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This paper finds an optimal mechanism for selling a good to a buyer who may
be budget-constrained. We consider a seller with one unit of a good facing a buyer
with a quasilinear utility function. If the buyer does not face a binding budget
constraint, textbook monopoly pricing is optimal. By contrast, the possibility of a
binding budget constraint can make it optimal for the seller to use nonlinear
pricing, to commit to a declining price sequence, to require the buyer to disclose his
budget, or to offer financing. Journal of Economic Literature Classification Numbers:
C70, D42, D45, D89, L12. � 2000 Academic Press

1. INTRODUCTION

Sellers often face buyers who differ in their willingness to pay for a good
and in their ability to pay. Buyers may face binding budget constraints for
a number of reasons. For example, imperfect capital markets may limit a
buyer's ability to borrow against future income. The recent sale by the U.S.
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Federal Communications Commission of ``Personal Communication Services''
licenses provided evidence of binding budget constraints (Salant [18]).2

Budget constraints are also important in the sale of many consumer durables,
which may explain the prevalence of low-interest financing and other similar
practices. Despite its practical importance, little attention has been paid to
buyers' limited purchasing power or limited liquidity in the literature.3

The existing literature considers buyers who are able to pay more than
their reservation price for the good. In a typical example, a seller faces a
buyer with unit demand who is able to pay more than his reservation price.
If the buyer and seller are risk-neutral, posting a single price (i.e., making
a take-it-or-leave-it offer) maximizes the seller's expected profit (see Harris
and Raviv [6], Riley and Zeckhauser [15], and Stokey [20]).4 An implica-
tion of this ``no haggling'' result is that screening consumers through a menu
of contracts, committing to a declining intertemporal price sequence, or
providing low-interest financing do not benefit the seller. In particular, a
declining price sequence could only be explained by the seller's inability to
commit to the optimal price (see Gul, Sonnenschein and Wilson [5], for
example). Yet, the aforementioned practices are often observed, even when
the seller appears to possess commitment power. For instance, Filene's
Basement marks down prices according to a posted schedule, based on
how long items have been on the shelves.

In this paper we study the optimal method of selling to a buyer whose
willingness to pay (his ``valuation'') and ability to pay (his ``budget'') are
private information. (The results can easily be translated to the case of a
continuum of consumers.) The possibility of a binding budget constraint
changes the optimal sales mechanism qualitatively. In many settings where
a single price would be optimal in the absence of a binding budget constraint,
the optimal mechanism here involves a menu of contracts. Put differently,
there is nontrivial price discrimination. As such, our problem is not a special
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2 Salant [18] notes that ``budget parameters'' were imposed on some bidders in these auctions.
In these and other government auctions, anecdotal evidence suggests that the limited financial
resources of small firms are a major concern. For example, the U.S. government has limited the
length and size of mineral leases. In timber rights auctions, ``setaside sales'' have been made
available to small firms (see Bergsten et al. [2]). The fact that joint bidding is permitted for
small firms in Outer Continental Shelf auctions can also be explained from this perspective (see
Hendricks and Porter [7]).

3 One exception is Sen [19] who considers seller-provided financing as a means of price
discrimination when ex ante identical consumers face income fluctuations.

4 If marginal revenue is non-monotonic and the monopolist has a fixed supply of the good, set-
ting two prices and rationing supply at the lower price may be optimal (see Wilson [21]). There
can also be rationing if there is aggregate demand uncertainty, in which case a buyer may get the
good with a probability between zero and one (see Wilson [22]). If consumers demand multiple
units and have concave utility, the optimal selling mechanism may involve nonlinear pricing (see
Maskin and Riley [11], and Mussa and Rosen [14]).



case of the existing models in which buyers are able to pay more than their
reservation prices. Moreover, the seller may benefit from imposing a financial
disclosure requirement, committing to a price schedule that declines over
time, or providing financing.

Two examples illustrate the basic points. The first shows that one cannot
analyze our problem by defining the buyer's effective valuation as the
minimum of his valuation and budget. Suppose that a seller wishes to sell
a good that she values at zero to a risk-neutral buyer. The buyer's valua-
tion is distributed uniformly on [0, 1] and his budget, which is an absolute
spending limit, is known to equal 2. Since the budget does not bind, the
seller is effectively facing the demand curve p=1&q. Her optimal strategy
is the textbook monopoly solution: make a take-it-or-leave-it offer of 1�2
(Harris and Raviv [6], Riley and Zeckhauser [15], and Stokey [20]).
Now suppose that the buyer has a known valuation of 2, with a budget that
is distributed uniformly on [0, 1]. The minimum of the valuation and
budget is again uniform on [0, 1], but the budget always binds here. A
single take-it-or-leave-it offer is now suboptimal. In fact, it is optimal to
require a payment of 2x if the buyer chooses to receive the good with prob-
ability x # [0, 1]. The different optimal strategies for the seller imply that
one cannot analyze our problem simply by looking at the minimum of the
valuation and budget (or any other function of the valuation and budget,
for that matter).

The next example shows that a cash bond requirement can be used to
extract additional revenue. Let the valuation, v, be uniformly distributed on
[0, 1], and let the budget be w=2&v. The budget does not bind for any
possible (v, w) pair, yet a take-it-or-leave-it offer of 1�2 is now suboptimal.
To see this, suppose that the seller charges 2&b for the good if the buyer
posts a bond of b. The buyer clearly has an incentive to post the largest
possible bond, so a buyer with budget w will post a bond of w and pay
2&w. Since w=2&v, imposition of a cash bond requirement allows the
seller to extract all surplus from the buyer.

These examples show that private information about a buyer's budget is
qualitatively different from private information about his valuation. Since
a buyer with an unknown budget offers new screening opportunities, seller
strategies may emerge here that would not be adopted in the absence of a
budget constraint.

The remainder of the paper is organized as follows. In Section 2, we
present the basic model. In Section 3, we characterize the optimal mechanism
for the ``unconditional'' case. In that case, the seller cannot use a cash bond
requirement to prevent over-reporting of the budget, so prices are not
conditioned on the buyer's budget. The optimal mechanism is implemented
by a convex, increasing pricing function that relates the probability
of receiving the good to the payment. In Section 4, we turn to the
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``conditional'' case. Now, the seller can costlessly prevent the buyer from
overstating his budget through the use of a cash bond or financial disclosure
requirement, so prices can be conditioned on the buyer's budget. The
optimal mechanism is now implemented by a two-dimensional pricing function
that is convex and increasing for each possible budget. In that mechanism,
types with a budget below a critical level face the same menu of contracts.
Types with higher budgets face different menus that offer weakly better deals
(i.e., lower payments for given probabilities of receipt). When the valuations
and budgets satisfy the monotone likelihood ratio property (MLRP), the
optimal mechanism has all budget types facing the same menu of contracts, so
the cash bond requirement is superfluous. Section 5 discusses the implications
of the availability of financing. Section 6 concludes.

2. THE MODEL

A seller has one unit of a good to sell to a buyer. Both parties are risk
neutral. A buyer with valuation v puts a value of vx on the ``quantity''
x # [0, 1]. The quantity x can denote the fraction of a unit, if the good is
divisible, or the probability that the buyer obtains one unit, if the good is
indivisible. (One could also interpret x as the discounted utility associated
with obtaining one unit of the good in the future, or as the quality of the
good.) The buyer has a budget of w, which is the most that he can spend.
We say that the buyer's ``type'' is (v, w) # 3#[v

�
, v� ]_[w

�
, w� ]. The marginal

distribution of w is G(w) and the conditional distribution of v given w is
F(v | w), with corresponding densities g(w) and f (v | w), respectively. The
densities are non-zero and continuously differentiable for all (v, w) in the
interior of 3. The seller values the good at zero.5

We now present the seller's problem. By the revelation principle, we can
restrict attention to direct-revelation mechanisms in which each buyer type
has an incentive to report private information truthfully. The mechanism
specifies the quantity that the buyer receives, x(v~ , w~ ) # [0, 1], and the
transfer payment he makes, t(v~ , w~ ) # R, if he reports (v~ , w~ ) # 3. Since the
seller and buyer are risk neutral, we assume that payments are deterministic.6

Formally, a mechanism is a mapping (x, t): 3 � [0, 1]_(&�, �).

201SELLING TO A BUDGET-CONSTRAINED BUYER

5 Zero is a valid normalization as long as the supports for the buyer's valuation and budget
weakly exceed the seller's valuation (i.e., in the ``gap'' case).

6 Replacing a random payment with its expected value can only loosen a buyer's budget
constraint. At the same time, random payments could conceivably be used to prevent a buyer
from exaggerating his budget. The cash bond requirement can accomplish this costlessly, when
it is effective. When the cash bond requirement is subject to manipulation by the buyer (e.g.,
when the buyer can borrow money to exaggerate his wealth), random payments are susceptible
to the same problem.



