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S.1 Missing arguments for the proof of Theorem 1

S.1.1 Computation of β

To compute β, we first establish the following lemma.

S.1.1.1 Useful computational lemma

For the next result, consider agents I ′ and objects O′ such that |I ′| = |O′| = m > 0. We

say a mapping f = h ◦ g is a bipartite bijection, if g : I ′ → O′ and h : O′ → I ′ are

both bijections. A cycle of a bipartite bijection is a cycle of the induced digraph. Note

that a bipartite bijection consists of disjoint cycles. A random bipartite bijection is a

(uniform) random selection of a bipartite bijection from the set of all bipartite bijections.

The following result will prove useful for a later analysis.

Lemma S1. Fix sets I ′ and O′ with |I ′| = |O′| = m > 0, and a subset K ⊂ I ′ ∪ O′,
containing a ≥ 0 vertices in I ′ and b ≥ 0 vertices in O′. The probability that each cycle in

a random bipartite bijection contains at least one vertex from K is

a+ b

m
− ab

m2
.
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Proof. We begin with a few definitions. A permutation of X is a bijection f : X →
X. A cycle of a permutation is a cycle of the digraph induced by the permutation. A per-

mutation consists of disjoint cycles. A random permutation chooses uniform randomly

a permutation f from the set of all possible permutations. Our proof will invoke following

result:

Fact 1 (Lovasz (1979) Exercise 3.6). The probability that each cycle of a random permu-

tation of a finite set X contains at least one element of a set Y ⊂ X is |Y |/|X|.

To begin, observe first that a bipartite bijection h ◦ g induces a permutation of set I ′.

Thus, a random bipartite bijection defined over I ′×O′ induces a random permutation of I ′.

To compute the probability that each cycle of a random bipartite bijection h◦g contains at

least one vertex in K ⊂ I ′×O′, we shall apply Fact 1 to this induced random permutation

of I ′.

Indeed, each cycle of a random bipartite bijection contains at least one vertex in K ⊂
I ′ × O′ if and only if each cycle of the induced random permutation of I ′ contains either

a vertex in K ∩ I ′ or a vertex in I ′ \ K that points to a vertex in K ∩ O′ in the original

random bipartite bijection. Hence, the relevant set Y ⊂ I ′ for the purpose of applying Fact

1 is a random set that contains |K ∩ I ′| = a vertices of the former kind and Z vertices of

the latter kind.

The number Z is random and takes a value z, max{b−a, 0} ≤ z ≤ min{m−a, b}, with

probability:

Pr{Z = z} =

(
m−a
z

)(
a
b−z

)(
m
b

) .

This formula is explained as follows. Pr{Z = z} is the ratio of the number of bipartite

bijections having exactly z vertices in I ′ \K pointing toward K ∩ O′ to the total number

of bipartite bijections.

Note that since we consider bipartite bijections, the number of vertices in I ′ pointing

to the vertices in K ∩ O′ must be equal to b. Focusing first on the numerator, we have

to compute the number of bipartite bijections having exactly z vertices in I ′ \K pointing

toward K ∩ O′ and the remaining b− z vertices pointing to the remaining K ∩ O′. There

are
(
m−a
z

)(
a
b−z

)
ways one can choose z vertices from I ′ \K and b− z vertices from K ∩ I ′.

Thus, the total number of bipartite bijections having exactly z vertices in I ′ \K that point

to K ∩ O′ is
(
m−a
z

)(
a
b−z

)
υ, where υ is the total number of bipartite bijections in which the

b vertices thus chosen point to the vertices in K ∩O′. This gives us the numerator. As for

the denominator, the total number of bipartite bijections having b vertices in I ′ pointing

to K ∩ O′ is
(
m
b

)
(the number of ways b vertices are chosen from I ′), multiplied by υ (the

number of bijections in which the b vertices thus chosen point to the vertices in K ∩ O′).
Hence, the denominator is

(
m
b

)
υ. Thus, we get the above formula.
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Recall our goal is to compute the probability that each cycle of the random permutation

induced by the random bipartite bijection contains at least one vertex in the random set

Y , with |Y | = a + Z, where Pr{Z = z} =
(m−a

z )( a
b−z)

(m
b )

. Applying Fact 1, then the desired

probability is

E
[
|Y |
|I ′|

]
=

min{m−a,b}∑
z=max{b−a,0}

Pr{Z = z}a+ z

m

=
a

m
+

min{m−a,b}∑
z=max{b−a,0}

Pr{Z = z} z
m

=
a

m
+

min{m−a,b}∑
z=max{b−a,0}

(
m−a
z

)(
a
b−z

)(
m
b

) ( z
m

)

=
a

m
+

(
m− a
m
(
m
b

) ) min{m−a,b}∑
z=max{b−a,1}

(
a

b− z

)(
m− a− 1

z − 1

)

=
a

m
+

(
m− a
m
(
m
b

) )(m− 1

b− 1

)
=
a

m
+
b(m− a)

m2

=
a+ b

m
− ab

m2
,

where the fifth equality follows from Vandermonde’s identity.

S.1.2 Completion of the computation of β

Recall that, given an arbitrary F ∈ FNi+1,ki+1
, β(Ii, Oi, k

I
i , k

O
i ; Ii+1, Oi+1, k

I
i+1, k

O
i+1) counts,

the number of pairs (F ′, φ), F ′ ∈ FNi,ki , causing F to arise.

As mentioned in the main text, we can construct all such pairs by choosing a quadruplet

(a, b, c, d) of four non-negative integers with a+ c = kIi and b+ d = kOi ,

(i) choosing c old roots from Ii+1, and similarly, d old roots from Oi+1,

(ii) choosing a old roots from Ii\Ii+1 and similarly, b old roots from Oi\Oi+1,

(iii) choosing a partition into cycles of Ni\Ni+1, each cycle of which contains at least one

old root from (ii),1

1Within round i of TTC, one cannot have a cycle creating only with nodes that are not roots in the
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(iv) choosing a mapping of the kIi+1 + kOi+1 new roots to Ni\Ni+1.

