S + θ. If θ ∈ [0, θ∗1], then we have

2p∗1 + 2S ≥ θ+ p∗2 +S ≥ pg +S + θ. If θ ∈ (θ∗1, 1], then we have θ+ max{θ, p∗2 +S} ≥ pg +S + θ.

In either case, it is not profitable to accept the bailout. Hence the NR equilibrium exists for all

pg ∈ [0, p∗2].

Proof of Theorem 3-(ii).

Consider first the SBS equilibrium. As we saw in Section C.1.2, given pg ∈ P SBS, there

exist θgø = θSBSgø (pg) and θ2 = γ(θSBSgø (pg)) that satisfy (C.3) – (C.5).

We show that the prescribed equilibrium strategies are optimal for all types of firms.

Consider t = 2. For bailout recipients, the t = 2 market fully freezes since m(0, θgø) < I

from (C.3). For t = 1 holdouts, the t = 2 market offer is m(θgø, γ(θgø)). Given this, types

θ ∈ (θgø, γ(θgø)] sell in t = 2, but types θ > γ(θgø) do not since θ ≤ m(θgø, γ(θgø)) + S ⇐⇒
θ ≤ γ(θgø). Consider now t = 1. Type-θ firm receives payoff pg + S + θ from accepting the
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bailout and θ + max{m(θgø, γ(θgø)) + S, θ} from rejecting it. Since pg = m(θgø, γ(θgø)) from

(C.2), playing the prescribed equilibrium strategy in t = 1 is optimal for every type θ ∈ [0, 1].

Given the equilibrium strategies chosen by firms, it is straightforward to see that the equilibrium

price offers are also optimal and buyers break even.

Next consider the MBS equilibrium. As we saw in Section C.1.3, for every pg ∈ PMBS,

the marginal types θg = θMBS
g (pg) and θ2 = γ(θMBS

g (pg)) satisfy (C.8) – (C.10). Using these

conditions and proceeding similarly as in the SBS equilibrium, it is easy to show that the pre-

scribed equilibrium strategies are optimal for all types of firms, and the equilibrium price offers

are optimal for buyers in the market. What remains to show is that it is optimal for types

θ ∈ [0, θg] to sell at price m(0, θg) in t = 2 after accepting the bailout, and for buyers in t = 2

to offer the price m(0, θg) to the bailout recipients. But these follow immediately from (C.8),

(C.10), and Lemma C.8.

Proof of Theorem 3-(iii).

Consider the MR1 equilibrium first. Consider pg ∈ PMR such that there exist θg =

θMR1
g (pg), θ1 = θMR1

1 (pg), and θ2 = γ(θMR1
1 (pg)) that satisfy (C.14) and (C.15).

We first show that it is optimal for each type of firms to play the prescribed equilibrium

strategies. Consider t = 2 on the equilibrium path. Since m(0, θg) ≥ I from (C.14), θg <

θ1 ≤ m(0, θg) + S < m(θg, θ1) + S from (C.15) and Claim 1, and γ(θ1) ≤ m(θ1, γ(θ1)) + S from

Definition A.1-(ii), it is optimal for types θ ∈ [0, θg] to sell at price m(0, θg), types θ ∈ (θg, θ1]

to sell at price m(θg, θ1), and types θ ∈ (θ1, γ(θ1)] to sell at price m(θ1, γ(θ1)). However, types

θ ∈ (γ(θ1), 1] do not sell since θ > m(θ1, γ(θ1)) + S for all θ > γ(θ1) from Lemma A.1-(i). Next

consider t = 1. Accepting the bailout is optimal for types θ ∈ [0, θg] since

pg +m(0, θg) + 2S = 2m(θg, θ1) + 2S ≥ θ +m(θ1, γ(θ1)) + S, (C.24)

where the first equality follows from (C.11) and the second inequality is from (C.12). From (C.24),

it is also optimal for types θ ∈ (θg, θ1] to sell at price m(θg, θ1). Lastly, since 2m(θg, θ1) + 2S <

θ + max{θ,m(θ1, γ(θ1)) + S} for all θ > θ1, it is optimal for types θ ∈ (θ1, 1] not to sell in t = 1.

Next, we show that the equilibrium price offers are optimal for buyers in each period. The

optimality of t = 2 prices directly follows from Lemma C.8, so we consider only t = 1. We show

below that no buyer benefits by deviating from offering m(θg, θ1). In t = 1, buyers believe that

only types θ > θg are available for asset sales to the market. Suppose a buyer deviates and offers

p′ 6= m(θg, θ1). Any firm that accepts this offer is assigned the off-the-path belief that it is the

worst available type, i.e., θ = θg. This belief is consistent with D1. Given this belief, any such
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firm will be offered price p2 = θg in t = 2. Since θg > m(0, θg) ≥ I, the deviating firm enjoys the

total payoff p′ + S + max{θ, θg + S}.

There are two possibilities, either 2m(θg, θ1) − θg ≥ m(θ1, γ(θ1)) or 2m(θg, θ1) − θg <

m(θ1, γ(θ1)). Consider the former case. If p′ ≤ m(θ1, γ(θ1)) ≤ 2m(θg, θ1) − θg, we have

2m(θg, θ1)+2S ≥ θ1 +p′+S, 2m(θg, θ1)+2S ≥ p′+θg+2S, and p′+S+θ ≤ θ+m(θ1, γ(θ1))+S.

Therefore, no type θ ∈ (θg, 1] will sell at such p′. If p′ > m(θ1, γ(θ1)), then we have 2m(θg, θ1) +

2S < θ1 + p′ + S. Letting θ̃ := 2m(θg, θ1) + S − p′ < θ1, all types θ ∈ (θ̃, (p′ + S) ∧ 1] sell at p′.

However, by definition of γ(·), we have m(θ̃, (p′ + S)∧ 1)− p′ < m(θ1, (p
′ + S)∧ 1)− p′ < 0, and

thus the deviating buyer will make a loss by offering p′ 6= m(θg, θ1).

Consider the latter case next. If p′ ∈ (2m(θg, θ1) − θg,m(θ1, γ(θ1))], then types θ ≤
(θg, θ

′ ∧ 1] will sell at p′, where θ′ := p′ −m(θ1, γ(θ1)) + θg + S. Since limp′→2m(θg ,θ1)−θg θ
′ = θ1,

we have

lim
p′→2m(θg ,θ1)−θg

(m(θg, θ
′ ∧ 1)− p′) = m(θg, θ1)− (m(θg, θ1) + (m(θg, θ1)− θg)) < 0.

Moreover, since dθ′

dp′
= 1 and ∂

∂b
m(a, b) < 1 for any 0 ≤ a ≤ b ≤ 1 from Lemma A.1-(i), we

have d
dp′

(m(θg, θ
′ ∧ 1) − p′) ≤ 0 for all p′ ∈ (2m(θg, θ1) − θg,m(θ1, γ(θ1))]. As a result, it is not

profitable for the buyers to offer any p′ ∈ (2m(θg, θ1) − θg,m(θ1, γ(θ1))]. If p′ > m(θ1, γ(θ1)),

then all types θ ∈ (θg, (p
′+S)∧ 1] will sell at p′. Since p′ > m(θ1, γ(θ1)) > m(θg, γ(θg)), we have

m(θg, (p
′ + S)∧ 1)− p′ < 0 for all p′ > m(θ1, γ(θ1)). Hence, the deviating buyer will make a loss

by offering p′. If p′ ≤ 2m(θg, θ1)− θg, then, as shown before, types θ > θg will not sell at such p′.

Consequently, all buyers in t = 1 optimally offer m(θg, θ1).

We now turn to the MR2 equilibrium. Suppose MR2 exists at pg ∈ PMR. Then, by

Lemma C.6, there exist θg = θMR2
g (pg), θ1 = θMR1

1 (pg), θgø = θMR2
gø (pg), and θ2 = γ(θMR2

gø (pg))

satisfying (C.14) and (C.20).

First, we show that it is optimal for each type of firms to play the prescribed equilibrium

strategies. Consider t = 2 first. Since θ1 = m(0, θg) + S from (C.17), we have θg < θ1 =

m(0, θg) +S, θ1 = m(0, θg) +S < m(θg, θ1) +S, and θ > m(0, θg) +S for all θ > θ1. Therefore it

is optimal for types θ ∈ [0, θg] to sell at price m(0, θg), but types θ ∈ (θ1, θgø] not to sell at that

price. Furthermore, it is optimal for types θ ∈ (θg, θ1] to sell at price m(θg, θ1). Finally, from the

definition of γ(·), it is optimal for types θ ∈ (θgø, γ(θgø)] to sell at price m(θgø, γ(θgø)), but types

θ ∈ (γ(θgø), 1] not to sell at that price. Consider next t = 1. From (C.11), (C.17), and (C.18),
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we have

pg +m(0, θg) + 2S = 2m(θg, θ1) + 2S ≥ θ + pg + S = θ +m(θgø, γ(θgø)) + S,

where the inequality holds strictly if and only if θ ∈ [0, θ1). This inequality implies the prescribed

equilibrium strategies are optimal for all types θ ∈ [0, θ1]. For all θ > θ1, the above inequality is

reversed. Thus it is optimal for types θ ∈ (θ1, θgø] to accept the bailout and for types θ ∈ (θgø, 1]

not to sell in t = 1.

Next, we show that the equilibrium price offers are also optimal for buyers in the market.