Any feasible mechanism must satisfy certain constraints. First, since the
buyer has the option of getting zero surplus by not participating, the
following condition must be satisfied:

vx(v, w)&t(v, w)�0 \(v, w) # 3. (IR)

Second, the payment must not exceed the buyer's budget:

t(v, w)�w \(v, w) # 3. (BC)

Finally, the buyer must have an incentive to report his information truth-
fully. We consider two versions of this constraint, depending on the seller's
ability to prevent the buyer from overstating his budget. Suppose, first, that
the seller can require the buyer to post a bond. In particular, suppose that
the seller requires the buyer to post a bond equal to his reported budget
(and can thereby prevent him from overstating his budget). In this case, the
seller need only prevent higher-budget types from mimicking lower-budget
types:

vx(v, w)&t(v, w)�vx(v~ , w~ )&t(v~ , w~ ) \(v, w), (v~ , w~ ) s.t. w~ �w. (IC)

A financial disclosure requirement, which induces the buyer to divulge
his budget, can have the same effect as the cash bond requirement since the
buyer cannot exaggerate his budget, but he can still conceal it. Disclosure
requirements are often used in real estate transactions, for example. Such
requirements are not used in all transactions, however. One possibility is
that the requirement may be ineffective because the buyer can borrow and
exaggerate his budget. For this reason, we also consider a stronger version
of incentive compatibility:

vx(v, w)&t(v, w)�vx(v~ , w~ )&t(v~ , w~ ) \(v, w), (v~ , w~ ) s.t. t(v~ , w~ )�w.

(IC$)

This latter constraint requires that each type have no incentive to choose
any other contract that it can afford, which may include contracts intended
for higher-budget types. Hence, (IC$) is at least as restrictive as (IC). In
certain circumstances, however, (IC$) is no more restrictive than (IC), so
cash bond and financial disclosure requirements become superfluous.

The seller's problem is to maximize her expected revenue, �3 t(v, w)
f (v, w) dv dw, subject to these feasibility constraints. Optimal mechanisms
with two-dimensional uncertainty are often difficult to characterize (see
Armstrong [1], Jehiel, Moldovanu and Stachetti [8], Laffont, Maskin and
Rochet [10], McAfee and McMillan [12], and Rochet and Chone� [16]).
One convenient approach is to focus on the corresponding nonlinear pricing
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problem, which relates quantities to payments. Normally, this would be a one-
dimensional problem, since no consumer would pay more than another for the
same quantity. We show that this is indeed the case for the unconditional
mechanisms satisfying (IC$). When the seller can costlessly prevent the buyer
from exaggerating his budget, however, she can charge a price that depends on
the reported budget. In that case, the problem is two dimensional. In section 4,
we solve for the optimal conditional mechanism with (IC) as the incentive
compatibility constraint.

3. OPTIMAL UNCONDITIONAL MECHANISM

We first find an optimal mechanism that satisfies the stronger version of
incentive compatibility (i.e., without an effective financial disclosure or cash
bond requirement). Our methodology involves reformulating the mechanism
design problem as a nonlinear pricing problem. For any feasible mechanism
(x, t) satisfying (IR), (BC), and (IC$), there exists a pricing function mapping
quantities into payments that generates at least as much revenue as the
original mechanism (for each type).

Consider a pricing function with the following properties:

{(0)=0, { is continuous, increasing, and convex, and 0�{$�v� , (VF $)

where {$ denotes the highest subgradient (the derivative, if { is differentiable).
The next lemma allows us to focus on pricing functions satisfying (VF $).

Lemma 1. For any feasible mechanism satisfying (IR), (BC), and (IC$),
there exists a pricing function satisfying (VF $) that generates weakly higher
expected revenue.

Proof. See Appendix A.

The pricing function can be given a graphical interpretation. Fix a direct
mechanism satisfying (IR), (BC) and (IC$), and plot all of the contracts
taken by the wealthiest types: (x( } , w� ), t( } , w� )). Now, for each type (v, w� ),
graph the indifference curve passing through its own contract, and form the
upper envelope of these indifference curves. (The indifference curves are
straight lines.) Since each type must weakly prefer its own contract, these
contracts must all be on the upper envelope, which is increasing and
convex. If the upper envelope is offered as a pricing function, each type
(v, w� ) can be induced to behave exactly as it would under the original
mechanism. (If the type-(v

�
, w� ) buyer got strictly positive surplus, we could

increase what each type pays.) The lemma proves that all types with w<w�
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can also be induced to pay at least as much when facing { as they would
pay under the original mechanism.

We now express the seller's objective function, for any pricing function.
We must first characterize buyer behavior. When facing { that satisfies
(VF $), a type (v, w) picks x to maximize vx&{(x), subject to {(x)�w. It
is optimal to pick the smallest x such that v�{$(x), if {(x)<w, and to pick
x={&1(w) otherwise. Therefore, the types that pick a quantity strictly less
than x have w<{(x) or v<{$(x). The measure of those types is

Q(x)=1&|
w�

{(x)
[1&F({$(x) | w)] g(w) dw.

The seller's revenue is then

|
1

0
{(x) dQ(x)+{(1)[1&Q(1)]

=|
1

0
|

w�

{(x)
{$(x)[1&F({$(x) | w)] g(w) dw dx,

where the equality follows from integration by parts.
Knowledge of the objective function allows us to reformulate the seller's

problem as follows:

max
{ |

1

0
|

w�

{(x)
{$(x)[1&F({$(x) | w)] g(w) dw dx.

s.t. (VF $). [RS]

We make one assumption before solving this problem. Note first that the
expression v[1&F(v | w)] represents the expected profit from making a
take-it-or-leave-it offer of v to a buyer with budget w (assuming the budget
does not bind). Let H(v | w)#1&F(v | w)&vf (v | w) denote its derivative
with respect to v. The following assumption, which amounts to an assumption
of declining marginal revenue, is satisfied by many well-known distributions
such as the uniform distribution.

Assumption 1. For each w, H(v | w) is strictly decreasing in v.

Let m*#arg maxp�w� �w�
w
�

p[1&F( p | w)] g(w) dw. (If w=w
�
=w� , let m*

#arg maxp�w p[1&F( p | w)].) We now show that a seller who knows the
budget constraint finds it optimal to make a take-it-or-leave-it offer of m*,
regardless of whether the constraint binds.
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Proposition 1. It is optimal for the seller to make a take-it-or-leave
offer of m*, if she knows the buyer's budget.

Proof. Suppose that the budget is known to equal w. That is, w=w
�
=

w� . Suppressing the argument w in F( } | w), the seller's problem can be
written as:

max
{ |

1

0
{$(x)[1&F({$(x))] dx

s.t. {(0)=0, {(1)�w, { is continuous, increasing, and convex.

(Note that we have ignored the condition on {$ that is in (VF $), but this
condition is satisfied by the solution below. The new condition, {(1)�w,
has no impact on the seller's expected revenue, given zero marginal cost,
but it simplifies the exposition.)

The Hamiltonian for the unconstrained version of this problem (i.e.,
without imposing convexity of {) is

J(x, {, u)#u(x)[1&F(u(x))]+*(x) u(x),

where u is the control variable and * is the costate variable. The
Hamiltonian necessary conditions are:

�J
�u

=1&F(u)&uf (u)+*=0,

{$=u,

*$=&
�[u(1&F(u))]

�{
=0.

Since * is constant, it follows from Assumption 1 that u is constant and
unique, so {$ is constant. The transversality conditions are *(1)�0 and
*(1)[{(1)&w]=0.

The solution takes one of two forms. If *(1)=0, then 1&F(u)&uf (u)=
0, so u(x) is the textbook monopoly price for all x. This case requires {(1)
=m*�w. If *(1)<0 instead, we have {(1)=w, implying that {$(x)=
{(1)=w, since {$ is constant. (Since 1&F(u(1))&u(1) f (u(1))<0, we have
m*=w, so {$=m*.) Either way, it is optimal to make a take-it-or-leave-it
offer of m*. K

Proposition 1 shows that there is no price discrimination when the
budget is known. An implication is that uncertainty about the budget is
necessary to generate price discrimination. We now present the existence
result for the general problem [RS] with w� >w

�
.
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Theorem 1. An optimal unconditional mechanism exists, and it is imple-
mented by a pricing function that satisfies (VF $) and

&{"(x) {|
w�

{(x)

�H({$(x) | w)
�{$(x)

g(w) dw==({$(x))2 f ({$(x) | {(x)) g({(x)). (1)

if {$(x)>v
�

and {(1)<w� .

Proof. The proof is omitted, as it follows the proof of Theorem 2, which
is presented in Appendix D.