Hence, setting n = |Ii|, o = |Oi| and m = |Ii| − |Ii+1| = |Oi| − |Oi+1|, the number of

such pairs is computed as∑
b+d=kO

∑
a+c=kI

(
n−m
c

)(
o−m
d

)(
m

a

)(
m

b

)(
a+ b

m
− ab

m2

)
(m!)2mλI+λO

=(m!)2mλI+λO ×

 ∑
b+d=kO

∑
a+c=kI

(
n−m
c

)(
o−m
d

)(
m− 1

a− 1

)(
m

b

)

+
∑

b+d=kO

∑
a+c=kI

(
n−m
c

)(
o−m
d

)(
m

a

)(
m− 1

b− 1

)

−
∑

b+d=kO

∑
a+c=kI

(
n−m
c

)(
o−m
d

)(
m− 1

a− 1

)(
m− 1

b− 1

)
=(m!)2mλI+λO ×

((
o

kO

)(
n− 1

kI − 1

)
+

(
n

kI

)(
o− 1

kO − 1

)
−
(
n− 1

kI − 1

)(
o− 1

kO − 1

))
=

(m!)2mλI+λO

no

(
n

kI

)(
o

kO

)
(nkO + okI − kIkO).

The first equality follows from Lemma S1, along with the fact that there are (m!)2 possible

bipartite bijections between n −m agents and o −m objects, and the fact that there are

mλImλO ways in which new roots λI agents and λO objects could have pointed to 2m cyclic

vertices (m on the individuals’ side and m on the objects’ side), the third equality follows

from Vandermonde’s identity, and the last equality follows from simplifying terms.

forest obtained at the beginning of round i. This is due to the simple fact that a forest is an acyclic graph.

Thus, each cycle creating must contain at least one old root. Given that, by definition, these roots are

eliminated from the set of available nodes in round i+ 1, these old roots that each cycle must contain must

be from (ii).
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S.1.3 Proof of Corollary 2

By symmetry, given (n1, o1, k
I
1, k

O
1 ), ..., (ni, oi, k

I
i , k

O
i ), the set (Ii, Oi) is chosen uniformly at

random among all the
(
n
ni

)(
o
oi

)
possible sets. Hence,

Pr((ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (ni, oi, k

I
i , k

O
i ))

=
∑

(Ii,Oi):|Ii|=ni,|Oi|=oi

Pr{(ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (ni, oi, k

I
i , k

O
i ), (Ii, Oi)}

× Pr
{

(Ii, Oi) | (n1, o1, k
I
1, k

O
1 ), ..., (ni, oi, k

I
i , k

O
i )
}

=

 ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

Pr{(ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (Ii, Oi, k

I
i , k

O
i )}

 1(
n
ni

)(
o
oi

)
=

 ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

(Ii+1,Oi+1):|Ii+1|=ni+1,|Oi+1|=oi+1

Pr{(Ii+1, Oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (Ii, Oi, k

I
i , k

O
i )}


× 1(

n
ni

)(
o
oi

)
=

1(
n
ni

)(
o
oi

) ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

(Ii+1,Oi+1):|Ii+1|=ni+1,|Oi+1|=oi+1

Pr{(Ii+1, Oi+1, k
I
i+1, k

O
i+1)|(Ii, Oi, k

I
i , k

O
i )},

where the second equality follows from the above reasoning and the last equality follows

from the Markov property of {(Ii, Oi, k
I
i , k

O
i )}. The proof is complete by the fact that the

last line, as shown in the proof of Lemma 3, depends only on (ni+1, oi+1, k
I
i+1, k

O
i+1), (ni, oi, k

I
i , k

O
i )).

S.1.4 Computation of transition probability

Before going through the algebra, we need the following lemma characterizing the number

of spanning rooted forests.

Lemma S2 (Jin and Liu (2004)). Let V1 ⊂ I and V2 ⊂ O where |V1| = ` and |V2| = k. The

number of spanning rooted forests having k roots in V1 and ` roots in V2 is f(n, o, k, `) :=

on−k−1no−`−1(`n+ ko− k`).
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Now, we have

Υ =ok
I

nk
O

f(n, o, kI , kO)

=ok
I

nk
O

(
n

kI

)(
o

kO

)
on−k

I−1no−k
O−1(nkO + okI − kIkO)

=

(
n

kI

)(
o

kO

)
on−1no−1(nkO + okI − kIkO).

where the second equality follows from Lemma S2 and the last one uses Vandermonde’s

identity.

Θ is now computed as:

Θ =

(
n

m

)(
o

m

)
f(n−m, o−m,λI , λO)β(n, o, kI , kO;m,λI , λO)

=

(
n

m

)(
o

m

)
f(n−m, o−m,λI , λO)

(m!)2mλI+λO

no

(
n

kI

)(
o

kO

)
(nkO + okI − kIkO)

= f(n−m, o−m,λI , λO)

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλI+λO

no

(
n

kI

)(
o

kO

)
(nkO + okI − kIkO).

Collection the terms we obtain

P(n, o, kI , kO;m,λI , λO) =
Θ

Υ
=

1

onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλI+λOf(n−m, o−m,λI , λO).