Consider the t = 2 market first. On the equilibrium path, buyers believe that types θ ∈ [0, θg] ∪
(θ1, θgø] accept the bailout in t = 1, types θ ∈ (θg, θ1] sell to the t = 1 market, and types

θ ∈ (θgø, 1] do not sell in t = 1. By Lemma C.8, it is optimal for the t = 2 buyers to offer

m(θg, θ1) to the second types and m(θgø, γ(θgø)) to the the third types. It remains to show that

it is optimal for the t = 2 buyers to offer m(0, θg) to types θ ∈ [0, θg]∪ (θ1, θgø]. Suppose a buyer

deviates and offers p′ 6= m(0, θg). By Lemma C.8, it can be shown that p′ < m(0, θg) cannot

be an equilibrium strategy. Suppose now p′ > m(0, θg). If p′ ≤ θ1 − S, then p′ can attract

types θ ∈ [0, θg] at most, resulting in a loss to the deviating buyer. If p′ > θ1 − S, then types

θ ∈ [0, θg]∪ (θ1, θ
′] sell assets at p′, where θ′ := (p′+S)∧θgø. Thus the deviating buyer’s payoff is

m̊(0, θg, θ1, θ
′)− p′ (see Definition A.1-(iii) for the definition of m̊(a, b, c, d)). From the definition

of θ′, we have limp′→m(0,θg) θ
′ = θ1. Since ∂

∂θ′
m̊(0, θg, θ1, θ

′) < 1 from Lemma A.1-(iii), we have

m̊(0, θg, θ1, θ
′)−p′ < 0 for any p′ > m(0, θg). Thus any deviation p′ 6= m(0, θg) results in a loss to

the deviating buyer, and thus the offer m(0, θg) to the firms accepting the bailout in the previous

period is optimal for buyers.

To complete the proof, we need to show that it is optimal for buyers to offer m(θg, θ1) in

t = 1. Suppose a buyer deviates to p′ 6= m(θg, θ1). The off-the-path belief assigned to the firms

accepting p′ (consistent with the D1 refinement) is that they are the type θ = θg with probability

1. Since θg > m(0, θg) ≥ I from (C.14), these firms can sell in t = 2 at price θg > I after selling

at the deviation price p′ in t = 1, and thus get the payoff p′ + S + max{θ, θg + S}.

If p′ > m(θgø, γ(θgø)), then all types θ ∈ (θgø, (p
′+S)∧1] will sell at price p′ in t = 1 since

θ + p′ + S > θ + m(θgø, γ(θgø)) + S. Moreover, some types θ ∈ (θg, θ1] may also sell at p′. Since

(2m(θg, θ1) + 2S)− (θ+ p′+S) is decreasing in θ, there exists a θ̃ such that types θ ∈ (θ̃, θ1] will

sell at p′. The deviating buyer’s payoff is then m̊(θ̃, θ1, θgø, (p
′ + S) ∧ 1)− p′. However, we have

m̊(θ̃, θ1, θgø, (p
′+S)∧1)−p′ < m(θgø, (p

′+S)∧1)−p′ < 0, where the last inequality follows from

the definition of γ(·) and the condition p′ > m(θgø, γ(θgø)). If p′ ∈ (2m(θg, θ1)−θg,m(θgø, γ(θgø))]

(and if such an interval is not empty), we have p′ + θg + 2S > 2m(θg, θ1) + 2S. This inequality
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implies that types θ ≤ (θg, θ1]∪ (θgø, θ
′] sell at p′ in t = 1, where θ′ := p′+θg +S−m(θgø, γ(θgø)).

Thus the deviating buyer’s payoff is m̊(θg, θ1, θgø, θ
′)−p′. However, since limp′→2m(θg ,θ1)−θg θ

′ = θ1,
dθ′

dp′
= 1, and ∂

∂θ′
m̊(θg, θ1, θgø, θ

′) < 1, we have m̊(θg, θ1, θgø, θ
′)− p′ < 0 for any p′ ∈ (2m(θg, θ1)−

θg,m(θgø, γ(θgø))], resulting in a loss to the deviating buyer. If p′ ≤ 2m(θg, θ1)−θg, then we have

p′+ θg + 2S ≤ 2m(θg, θ1) + 2S, so p′ will not be accepted by any type. Put together, we conclude

that it is optimal for the t = 1 market buyers to offer m(θg, θ1).

The proof of supPMBS ≤ inf PMR for the case PMR, PMBS 6= ∅ is referred to Lemma C.7.

Finally, it follows immediately from Corollary C.1 that any pg ∈ PMR can support at most one

type of MR equilibrium. Q.E.D.

Proposition 2.

(i) (Dampened initial responses) Fix pg ≥ max{p∗0, I}. In any equilibrium, the trade volume in

t = 1 is (weakly) smaller than the trade volume F (pg + S) in the one-shot model.

(ii) (Positive net gains) The total trade volume is higher with a bailout than without, if either

MBS, MR1, or MR2 equilibrium would prevail under a bailout. The same holds even when

an SBS equilibrium arises from a bailout if the t = 1 market fully freezes without a bailout.

(iii) (Delayed benefits) The t = 2 trade volume is higher with a bailout than without, if either

MBS or MR1 equilibrium would prevail under a bailout.

(iv) (Discontinuous effects) Let Φ(pg) denote the set of total trade volumes that would result

from some equilibrium given bailout pg ∈ [I, 1]. The correspondence Φ(·) does not admit a

selection that is continuous in pg.

Proof of Proposition 2.

Proof of Proposition 2-(i).

First consider the SBS equilibrium. Since θSBSgø < γ(θSBSgø ) ≤ m(θSBSgø , γ(θSBSgø )) + S =

pg + S from (C.2), we have θSBSgø < (pg + S) ∧ 1. The statement thus follows. Next consider the

MBS equilibrium. Since θMBS
g > 0, we have m(0, θMBS

g ) < m(θMBS
g , γ(θMBS

g )), which implies

θMBS
g < (pg + S) ∧ 1 by (C.7). Third, consider the MR1 equilibrium. By Claim 1 within the

proof of Lemma C.5, we have θMR1
1 ≤ m(0, θMR1

g ) + S. Moreover, it follows from (C.11) that

pg = m(θMR1
g , θMR1

1 )+(m(θMR1
g , θMR1

1 )−m(0, θMR1
g )) > m(θMR1

g , θMR1
1 ) > m(0, θMR1

g ). Therefore,
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θMR1
1 ≤ m(0, θMR1

g ) + S < (pg + S) ∧ 1, as was to be shown. Lastly, in the MR2 equilibrium,

θMR2
gø < (pg + S) ∧ 1 since θMR2

gø < m(θMR2
gø , γ(θMR2

gø )) + S.

Proof of Proposition 2-(ii).

Recall from Theorem 2 that θ∗1 is the marginal type selling in t = 1 in the equilibrium

without bailout.

First, consider the MBS equilibrium. By (C.9), the MBS equilibrium can exist only if θ−
m(θ, γ(θ))+S < 0 for some θ > 0, thereby implying 0−m(0, γ(0))+S < 0 since θ−m(θ, γ(θ))+S

is increasing in θ. Thus we have 2m(0, θ) − θ − m(θ, γ(θ)) + S < θ − m(θ, γ(θ)) + S < 0 for

all θ > 0, hence θ∗1 = 0 from Assumption A.2-(i) (i.e., t = 1 freezes absent bailout). Thus the

total volume of trade in the absence of bailout is F (γ(0)) = F (θ∗0) (i.e., the trade occurs only

in t = 2). Since F (θMBS
g ) + F (γ(θMBS

g )) > F (0) + F (γ(0)) = F (θ∗0), the MBS equilibrium, if it

exists, yields larger total trade than without bailout.

Second, consider the MR1 equilibrium which yields the total trade volumeF (θMR1
1 ) +

F (γ(θMR1
1 )). Since θMR1

1 is determined by (C.12), we have ∆(θMR1
g , θMR1

1 ;S) = m(θMR1
g , θMR1

1 )−
θMR1

1 +(m(θMR1
g , θMR1

1 )−m(θMR1
1 , γ(θMR1

1 )))+S ≥ 0. Furthermore, θ∗1 must satisfy ∆(0, θ∗1;S) ≥
0 since θ∗1 = max{θ > 0 : ∆(0, θ;S) = 2m(0, θ) − θ −m(θ, γ(θ)) + S ≥ 0}. Since θMR1

g > 0, we

have ∆(0, θ;S) < ∆(θMR1
g , θ;S), so we have θMR1

1 ≥ θ∗1, where the equality holds for the case

θ∗1 = 1. Therefore, F (θMR1
1 ) + F (γ(θMR1

1 )) ≥ F (θ∗1) + F (γ(θ∗1)), as was to be shown, where the

equality holds for the case θ∗1 = 1.

Next, consider the MR2 equilibrium, which yields the total trade volume F (θMR2
1 ) +

F (γ(θMR2
gø )). If θ∗1 = 0, then the MR2 equilibrium yields larger total trade than without bailout

since θ∗1 = 0 < θMR2
1 and γ(θ∗1) = γ(0) < γ(θMR2

gø ). Suppose θ∗1 > 0. If S ≥ 1, then it follows

from (C.17) that θMR2
1 = 1, implying Θgø = ∅. Thus, S < 1 for the MR2 equilibrium to exist.

From Assumption A.2-(v), we have

m(0, θ) ≤ θ −m(0, θ) for all θ ∈ [0, 1],

=⇒ m(0, S) ≤ S −m(0, S),

=⇒ 2m(0, S) ≤ m(S, γ(S)),

=⇒ 2m(0, S)− S −m(S, γ(S)) + S ≤ 0,

=⇒ θ∗1 ≤ S.