Given Theorem 1, existence of an optimal direct revelation mechanism
follows from Lemma 1, combined with the revelation principle. The revelation
principle implies that if there exists an achievable (equilibrium) outcome
under any feasible mechanism, it can be implemented by a direct-revelation
mechanism. In fact, one can simply choose the set of contracts taken under
the optimal pricing function, and use them in the direct-revelation mechanism.
No other direct-revelation mechanism yields higher expected revenue, given
Lemma 1.

Some properties of the optimal selling mechanism follow directly from (1).

Proposition 2. Suppose that w� >w
�
. Then, the optimal pricing function

has a strictly convex portion if and only if m*>w
�
.

Proof. We begin with the ``if '' part of the statement. Suppose, to the
contrary, that the pricing function is linear even though m*>w

�
. Linearity

of { implies that the left-hand side of (1) is zero, so we must have {(1)�w
�
.

The program [RS] now reduces to a point-wise maximization problem,
which is solved by {$(x)=m* for all x. By linearity and (VF $), however,
{(1)={$(x)=m*>w

�
, which contradicts the earlier assertion. We conclude

that the optimal pricing function has a convex portion if m*>w
�
.

To prove the ``only if '' part, suppose that m*�w
�
. Setting a single price

equal to m* generates an expected profit of �w�
w
�

m*[1&F(m* | w)] g(w) dw.
This is as large as the expected profit from any other pricing function {
since

|
1

0
|

w�

w
�

m*[1&F(m* | w)] g(w) dw dx

�|
1

0
|

w�

{(x)
{$(x)[1&F({$(x) | w)] g(w) dw dx,

where the left-hand side equals �w�
w
�

m*[1&F(m* | w)] g(w) dw, the right-
hand side represents the expected profit from the pricing function {, and
the inequality comes from the definition of m*. K
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Proposition 2 implies that the optimal mechanism involves non-trivial
price discrimination when m*>w

�
. To see this, fix x # (0, 1). The quantity

x is chosen by types whose valuation equals the marginal price and whose
budget exceeds the required outlay (i.e., v={$(x) and w�{(x)). It is also
chosen by types whose valuation exceeds the marginal price and whose budget
equals the required outlay (i.e., v�{$(x) and w={(x)). These unconstrained
and constrained types, respectively, all purchase x. In particular, since
{$(1)=m and { is convex, the buyer will choose a quantity in (0, 1) when-
ever v>m # (v

�
, v� ) and w<{(1). It follows that the set of types choosing

quantities in (0, 1) has strictly positive measure.
The following two examples illustrate the optimal mechanism and the

associated buyer behavior.

Example 1. Uniform distribution and the Leontief property. Suppose
that (v, w) is uniformly distributed on [0, 1]2. The optimal mechanism is
implemented by a nonlinear pricing function that satisfies (1). In this case,
(1) simplifies to 2{"(x)[1&{(x)]&{$(x)2=0, which is solved by

{*(x)=1&0.143[18.49&10.49x]2�3.

The associated optimal (direct) mechanism is a menu of contracts given by

x(v, w)={
1 if v�1�2, w�0.4279;

1.7628&0.953�v3

if 0.3782�v<1�2, w�1&0.143�v2,

1.7628&1.7616(2&w)3�2

if v�0.3782, w<1&0.143�v2

0 otherwise,

and {(v, w)={*(x(v, w)). Figure 1 depicts this menu in terms of the optimal
quantity choices. The iso-contract loci, which join types choosing the same
contract, have the Leontief shape. That is, the valuation and the budget serve
as perfect complements since a buyer whose type is at the kink on an iso-
contract locus receives a higher quantity only if his valuation and budget
both rise.

The following discrete example illustrates additional properties.

Example 2. The 2_2 type case and the optimality of haggling. Suppose
that the buyer's valuation is either high (v2) or low (v1), and his budget is
either high (w2) or low (w1). In particular, 0<w1<v2�w2 , and v1<v2 .
Also, suppose that each type (vi , wj) is realized with probability ? ij=1�4.
In this case, Lemma 1 implies that an optimal pricing function is piecewise
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FIG. 1. Quantity choices induced by the optimal pricing function.

linear, with a slope of v1 for x�x̂ and v2 for x�x̂, for some x̂ # [0, 1]. In
particular, the optimal pricing function is linear with slope v1 if v2 �v1<2,
and with slope v2 if v2 �v1>3. When v2 �v1 # (2, 3), however, the pricing
function is strictly convex, with a kink at x̂=min[ w1

v1
, v2&w1

v2&v1
].

For instance, let v2=5, v1=2, and w1=4. The optimal take-it-or-leave-it
offer would be 2 or 4, both of which yield expected revenue of 2. By
contrast, the optimal unconditional mechanism is implemented by a pricing
function with a kink at x̂=1�3. When facing this pricing function, the low-
valuation types choose x=1�3 and pay t=2�3, and the high-valuation
types choose x=1 and pay t=4 (regardless of the budget), which yields
expected revenue of 2 1

3>2. At first glance, the budget constraint appears
to play no role here, as both contracts are affordable for low-budget types,
and price discrimination is based on valuations. Yet, the possibility that the
seller may face a high-valuation, low-budget type causes her to charge at
most 4 and, more importantly, allows her to offer a positive quantity to the
low-valuation type. If the buyer were unconstrained for sure (i.e., w1�5),
the seller would simply offer x=1 at t=5, and no contract to the low-
valuation types.

This example also has implications for bargaining. The optimal mechanism
can be implemented by committing to a price schedule that declines over time.
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Suppose that the instantaneous discount rate for both the buyer and seller
is r>0. Let t1 satisfy e&rt1=1�3. Then, the optimal mechanism can be
implemented by the price schedule p( } ), where p(t) is the price offered at
time t�0:

p(t)={4
2,

if t�t1 ;
if t>t1 .

When facing this price sequence, the buyer will purchase immediately if he
has the high valuation. Otherwise, he will wait until the price drops to 2,
at which point he will purchase one unit. The latter purchase is equivalent
to purchasing 1�3 of a unit at time zero at a price of 2�3, which is what the
low-valuation type is induced to do in the optimal mechanism above. Such
intertemporal price discrimination may be valuable especially when the
good is indivisible and lotteries are not feasible. Recall that such a declining
price schedule is not optimal absent the possibility of a binding budget
constraint.7

4. OPTIMAL CONDITIONAL MECHANISM

The previous section characterized an optimal selling mechanism for a
seller who finds it too costly to prevent over-reporting of the budget. We
now characterize the optimal mechanism for a seller who can costlessly
prevent over-reporting. The appropriate incentive compatibility condition
is now (IC). The remaining constraints are unchanged.

For any feasible mechanism (x, t) satisfying (IR), (BC), and (IC), we
show that there exists a pricing function that implements the mechanism.
In the previous section, such a pricing function was one dimensional since
no type would pay more than another for a given quantity. When the seller
can costlessly prevent over-reporting, she can charge different types different
amounts for a given quantity, so the pricing function is now two dimensional.
Consider T: [0, 1]_[w

�
, w� ] � R+ , where T( } , w) is the pricing function

that a buyer faces when he posts a cash bond of w. In particular, consider
a class of such functions satisfying:

T(0, w)=0, T( } , w) is continuous and convex,

and 0�T1( } , w)�v� \w # [w
�
, w� ], (VF )

T(x, } ) is nonincreasing \x # [0, 1], (WF )
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where T1 denotes the highest partial subgradient with respect to the first
argument.

Lemma 2. For any mechanism (x~ , t~ ) satisfying (IR), (BC), and (IC)
there exists T: [0, 1]_[w

�
, w� ] � R+ satisfying (VF ) and (WF) that generates

weakly higher expected revenue.

Proof. See Appendix A.

Consider any T satisfying (VF ) and (WF ). When facing T( } , w), types
with v�T1(x, w) pick a quantity greater than or equal to x, provided
T(x, w)�w. Therefore, the probability that a consumer with w will pick a
quantity strictly less than x is

Q(x, w)=1&I[T(x, w)�w][1&F(T1(x, w) | w)],

where I[T(x, w)�w] is an indicator function taking the value one when
T(x, w)�w and zero otherwise. Integrating by parts, the seller's expected
revenue from types with budget w is

|
1

0
T(x, w) dQ(x, w)+T(1, w)[1&Q(1, w)]

=|
[x # [0, 1] : T(x, w)�w]

T1(x, w)[1&F(T1(x, w) | w)] dx.

The seller's problem can be written as follows:

max
T |

w�

w
�

|
[x # [0, 1] : T(x, w)�w]

T1(x, w)[1&F(T1(x, w) | w)] dx g(w) dw

s.t. (VF ) and (WF ).