Recall that the transition probability can be obtained by summing the expression over

all possible (λI , λO)’s:

pn,o;m :=
∑

0≤λI≤n−m,0≤λO≤o−m

P(n, o, kI , kO;m,λI , λO).
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Hence, we obtain:∑
0≤λI≤n−m

∑
0≤λO≤o−m

mλImλOf(n−m, o−m,λI , λO)

=
∑

0≤λI≤n−m

∑
0≤λO≤o−m

mλImλO
(
n−m
λI

)(
o−m
λO

)
×

(o−m)n−m−λ
I−1(n−m)o−m−λ

O−1((n−m)λO + (o−m)λI − λIλO)

=m

 ∑
0≤λI≤n−m

(
n−m
λI

)
mλI (o−m)n−m−λ

I

 ∑
1≤λO≤o−m

(
o−m− 1

λO − 1

)
mλO−1(n−m)o−m−λ

O


+m

 ∑
1≤λI≤n−m

(
n−m− 1

λI − 1

)
mλI−1(o−m)n−m−λ

I

 ∑
0≤λO≤o−m

(
o−m
λO

)
mλO(n−m)o−m−λ

O


−m2

 ∑
1≤λI≤n−m

(
n−m− 1

λI − 1

)
mλI−1(o−m)n−m−λ

I

 ∑
1≤λO≤o−m

(
o−m− 1

λO − 1

)
mλO−1(n−m)o−m−λ

O


=mon−mno−m−1 +mon−m−1no−m −m2on−m−1no−m−1

=mon−m−1no−m−1(n+ o−m),

where the first equality follows from Lemma S2, and the third follows from the Binomial

Theorem.

Multiplying the term 1
onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
, we get the formula stated in Theorem 1.

S.2 Number of agents matched at each stage of TTC

Consider an arbitrary mapping, g : I → O and h : O → I, defined over our finite sets I and

O. Note that such a mapping naturally induces a bipartite digraph with vertices I ∪O and

directed edges with the number of outgoing edges equal to the number of vertices, one for

each vertex. In this digraph, i ∈ I points to g(i) ∈ O while o ∈ O points to h(o) ∈ I. Such

a mapping will be called a bipartite mapping. A cycle of a bipartite mapping is a cycle in

the induced bipartite digraph, namely, distinct vertices (i1, o1, ...., ik−1, ok−1, ik) such that

g(ij) = oj, h(oj) = ij+1, j = 1, ..., k − 1, ik = i1. A random bipartite mapping selects

a composite map h ◦ g uniformly from a set H × G = IO × OI of all bipartite mappings.

Note that a random bipartite mapping induces a random bipartite digraph consisting of

vertices I ∪ O and directed edges emanating from vertices, one for each vertex. We say

that a vertex in a digraph is cyclic if it is in a cycle of the digraph.
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The following lemma states the number of cyclic vertices in a random bipartite digraph

induced by a random bipartite mapping.

Lemma S3 (Jaworski (1985), Corollary 3). The number q of the cyclic vertices in a random

bipartite digraph induced by a random bipartite mapping g : I → O and h : O → I has an

expected value of

E[q] := 2

min{o,n}∑
i=1

(o)i(n)i
oini

,

and a variance of

8

min{o,n}∑
i=1

(o)i(n)i
oini

i− E[q]− E2[q],

where (x)j := x(x− 1) · · · (x− j − 1).

It is clear that at the beginning of the first round of TTC, if there are n agents and o

objects in the economy, the distribution of the number of individuals and objects assigned

is the same as that of q. Appealing to Theorem 1 we can further obtain that for any round

of TTC which begins with n agents and o objects remaining in the market, the number of

individuals and objects assigned has the same distribution as q. Hence, the first and second

moments of the number of individuals/objects matched at that round corresponds exactly

to those in the above lemma. Jaworski (1985) also shows that asymptotically (as o and n

grow) the expectation of q is
√

2π no
n+o

(1 + o(1)) while its variance is (4− π) 2no
n+o

(1 + o(1)).

Given the number n of individuals and o of objects available at the beginning of Stage t

of TTC, if we denote Xt the number of agents and objects matched at that stage, we have

that E[ Xt√
2π no

n+o

] converges to 1 as n grows while the variance of Xt√
2π no

n+o

converges to the

constant 4−π
π

.

S.3 Number of Rounds Required for TTC and Shapley-

Scarf TTC to Conclude

Frieze and Pittel (1995) analyze Shapley-Scarf TTC. They obtain a similar Markov chain

result for Shapley-Scarf TTC. Our result allows us to compare the two Markov chains.

Specifically, we can order the two chains in terms of likelihood ratio order. To see this,

let us recall the transition probabilities of the Markov chain obtained by Frieze and Pittel

(1995):

p̂n;m =
n!

nm(n−m)!

m

n
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By Theorem 1, we obtain (assuming n = o):

pn;m : = pn,n;m =

(
m

(n)2(m+1)

)(
n!

(n−m)!

)2

(2n−m)

=

(
n!

nm(n−m)!

)2(
m(2n−m)

n2

)
.

Let us compare the two distributions in terms of likelihood ratio order. Fix n ≥ 1 and

any m′ ≥ m. It is easy to check that

p̂n,m′

p̂n,m
=

nm(n−m)!

nm′(n−m′)!
m′

m

while
pn,m′

pn,m
=

(
nm(n−m)!

nm′(n−m′)!

)2(
m′

m

)(
2n−m′

2n−m

)
.

Now, observe that(
p̂n,m′

p̂n,m

)−1
pn,m′

pn,m
=

(
1

nm′−m

)(
(n−m)!

(n−m′)!

)
(2n−m′)
(2n−m)

=
(n−m)(n−m− 1)...(n−m′ + 1)

nm′−m

(
2n−m′

2n−m

)
≤ 1.

This proves that for any n, the distribution p̂n,· dominates pn,· in terms of likelihood ratio

order. One can prove an interesting implication of this result: for each t ≥ 1, the probability

that TTC stops before Round t is smaller than the probability that Shapley-Scarf TTC

stops before Round t. In other words, the random round at which TTC stops is (first order)

stochastically dominated by that at which the Shapley-Scarf TTC stops.

S.4 The Number of Objects Assigned via Short Cy-

cles

Recall the random sequence of forests, F1, F2, .... is defined in the main text, where F1 is a

trivial unique forest consisting of |I| + |O| trees with isolated vertices, forming their own

roots. For any i = 2, ..., we first create a random directed edge from each root of Fi−1 to

a vertex on the other side, and then delete the resulting cycles (these are the agents and

objects assigned in round i− 1) and Fi is defined to be the resulting rooted forest.