Therefore, we have m(0, θ) + S > θ∗1 for all θ ∈ (0, θ∗0). By (C.17) and (C.20), we have θMR2
gø >

θMR2
1 > θ∗1, and thus F (θMR2

1 ) + F (γ(θMR2
gø )) > F (θ∗1) + F (γ(θ∗1)).
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Lastly, consider the SBS equilibrium, which yields the total trade volume F (γ(θSBSgø (pg))).

If θ∗1 = 0, then the total trade volume without bailout is F (γ(0)). Since θSBSgø (pg) > 0 for all

pg ∈ P SBS, we have F (γ(θSBSgø (pg))) > F (γ(0)).

Proof of Proposition 2-(iii).

First, consider the MBS equilibrium, which yields the trade volume F (γ(θMBS
g )) in t = 2.

As shown in the proof of Proposition 2-(ii), the MBS equilibrium exists only if θ∗1 = 0, and

thus the trade volume in t = 2 in the absence of bailout is F (γ(0)) = F (θ∗0). This implies

F (γ(θMBS
g )) > F (γ(0)) = F (θ∗0).

Next, consider the MR1 equilibrium, which yields the trade volume F (γ(θMR1
1 )) in t = 2.

Similar to the proof of Proposition 2-(ii), we have θMR1
1 ≥ θ∗1 where the equality holds for the

case θ∗1 = 1. This inequality implies F (γ(θMR1
1 )) ≥ F (γ(θ∗1)) with the equality when θ∗1 = 1.

Proof of Proposition 2-(iv).

Let φ : [I, 1]→ R+ be a function such that φ(pg) ∈ Φ(pg). In what follows, we show that

φ(·) cannot be continuous at every pg ∈ [I, 1] if θ∗1 > 0. The argument for the case θ∗1 = 0 is

similar but with a slight modification.4

Step 1. For pg = I, the only possible equilibrium is NR-type and thus Φ(I) = {F (θ∗1)+F (γ(θ∗1))}.

Suppose either an MR1 or MR2 equilibrium exists for pg = I. By (C.11), (C.14), and

(C.15), we have I ≤ max{m(0, θMR1
g ),m(0, θMR2

g )} < pg = I, a contradiction. Moreover, since

2m(0, θ∗1) − θ∗1 −m(θ∗1, γ(θ∗1)) + S ≥ 0, it follows from Assumption A.2-(i) that 2m(0, 0) − 0 −
m(0, γ(0)) + S = 0−m(0, γ(0)) + S > 0, which implies θ −m(θ, γ(θ)) + S > 0 for all θ ∈ [0, 1].

From (C.9), MBS equilibrium cannot exist for any pg ∈ [I, 1]. Lastly, since I ≤ m(0, θ∗1) ≤ p∗0 =

m(0, γ(0)), we have p∗0 = inf P SBS ≥ I. Since pg > inf P SBS for all pg ∈ P SBS by Lemma C.1,

SBS equilibrium cannot exist for pg = I.

Step 2. If φ(·) is a continuous selection from Φ(·), then φ(pg) = F (θ∗1)+F (γ(θ∗1)) for all pg ∈ [I, p∗2]

(Recall p∗2 = m(θ∗1, γ(θ∗1)) from Theorem 2).

Suppose there exists an SBS equilibrium for some pg ∈ (I, p∗2]. We have m(0, θSBSgø (pg)) <

I ≤ m(0, θ∗1) by (C.3), which implies θSBSgø (pg) < θ∗1. Since the total trade volume is F (θ∗1) +

F (γ(θ∗1)) under the NR equilibrium and the equilibrium absent bailout and F (γ(θSBSgø (pg))) un-

der the SBS equilibrium, the NR equilibrium yields strictly larger overall trade than the SBS

type. Suppose next there exists either an MR1 or MR2 equilibrium for some pg ∈ (I, p∗2]. By

4In the case θ∗1 = 0, we have to take into account the possibility that the MBS equilibrium can exist for some
pg ∈ [I, 1]. But the MBS equilibrium cannot exist in the case θ∗1 > 0, in which we have θ−m(θ, γ(θ)) +S > 0 for
any θ > 0, so any θg > 0 cannot satisfy (C.9).
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Proposition 2-(ii), either of the two yields strictly larger overall trade than the NR equilib-

rium. Since φ(pg) = F (θ∗1) + F (γ(θ∗1)) at pg = I from Step 1, continuity of φ requires that

φ(pg) = F (θ∗1) + F (γ(θ∗1)) for all pg ∈ [I, p∗2].

Step 3. Any φ ∈ Φ such that φ(pg) = F (θ∗1) + F (γ(θ∗1)) for all pg ∈ [I, p∗2] is discontinuous at

pg = p∗2.

Suppose there exists an SBS equilibrium for some pg ≥ p∗2 = m(θ∗1, γ(θ∗1)). Then, it

follows from (C.2) that θSBSgø (pg) ≥ θ∗1, which implies m(0, θSBSgø (pg)) ≥ m(0, θ∗1) ≥ I. However,

this inequality contradicts (C.3). Therefore, there cannot exist SBS equilibrium for any pg ≥ p∗2,

and thus φ(pg) must be equal to the total trade volume under either MR1 or MR2 equilibrium for

any pg ∈ [p∗2, 1]. By Proposition 2-(ii), both MR1 and MR2 equilibria yield strictly larger total

trade than F (θ∗1) + F (γ(θ∗1)) for any pg ∈ [p∗2, I]. Thus we must have φ(pg) > F (θ∗1) + F (γ(θ∗1))

for all pg ∈ [p∗2, 1]. By Step 2, the last inequality implies limpg→p∗2+ φ(pg) > limpg→p∗2− φ(pg).

Combining Step 2 and 3, we conclude that Φ does not admit a continuous selection.

Q.E.D.

Proposition 3. Suppose that an MR (either MR1 or MR2) equilibrium arises given pg. In that

case, offering a bailout at the same pg, but with the t = 1 market shut down, would (at least

weakly) increase the total trade volume.

Proof of Proposition 3. First, suppose pg admits an MR1 equilibrium. By Claim 1 within the

proof of Lemma C.5, we have θMR1
1 ≤ m(0, θMR1

g ) + S. Since θMR1
1 (pg) > θMR1

g (pg), we also have

θMR1
1 (pg) ≤ θ∗0, where the equality holds when θMR1

1 (pg) = 1. Since pg ≤ m(θMR1
1 (pg), γ(θMR1

1 (pg)))

from (C.15), we have pg ≤ m(θ∗0, γ(θ∗0)). This result implies there exists θsdg (pg) ≤ θ∗0 such

that pg = (θsdg (pg) − m(0, θsdg (pg)) − S) + m(θsdg (pg), γ(θsdg (pg))). Since pg + m(0, θMR1
g (pg)) +

S ≥ θMR1
1 (pg) + m(θMR1

1 (pg), γ(θMR1
1 (pg))) from (C.11) and (C.12), we have pg > θMR1

1 (pg) −
m(0, θMR1

1 (pg)) − S + m(θMR1
1 (pg), γ(θMR1

1 (pg))). By Lemma A.1, θ − m(0, θ) + m(θ, γ(θ)) is

increasing in θ, so we have θsdg (pg) ≥ θMR1
1 (pg), which implies m(0, θsdg (pg)) ≥ I from (C.14).

Therefore, when the market is shut down in t = 1, the same pg admits an equilibrium which

yields the total trade volume F (θsdg (pg)) + F (γ(θsdg (pg))) ≥ F (θMR1
1 (pg)) + F (γ(θMR1

1 (pg))), as

was to be shown, where the equality holds for the case θMR1
1 (pg) = θ∗0 = θsdg (pg) = 1.

Next, suppose pg admits an MR2 equilibrium. Since θMR2
1 (pg) = m(0, θMR2

g (pg)) + S

from (C.17) and θMR2
g (pg) < θMR2

1 (pg), we have θMR2
1 (pg) < m(0, θMR2

1 (pg)) + S, which implies

θMR2
1 (pg) < θ∗0. If θMR2

gø (pg) > θ∗0, then there exists θsdg (pg) such that pg = m(θsdg (pg), γ(θsdg (pg))).
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By (C.18), we have θMR2
gø (pg) = θsdg (pg). Hence, under the market shutdown in t = 1, pg admits

the equilibrium which yields the total trade volume F (θ∗0) + F (γ(θsdg (pg))) > F (θMR2
1 (pg)) +

F (γ(θMR2
gø (pg))), as was to be shown. If θMR2

gø (pg) ≤ θ∗0, we have pg ≤ m(θ∗0, γ(θ∗0)) by (C.18).

Thus there exists θsdg (pg) ≤ θ∗0 such that pg +m(0, θsdg (pg)) +S = θsdg (pg) +m(θsdg (pg), γ(θsdg (pg))).

Since θsdg (pg) ≤ θ∗0 ⇐⇒ θsdg (pg) ≤ m(0, θsdg (pg)) + S, we have pg ≤ m(θsdg (pg), γ(θsdg (pg))).

Since pg = m(θMR2
gø (pg), γ(θMR2

gø (pg))) and θMR2
gø (pg) > θMR2

g (pg), we have m(0, θsdg (pg)) ≥ I from

(C.14). Therefore, under the market shutdown in t = 1, pg admits the equilibrium which yields

the total trade volume F (θsdg (pg)) + F (γ(θsdg (pg)) > F (θMR2
1 (pg) + F (γ(θMR2

gø (pg)), as was to be

shown. Q.E.D.

Proposition 4. Suppose that the market remains closed in t = 1, and let pg be a given bailout

offer. The total trade volume decreases when the government adds another bailout offer p′g ∈
[I, pg).