The analysis is simplified by the introduction of a slightly stronger condi-
tion than (WF).

For any w>w$, T1(x, w)�T1(x$, w$) whenever T(x, w)�T(x$, w$).

(WF $)

The next lemma shows that we can replace (WF ) with (WF $).

Lemma 3. When (VF ) holds, (WF $) implies (WF ). In addition, given
Assumption 1, for any T satisfying (VF ) and (WF ), there exists T* satisfy-
ing (VF) and (WF $) that yields weakly higher expected revenue.

Proof. See Appendix B.
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Given this result, the next lemma shows that the optimal pricing function
has a simple structure. Specifically, the optimal pricing function satisfying
(VF ) and (WF $) is constructed from a convex, one-dimensional function,
denoted {, and a family of affine functions. The importance of this result is
that we need only search for this one-dimensional function now.

The proof refers to ``ironed-out monopoly prices.'' Fixing z # [0, w� ], the
ironed-out monopoly prices for types with w�z are given by the function
m� z : [z6 w

�
, w� ] � R that solves

max
p |

w�

z
p(w~ )[1&F( p(w~ ) | w~ )] g(w~ ) dw~ [Mz]

s.t. p: [z 6 w
�
, w� ] � R is nonincreasing.

In words, the ironed-out monopoly prices for types with w # [z, z$] are the
optimal take-it-or-leave-it prices for budgets in that interval, given that
prices charged to higher-budget types must be no greater than those charged
to lower-budget types.8 It is also useful to let

m(w)#arg max
p

p[1&F( p | w)]

denote the monopoly price against budget w. We now state the lemma.

Lemma 4. For any T satisfying (VF ) and (WF $), there exists T* satisfying
(VF ) and (WF$) that yields weakly higher expected revenue, where T*(x, w)=
{(x) for w�{(1), and T*(x, w)=�x

0 [{$(s) 7 m� {(1)(w)] ds for w>{(1), for
some { satisfying (VF $).

Proof. See Appendix C.

All types with a budget w�{(1) are offered the same deals. Those with
budgets above {(1) are offered weakly better deals. We refer to T( } , w) as
the ``pricing function at w.'' Lemma 4 implies that there exists a function
{ satisfying (VF $) such that the optimal pricing function at w is composed
of { and, possibly, a linear extension whose slope equals the ironed-out
monopoly price (see Fig. 2). In particular, the slope of the optimal pricing
function at w is equal to the smaller of {$ and the ironed-out monopoly
price for that w. If the former exceeds the latter for all x, the optimal
pricing function at w entails charging the ironed-out monopoly price.
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FIG. 2. A family of nonlinear pricing functions.

Using Lemma 4, we can restate the seller's problem as:

max
{ |

1

0 {|
{(1)

{(x)
{$(x)[1&F({$(x) | w)] g(w) dw

+|
w�

{(1)
({$(x) 7 m� {(1)(w))[1&F({$(x) 7m� {(1)(w) | w)] g(w) dw= dx

s.t. {: [0, 1] � R+ is a continuous, convex function with {(0)=0,

and 0�{$�v� . ([S])

Let +(z)#m� z(z) denote the ironed-out monopoly price for a type with
budget z when the seller faces a buyer with budget z or above. Now let
ŵ(k)#inf[w # [{(1), w� ] | m� {(1)(w)<k] if the set is nonempty; otherwise, let
ŵ(k)#w� . The existence result for problem [S] follows.

Theorem 2. There exists an optimal mechanism. It can be implemented
by a pricing function T satisfying T(x, w)={(x) for w�{(1), and T(x, w)=
�x

0 [{$(s) 7 m� {(1)(w)] ds for w>{(1), where { satisfies

&{"(x) {|
ŵ({$(x))

{(x)

�H({$(x) | w)
�{$(x)

g(w) dw==({$(x))2 f ({$(x) | {(x)) g({(x))

(2)
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when {$>v
�

and {(1)<w� , with {$(1)=+({(1)) if {(1) # [w
�
, w� ) and {$(1)�+(w

�
)

if {(1)<w
�
.

Proof. See Appendix D.

We now turn our attention to the choices made by the buyer. Henceforth,
let T* denote an optimal pricing function and let {* denote a solution to (2).
A type-(v, w) buyer chooses a quantity

x(v, w) # arg max
x

[vx&T*(x, w) s.t. T*(x, w)�w].

These optimal choices can be characterized precisely in several cases.
Suppose that the ironed-out monopoly price for the lowest budget is
weakly below the lowest budget (i.e., +(w

�
)=m� w

�
(w

�
)�w

�
). It is then optimal

to offer the ironed-out monopoly prices, since the budget constraint does
not bind for any w. That is, the best the seller can do is to offer the ironed-
out monopoly prices, so a buyer with budget w can receive one unit of the
good by paying m� w

�
(w).

Proposition 3. Suppose that +(w
�
)�w

�
. Then, the pricing function

T*(x, w)=m� w
�
(w) x for all (x, w) is optimal. The buyer chooses x(v, w)=1

if v�m� w
�
(w), and x(v, w)=0 otherwise.

Proof. By definition of m� w
�
, the suggested pricing function solves [S].

In particular, T*( } , w)�w for all w since T*( } , w)�T*(1, w)=m� w
�
(w)�

+(w
�
)�w

�
. The buyer behavior is immediate since the budget constraint

does not bind. K

Although the constraint does not bind when +(w
�
)�w

�
, the seller can use

a cash bond requirement to price-discriminate by charging higher prices to
types with lower budgets. We next consider the more interesting case in
which some types face a binding budget constraint. As in the case of uncondi-
tional mechanisms, the seller offers non-trivial price discrimination in the sense
that the buyer chooses a quantity x # (0, 1) with positive probability.

Proposition 4. Suppose that +(w
�
)>w

�
�v

�
. Then, the optimal pricing

function at w={*(1) has a strictly convex portion, and there is positive
probability that the buyer chooses a quantity x # (0, 1).

Proof. Equation (2) implies that {* is convex when {*>w
�

and {*$(x)>v
�
.

Thus, for the first statement, it suffices to show that {*(1)>w
�

and {*$(1)>v
�
.

Suppose, to the contrary, that {*(1)�w
�
. Then, by (2), {* is linear, so {*(1)=

{*$(1). By Theorem 2, {*$(1)�+(w
�
). But, +(w

�
)>w

�
, by assumption, implying

{*(1)>w
�
, which contradicts {*(1)�w

�
.
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Now suppose that {*(1)>w
�

but {*$(1)�v
�
. Convexity gives {*(1)=

�1
0 {*$(x) dx��1

0 {*$(1) dx�v
�
�w

�
. This contradicts {*(1)>w

�
. It follows

that there is a strictly convex portion.
When facing the optimal pricing function, types with v>+({*(1)) and

w<{*(1) get x # (0, 1), and pay their entire budgets. (For all such types,
we have v>{*$(x) for x # (0, 1), since Theorem 2 and convexity of {* yield
{*$(x)�{*$(1)=+({*(1)), but their budgets are below {*(1).) The measure
of such a set is strictly positive since {*(1)>w

�
and +<v� . K

As mentioned in the Introduction, a cash bond or financial disclosure
requirement is used for some goods but not for others. This may be
because such a requirement does not prevent over-reporting of the budget.
Alternatively, it may be because such a requirement is of no value to the
seller, even if she can use it effectively. We now explore this latter possibility.

Assumption 2 (Monotone likelihood ratio property). Given (v, w) and
(v$, w$) in [v

�
, v� ]_[w

�
, w� ] such that w$�w and v$�v, we have

f (v$ | w$)
f (v | w$)

�
f (v$ | w)
f (v | w)

.

This assumption, together with Assumption 1, implies that m is non-
decreasing.9 Intuitively, MLRP means that types with higher budgets have
higher demand, so the seller would like to charge them more. A cash bond
or financial disclosure requirement enables the seller to discriminate against
a lower-budget type. Given MLRP, price discrimination against a lower-
budget type is unprofitable, so the financial disclosure requirement loses its
value as a device for price discrimination.

Proposition 5. Given Assumption 2, the optimal selling mechanism can
be implemented by the pricing function T*(x, w)={*(x) for all w # [w

�
, w� ].

Proof. The statement holds trivially if {*(1)�w� , by Theorem 2, so
consider {*(1)<w� . In particular, suppose first that {*(1) # [w

�
, w� ). Then,

{*$(x)�{*$(1)=+({*(1))=m� {*(1)(w) for all w, where the inequality holds
by convexity, the first equality holds by Theorem 2, and the second
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equality holds since m is nondecreasing, given Assumption 2. Theorem 2
then implies that T*( } , w)={* for all w.