We begin with the following question: If round k of TTC begins with a rooted forest

F , what is the expected number of short-cycles that will form at the end of that round?
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We will show that, irrespective of F , this expectation is bounded by 2. To show this, we

will make a couple of observations.

To begin, let nk be the cardinality of the set Ik of individuals in our forest F and let ok
be the cardinality of Ok, the set of F ’s objects. And, let A ⊂ Ik be the set of roots on the

individuals side of our given forest F and let B ⊂ Ok be the set of its roots on the objects

side. Let their cardinalities be a and b, respectively.

Now, observe that for any (i, o) ∈ A×B, the probability that (i, o) forms a short-cycle

is 1
nk

1
ok

. For any (i, o) ∈ (Ik\A) × B, the probability that (i, o) forms a short-cycle is
1
nk

if i points to o and 0 otherwise. Similarly, for (i, o) ∈ A × (Ok\B), the probability

that (i, o) forms a short-cycle is 1
ok

if o points to i and 0 otherwise. Finally, for any

(i, o) ∈ (Ik\A)× (Ok\B), the probability that (i, o) forms a short-cycle is 0 (by definition

of a forest, i and o cannot be pointing to each other in the forest F ). So, given the forest

F , the expectation of the number Sk of short-cycles is

E [Sk|Fk = F ] = E

 ∑
(i,o)∈Ik×Ok

1{(i,o) is a short-cycle}

∣∣∣∣Fk = F


=

∑
(i,o)∈Ik×Ok

E
[
1{(i,o) is a short-cycle} |Fk = F

]
=

∑
(i,o)∈A×B

E
[
1{(i,o) is a short-cycle} |Fk = F

]
+

∑
(i,o)∈(Ik\A)×B

E
[
1{(i,o) is a short-cycle} |Fk = F

]
+

∑
(i,o)∈A×(Ok\B)

E
[
1{(i,o) is a short-cycle} |Fk = F

]
=

∑
(i,o)∈A×B

Pr{(i, o) is a short-cycle |Fk = F }

+
∑

(i,o)∈(Ik\A)×B

Pr{(i, o) is a short-cycle |Fk = F }

+
∑

(i,o)∈Ik×(Ok\B)

Pr{(i, o) is a short-cycle |Fk = F }

≤ ab

nkok
+
nk − a
nk

+
ok − b
ok

= 2− aok + bnk − ab
nkok

≤ 2.

Observe that since ok ≥ b, the above term is smaller than 2. Thus, as claimed, we
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obtain the following result.2

Proposition S1. If TTC round k begins with any forest F ,

E [Sk |Fk = F ] ≤ 2.

Given that our upper bound holds for any forest F , we get the following corollary.

Corollary S1. For any round k of TTC, E [Sk] ≤ 2.

S.5 Proof of Proposition 1

We establish several lemmas before proving the proposition. Assume wlog that |I| =

n ≤ o = |O| (the proof is symmetric when n ≥ o). Let {nt} be the (random) sequence

corresponding to the number of individuals at Step t of TTC. By our main result, this is a

Markov chain. Let ct be the number of cyclic vertices on the individual side obtained in the

graph of TTC at Step t so that nt+1 = nt− ct for each t ≥ 1. In general, nt = n−
∑t−1

k=1 ck.

Thus, E[nt] = n−
∑t−1

k=1 E[ck]. Finally, letting {ot} be the (random) sequence corresponding

to the number of objects at Step t of TTC, we observe that nt ≤ ot for all t ≥ 1 since n ≤ o

(and the same number of individuals and objects are assigned at each step).

The following lemma shows that, if we start from any Step t0 of TTC with a number of

agents/objects nt0 ≥ δn, for any arbitrarily small δ > 0, then with a significant probability,

after a number of steps linear in
√
n we will end up with fewer than δn agents remaining

in the market.

Lemma S4. Consider any Step t0 ≥ 1 of TTC. Fix any δ > 0 and let c := 1√
πδ

. There is

γ > 0 such that lim inf Pr{nt0+c
√
n ≤ δn |nt0 ≥ δn} > γ where γ does not depend on t0.

Proof. In the sequel, we condition on the event that nt0 ≥ δn. By the Markov chain

property, we can view the process as starting with a number nt0 of agents/objects. To

avoid notational clutter, we suppress the dependence on the conditioning event {nt0 ≥ δn}
throughout. Assume that there is δ > 0 such that lim sup Pr{nt0+c

√
n > δn} = 1. Let us

further assume that limn→∞ Pr{nt0+c
√
n > δ} = 1, taking a subsequence if necessary. Note

that the event {nt0+c
√
n > δn} implies that nt > δn for any t0 ≤ t ≤ t0 + c

√
n. Thus, for

2Note that the bound is pretty tight: if the forest F has one root on each side and each node which

is not a root points to the (unique) root on the opposite side, the expected number of short-cycles given

F is 1
nkok

+ nk−1
nk

+ ok−1
ok
→ 2 as nk, ok → ∞. Thus, the conditional expectation of sk is bounded by 2

and, asymptotically, this bound is tight. However, we can show, using a more involved computation, that

the unconditional expectation of sk is bounded by 1. The details of the computation are available upon

request.
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each t0 ≤ t ≤ t0 + c
√
n, Pr{nt > δn} ≥ Pr{nt0+c

√
n > δn} → 1 and so, since the lower

bound on Pr{nt > δn} does not depend on t, Pr{nt > δn} goes to 1 uniformly across

t0 ≤ t ≤ t0 + c
√
n. Now, by definition,

E[ct] = E[ct |nt > δn ] Pr{nt > δn}+ E[ct |nt ≤ δn ] Pr{nt ≤ δn}

and so
E[ct]

E[ct |nt > δn ]
= Pr{nt > δn}+

E[ct |nt ≤ δn ]

E[ct |nt > δn ]
Pr{nt ≤ δn}.