Proof of Proposition 4. Fix pg and p′g such that pg > p′g ≥ I. For the bailout that has two

options {p′g, pg}, there are two possibilities. First, only one of the offers is accepted by a positive

measure of firms. Second, both offers are accepted by a positive measure of firms. Since the

first possibility is identical to the case with a single offer, we hereafter restrict our focus on the

second possibility.

Let θdog denote the highest type selling to the government at either pg or p′g. In this

equilibrium, types θ ∈ (θdog , γ(θdog )] sell at price m(θdog , γ(θdog )) in t = 2 by Lemma C.8. Since

both offers are accepted by positive measures of types, we have the following observations. First,

all types choosing p′g must also sell in t = 2; otherwise, they will get a higher payoff by selling

at price pg > p′g in t = 1. Second, the t = 2 price for types choosing pg (denoted by p2) should

be strictly lower than the t = 2 price for types choosing p′g (denoted by p′2), which follows from

the fact that types θ ∈ (θdog , γ(θdog )] are indifferent between selling at pg and selling at p′g, i.e.,

p′g + p′2 + 2S = pg + p2 + 2S. These observations imply that there are two types of equilibria: all

types selling at price pg in t = 1 also sell in t = 2; a positive measure of types selling at price pg

in t = 1 do not sell in t = 2. We show below that any type of equilibria given the bailout with

a single offer pg yields larger overall trade than both types of equilibria above given the bailout

with double offers.

First, consider the equilibrium in which all firms choosing pg in t = 1 also sell in t = 2,

which yields the total trade volume F (θdog ) + F (γ(θdog )). Since buyers in t = 2 earn zero profit

and p2 < p′2, there exists θdog < θdog such that p2 = m(0, θdog ). Since type-θdog firm prefers selling
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at price p2 in t = 2 to not selling, we have θdog ≤ m(0, θdog ) + S, thereby implying θdog ≤ θ∗0.

Furthermore, since type-θdog firm prefers selling at price pg in t = 1 to not selling, we have

pg + p2 + 2S = pg +m(0, θdog ) + 2S ≥ θdog +m(θdog , γ(θdog )) + S.

Since θdog < θdog , we have pg > θdog −m(0, θdog )−S +m(θdog , γ(θdog )). Therefore, there always exists

θsdg determined by either pg ≥ θsdg −m(0, θsdg ) − S + m(θsdg , γ(θsdg )) (the inequality holds strictly

for the case θsdg = 1) subject to θsdg ≤ θ∗0 or pg = m(θsdg , γ(θsdg )) subject to θsdg > θ∗0. If θsdg ≤ θ∗0,

then θsdg ≥ θdog since θ −m(0, θ) + m(θ, γ(θ)) is increasing in θ; if θsdg > θ∗0, then θsdg > θdog since

θdog ≤ θ∗0. These observations imply that there exists an equilibrium given the bailout with the

single offer pg, which yields the overall trade F (θsdg ∧ θ∗0) + F (γ(θsdg )) ≥ F (θdog ) + F (γ(θdog )), as

was to be shown, where the equality holds for the case θsdg = θdog = θ∗0 = 1.

Next, consider the equilibrium where a positive measure of types selling at price pg in

t = 1 do not sell in t = 2. By playing this strategy, a type-θ firm earns the total payoff pg+S+θ,

which is increasing in θ. Hence, θdog is determined by pg + S + θdog = θdog + m(θdog , γ(θdog )) + S,

which is equivalent to pg = m(θdog , γ(θdog )). Let θ̂dog ∈ [θdog , θ
do
g ) be the highest type that sells in

both periods. Then the total trade volume under this equilibrium is F (θ̂dog ) + F (γ(θdog )). Since

type θ̂dog must be indifferent between selling in both periods and selling only in t = 1, we have

pg + p2 + 2S = θ̂dog + pg + S ⇐⇒ θ̂dog = m(0, θdog ) + S.

Since θ̂dog ≥ θdog , the condition above implies θ̂dog ≤ θ∗0. Furthermore, the same condition also

implies pg > θ̂dog −m(0, θ̂dog ) − S + m(θ̂dog , γ(θ̂dog )) since θdog ≤ θ̂dog < θdog . From these results, one

can find that the bailout with the single offer pg admits one of the following types of equilibria:

either θsdg ≤ θ∗0 and m(0, θsdg ) ≥ I or θsdg > θ∗0. First, suppose θsdg ≤ θ∗0 and m(0, θsdg ) ≥ I. If

θsdg < 1, then pg = (θsdg −m(0, θsdg )−S)+m(θsdg , γ(θsdg )) ≤ m(θsdg , γ(θsdg )), which implies θdog ≤ θsdg .

If θsdg = θ∗0 = 1, then θdog ≤ θsdg . Next, suppose θsdg > θ∗0, then we have θdog = θsdg > θ∗0 ≥ θ̂dog .

Putting all the results altogether, we have shown that F (θsdg ∧θ∗0)+F (γ(θsdg )) ≥ F (θ̂dog )+F (γ(θdog )),

that is, the bailout with the single offer pg always yields (weakly) larger total trade than the

bailout with double offers {p′g, pg}. Q.E.D.

D Proofs for Section 5

Proceeding similarly as in Section C.1, we derive conditions characterizing the marginal types

θg, θ1, and θgø of SMR equilibrium. Next, we find the set of bailout terms that support the SMR
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equilibrium, denoted by P SMR.

D.1 Necessary Conditions for SMR Equilibrium

In this equilibrium, types θ ∈ Θg = [0, θg] sell to the government in t = 1 and to the market

in t = 2 at price m(0, θg), types θ ∈ Θ1 = (θg, θ1] sell to the market at price m(θg, θ1) in both

periods, types θ ∈ Θgø = (θ1, θgø] sell only in t = 1 to the government, and the rest do not sell

in either period. The firms’ total payoffs are pg + m(0, θg) + 2S if θ ∈ [0, θg], 2m(θg, θ1) + 2S if

θ ∈ (θg, θ1], pg + S + θ if θ ∈ (θ1, θgø], and 2θ if θ ∈ (θgø, 1]. From these payoffs, the marginal

types must satisfy the following indifference conditions:

pg +m(0, θg) = 2m(θg, θ1), (D.1)

θ1 ≤ m(0, θg) + S, (D.2)

θgø = (pg + S) ∧ 1. (D.3)

Note that the inequality in (D.2) is strict for the case θ1 = 1.

In addition to the above conditions, we need the conditions that guarantee that the t = 2

price covers the investment cost and that the sets Θg,Θ1, and Θgø must be non-empty, except

for the boundary case. Thus

m(0, θg) ≥ I, (D.4)

θg < θ1 ≤ θgø. (D.5)

From (D.1), we have m(0, θg) < pg. Applying this to (D.3) shows that θ1 < θgø always holds for

the interior case θ1 < 1. The weak inequality in (D.5) holds as equality for the boundary case

θ1 = 1.

Lemma D.1. There exist pSMR
g

≤ pSMR
g such that (D.1) – (D.3) admit a unique (θg, θ1, θgø) that

satisfies (D.4) and (D.5) if and only if pg ∈ [pSMR
g

, pSMR
g ).

Proof. Note that (D.1) and (D.2) are equivalent to (C.11) and (C.17), respectively. Thus, using

these conditions and proceeding similarly to the proof of Lemma C.4, one can show that there

exist pSMR
g

≤ pSMR
g such that (D.1) and (D.2) define a unique (θg, θ1) that satisfies 0 < θg < θ1

and (D.4) if and only if pg ∈ [pSMR
g

, pSMR
g ). Furthermore, since θ1 = m(0, θg)+S < m(θg, θ1)+S <

pg + S, where the second inequality follows from (D.1), θgø determined by (D.3) satisfies (D.5)

for all pg ∈ [pSMR
g

, pSMR
g ). Q.E.D.
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For any pg ∈ [pSMR
g

, pSMR
g ), let θSMR

g (pg), θ
SMR
1 (pg), and θSMR

gø (pg) denote the marginal

types θg, θ1, and θgø determined by (D.1) – (D.3). For expositional convenience, we may abbre-

viate θSMR
g (pg), θ

SMR
1 (pg), and θSMR

gø (pg) to θSMR
g , θSMR

1 , and θSMR
gø , respectively. In addition,

define P SMR := [pSMR
g

, pSMR
g ).

D.2 Proofs of Theorem 4 and Proposition 5 and 6

Theorem 4. There exists a nonempty interval P SMR ⊂ (I, 1] of bailout terms such that (i) an

SMR equilibrium exists with cutoffs θ1 < θ∗0 and θgø = pg + S if pg ∈ P SMR; and (ii) no other

equilibria exist.

Proof of Theorem 4.

Proof of Theorem 4-(i).

Consider pg ∈ P SMR such that there exist θg = θSMR
g (pg), θ1 = θSMR

1 (pg), and θgø =

θSMR
gø (pg) that satisfy (D.4) and (D.5).

First, we show that it is optimal for each type of firms to play the prescribed equilibrium

strategies. Consider t = 2 first. For firms accepting the bailout or holding out in t = 1, the price

offer in t = 2 is m(0, θg). By (D.2), we have θ1 ≤ m(0, θg) +S, where the inequality holds for the

case θ1 = 1. Thus, after accepting the bailout in t = 1, types θ ∈ [0, θg] sell at price m(0, θg) in

t = 2, but types θ > θ1 do not sell in t = 2. For types selling to the market in t = 1, the price offer

in t = 2 is m(θg, θ1). Since θ1 ≤ m(0, θg) +S < m(θg, θ1) +S, types θ ∈ (θg, θ1] sell in t = 2 after

selling in t = 1. Consider t = 1 next. By (D.1), we have pg +m(0, θg) + 2S = 2m(θg, θ1) + 2S. If

θ1 < 1, then, by (D.2), we have pg +m(0, θg) + 2S = 2m(θg, θ1) + 2S < θ + pg + S ⇐⇒ θ > θ1.