Now suppose that {*(1)<w
�
. In this case, (2) and Theorem 2 imply that

{* is linear, with a slope of {*$(1)�+(w
�
). Since Assumption 2 implies that

m� w
�

equals some constant m~ , we conclude that the function T*(x, w)=
{*(x)=m~ x for all x and w is optimal. K

Since T*( } , w)={* for all w, the solution to [RS] clearly solves [S].
Hence, the following result holds.

Corollary 1. Given Assumption 2, the optimal unconditional mechanism
identified in Theorem 1 is optimal (in the class of conditional mechanisms).

Combining Propositions 1, 2 and 5 yields a generalization of the results
of Harris and Raviv, Riley and Zeckhauser, and Stokey.

Corollary 2. It is optimal for the seller to make a take-it-or-leave-it
offer at the price m* if she knows the buyer's budget or if m*�w

�
and

Assumption 2 holds.

The next example illustrates a case in which a cash bond or financial
disclosure requirement is valuable.

Example 3. The 2_2 type case and the use of the cash bond require-
ment. Return to the 2_2 type case. It turns out that the use of cash bonds
increases the seller's expected revenue if and only if

1+
?11

?21

<
v2

v1

<1+
?12

?22

and w1>v1 . (3)

The first condition means that the probability of facing a high-valuation
type is relatively high (low), conditional on the buyer having a low (high)
budget. Thus, the seller would like to charge the high-budget type less than the
low-budget type. The second condition makes differential treatment worth-
while for the seller. Given these conditions, the seller will want to charge v1 to
the high-budget type and w1(>v1) to the low-budget type. When (3) does not
hold, either the seller would want to discriminate against high-budget types,
which is not incentive compatible, or such discrimination is unprofitable. If the
budget and valuation are independent or positively correlated (which is
equivalent to our monotone likelihood ratio property), (3) cannot hold, so
the financial disclosure requirement becomes superfluous.

Suppose, for example, that ?11=?22=1�6, ?21=?12=1�3, v2=2, v1=1,
and w1=3�2. The optimal unconditional mechanism is a take-it-or-leave-it
offer of 1, which yields revenue of 1. In this case, condition (3) holds, so
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FIG. 3. The use of cash bond requirement.

the cash bond requirement is beneficial. The optimal conditional mechanism
charges 1 to a high-budget buyer for x=1, and offers a low-budget buyer
a choice between a price of 3�2 for x=1 and a price of 1�2 for x=1�2. (The
pricing function that implements this outcome is depicted in Fig. 3, which
has the shape identified in Lemma 4.) A low-budget type will pick x=1 if
vi=2, and x=1�2 if vi=1. The seller receives expected revenue of 1 1

12 ,
which exceeds the expected revenue from the take-it-or-leave-it offer.

5. SELLER-PROVIDED FINANCING

Thus far, we have assumed that the buyer's budget constitutes an
absolute spending limit. In practice, sellers and other lenders often provide
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financing to buyers. The availability of financing raises several interesting
issues: How does the ability to provide financing affect the seller's ability
to price discriminate? In particular, does it make the buyer's liquidity
constraint irrelevant? Why do sellers provide financing when other lenders
can supply financing, possibly at lower cost? Rather than simply making
the liquidity constraint looser, seller-provided financing enables the seller
to exploit the liquidity constraint more effectively as a price-discrimination
device. While a third-party lender (such as a credit card company) can also
exploit the liquidity constraint, the seller can coordinate the financing and
pricing strategies.

To illustrate these points, consider a simple two-period extension of the
2_2 type case introduced in examples 2 and 3: In the first period the buyer
faces a budget constraint of w1 or w2 , but now he earns enough income in
the second period to pay up to the higher valuation, v2 . For simplicity,
assume that the seller can provide financing at zero cost and that both
parties do not discount future payoffs. Suppose, first, that

1+
?12

?22

�1+
?11

?21

<
v2

v1

and w1<v2 . (4)

(Recall that ?ij is the probability that the buyer's valuation is vi and the
budget is wj .) The high-budget (liquid) type is more likely to have a high
valuation than is the low-budget (illiquid) type, which means that the
monotone likelihood ratio property holds. Moreover, both budget types
are relatively likely to have the high valuation. It is optimal in this case for
the seller to charge a price of v2 for the good and to provide zero interest
financing of v2&w1 (i.e., provide a loan of v2&w1 , which must be repaid
in the next period without interest). This induces a high-valuation buyer to
obtain financing if he has a low budget initially. While the seller earns no
direct benefit from offering financing, the financing scheme enables her to
extract the entire surplus from a type-v2 buyer, regardless of the budget,
which she could not do previously.

A more interesting possibility arises when

1+
?11

?21

<
v2

v1

<1+
?12

?22

and w1<v1 . (5)

The first condition is the same as in (3). It implies that the low-budget type
is more likely to have a higher valuation. In this case, it is optimal for the
seller to charge a price v1 and to offer financing of v1&w1 , which carries an
interest payment of v2&v1 . When facing such a scheme, a buyer with budget
w2 will pay v1 without obtaining financing. A type-(v2 , w1) buyer will obtain
financing, since w1<v1 , which means paying v2 over the two periods.
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This financing scheme enables the seller to extract the entire surplus from
the type-(v2 , w1) buyer, while charging a lower price to the high-budget
types. Given the first condition of (5), one can easily verify that this is the
optimal selling strategy for the seller. Financing is now used as an active
instrument of surplus extraction, while the good itself is priced low to
attract the high-budget type, who is more likely to have the low valuation.
This idea of extracting surplus through financing charges is consistent with
casual observation: Many financing programs offered by electronic appliance
stores and furniture stores offer low (or deferred) interest for the first three
or six months, but then the rates jump up substantially. Many consumers
end up paying these high rates rather than paying off the loan early.

A similar opportunity to extract consumer surplus may be available to
a third-party lender such as a credit card company. Suppose that the seller
cannot provide financing (i.e., the seller cannot collect any payment from
the buyer after the initial transaction). Consider the case satisfying (5) and
suppose that a monopoly third-party lender charges interest of v2&v1 for
a loan of v1&w1 . If w1 or the probability of facing a type-(v1 , w1) buyer
is sufficiently small, the optimal response from the seller is to charge all
types v1 for one unit, which gives the same outcome as above, except that
the lender now extracts the entire surplus from the low-budget high-valua-
tion buyer. It must be noted, however, that a seller who is able to provide
financing can benefit by coordinating the financing and pricing strategies.
In particular, the seller internalizes the benefit from low-rate financing on
sales of the good whereas the third-party lender does not. For example, in
the first case with (4), zero-interest financing will not be profitable for a
third-party lender if there is a small probability of default, but the seller
may be willing to take that risk if there is a substantial benefit (i.e., a cross-
subsidy) from sales of the good.

6. CONCLUSION

This paper has characterized an optimal selling mechanism when a buyer
may be budget constrained. The optimal mechanism generally involved
non-trivial price discrimination, as different types chose different quantities.
Depending upon the context, price discrimination may be tied to quantity
or quality. It may take the form of a menu of lotteries or intertemporal
price discrimination (if the good is indivisible).10 Our results also imply
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that financial disclosure requirements or seller-provided financing may
benefit a seller, particularly when she faces a buyer whose budget (liquid
wealth) is low initially, but whose propensity for consumption is high. Our
results and their implications are novel since, absent budget constraints, a
seller would optimally make a take-it-or-leave-it offer.

There remain some interesting extensions. Our paper considered the case
of unit demand and linear preferences in order to highlight the impact of
binding budget constraints. A natural extension is to consider a more
general model with utility that is concave in quantity. Such a model would
explain how the precise form of price discrimination (e.g., the intensity of
quantity discounts) changes with the severity of the financial constraint
facing the buyer. Second, one might consider a financial constraint that is
not an absolute spending limit. Except for Section 5, this paper has focused
on a buyer facing an absolute spending limit. The discussion in Section 5
suggests that a more general model would have implications for seller financing
as well as the interaction between the seller's strategy and the financing
strategies of third-party financial institutions. Default is another important
issue that warrants study in this context.

A final, important extension is to explore the welfare implications of the
pricing schemes discussed in this paper. In the presence of binding budget
constraints, price discrimination can make it profitable for the seller to
serve low-budget buyers who would otherwise not be served. Schemes
involving installment payments and royalty payments, which are often used
in government auctions, may have a similar effect. Likewise, rotating
savings and credit associations can enhance welfare by relaxing the budget
constraints of the poor. An all-pay auction has a similar effect, by making
the object available in small probability units.

APPENDIX A

Proof of Lemmas 1 and 2

Proof of Lemma 1. Fix any mechanism (x~ , t~ ) satisfying (IR), (BC),
and (IC$). Now consider a pricing function defined by

{(x)# max
v$ # [v

�
, v� ]

[v$x&[v$x~ (v$, w� )&t~ (v$, w� )]]+[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )].