Thus, using the fact that Pr{nt > δn} converges to 1 uniformly across any t0 ≤ t ≤ t0+c
√
n,

we obtain that E[ct]
E[ct|nt>δn ]

converges to 1 uniformly across t0 ≤ t ≤ t0 + c
√
n. So we must

have that for any ε > 0, there is N > 0 and for any n > N ,

E[ct] ≥
(

1− ε

2

)
E[ct |nt > δn] =

(
1− ε

2

)
E[ct |nt > δn, ot > δn+ (o− n) ]

≥
(

1− ε

2

)
E[ct |nt = δn, ot = δn ]

≥ (1− ε)
√
πδn

= (1− ε)
√
πδ
√
n,

for any t0 ≤ t ≤ t0 + c
√
n, where the first equality comes from the simple observation that

ot−nt = o−n ≥ 0 for any period t and the last inequality comes from the Markov property

together with the fact that lim E[ct|nt=δn,ot=δn ]√
πδn

≥ 1 (Jaworski (1985), Theorem 9).

Importantly, note that the N exhibited above does not depend on the specific t0 ≤ t ≤
t0 + c

√
n.

Thus, for any ε > 0, there is N such that for any n > N , we have

E[nt0+c
√
n] = E

nt0 − t0+c
√
n−1∑

k=t0

ck


≤ n−

t0+c
√
n−1∑

k=t0

E[ck]

≤ n−
(
c
√
n
)

(1− ε)
√
πδ
√
n

= n− (1− ε)n = εn.

In other words, limn→∞ E[nt0+c
√
n/n] = 0. This in turn implies that limn→∞ Pr{nt0+c

√
n ≤

δn} = 1, a contradiction to our assumption that lim Pr{nt0+c
√
n > δn} = 1.

To recap, we obtain that there is γ > 0 such that lim Pr{nt0+c
√
n ≤ δn |nt0 ≥ δn} > γ

(we now make explicit the conditioning event {nt0 ≥ δn}). That γ does not depend on the

specific starting date t0 comes from the Markov property of the random process {nt}.
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Lemma S5. Fix any δ > 0 and let c := 1√
πδ

. For any ξ > 0, for any k ∈ N large enough,

Pr{nkc√n ≤ δn} > ξ for any n large enough.

Proof. We know by the previous lemma that there is γ > 0 such that for n large

enough, Pr{nc√n ≤ δn} > γ. First, note that Pr{n2c
√
n ≤ δn} > γ + (1 − γ)γ. Indeed,

because {nt} is a decreasing sequence, {nc√n ≤ δn} implies {n2c
√
n ≤ δn}. Hence, we have

Pr{n2c
√
n ≤ δn}

= Pr{nc√n ≤ δn}Pr{n2c
√
n ≤ δn

∣∣nc√n ≤ δn}+ Pr{nc√n > δn}Pr{n2c
√
n ≤ δn

∣∣nc√n > δn}
= Pr{nc√n ≤ δn}+ Pr{nc√n > δn}Pr{n2c

√
n ≤ δn

∣∣nc√n > δn}

Applying Lemma S4 for t0 = 1, we know that, for n large enough, Pr{nc√n ≤ δn} > γ. In

addition, applying Lemma S4 for t0 = c
√
n, we know that, for n large enough, Pr{n2c

√
n ≤

δn
∣∣nc√n > δn} > γ. Thus, we obtain that for any n large enough, Pr{n2c

√
n ≤ δn} ≥

γ + (1− γ)γ, as claimed.

Similar reasoning yields that for each k ∈ N, there is N large enough so that

Pr{nkc√n ≤ δn} >
k∑
`=1

(1− γ)`−1γ = 1− (1− γ)k.

Note that the right-hand side is equal to the cumulative distribution at k of a geometric

distribution with parameter γ. Clearly, this goes to 1 as k increases and so our argument is

complete. Thus, if we fix any ξ > 0, we can find k large enough so that Pr{nkc√n ≤ δn} > ξ

for any n large enough, as was to be proved.

We are now ready to prove Proposition 1.

Proof. Fix any α > 0 and ξ < 1, we claim that there is n large enough so that

Pr{T
n
≤ α} > ξ. Consider any δ ∈ (0, α) and fix k ∈ N and c = 1√

πδ
in order to have

Pr{nkc√n ≤ δn} > ξ for any n large enough; which is well-defined by Lemma S5. Note that

{nkc√n ≤ δn} implies that T ≤ kc
√
n + δn. Because, δ < α, the term on the right-hand

side of the inequality is smaller than αn when n is large enough. Thus, for n large enough,

we obtain Pr{nkc√n ≤ δn} ≤ Pr{T ≤ kc
√
n + δn} ≤ Pr{T

n
≤ α}. Now, because, for n

large enough, Pr{nkc√n ≤ δn} > ξ, we obtain that for n large enough, Pr{T
n
≤ α} > ξ, as

claimed.

S.6 Proof of Theorem 2

S.6.1 Proof of Theorem 2 (a)

Recall our observation that any object assigned via long cycles is uniform-randomly assigned

across individuals whom the object ranks below R∗o (i.e., ranks larger than R∗o). This in
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turn means that the rank enjoyed by each object o ∈ Ō is stochastically dominated by the

uniform distribution across {
⌈
log1+ε(n)

⌉
+1, ..., n}. To precisely characterize the implication

of this observation, recall that Ro (resp. Ri) denote the rank enjoyed by object o (resp.

enjoyed by individual i) under TTC. We also let an arbitrary vector (xk)k∈K be denoted by

xK . For instance, RO stands for {Ro}o∈O. We are now ready to present the corner stone

for the proof of part (a) of Theorem 2.

Proposition S2. Fix any I ′ ⊆ I and O′ ⊆ O′′ ⊆ O. For any `O′ , `I′,

Pr
{
RO′ ≤ `O′ ,RI′ ≤ `I′ | Ō = O′′

}
≥
∏
o∈O′

Pr {Yo ≤ `o}Pr
{
RI′ ≤ `I′ | Ō = O′′

}
where {Yo}o∈O′ is a collection of iid random variables where each Yo follows the uniform

distribution over {
⌈
log1+ε(n)

⌉
+ 1, ..., n}. In addition, for any `O′ , `I′,

Pr
{
RO′ ≤ `O′ ,RI′ ≤ `I′ | Ō = O′′

}
≤
∏
o∈O′

Pr {Uo ≤ `o}Pr
{
RI′ ≤ `I′ | Ō = O′′

}
where {Uo}o∈O′ is a collection of iid random variables where each Uo follows the uniform

distribution over {1, ..., n}.