If θ1 = 1, then θ + pg + S ≤ pg + m(0, θg) + 2S = 2m(θg, θ1) + 2S for all θ ∈ [0, 1], where the

inequality follows from (D.2). Thus, it is optimal for types θ ∈ [0, θg] ∪ (θ1, 1] to accept the

bailout and types θ ∈ (θg, θ1] to sell to the market. Lastly, since θgø = (pg + S) ∧ 1 from (D.3),

it is optimal for types θ > θgø not to sell.

Second, we show that it is optimal for buyers to make the equilibrium price offers. Con-

sider t = 2 first. For firms not selling at price m(θg, θ1) in t = 1, buyers believe that their types

are θ ∈ [0, θg]∪ (θ1, 1]. By Lemma C.8, any p′ < m(0, θg) cannot be an equilibrium price offer in

t = 2. Next, suppose a buyer in t = 1 deviates and offers p′ > m(0, θg). Since p′ + S > θ1 from

(D.2), types θ ∈ [0, θg]∪ (θ1, (p
′+S)∧1] will sell at price p′. Then, the deviating buyer’s payoff is

m̊(0, θg, θ1, (p
′ + S) ∧ 1)− p′. However, since limp′↘(θ1−S) m̊(0, θg, θ1, (p

′ + S) ∧ 1) = m(0, θg) and
∂
∂θ
m̊(0, θg, θ1, θ) ≤ 1 for all θ ≥ θ1 from Lemma A.1-(iii), we have m̊(0, θg, θ1, (p

′+S)∧1)−p′ < 0
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for any p′ > θ1 − S. Therefore, buyers optimally offer m(0, θg) to all firms that do not sell to

the market in t = 1. For firms selling to the market in t = 1, buyers believe their types are

θ ∈ (θg, θ1]. Since θ1 ≤ m(0, θg) + S < m(0, θ1) + S, we have θ1 ≤ θ∗0 = γ(0) < γ(θg). Hence, by

Lemma C.8, buyers optimally offer m(θg, θ1). Lastly, proceeding similarly as in the characteri-

zation of MR2 equilibrium in the proof of Theorem 3, one can show that it is optimal for buyers

to offer m(θg, θ1) in t = 1.

Proof of Theorem 4-(ii). We show below that no cutoff structure but the SMR type is possible

in equilibrium.

Case 1. Θg 6= ∅, Θ1 6= ∅, Θgø 6= ∅, and Θ2 6= ∅

This equilibrium is characterized by 0 < θg < θ1 < θgø < θ2 ≤ 1. Let p2 be the t = 2

price offer to the firms that do not sell to the market in t = 1. Under the secret bailout, such p2

will be offered to types θ ∈ [0, θg] ∪ (θ1, 1]. Since types θ ∈ (θ1, θgø] choose not to sell in t = 2,

we must have θgø ≥ p2 + S. But types θ ∈ (θgø, θ2] prefer selling in t = 2, hence θ2 ≤ p2 + S, a

contradiction.

Case 2. Θg 6= ∅, Θ1 = ∅, Θgø = ∅, and Θ2 6= ∅

This equilibrium is characterized by 0 < θg < θ2 ≤ 1. In this case, types θ ∈ [0, θg]

accept the bailout in t = 1 and types θ ∈ [0, θ2] sell to the t = 2 market at price m(0, θ2). When

the t = 1 market is open after the bailout, buyers believe that types θ ∈ (θg, 1] are available

for asset trade. That is, a buyer at the t = 1 market can make a positive profit by offering

p′ = m(θg, γ(θg))− ε for some ε > 0, a contradiction.

Case 3. Θg 6= ∅, Θ1 6= ∅, Θgø = ∅, and Θ2 = ∅

This equilibrium is characterized by 0 < θg < θ1 ≤ 1, where types θ ∈ [0, θg] accept the

bailout in t = 1 and sell at price m(0, θg) in t = 2, and types θ ∈ (θg, θ1] sell at price m(θg, θ1) in

both periods. For these strategies to be optimal, we must have pg+m(0, θg)+2S = 2m(θg, θ1)+2S,

or equivalently pg = 2m(θg, θ1) − m(0, θg). Since type θ1 firm weakly prefers selling in both

periods to not selling in either period, we must have 2m(θg, θ1) + 2S = 2θ1, or equivalently,

θ1 = m(θg, θ1) +S. However, since pg > m(θg, θ1), we have pg +S > m(θg, θ1) +S ≥ θ1. That is,

type θ1 firm will get a strictly higher payoff by accepting the bailout, a contradiction.

Case 4. Θg 6= ∅, Θ1 = ∅, Θgø 6= ∅, and Θ2 6= ∅

This case is similar to Case 1.

Case 5. Θg 6= ∅, Θ1 = ∅, Θgø 6= ∅, and Θ2 = ∅

This equilibrium is characterized by 0 < θg < θgø < 1, where types θ ∈ [0, θgø] accept the
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bailout, and only a subset of these types θ ∈ [0, θg] sell to the market at price m(0, θg) in t = 2.

When the market is open in t = 1 after the bailout, types θ ∈ (θgø, 1] are available for asset trade.

Thus, a buyer can make a positive profit by deviating and offering a price p′ = m(θgø, γ(θgø))− ε
for some ε > 0, a contradiction.

Case 6. Θg 6= ∅, Θ1 6= ∅, Θgø = ∅, and Θ2 6= ∅:

This equilibrium is characterized by 0 < θg < θ1 < θ2 ≤ 1, where types θ ∈ [0, θg] accept

the bailout in t = 1 and sell at price m̊(0, θg, θ1, θ2) in t = 2, types θ ∈ (θg, θ1] sell to the market

at price m(θg, θ1) in both periods, and types θ ∈ (θ1, θ2] sell only in t = 2 at price m̊(0, θg, θ1, θ2).

Thus the indifference conditions for the marginal types are

pg + m̊(0, θg, θ1, θ2) = 2m(θg, θ1), (D.6)

2m(θg, θ1) + 2S = θ1 + m̊(0, θg, θ1, θ2) + S, (D.7)

θ2 = γ̊(0, θg, θ1). (D.8)

From (D.6) and (D.7), we have

θ1 = pg + S. (D.9)

To show that this equilibrium cannot exist, we prove that there exists p′1 6= m(θg, θ1)

which gives a positive profit to market buyers in t = 1. When the market is open in t = 1, types

θ ∈ (θg, 1] are available for asset sales. Thus firms accepting p′1 offered by a deviating buyer

are assigned the off-the-path belief consistent with D1 equal to θ = θg. This implies that, after

selling at p′1 in t = 1, these firms can sell at price θg in t = 2 if θg ≥ I, leading to the total

payoff p′1 + S + max{θ, θg + S}. If θg < I, then they do not sell in t = 2, hence the total payoff

p′1 + S + θ.

There are three possibilities: θg < I, θg ∈ [I, θ1 − S), or θg ≥ θ1 − S. First, suppose

θg < I. Since type-θ firm sells at price p′1 if and only if p′1 + S + θ ≥ pg + m̊(0, θg, θ1, θ2) + 2S,

types θ ∈ [θ′1, (p
′
1 + S) ∧ 1] sell at price p′1, where

θ′1 := (m̊(0, θg, θ1, θ2)− p′1 + (pg + S)) ∨ θg = (m̊(0, θg, θ1, θ2)− p′1 + θ1) ∨ θg.

By offering p′1, the buyer earns m(θ′1, (p
′
1 + S) ∧ 1) − p′1 . Since m(θ1, θ2) − m̊(0, θg, θ1, θ2) > 0,

limp′1→m̊(0,θg ,θ1,θ2)+(p′1 + S) ∧ 1 = θ2 from (D.8), and limp′1→m̊(0,θg ,θ1,θ2)+ θ
′
1 = θ1 from (D.9), there

exists p′1 > m̊(0, θg, θ1, θ2) such that m(θ′1, (p
′
1 + S) ∧ 1)− p′1 > 0.

Next, suppose θg ≥ I but θg + S < θ1. Since θg + S < θ1 = pg + S, we have p′1 + S + θ ≥
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pg + m̊(0, θg, θ1, θ2) + 2S ⇐⇒ θ ≥ (m̊(0, θg, θ1, θ2) − p′1) + θ1. Proceeding similarly as in the

previous case, one can show that there exists p′1 > m̊(0, θg, θ1, θ2) that gives a positive profit to

the deviating buyer.

Lastly, suppose θg + S ≥ θ1, which is equivalent to θg ≥ pg by (D.9). Types θ ∈ (θg, θ1]

sell at p′1 if and only if

m̊(0, θg, θ1, θ2) + pg + 2S ≤ p′1 + θg + 2S ⇐⇒ p′1 ≥ m̊(0, θg, θ1, θ2)− (θg − pg).

Similarly, types θ ∈ (θ1, θg + S] sell at p′1 if and only if

m̊(0, θg, θ1, θ2) + S + (θg + S) ≤ p′1 + θg + 2S ⇐⇒ p′1 ≥ m̊(0, θg, θ1, θ2).

Furthermore, types θ > θg + S sell at p′1 if and only if

p′1 + S + θ ≥ θ + m̊(0, θg, θ1, θ2) + S ⇐⇒ p′1 ≥ m̊(0, θg, θ1, θ2).