It follows from (IC$) that v$x~ (v$, w� )&t~ (v$, w� ) is continuous and non-
decreasing in v$, so the maximum is well defined, and {(0)=0. The maximand
in {(x) is continuous in (v$, x), so { is continuous, by Berge's maximum
theorem. Also, the maximand satisfies the strict single-crossing property in
(v$, x), so any selection from the set of maximizers, v(x), is nondecreasing
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in x. Given the strict single-crossing property, Theorem 4$ of Milgrom and
Shannon [13] states that v�v$ whenever v # arg maxv~ f (v~ , x) and v$ #
arg maxv~ f (v~ , x$). Hence, { is convex, and {$ is well defined. By the envelope
theorem, {$(x) # v(x)/[v

�
, v� ]. We conclude that { satisfies (VF $).

It now suffices to show that { generates weakly higher revenue than
(x~ , t~ ). Consider an arbitrary wealthiest type (v, w� ). For any v$, the
maximand of the above expression at x=x~ (v, w� ) satisfies:

v$x~ (v, w� )&[v$x~ (v$, w� )&t~ (v$, w� )]+[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )]

�v$x~ (v, w� )&[v$x~ (v, w� )&t~ (v, w� )]+[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )]

=t~ (v, w� )+[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )],

where the inequality comes from (IC$). It follows that {(x~ (v, w� ))=t~ (v, w� )+
[v

�
x~ (v

�
, w� )&t~ (v

�
, w� )]. In other words, if the buyer chooses x=x~ (v, w� ), he

pays t~ (v, w� ) plus the net surplus that accrues to the type (v
�
, w� ).

By definition of {,

{(x)�vx&[vx~ (v, w� )&t~ (v, w� )]+[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )]

� vx&{(x)�vx~ (v, w� )&t~ (v, w� )&[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )]

=vx~ (v, w� )&{(x~ (v, w� )),

for any x # [0, 1], where the last equality holds since {(x~ (v, w� ))=t~ (v, w� )+
[v

�
x~ (v

�
, w� )&t~ (v

�
, w� )], from above. Therefore, when facing {, the type-(v, w� )

buyer weakly prefers x~ (v, w� ) to any other x # [0, 1]. Let x* be the highest
value of x that this type is willing and able to choose. (If x*>x~ (v, w� ), he
must be indifferent to choosing x~ (v, w� ), since taking the latter quantity is
weakly preferred and feasible.) Note that

{(x*)�min[w� , {(x~ (v, w� ))]

=min[w� , t~ (v, w� )+[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )]]�t~ (v, w� ),

where the first inequality follows from the definition of x*, and the second
inequality follows since v

�
x~ (v

�
, w� )&t~ (v

�
, w� )�0 by (IR), and t~ (v, w� )�w� by

(BC). Thus, a wealthiest type can be induced to pay at least as much when
facing { as he would under (x~ , t~ ).

Now consider any type (v, w), w<w� . Since that type has the same
preferences as the type (v, w� ), the type (v, w) will (weakly) prefer x* to any
other quantity for which {(x)�w. Two cases must now be considered to
show that the type (v, w) pays min[w, {(x*)]. Suppose, first, that {(x*)>
w. Since { is convex, indifference curves are affine, and the type (v, w)'s
preferred quantity is x*, the type (v, w) will spend w.
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Now suppose that {(x*)�w. In this case, the type (v, w) can be induced
to choose x* and pay {(x*). This follows since (x~ (v, w), t~ (v, w)) is on the
same indifference curve as (x~ (v, w� ), t~ (v, w� )) and (x*, {(x*)&[v

�
x~ (v

�
, w� )&

t~ (v
�
, w� )]). (Incentive compatibility guarantees this for types (v, w� ) and (v, w)

since each has a sufficient budget to afford the other's contract under
(x~ , t~ ).) Thus, the type (v, w) pays min[w, {(x*)] when facing {.

To show that a type-(v, w) buyer pays at least as much under { as under
the original mechanism, it suffices to show that {(x*)�t~ (v, w). Suppose, to
the contrary, that t~ (v, w)>{(x*). Then,

vx~ (v, w)&t~ (v, w)=vx*&{(x*)+[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )]

>vx~ (v, w)&{(x~ (v, w))+[v
�
x~ (v

�
, w� )&t~ (v

�
, w� )],

where the first equality follows from the aforementioned indifference and
the inequality follows since x~ (v, w)>x* (by the first equality and the hypo-
thesis that t~ (v, w)>{(x*)) and since x* is the largest maximizer. It follows
that t~ (v, w)<{(x~ (v, w))&[v

�
x~ (v

�
, w� )&t~ (v

�
, w� )]. But this last fact implies that

some type (v$, w� ), v$>v, would strictly prefer (x~ (v, w), t~ (v, w)) to (x~ (v$, w� ),
t~ (v$, w� )), which contradicts (IC$). We conclude that t~ (v, w)�{(x*). K

Proof of Lemma 2. Fix any mechanism (x~ , t~ ) satisfying (IR), (BC), and
(IC). Consider the pricing function T(x, w)#maxv # [v

�
, v� ][vx&[vx~ (v, w)&

t~ (v, w)]] for each w # [w
�
, w� ]. Following Lemma 1, T satisfies the conditions

of (VF), with the possible exception of the first one. (We deal with that condi-
tion later.) Since vx~ (v, w)&t~ (v, w) is nondecreasing in w, by (IC), T also
satisfies (WF ).

We now prove that the pricing function yields weakly higher revenue
than the original mechanism (x~ , t~ ) . Fix any type (v, w). Following the
arguments of Lemma 1, a type (v, w) weakly prefers (x~ (v, w), t~ (v, w)) to
(x, T(x, w)), \x # [0, 1]. We now show that it weakly prefers (x~ (v, w), t~ (v, w))
to any contract in (x, T(x, w$)), \w$<w. (By assumption, it can be prevented
from choosing a contract in (x, T(x, w")), \w">w.) Suppose, to the contrary,
that the type (v, w) strictly prefers (x, T(x, w$)) to (x~ (v, w), t~ (v, w)) for
some x # [0, 1] and some w$<w. As noted above, a type (v, w$) weakly
prefers (x~ (v, w$), t~ (v, w$)) to (x, T(x, w$)). Since a type (v, w) has the same
preferences as a type (v, w$), the former type strictly prefers (x~ (v, w$), t~ (v, w$))
to (x~ (v, w), t~ (v, w)), which contradicts the hypothesis that (x~ , t~ ) satisfies
(IC).

Consider the new pricing function T� #max[T, 0]. This function satisfies
(VF ) and (WF ). (Since T� (0, w)=0, the first part of (VF ) is now satisfied.)
The proof is completed by noting that T� induces the same behavior from
each type as T, except where T� prevents a negative payment. K
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APPENDIX B

Proof of Lemma 3

We first show that (WF $) implies (WF ), when (VF) holds. Suppose that
(VF ) and (WF $) hold, and yet T(x, w)>T(x, w$) for some x # [0, 1] and
w>w$, thereby violating (WF ). Then, (VF ) implies that there exists x$<x
such that T(x$, w)=T(x$, w$) and T1(x$, w)>T1(x$, w$). This latter fact
contradicts (WF $), however. We conclude that (WF $) implies (WF ) when
(VF ) holds.

We now show that, for any T satisfying (VF ) and (WF ), there exists T*
satisfying (VF ) and (WF $) that yields (weakly) higher expected revenue.

Fix T satisfying (VF ) and (WF ). We need the following preliminary step.
For any (v, w), let

U(v, w)# max
x # [0, 1]

[vx&T(x, w) s.t. T(x, w)�w]

denote a type-(v, w) buyer's equilibrium utility under T, and let X(v, w)
denote the largest maximizer. (Given continuity of T( } , w), the maximum
is well-defined.) Let x� (w)#X(v� , w) and let t� (w)#T(X(v� , w), w). Since x� is
the largest maximizer, T(x, } ) is nonincreasing, and T1( } , w)�v� , it follows
that x� is nondecreasing. For each w # [w

�
, w� ], let

y(x, w)#{x
t� (w)
x� (w)

t� (w)+v� (x&x� (w))

if x�x� (w)

if x>x� (w).

Now let

T*( } , w)#conv[ y( } , w$)]w$ # [w
�
, w]

for each w, where the right-hand side denotes the largest convex function
(weakly) below the set of functions [ y( } , w$)]w$ # [w

�
, w] . By definition,

T*(0, } )=0, T*( } , w) is nondecreasing, continuous and convex for all w,
with T 1*(x, } )�v� . Hence, T* satisfies (VF ).