Roughly speaking, the proposition asserts that the distribution of the rank enjoyed

by each object within Ō is “squeezed” (according to first-order stochastic dominance) in

between uniform from {
⌈
log1+ε(n)

⌉
+ 1, ..., n} from above and uniform from {1, ..., n} from

below, independently of the distribution of the ranks enjoyed by the agents and the ranks

enjoyed by the other objects in the set Ō.

To prove Proposition S2, we start with the following lemma.

Lemma S6. Fix any O′′ ⊆ O. For any O′ ⊆ O′′, for any `I := (`i)i∈I , `O′ := (`o)o∈O′ and

R∗O′ := (ro)o∈O′,

Pr{RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , Ō = O′′} = 0

if `o ≤ ro for some o ∈ O′ and is a strictly positive number which does not depend on `O′

otherwise.

Proof. In the sequel, to save on notation, we let E be {Ō = O′′}. We first note that

Pr{RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , E} = 0.

if for some o ∈ O′, `o ≤ ro. Indeed, by definition, o points to ro when involved in a cycle.

In addition, o ∈ O′ ⊆ Ō implies that object o is assigned via a long cycle, hence, the

individual o is matched to must have a priority rank strictly greater than ro.
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Now, for any `O′ , `
′
O′ satisfying `O′ , `

′
O′ � rO′ , we argue that

Pr{RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , E} = Pr{RI = `I ,RO′ = `′O′ ,R

∗
O′ = rO′ , E}.

Indeed, fix a profile of preferences and priorities yielding {RI = `I ,RO′ = `O′ ,R
∗
O′ =

rO′ , E}. For each object o ∈ O′, let i be the individual with rank `′o. Swap i and k :=

TTC(o) in o’s priority ordering. Clearly, k has rank `′o at o. In addition, since for each object

o, ro (the individual o points to when involved in a cycle under the original profile) has a

priority rank less than those of both i and k at the original profile (recall that by assumption

`O′ , `
′
O′ � rO′), each step of the TTC algorithm remains unchanged after the swaps. Hence,

{RI = `I ,RO′ = `′O′ ,R
∗
O′ = rO′ , E} is obtained. Thus, we have an injection from the set of

profiles of preferences and priorities yielding {RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , E} to the one

yielding {RI = `I ,RO′ = `′O′ ,R
∗
O′ = rO′ , E}. Given the iid distribution of priority order, it

follows that

Pr{RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , E} ≤ Pr{RI = `I ,RO′ = `′O′ ,R

∗
O′ = rO′ , E}.

A similar reasoning shows that the inequality holds in the other direction as well.

Now, we can complete the proof of Proposition S2. Here again, in the sequel, to save

on notation, we let E be {Ō = O′′}. By the above lemma, for any O1, O2 ⊆ O′ disjoint,

whenever well-defined, Pr{RO1 = `O1 ,RI′ = `I′ | RO2 = `O2 ,R
∗
O′ = rO′ , E} is a positive

number which does not depend on `O2 .
3 Hence, we can write

Pr {RO1 = `O1 ,RI′ = `I′ | R∗O′ = rO′ , E}
=

∑
`′O2

Pr
{
RO2 = `′O2

| R∗O′ = rO′ , E}Pr{RO1 = `O1 ,RI′ = `I′ | RO2 = `′O2
,R∗O′ = rO′ , E

}
= Pr {RO1 = `O1 ,RI′ = `I′ | RO2 = `O2 ,R

∗
O′ = rO′ , E}

∑
`′O2

Pr
{
RO2 = `′O2

| R∗O′ = rO′ , E
}

= Pr {RO1 = `O1 ,RI′ = `I′ | RO2 = `O2 ,R
∗
O′ = rO′ , E} , (S1)

where `O2 is an arbitrary profile under which the above conditional probability is well-

defined. Hence, conditional on {R∗O′ = rO′} and E , the joint distribution of RO1 and

RI′ does not depend on the specific realization of RO2 . This implies first that (setting

O1 = ∅)

Pr {RI′ ≤ `I′ | RO2 = `O2 ,R
∗
O′ = rO′ , E} = Pr {RI′ ≤ `I′ | R∗O′ = rO′ , E} .

3Indeed, by the above lemma, Pr{RO2 = `O2 ,R
∗
O′ = rO′ , E} does not depend on `O2 as long as it is

strictly positive. In addition, provided that the conditional distribution is well-defined (i.e., `O2
� rO2

),

Pr{RO1
= `O1

,RI′ = `I′ ,RO2
= `O2

,R∗O′ = rO′ , E} is equal to 0 if `o < ro for some o ∈ O1. In this

case, this remains equal to 0 irrespective of `O2
. Finally, if `O1

� rO1
then the above lemma implies that

Pr{RO1 = `O1 ,RI′ = `I′ ,RO2 = `O2 ,R
∗
O′ = rO′ , E} is a strictly positive number which does not depend

on `O2 .
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Next, using Equation (S1) with I ′ = ∅, we also obtain that

Pr {RO1 = `O1 | R∗O′ = rO′ , E} = Pr {RO1 = `O1 | RO2 = `O2 ,R
∗
O′ = rO′ , E} . (S2)

Now, pick an arbitrary o ∈ O1. We have

Pr {RO1 = `O1 | R∗O′ = rO′ , E}
= Pr

{
RO1\{o} = `O1 | Ro = `o,R

∗
O′ = rO′ , E

}
Pr {Ro = `o | R∗O′ = rO′ , E}

= Pr
{
RO1\{o} = `O1 | R∗O′ = rO′ , E

}
Pr {Ro = `o | R∗O′ = rO′ , E} ,

where the last equality comes from Equation (S2) above. Now, applying the argument

inductively, we obtain

Pr {RO1 = `O1 | R∗O′ = rO′ , E} =
∏
o∈O1

Pr {Ro = `o | R∗O′ = rO′ , E} .