Thus, by offering p′1 ≥ m̊(0, θg, θ1, θ2), the buyer’s expected payoff is m(θg, (p
′
1 + S) ∧ 1) − p′1.

Since m̊(0, θg, θ1, θ2) < m(θg, θ2) and limp′1→m(0,θg ,θ1,θ2)+(p′1 + S) ∧ 1 = θ2 from (D.8), there exists

p′1 ≥ m̊(0, θg, θ1, θ2) such that m(θg, (p
′
1 + S) ∧ 1) − p′1 > 0. Thus the prescribed equilibrium

strategy cannot be optimal for buyers in t = 1. Q.E.D.

Proposition 5.

(i) (Front-loading of trade) An SMR equilibrium, if it exists, supports a larger trade volume in

t = 1 but a smaller trade volume in t = 2 than an MR equilibrium for the same pg.

(ii) Given pg ∈ P SMR, the total trade volume supported in the SMR equilibrium is the same

as that in the MR2 equilibrium if pg admits the MR2 equilibrium; but the comparison is

ambiguous if pg admits the MR1 equilibrium.

Proof of Proposition 5.

Proof of Proposition 5-(i).

First, suppose pg ∈ P SMR admits the MR1 equilibrium under transparency. Since

θMR1
1 (pg) ≤ m(0, θMR1

g (pg))+S from Claim 1 within the proof of Lemma C.5 and pg > m(0, θMR1
g (pg))

from (C.11), we have θMR1
1 (pg) < pg + S, and thus F (θMR1

1 (pg)) ≤ F (θSMR
gø (pg)). Therefore, the
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SMR equilibrium arising from the same pg yields a larger total trade volume in t = 1 than the

MR1 equilibrium. Furthermore, since pg ≤ m(θMR1
1 , γ(θMR1

1 )) from (C.15), we have

θSMR
1 (pg) < θSMR

gø (pg) = (pg + S) ∧ 1 ≤ (m(θMR1
1 (pg), γ(θMR1

1 (pg))) + S) ∧ 1 = γ(θMR1
1 (pg)).

Hence, we have F (θSMR
1 (pg)) < F (γ(θMR1

1 (pg))), so the SMR equilibrium yields a smaller trade

volume in t = 2 than the MR1 equilibrium.

Second, suppose pg ∈ P SMR admits the MR2 equilibrium under transparency. Since

(C.11) and (C.17) are equivalent to (D.1) and (D.2), respectively, we have (θSMR
g (pg), θ

SMR
1 (pg)) =

(θMR2
g (pg), θ

MR2
1 (pg)). Since pg = m(θMR2

gø (pg), γ(θMR2
gø (pg))) from (C.18) and θSMR

gø (pg) = (pg +

S) ∧ 1 from (D.3), we have θSMR
gø (pg) = γ(θMR2

gø (pg)). Hence, we have F (θSMR
gø ) ≥ F (θMR2

gø ) and

F (θSMR
1 ) ≤ F (θMR2

1 ) + (F (γ(θMR2
gø ))− F (θMR2

gø )), which is the desired result.

Proof of Proposition 5-(ii).

First, suppose pg ∈ P SMR admits the MR2 equilibrium under transparency. As shown in

the proof of Proposition 5-(i), we have (θSMR
g (pg), θ

SMR
1 (pg)) = (θMR2

g (pg), θ
MR2
1 (pg)). Moreover,

θSMR
gø (pg) = γ(θMR2

gø (pg)) by (C.18) and (D.3). Since the total trade volume is F (θSMR
gø (pg)) +

F (θSMR
1 (pg)) in SMR equilibrium and F (γ(θMR2

gø (pg))) + F (θMR2
1 (pg)) in MR2 equilibrium, we

have the desired result.

Second, suppose some pg ∈ P SMR admits the MR1 equilibrium. Recall the functions

θ̃1(θg), θ
I
1(θg), and θII1 (θg) corresponding to (C.11), (C.12), and (C.17), respectively. As shown

in the proof of Lemma C.3, (θMR1
g (pg), θ

MR1
1 (pg)) is determined as a unique point of intersection

between two curves θ̃1(θg) and θI1(θg). Given the equivalence of (D.1) and (D.2) with (C.11)

and (C.17), (θSMR
g (pg), θ

SMR
1 (pg)) is defined as a unique point of intersection between two curves

θ̃1(θg) and θII1 (θg), as seen in the proof of Lemma C.4. Since pg supports the MR1 equilibrium,

we have θMR1
1 (pg) ≤ θII1 (θMR1

g (pg)) = θSMR
1 (pg), as shown in the proof of Lemma C.5. Moreover,

by (C.15), we have θSMR
gø (pg) ≤ (pg+S)∧1 ≤ (m(θMR1

1 (pg), γ(θMR1
1 (pg)))+S)∧1 ≤ γ(θMR1

1 (pg)).

From these observations, the comparison of the total trade volume is ambiguous. Q.E.D.

Proposition 6. Suppose that the government offers a secret bailout at pg ≥ max{I, p∗1} and

further shuts down the t = 1 market. Then in equilibrium,

(i) firms with types θ ≤ pg + S accept the bailout in t = 1 and those with θ ≤ θ∗0 sell to the

market in t = 2;
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(ii) the total trade volume in this equilibrium is larger than in the SMR equilibrium, whenever

the latter exists for the same pg.

Proof of Proposition 6.

Proof of Proposition 6-(i).

Fix any pg ≥ max{p∗1, I}. Since the market is shut down in t = 1, firms have only two

choices available in t = 1: either accepting the bailout or rejecting it. In t = 2, buyers have the

same belief as the prior regardless of the firms’ action taken in t = 1, and thus they offer the

price p∗0 in t = 2. Given p∗0, only types θ ≤ (p∗0 + S) ∧ 1 = θ∗0 sell in t = 2. Since this t = 2 price

is independent of firms’ actions in t = 1, firms accept the bailout if and only if θ ≤ (pg + S) ∧ 1.

Proof of Proposition 6-(ii).

Fix any pg ∈ P SMR ∩ [p∗1 ∨ I, 1]. Since θSMR
gø (pg) = (pg + S) ∧ 1 from (D.3), the SMR

equilibrium yields the same trade volume in t = 1 as that under the market shutdown in t = 1.

On the other hand, since θSMR
1 (pg) ≤ θ∗0 from (D.2) and (D.5), the SMR equilibrium yields

smaller total trade volume in t = 2 than when the market is shut down in t = 1. Q.E.D.

E Proofs for Section 6

Theorem 5. Let M denote the set of mechanisms that satisfy the restrictions imposed above.

Then, the following holds:

(i) If M = (q, t) ∈M, then q(·) is nonincreasing, and q(θ) ≤ 1 for all θ > θ∗0, where θ∗0 is the

highest type that sells its asset in the one-shot model without a bailout.

(ii) [Revenue Equivalence] If M = (q, t) and M ′ = (q′, t′) both inM have q = q′, then W (M) =

W (M ′). In other words, an equilibrium allocation pins down the welfare, expressed as

follows: ∫ 1

0

[
J(θ)q(θ)− 2λ+ 2

(
(1 + λ)θ + λ

F (θ)

f(θ)

)]
f(θ)dθ, (E.1)

where

J(θ) := (1 + λ)S − λF (θ)

f(θ)
.

(iii) Consider two possible mechanisms, labeled A and B, (possibly associated with different

levels of pg or by different disclosure policies) such that equilibrium i = A,B induces trade
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volume qi(·) across the two periods. Suppose∫ 1

0

qA(θ)f(θ)dθ =

∫ 1

0

qB(θ)f(θ)dθ

but there exists θ̃ ∈ (0, 1) such that qA(θ) ≥ qB(θ) for θ ≤ θ̃ and qA(θ) ≤ qB(θ) for θ ≥ θ̃.

Then, equilibrium A yields higher welfare than equilibrium B, strictly so if qA(θ) 6= qB(θ)

for a positive measure of θ’s.

Proof of Theorem 5.

Proof of Theorem 5-(i). As is standard, the monotonicity of q(·) follows from (IC). Fix any

mechanism M that satisfies (IC) and (IR) for every θ ∈ [0, 1] and all restrictions stated in the

main text. For convenience of exposition, let t1(θ) and t2(θ) be respective transfers given to the

firms in period 1 and 2 if they report their types as θ. Recall that t1(·) can be made by the

government or the private buyers, but t2(·) is made only by the buyers. Moreover, notice that

E[θ|t2(θ) = t] = t for any t ≥ I such that Pr(θ|t2(θ) = t) > 0, which follows from the zero-profit

condition.

Define θ̂ := sup{θ : q(θ) = 2} and θ̌ := sup{θ : q(θ) = 1}. In addition, define t ≥ I

as total transfer offered to the firms reporting their types as θ ∈ (θ̂, θ̌]. By the non-rationing

restriction, q(θ) = 1 for all θ ∈ (θ̂, θ̌]. Hence, from (IC), t(θ) = t for all θ ∈ (θ̂, θ̌]. Moreover,

define t := θ̂ − S. Since θ̌ ≤ t+ S in equilibrium, we have t ≥ t.

Before proving q(θ) ≤ 1 for all θ ≥ θ∗0, we first observe

t1(θ) ≤ t for all θ ∈ [0, θ̂]. (E.2)

To prove this, suppose there exists θ̃ ∈ [0, θ̂] such that t1(θ̃) > t. Since t1(θ̃) + S + θ > t+ S + θ,

every type θ ∈ (θ̂, θ̌] will misreport its type as θ̃, a contradiction.