We next show that T* satisfies (WF $). Fix any x, x$, and w>w$ such
that T*(x, w)�T*(x$, w$). There exists an interval, A(x, =)#((x&=) 6
0, (x+=) 7 1), throughout which T*( } , w)=T*( } , w$) or T*( } , w)<
T*( } , w$), for some =>0. In the former case, T*(x, w)�T*(x$, w$) implies
x�x$, which in turn implies T 1*(x, w$)�T 1*(x$, w$), by convexity. At the
same time, equality of the functions in a neighborhood of x implies
T 1*(x, w)=T 1*(x, w$). Together, we have T 1*(x, w)�T 1*(x$, w$), which
means that (WF $) is satisfied.
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Now assume that T*( } , w)<T*( } , w$) throughout A(x, =). Suppose that
y1(x$, w$)=v� . Then, T1(x$, w$)=v� (since x� is nondecreasing). In this case,
the proof is trivial since T1( } , w) cannot exceed v� . Now suppose that
y1(x$, w$)<v� . This means that x$<x� (w$). Since x� is nondecreasing, it
follows that x<x� (w~ ) for all w~ >w$. Hence, T*( } , w) must be on the linear
segment from the origin, or on the linear extension of T*( } , w$). Formally,
T*( } , w) is on the highest convex function that lies below T*( } , w$) and
passes through the origin. Again, T*(x, w)�T*(x$, w$) implies T 1*(x, w)�
T 1*(x$, w$). We conclude that T* satisfies (WF $).

Let

U*(v, w)# max
x # [0, 1]

[vx&T*(x, w) s.t. T*(x, w)�w]

denote the type-(v, w) buyer's equilibrium expected utility under T*, and
let x*(v, w) denote the smallest maximizer. Now observe that T*( } , w)�
T( } , w) for all w, so U*( } , w)�U( } , w). Since the graph of T*( } , w)
contains the contract (x� (w), t� (w)), we have U*(v� , w)=U(v� , w).

The expected revenue generated by T*( } , w) from types with w is

|
x� (w)

x*(v
�
, w)

T 1*(x, w)[1&F(T 1*(x, w) | w)] dx+T*(x*(v
�
, w), w)

=|
v�

v
�

v[1&F(v | w)] dx*(v, w)+T*(x*(v
�
, w), w)

=&|
v�

v
�

H(v | w) x*(v, w) dv&U*(v
�
, w)

=&H(v� | w) U*(v� , w)+[H(v
�

| w)&1] U*(v
�
, w)

+|
v�

v
�

�H(v | w)
�v

U*(v, w) dv

�&H(v� | w) U(v� , w)+[H(v
�
, w)&1] U(v

�
, w)

+|
v�

v
�

�H(v | w)
�v

U(v, w) dv

=|
X(v� , w)

X(v
�
, w)

T1(x, w)[1&F(T1(x, w) | w)] dx+T(X(v
�
, w), w),

where the last line represents the expected revenue under T from types with w.
The first equality results from a change of variables, since T 1*(x*(v, w), w)=v
for almost every v such that x*(v, w)<x� (w). The second and third equalities
are the result of integration by parts, combined with the envelope theorem
result that x*(v, w)=�U*(v, w)��v. The inequality follows since �H(v | w)��v is
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strictly negative (given Assumption 1), U*(v� , w)=U(v� , w), and U*( } , w)�
U( } , w). The last equality follows from the first three equalities taken in the
reverse order, with T replacing T*. Since the revenue ranking holds for all
w, T* yields weakly higher expected revenue than T. K

APPENDIX C

Proof of Lemma 4

The proof involves several lemmas. The first shows that we can restrict
attention to pricing functions such that all types with budgets below a
critical level (the constrained types) are offered the same deals. We subse-
quently describe the better deals that are offered to those with higher
budgets.

Lemma C1. For any T satisfying (VF) and (WF $), there exists T* satis-
fying (VF ) and (WF $) that yields weakly higher expected revenue, where
T*(x, w)={(x) for w�{(1), and T 1*(x, w)�{$(x) for w�{(1), for some {
satisfying (VF $).

Proof. Fix any T satisfying (VF ) and (WF $). Let w*#sup [w #
[w

�
, w� ] | T(1, w)�w] if the set is nonempty; otherwise, let w*#w

�
. Let

{(x)#T(x, w*) if T(1, w*)�w*; otherwise, let {(x)#infw<w* T(x, w).
Clearly, { satisfies (VF $). Also, since (WF $) implies (WF ), T(x, w)�{(x)
for all w>{(1). Then, (WF $) further implies that T1(x, w)�{$(x) for all
w>{(1).

Consider a new pricing function, T*, with T*(x, w)#{(x) for w�{(1),
and T*(x, w)#T(x, w)�{(x) for w>{(1). This new function clearly satis-
fies (VF ) and (WF $), given the way { is defined. Under this new function,
all buyer types with w>{(1)#w* face the same menu as under T, so their
behavior is unchanged. Now consider a type-(v, w) buyer, w<{(1). Suppose
that type picks the quantity x when facing T( } , w). This implies that, for any
x$<x, v&T1(x$, w)�0. Fix x* # [0, 1] such that {(x*)=T(x, w). The
quantity x* is well defined since {(1)>w�T(x, w)>{(0), and since { is
continuous. By (WF $) this implies that, for any x"<x*, {$(x")�T1(x$, w)
for some x$<x, so we have v&{$(x")�0. It follows that such a buyer will
pick a quantity weakly higher than x*, when facing {#T( } , w*), so its
payment will be weakly higher than T(x, w), which is its payment under T.
Since this argument works for any buyer type with w<{(1), we conclude
that T* yields weakly higher expected revenue than T. K

We now turn our attention to the unconstrained types. The next main
result (contained in Lemma C6) refers to the ironed-out monopoly price

224 CHE AND GALE



function, m� z , which is the solution to program [Mz]. We step back to
characterize this solution first. Since the integrand of the objective function
in [Mz] is continuous, existence of the solution is easily established (see
Theorem 2.1 of Fleming and Rishel [4, p. 63]). The solution is unique
since, by Assumption 1, the integrand of the objective function is strictly
concave in p, and the set of feasible functions (i.e., nonincreasing functions)
is convex. The unique solution is characterized by the necessary and sufficient
conditions below.

Consider the Lagrangean equation associated with the problem:

K(w, p, p$)= p[1&F( p | w)]+:p$&;p$,

where : is the costate variable and ; is the multiplier associated with the
monotonicity constraint. The solution, m� z , must satisfy the following
necessary and sufficient conditions:

:$(w)=&H( p(w) | w), (C1)

:(w)&;(w)=0 and p$(w) ;(w)=0, (C2)

:(z 6w
�
)=:(w� )=0. (C3)

The necessary conditions are sufficient since K is concave in ( p, p$).
The following lemmas result from inspection of (C1)�(C3).

Lemma C2. If m� z is strictly decreasing in a neighborhood of w, then m� z(w)
=m(w). Now suppose that m� z equals a constant m~ over an interval, and let
I(m~ )#[w: m� z(w)=m~ ] be the largest such interval. Then �I(m~ ) H(m~ | w) dw=0.

Proof. Suppose that m� z is strictly decreasing in a neighborhood of w.
By (C2), :=;=0 in that neighborhood. By (C1), this implies that
H(m� z(w) | w)=0, or m� z(w)=m(w). Now suppose that m� z equals a constant
m~ over I(m~ ). Then, �I(m~ ) H(m� | w) dw=:(sup I(m~ ))&:(inf I(m~ ))=0, where
:(sup I(m~ ))=:(inf I(m~ ))=0 since m� z is strictly decreasing immediately
outside the interval I(m~ ), by definition. K

Lemma C3. Fix z and z$ such that z<z$�w� . If m� z is strictly decreasing
in a neighborhood of z$, then m� z(w)=m� z$(w) for all w�z$.

Proof. Clearly, m� z satisfies (C1) and (C2) for w�z$, and :(w� )=0, by
the free-end condition. Since m� z is strictly decreasing in a neighborhood of
z$, the proof of Lemma C2 implies that :(z$)=0. Therefore, m� z also satisfies
(C3) for the program [Mz$]. Since the solution to [Mz$] is unique, and
(C1)�(C3) are necessary and sufficient, we have m� z(w)=m� z$(w) for all
w�z$. K
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Two more preliminary results are needed before we are ready to prove
the result.

Lemma C4. Suppose that m is strictly increasing over the interval [w1 , w2].
Then, for any pricing function [T( } , w)]w # [w1, w2] satisfying (VF) and (WF $),
there exists a one-dimensional pricing function, y : [0, 1] � R, such that
replacing T( } , w) with y for w # [w1 , w2] increases expected revenue (while
satisfying (VF ) and (WF $)).