In other words, conditional on R∗O′ = rO′ and E , {Ro}o∈O′ is a collection of mutually inde-

pendent random variables (not necessarily identically distributed). In addition, conditional

on {R∗O′ = rO′} and E , for each o ∈ O′, Ro is stochastically dominated by the uniform distri-

bution over {
⌈
log1+ε(n)

⌉
+ 1, ..., n}. Indeed, the above lemma implies that for any o ∈ O′,

Pr {Ro = `o | R∗O′ = rO′ , E} = 0 if `o ≤ ro and is constant over all possible `o such that

`o > ro. Thus, in the latter case, Pr {Ro = `o | R∗O′ = rO′ , E} = 1
n−ro . In other words, given

{R∗O′ = rO′} and E , for o ∈ O′, Ro follows a uniform distribution over {ro + 1, ..., n}. Since

o ∈ O′ ⊆ Ō ⊆ Õ, we must have ro < log1+ε(n) and so Ro is stochastically dominated by the

uniform distribution over {
⌈
log1+ε(n)

⌉
+1, ..., n}. To recap, conditional on {R∗O′ = rO′} and

E , {Ro}o∈O′ is a collection of independent random variables that is stochastically dominated

by a collection of |O′| iid random variables distributed according to a uniform distribution

over {
⌈
log1+ε(n)

⌉
+ 1, ..., n}, i.e.,

Pr {RO′ ≤ `O′ | R∗O′ = rO′ , E} =
∏
o∈O′

Pr {Ro ≤ `o | R∗O′ = rO′ , E} (S3)

≥
∏
o∈O′

Pr {Yo ≤ `o} .

Now, for any `O′ , `I′ ,

Pr {RO′ ≤ `O′ ,RI′ ≤ `I′ | R∗O′ = rO′ , E}
= Pr {RO′ ≤ `O′ | R∗O′ = rO′ , E}Pr {RI′ ≤ `I′ | RO′ ≤ `O′ ,R

∗
O′ = rO′ , E}

≥
∏
o∈O′

Pr {Yo ≤ `o}Pr {RI′ ≤ `I′ | R∗O′ = rO′ , E} .
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where the inequality comes from the Equation (S3) together with the fact that the distri-

bution of RI′ does not depend on the specific realization of RO′ , as we already claimed.

Hence, we obtain

Pr {RO′ ≤ `O′ ,RI′ ≤ `I′ | E}
=

∑
rO′

Pr{R∗O′ = rO′ | E}Pr {RO′ ≤ `O′ ,RI′ ≤ `I′ | R∗O′ = rO′ , E}

≥
∑
rO′

Pr{R∗O′ = rO′ | E}
∏
o∈O′

Pr {Yo ≤ `o}Pr {RI′ ≤ `I′ | R∗O′ = rO′ , E}

=
∏
o∈O′

Pr {Yo ≤ `o}
∑
rO′

Pr{R∗O′ = rO′ | E}Pr {RI′ ≤ `I′ | R∗O′ = rO′ , E}

=
∏
o∈O′

Pr {Yo ≤ `o}Pr {RI′ ≤ `I′ | E}

as claimed.

Note further that, conditional on {R∗O′ = rO′} and E , {Ro}o∈O′ stochastically domi-

nates the collection of |O′| iid random variables U1, ..., U|O′| where the distribution of Uo is

uniform over {1, ..., n}. Using a similar argument as above, we obtain that, conditional on

E , {Ro}o∈O′ stochastically dominates a collection of |O′| iid random variables distributed

according to a uniform distribution over {1, ..., n} and we can easily complete the proof of

the second part of Proposition S2.

Finally, to complete the proof of part (a) of Theorem 2, recall that
|Ō|
n

p−→ 1. Hence,

for any given integer K (which does not depend on n), Pr
{
{o1, ..., oK} ⊆ Ō

}
converges to

1. In addition, from the above proposition, we directly obtain that for any I ′ ⊆ I and for

any O′ ⊆ O, for any `O′ , `I′ ,

Pr
{
RO′ ≤ `O′ ,RI′ ≤ `I′ | O′ ⊆ Ō

}
≥
∏
o∈O′

Pr {Yo ≤ `o} × Pr
{
RI′ ≤ `I′ | O′ ⊆ Ō

}
and, in addition,

Pr
{
RO′ ≤ `O′ ,RI′ ≤ `I′ | O′ ⊆ Ō

}
≤
∏
o∈O′

Pr {Uo ≤ `o} × Pr
{
RI′ ≤ `I′ | O′ ⊆ Ō

}
.

S.6.2 Proof of Theorem 2 (b)

Fix x ∈ [0, 1]. By the above result, given {Ō = O′′}, the collection {1{R̄o≤x}}o∈Ō is stochas-

tically dominated by {1{Ȳo≤x}}o∈Ō where Ȳo is 1
n
U{
⌈
log1+ε(n)

⌉
+ 1, ..., n} which converges

in distribution to U [0, 1]. Similarly, given {Ō = O′′}, the collection {1{Ro≤x}}o∈Ō stochas-

tically dominates the collection {1{Ūo≤x}}o∈Ō where Ūo is 1
n
U{1, ..., n} which converges in

distribution to U [0, 1].
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Now, fix any δ > 0 and let us further condition w.r.t. the event that
∣∣Ō∣∣ ≥ (1−δ)n. Note

that the probability of this event goes to 1 as n grows. Now, conditional on
∣∣Ō∣∣ ≥ (1− δ)n

and {Ō = O′′}, we have,

1

n

∑
o∈O

1{R̄o≤x} =
1

n

∑
o∈Ō

1{R̄o≤x} +
∑
o∈O\Ō

1{R̄o≤x}


≤st

∣∣Ō∣∣
n

1∣∣Ō∣∣ ∑
o∈Ō

1{R̄o≤x} +

∣∣O\Ō∣∣
n

≤st (1− δ) 1∣∣Ō∣∣ ∑
o∈Ō

1{R̄o≤x} + δ

≤st (1− δ) 1∣∣Ō∣∣ ∑
o∈Ō

1{Ȳo≤x} + δ
p−→ (1− δ)x+ δ

where the convergence result is by the LLN. Similarly, we must have that conditional on

the above events,

1

n

∑
o∈O

1{R̄o≤x} ≥st (1− δ) 1∣∣Ō∣∣ ∑
o∈Ō

1{Ūo≤x}
p−→ (1− δ)x.