We now prove q(θ) ≤ 1 for all θ ≥ θ∗0. By definition of θ̂, it suffices to show θ̂ ≤ θ∗0, or

equivalently, θ̂ ≤ m(0, θ̂) + S. To show θ̂ ≤ θ∗0, we decompose the set [0, θ̂] = {θ : q(θ) = 2}
into two disjoint subsets Θ̂l and Θ̂h such that types θ ∈ Θ̂l receive t2(θ) < t in t = 2, and types

θ ∈ Θ̂h receive t2(θ) ≥ t.

Step 1. t ≤ E[θ|θ ∈ Θ̂l].

Fix any θ ∈ Θ̂l. By truthful reporting, type θ earns the payoff t1(θ) + t2(θ) + 2S. Since

this type can get the payoff t1(θ̂) + t2(θ̂) + 2S by reporting its type as θ̂, (IC) requires t1(θ) +

t2(θ) + 2S ≥ t1(θ̂) + t2(θ̂) + 2S. Since type θ̂’s (IC) implies the reverse inequality, we have
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t1(θ) + t2(θ) = t1(θ̂) + t2(θ̂) for any θ ∈ Θ̂l. Since type θ̂ is indifferent between q = 2 and q = 1,

we must have t1(θ̂) + t2(θ̂) + 2S = θ̂+ t+S. Given θ̂ = t+S, we have t1(θ̂) + t2(θ̂) = t+ t, which

implies t1(θ) + t2(θ) = t+ t. From (E.2), it then follows t2(θ) = t+ (t− t1(θ)) ≥ t. Furthermore,

the zero-profit condition for the buyers in t = 2 implies E[θ|θ ∈ Θ̂l] = E[t2(θ)|θ ∈ Θ̂l]. Hence, we

have E[θ|θ ∈ Θ̂l] = E[t2(θ)|θ ∈ Θ̂l] ≥ E[t|θ ∈ Θ̂l] = t.

Step 2. t ≤ E[θ|θ ∈ Θ̂h].

We can decompose Θ̂h further into the two disjoint subsets Θ̂>t
h := {θ ∈ Θ̂h|t2(θ) > t}

and Θ̂=t
h := {θ ∈ Θ̂h|t2(θ) = t}. We show below t ≤ E[θ|θ ∈ Θ̂>t

h ] and t ≤ E[θ|θ ∈ Θ̂=t
h ].

First, consider Θ̂>t
h . Since t2(θ) ≤ t if θ ∈ Θ̂l ∪ Θ̂=t

h and t2(θ) = t if θ ∈ (θ̂, θ̌] (if such

θ sells in t = 2), only types θ ∈ Θ̂>t
l will sell at a price higher than t in t = 2. From the

zero-profit condition for the buyers in t = 2, it then follows E[θ|θ ∈ Θ̂>t
h ] = E[t2(θ)|θ ∈ Θ̂>t

h ].

Since t2(θ) > t ≥ t for all θ ∈ Θ̂>t
h , we have E[θ|θ ∈ Θ̂>t

h ] = E[t2(θ)|θ ∈ Θ̂>t
h ] > t ≥ t.

Next, consider Θ̂=t
h . Suppose to the contrary E[θ|θ ∈ Θ̂=t

h ] < t. Let Θ̌ be the set of types

θ ∈ (θ̂, θ̌] selling in t = 2. Since these types receive t2(θ) = t, we have E[t2(θ)|Θ̂=t
h ∪ Θ̌] = t.

Moreover, since 0 ≤ Pr(θ ∈ Θ̌) ≤ Pr(θ ∈ (θ̂, θ̌]), there exists θ ∈ (θ̂, θ̌] such that Pr(θ ∈ Θ̌) =

Pr(θ ∈ [θ, θ̌]) and E[θ|θ ∈ [θ, θ̌]] ≥ E[θ|θ ∈ Θ̌]. By Lemma A.1-(i), we have

∂

∂y
E[θ|θ ∈ Θ̂=t

h ∪ [θ, y]] =
f(y)

{F (y)− F (θ)}+ Pr(θ ∈ Θ̂=t
h )

(y −m(θ, y))

− f(y)

[{F (y)− F (θ)}+ Pr(θ ∈ Θ̂=t
h )]2

∫
θ∈Θ̂=t

h

θdF (θ)

≤ f(y)

F (y)− F (θ)
(y −m(θ, y))

=
∂

∂y
m(θ, y)

< 1.

(E.3)

Since E[θ|θ ∈ Θ̂=t
h ] < t and t + S = θ̂ ≤ θ, we have E[θ|θ ∈ Θ̂=t

h ] + S < θ. Combining

this inequality with (E.3), we have E[θ|θ ∈ Θ̂=t
h ∪ [θ, θ̌]] + S < θ̌. Since θ̌ ≤ t + S, we have

t + S ≥ θ̌ > E[θ|θ ∈ Θ̂=t
h ∪ [θ, θ̌]] + S ≥ E[θ|θ ∈ Θ̂=t

h ∪ Θ̌] + S, where the last inequality follows

from E[θ|θ ∈ Θ̌] ≤ E[θ|θ ∈ [θ, θ̌]]. This implies t = E[t2(θ)|θ ∈ Θ̂=t
h ∪ Θ̌] > E[θ|θ ∈ Θ̂=t

h ∪ Θ̌],

which contradicts the zero-profit condition for the buyers in t = 2.

Step 3. θ̂ ≤ θ∗0.

Since t ≤ E[θ|θ ∈ Θ̂l] from Step 1, t ≤ E[θ|θ ∈ Θ̂h] from Step 2, and Θ̂l ∪ Θ̂h = [0, θ̂], we

have t ≤ E[θ|θ ≤ θ̂] = m(0, θ̂), and thus θ̂ = t+ S ≤ m(0, θ̂) + S, or equivalently, θ̂ ≤ θ∗0.
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Proof of Theorem 5-(ii). First, recall

t(θ) = uM(θ)− θ(2− q(θ̃))− Sq(θ̃). (E.4)

Next, the envelope theorem applied to (IC) along with uM(1) = 2 gives us

uM(θ) = uM(1)−
∫ 1

θ

(2− q(s))ds = 2−
∫ 1

θ

(2− q(s))ds. (E.5)

Substituting (E.4) and (E.5) into the welfare and integrating by parts leads to

W (M) =

∫ 1

0

[
uM(θ) + (1 + λ)θq(θ)− (1 + λ)t(θ)

]
f(θ)dθ.

=

∫ 1

0

[
uM(θ) + (1 + λ)θq(θ)− (1 + λ)(uM(θ)− θ(2− q(θ))− Sq(θ))

]
f(θ)dθ

=

∫ 1

0

[
(1 + λ)Sq(θ)− λuM(θ) + 2(1 + λ)θ

]
f(θ)dθ

=

∫ 1

0

[(
(1 + λ)S − λF (θ)

f(θ)

)
q(θ)− 2λ+ 2

(
(1 + λ)θ + λ

F (θ)

f(θ)

)]
f(θ)dθ.

This gives us (E.1). Revenue equivalence follows also from the observation that the welfare

depends only on the allocation rule q.

Proof of Theorem 5-(iii). The welfare difference between the two equilibria is

WA −WB =

∫ 1

0

J(θ)[qA(θ)− qB(θ)]f(θ)θ

=

∫ θ̃

0

J(θ)[qA(θ)− qB(θ)]f(θ)θ +

∫ 1

θ̃

J(θ)[qA(θ)− qB(θ)]f(θ)θ

>

∫ θ̃

0

J(θ̃)[qA(θ)− qB(θ)]f(θ)θ +

∫ 1

θ̃

J(θ̃)[qA(θ)− qB(θ)]f(θ)θ

= J(θ̃)

∫ 1

0

(qA(θ)− qB(θ))f(θ)dθ = 0,

where the inequality follows from the fact that qA(θ) ≥ qB(θ) for θ ≤ θ̃ and qA(θ) ≤ qB(θ) for

θ ≥ θ̃ and that J is decreasing. The inequality must be strict if qA(θ) and qB(θ) differ on a

positive measure of θ’s, since J is strictly decreasing. Q.E.D.

Proposition 7. The equilibria are compared as follows.
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(i) Given a transparent bailout policy, an equilibrium with t = 1 market shutdown dominates

in welfare an equilibrium without t = 1 market shutdown.

(ii) Given a secret bailout policy, an equilibrium with t = 1 market shutdown dominates in

welfare an equilibrium without t = 1 market shutdown.

(iii) With t = 1 market shutdown, an equilibrium under secrecy dominates in welfare an equi-

librium under transparency.

Proof of Proposition 7.

Proof of Proposition 7-(i).

Let qT (θ) ∈ {0, 1, 2} denote the total quantity of assets sold by type-θ firm across the two

periods in each alternative type of equilibria T ∈ {SBS,MBS,MR1,MR2, sd} (we use notation

T = sd to label each alternative type of equilibria under the shutdown of the market in t = 1).

We first show that the t = 1 market shutdown yields at least the same welfare as either SBS

or MBS does. From Section C.1.5, any pg ∈ P SBS admits an equilibrium with the t = 1 market

shutdown characterized by the marginal type θsdg (pg) = θSBSgø (pg), where we have qsd(θ) = qSBS(θ)

for all θ ∈ [0, 1]. Similarly, any pg ∈ PMBS yields an equilibrium with the t = 1 market shutdown

characterized by θsdg (pg) = θMBS
g (pg), where qsd(θ) = qMBS(θ) for all θ ∈ [0, 1].