Hence, conditional on
∣∣Ō∣∣ ≥ (1 − δ)n and {Ō = O′′}, we must have that with probability

going to 1, 1
n

∑
o∈O 1{R̄o≤x} falls in [(1 − δ)x, (1 − δ)x + δ]. This must also be true if we

only condition w.r.t.
∣∣Ō∣∣ ≥ (1 − δ)n. Since

∣∣Ō∣∣ ≥ (1 − δ)n is a large probability event,

we must have that, unconditionally, with probability going to 1, 1
n

∑
o∈O 1{R̄o≤x} falls in

[(1− δ)x, (1− δ)x+ δ]. Since δ > 0 is arbitrary, this implies that

1

n

∑
o∈O

1{R̄o≤x}
p−→ x.

S.7 Proof of Corollary 1

Denote Ranki(o) (resp., Ranko(i)) for the rank of object o (individual i) in i’s preferences

(o’s priority ordering). Let us denote by E the joint event {o ∈ Ō and Ranko(i) > R∗o} and

let us first show that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} = Pr {Ro < Ranko(i) |E,Ri > Ranki(o)} =
1

2
.

Consider the event {Ri > Ranki(o), Ro > Ranko(i), o ∈ Ō,Ranko(i) > R∗o}. Pick any

preference profile under which this event is true. Let k be the individual with rank Ro (i.e.,
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TTC(o) = k). Since o ∈ Ō ⊆ Ô, R∗o < Ro. In addition, by assumption, we must have R∗o <

Ranko(i). Hence, both k and i have a priority ranking at o worse than that of R∗o. Now,

let us swap k and i in object o’s priority ordering. Because both k and i have a priority

ranking at o worse than that of R∗o, this has no impact on the outcome of TTC. Thus,

we must have {Ri > Ranki(o), Ro < Ranko(i), o ∈ Ō,Ranko(i) > R∗o}. Thus, we have an

injection from the set of profiles of preferences and priorities yielding {Ri > Ranki(o), Ro >

Ranko(i), o ∈ Ō,Ranko(i) > R∗o} to the one yielding {Ri > Ranki(o), Ro < Ranko(i), o ∈
Ō,Ranko(i) > R∗o}, showing that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} ≤ Pr {Ro < Ranko(i) |E,Ri > Ranki(o)} .

Clearly, a symmetric reasoning shows that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} ≥ Pr {Ro < Ranko(i) |E,Ri > Ranki(o)}

and so we can conclude that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} = Pr {Ro < Ranko(i) |E,Ri > Ranki(o)} =
1

2
.

Using a symmetric argument,

Pr {Ro > Ranko(i) |E,Ri < Ranki(o)} = Pr {Ro < Ranko(i) |E,Ri < Ranki(o)} =
1

2
.

In words, the probability that Ro > Ranko(i) does not depend on the realization of event

{Ri > Ranki(o)}, and it follows that

Pr {Ro > Ranko(i) |E } = Pr {Ro < Ranko(i) |E } =
1

2
.

Now, it is enough for our purpose to show that the probability of the joint event E = {o ∈
Ō,Ranko(i) > R∗o} goes to 1. Indeed, we already know that the probability of {o ∈ Ō}
goes to 1. In addition, Ranko(i) follows a uniform distribution over {1, ..., |I|}. Hence,

Pr{Ranko(i) > log1+ε(n)} goes to 1. We also know that Pr{R∗o < log1+ε(n)} goes to 1.

Thus, Pr{Ranko(i) > R∗o} goes to 1 as well and so Pr(E) goes to 1. The first statement is

thus proven.

For the second statement, let us consider the probability that (i, o) blocks TTC given

that event E holds. This is,

Pr {Ro > Ranko(i), Ri > Ranki(o) |E }
= Pr {Ri > Ranki(o) |E }Pr {Ro > Ranko(i) |E,Ri > Ranki(o)}
= Pr {Ri > Ranki(o) |E }Pr {Ro > Ranko(i) |E }
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where the last equality holds by our argument above.

Now, we first claim that

|Pr {Ro > Ranko(i), Ri > Ranki(o)} − Pr {Ri > Ranki(o)}Pr {Ro > Ranko(i)}|

goes to 0 as the market grows large. We have shown that conditional on E, this difference

is just equal to 0. Now, since, as we already showed, Pr(E) goes to 1, the convergence must

hold unconditionally.

Second, we know that Ranko(i) is a uniform distribution over {1, ..., |I|} and let us ob-

serve the realization of Ranko(i) has no impact on the distribution of Ro. Now, Proposition

S2 showing that R̄o converges in distribution to U [0, 1] gives us that Pr {Ro > Ranko(i)} goes

to 1
2
. Taken together the above two points yield∣∣∣∣Pr {Ro > Ranko(i), Ri > Ranki(o)} −

1

2
Pr {Ri > Ranki(o)}

∣∣∣∣
goes to 0 as the market grows large. This completes the proof of the first part of the

statement of Corollary 1 since 1
2

Pr {Ri > Ranki(o)} is equal to the probability that (i, o)

blocks RSD (recall the equivalence result by Carroll (2014)).

Finally, we can easily obtain that the difference between the expected fractions of block-

ing pairs under TTC and that under RSD converges to 0.
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