We next compare welfare under either an MR1 or MR2 equilibrium with that under the

t = 1 market shutdown. First, fix pg ∈ PMR that admits an MR1 equilibrium. As shown in

the proof of Proposition 3, the same pg admits an equilibrium with the t = 1 market shutdown

characterized by θsdg (pg) ≥ θMR1
1 (pg), where (C.7) defines θsdg (pg). Since θsdg (pg) is increasing in

pg, there exists p′g ≤ pg such that θsdg (p′g) = θMR1
1 (pg), and thus qsd(θ) = qMR1(θ) for all θ ∈ [0, 1].

Next, fix pg ∈ PMR that admits an MR2 equilibrium, which yields

qMR2(θ) =


2 if θ ≤ θMR2

1 ,

1 if θ ∈ (θMR2
1 , γ(θMR2

gø )],

0 if θ > γ(θMR2
gø ).

As shown in the proof of Proposition 3, the same pg admits the equilibrium with the t = 1 market

shutdown characterized by θsdg (pg) ≥ θMR2
gø (pg), where θsdg (pg) is determined by either (C.7) or
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pg = m(θg, γ(θg)). This equilibrium yields

qsd(θ) =


2 if θ ≤ θsdg ∧ θ∗0,

1 if θ ∈ (θsdg ∧ θ∗0, γ(θsdg )],

0 if θ > γ(θsdg ).

As shown in Section C.1.5, θsdg (pg) is increasing in pg. This implies that there exists an equilibrium

under the t = 1 market shutdown for some p′g ≤ pg such that
∫ 1

0
qsd(θ)dF (θ) =

∫ 1

0
qMR2(θ)dF (θ).

Since θMR2
1 (pg) < θ∗0 and θMR2

1 (pg) < θMR2
gø (pg) from (C.17) and (C.20), we have θMR2

1 (pg) <

θsdg (p′g) < θMR2
gø (pg). These inequalities imply that qMR2(θ) ≤ qsd(θ) if θ ≤ θsdg (p′g), where

qMR2(θ) < qsd(θ) for all θ ∈ (θMR2
1 (pg), θ

sd
g (p′g)]; and qMR2(θ) ≥ qsd(θ) otherwise, where qMR2(θ) >

qsd(θ) for all θ ∈ (γ(θsdg (p′g)), γ(θMR2
gø (pg))]. Hence, by Theorem 5-(iii), the equilibrium with the

t = 1 market shutdown arising from p′g yields higher welfare than the MR2 equilibrium arising

from pg.

Proof of Proposition 7-(ii).

Similar to the proof of Proposition 7-(i), let qT (θ) ∈ {0, 1, 2} denote the total quantity

of assets sold by type-θ firm over the two periods in each alternative type of equilibria T ∈
{SMR, sd}.

First, suppose pg ≥ p∗0 admits an SMR equilibrium. In this equilibrium, we have qSMR(θ) =

2 for all θ ∈ [0, θSMR
1 (pg)], qSMR(θ) = 1 for all θ ∈ (θSMR

1 (pg), θ
SMR
gø (pg)], and qSMR(θ) = 0 oth-

erwise. When the market is shut down in t = 1, the same pg admits an equilibrium which yields

qsd(θ) = 2 for all θ ∈ [0, θ∗0], qsd(θ) = 1 for all θ ∈ (θ∗0, (pg + S) ∧ 1], and qsd(θ) = 0 otherwise.

Since θSMR
gø (pg) = (pg + S) ∧ 1 from (D.3) and θSMR

1 (pg) ≤ θ∗0 from (D.2), there exists a p′g ≤ pg

which makes the total trade volume with the t = 1 market shutdown equal to that in the SMR

equilibrium arising from pg. Since θSMR
1 (pg) ≤ θ∗0 ≤ (p′g + S) ∧ 1 ≤ θSMR

gø (pg), Theorem 5-(iii)

implies that the equilibrium with the t = 1 market shutdown arising from p′g yields higher welfare

than the SMR equilibrium arising from pg.

Next, suppose pg < p∗0 admits an SMR equilibrium. Since θSMR
1 (pg) < θSMR

gø (pg) < θ∗0, the

same pg admits an equilibrium with the t = 1 market shutdown, which yields qsd(θ) > qSMR(θ) if

θ ∈ (θSMR
1 , θ∗0] and qsd(θ) = qSMR(θ) otherwise. By the assumption J(θ) > 0 if and only if θ < θ̂∗

and θ̂∗ > θ∗0, the equilibrium with the t = 1 market shutdown yields strictly higher welfare than

the SMR equilibrium, as was to be shown.

Proof of Proposition 7-(iii).

First, suppose pg admits an equilibrium under transparency characterized by θsdg (pg),
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where (C.2) defines θsdg (pg) subject to m(0, θg) < I. In this equilibrium, we have q(θ) = 1

if θ ∈ [0, γ(θsdg (pg))] and q(θ) = 0 if θ > γ(θsdg (pg)). Under secrecy, the same pg admits an

equilibrium, in which q(θ) = 2 if θ ∈ [0, θ∗0], q(θ) = 1 if θ ∈ (θ∗0, (pg + S) ∧ 1], and q(θ) = 0 if

θ > (pg + S) ∧ 1. Since (pg + S) ∧ 1 = γ(θsdg (pg)) and J(θ) > 0 for all θ ≤ θ∗0, the equilibrium

under secrecy yields higher welfare than the equilibrium under transparency.

Next, suppose pg admits an equilibrium under transparency characterized by θsdg (pg),

where (C.7) defines θsdg (pg) subject to (C.8) and (C.10). In this equilibrium, we have q(θ) = 2

if θ ∈ [0, θsdg (pg)], q(θ) = 1 if θ ∈ (θsdg (pg), γ(θsdg (pg))], and q(θ) = 0 if θ > γ(θsdg (pg)). Since

θsdg (pg) ≤ θ∗0 < γ(θsdg (pg)) and pg ≤ m(θsdg (pg), γ(θsdg (pg))) from (C.7) and (C.10), there exists an

equilibrium under secrecy for some p′g ∈ (θ∗0 − S,m(θsdg (pg), γ(θsdg (pg)))), which yields the same

total trade volume as that under transparency with pg. In this equilibrium, we have q(θ) = 2

if θ ∈ [0, θ∗0], q(θ) = 1 if θ ∈ (θ∗0, (pg + S) ∧ 1], and q(θ) = 0 if θ > (pg + S) ∧ 1. Hence, by

Theorem 5-(iii), the equilibrium under secrecy arising from p′g yields higher welfare than that

under transparency arising from pg.

Lastly, suppose pg admits an equilibrium under transparency characterized by θsdg (pg),

where θsdg (pg) is determined by pg = m(θg, γ(θg)) subject to θg > θ∗0. In this equilibrium, we

have q(θ) = 2 if θ ∈ [0, θ∗0], q(θ) = 1 if θ ∈ (θ∗0, γ(θsdg (pg))], and q(θ) = 0 if θ > γ(θsdg (pg)).

Under secrecy, the same pg admits an equilibrium in which q(θ) = 2 if θ ∈ [0, θ∗0], q(θ) = 1 if

θ ∈ (θ∗0, (pg + S)∧ 1], and q(θ) = 0 if θ > (pg + S)∧ 1. Since (pg + S)∧ 1 = γ(θsdg (pg)), each type

θ sells the exactly same quantity of assets under secrecy as it would under transparency. Hence,

by Theorem 5-(iii), the equilibrium under secrecy induces the same welfare as the equilibrium

under transparency. Q.E.D.

Proposition 8. The optimal bailout mechanism has

q∗(θ) =


2 if θ ≤ θ∗0,

1 if θ ∈ (θ∗0, θ̂
∗],

0 if θ > θ̂∗.

The optimal policy is implemented by a secret bailout policy with pg = θ̂∗−S accompanied by the

shutdown of the market in t = 1.
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Proof of Proposition 8. Let q be an arbitrary feasible allocation rule satisfying [P ]. Then,

W (q∗)−W (q)

=

∫ 1

0

J(θ)[q∗(θ)− q(θ)]f(θ)dθ

=

∫ min{θ̂∗,θ∗0}

0

J(θ)[q∗(θ)− q(θ)]f(θ)dθ +

∫ max{θ̂∗,θ∗0}

min{θ̂∗,θ∗0}
J(θ)[q∗(θ)− q(θ)]f(θ)dθ

+

∫ 1

max{θ̂∗,θ∗0}
J(θ)[q∗(θ)− q(θ)]f(θ)dθ.

The first integral is nonnegative since J(θ) ≥ 0 and q(θ) ≤ 2 = q∗(θ) for θ < min{θ̂∗, θ∗0} ≤ θ̂∗.

The last integral is also nonnegative since J(θ) ≤ 0 and q(θ) ≥ 0 = q∗(θ) for θ > max{θ̂∗, θ∗0} ≥
θ̂∗. Finally, we show below that the middle integral is also nonnegative. Suppose first θ̂∗ < θ∗0.

Then, for any θ ∈ (min{θ̂∗, θ∗0},max{θ̂∗, θ∗0}] = (θ̂∗, θ∗0], J(θ) ≤ 0 and q(θ) ≥ 1 = q∗(θ), so the

middle integral is nonnegative. Suppose next θ̂∗ < θ∗0. Then, for θ ∈ (min{θ̂∗, θ∗0},max{θ̂∗, θ∗0}] =

(θ∗0, θ̂
∗], J(θ) ≥ 0 and q(θ) ≤ 1 = q∗(θ), so the middle integral is nonnegative. Since all three

integrals are nonnegative, the allocation rule q∗ is optimal.

The last statement follows from Proposition 6-(i). Q.E.D.
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