Proof. Let w(x)#sup [w # [w1 , w2] | T1(x, w)>m(w)]. (If T1(x, w)�
m(w) for all w in the interval, let w(x)#w1). Now let t

�
(x)#T(x, w1) and

t� (x)#T(x, w2). Finally, define a pricing function, y, such that y$(x)#
[m(w(x)) 7 t

�
$(x)] 6 t� $(x). Since t� and t

�
satisfy (VF ), and w is nondecreas-

ing, y also satisfies (VF). Since [T( } , w)]w # [w1, w2] satisfies (WF $), we have
T1(x, w)�m(w(x))�m(w) for w # (w(x), w2], where the first inequality
follows from the definition of w and the second follows from the hypothesis
that m is nondecreasing. By Assumption 1, raising T1(x, w) to y$(x) for
w # (w(x), w2] weakly increases expected revenue. Similarly, we have
T1(x, w)�m(w(x))�m(w) for w # [w1 , w(x)), so lowering T1(x, w) to
y$(x) in that interval weakly increases expected revenue. The above two
inequalities also imply that y satisfies (WF $) with respect to T( } , w) outside
that interval. K

By Lemma C4, we can replace [T( } , w)]w>{(1) with a one-dimensional
pricing function throughout an interval where m is strictly increasing. In
particular, suppose that there are J�0 non-intersecting, non-abutting
intervals, [[w j

1 , w j
2]]J

j=1 , on which m is strictly increasing. Let yj denote
the optimal pricing function for interval j, let y0 #{, and let yJ+1 #0. We
now show that we can restrict attention to pricing functions that comprise
linear extensions to {.

Lemma C5. For any T satisfying (VF) and (WF $), there exists T* that
yields weakly higher expected revenue and satisfies (VF ) and (WF $), where
T*(x, w)=�x

0[{$(s) 7 t1(s, w)] ds for w>{(1), for some linear function t( } , w).

Proof. There are two cases. If J=0, m is nonincreasing. By Assumption 1,
it is optimal to set t1(x, w)=m(w) for all x # [0, 1]. Now suppose that J>0.
Consider an interval (wi

2 , w i+1
1 ), 0�i�J&1. By definition, m is nonincreas-

ing over this interval. For any w in the interval, it is optimal to set t1(x, w)
=[m(w) 7y$i (x)] 6 y$i+1(x), for all x, by Assumption 1. Since m is nonin-
creasing in this interval, T* clearly satisfies (VF) and (WF $), if t1 is chosen
in this way. It now suffices to show that each yi is linear. We can write
yi (x)#�x

0[[z$i (s) 7y$i&1(s)] 6 y$i+1(s)] ds, for some z i . (Since yi must
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satisfy (WF $), such a zi exists.) If zi is linear for 0<i�J, yi is linear. It
remains to show that each zi is linear.

Let ,&
i ( z$i (x), w) # y$i&1 ( x ) 7 [ m ( w ) 6 [ z$i ( x ) 6 y$i+1 ( x ) ] ] and let

,+
i ( z$i ( x ) , w ) # y$i+1 ( x ) 6 [ m ( w ) 7 [ z$i ( x ) 7 y$i&1 ( x )]]. Then, given a

choice of zi for the interval [w i
1 , w i

2], the argument above implies that it is
optimal to set t1(x, w)=,&

i (z$i (x), w) for the interval (w i&1
2 , w i

1), and to set
t1(x, w)=,+

i (z$i (x), w) for the interval (w i
2 , w i+1

1 ). Therefore, z i must solve:

max
zi

|
1

0 {|
wi

1

w2
i&1

,&
i (z$i (x), x)[1&F(,&

i (z$i (x), w) | w)] g(w) dw

+|
wi

2

wi
1

[[z$i (x) 7 y$i&1(x)] 6 y$i+1(x)]

_[1&F([z$i (x) 7 y$i&1(x)] 6y$i+1(x) | w)] g(w) dw

+|
w1

i+1

wi
2

,+
i (z$i (x), w)[1&F(,+

i (z$i (x), w) | w)] g(w) dw= dx.

This is a pointwise maximization problem, and the optimal z$i is constant.
K

We can now characterize the pricing function for w>{(1).

Lemma C6. For any T satisfying (VF ) and (WF $), there exists T*
satisfying (VF ) and (WF $) that yields weakly higher expected revenue, where
T*(x, w)=�x

0 [{$(s) 7 m� r(1)(w)] ds for w>{(1).

Proof. By Lemmas C1 and C5, we can restrict attention to a pricing
function T* that satisfies T*(x, w)={(x) for w�{(1) and T*(x, w)=
�x

0 [{$(s) 7 p(w)] ds for w>{(1), for some p: ({(1), w� ] � R. Now fix
x # [0, 1], and let p*: [{(1), w� ] � R+ solve

max
p |

w�

{(1)
[{$(x) 7 p(w)][1&F({$(x) 7 p(w) | w)] g(w) dw

s.t. p is nonincreasing.

Note that T* satisfying T*(x, w)={(x) for w�{(1), and T*(x, w)=
�x

0 [{$(s) 7 p*(w)] ds for w>{(1), satisfies (VF ) and (WF $). Moreover, T*
yields weakly higher revenue than T.

It now suffices to show that m� {(1) solves the above program for all
x # [0, 1]. To that end, first let W� ( p)#inf[w # [{(1), w� ] | p*(w)<p], and
let ŵ( p)#inf[w # [{(1), w� ] | m� {(1)(w)< p]. (The infimum is taken to be w�
if the relevant set is empty.) Note that m� {(1)(w) is strictly decreasing in
[ŵ( {$ ( x ) ), ŵ ( {$ ( x ) ) + = ), for some =>0; otherwise, ŵ({$(x))={(1) or
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ŵ({$(x))=w� . Then, by Lemma C3, m� {(1)(w)=m� ŵ({$(x))(w) for all w>ŵ({$(x)).
Using the symmetric argument, p*(w)=m� W� ({$(x))(w) for all w>W� ({$(x)).

There are two cases to consider. Suppose first that ŵ({$(x))�W� ({$(x)).
Then, m� {(1) clearly solves the problem since m� {(1)(w) weakly dominates
p*(w) for w>ŵ({$(x)), whereas the two functions give the same value of
the integrand (i.e., {$(x)) for w<ŵ({$(x)). Now suppose that W� ({$(x))<
ŵ({$(x)). Consider the function �: [{(1) 7 w

�
, w� ] � R such that �(w)=

m� {(1)(w) for w # [{(1) 7 w
�
, W� ({$(x))] and �(w)=m� W� ({$(x))(w) for w>

W� ({$(x)). Clearly, � is nonincreasing since W� ({$(x))<ŵ({$(x)), and it
strictly dominates m� {(1) , which contradicts the fact that m� {(1) solves the
program [M{(1)]. We conclude that m� {(1) solves the above program for
each x # [0, 1]. K

APPENDIX D

Proof of Theorem 2

In order to show existence of { that solves [S], we consider a slightly
relaxed program:

max
{: [0, 1] � R+

|
1

0
,(x, {(x), {$(x)) dx [S1]

subject to

{: [0, 1] � R+ is a continuous function with

{(0)=0, 0�{$�v� and {$�{$(1),

where

,(x, {, u)#|
{(1)

{
u[1&F(u | w)] g(w) dw

+|
w�

{(1)
(u 7 m� {(1)(w))[1&F(u 7m� {(1)(w) | w)] g(w) dw

The condition {$�{$(1) is weaker than the convexity constraint, so [S1]
is a relaxed version of [S].

We first establish existence of a solution to [S1]. This is accomplished
by invoking Theorem 2.1 of Fleming and Rishel [4, p. 63]. To see that the
conditions of the theorem are met, note first that the feasible set of func-
tions satisfying the constraints is nonempty (condition (a) of Theorem 2.1),
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which can be checked by observing that {(x)=0 satisfies all of the con-
straints. Next, observe that {$ lies in a compact set [0, v� ] (condition (b)).
Third, the set of terminal values is in a compact set, [0, v� ], and , varies
continuously with the terminal value (condition (c)). Finally, ,(x, {, u) is
continuous in u, so the image of [0, v� ] under ,(x, {, } ) is convex (condition
(d)). It therefore follows that a solution to [S1] (in the space of Lebesque
integrable functions) exists.

Below, we characterize the necessary conditions for the solution to [S1]
and show that they imply that the solution to [S1] satisfies all the
constraints of [S], which will prove that the solution to [S1] is also a
solution to [S].

Consider the Lagrangean associated with [S1]:

J(x, {, u)#,(x, {, u)+*u+*1u+*2(v� &u), (D1)

where * is the costate variable, and *1 and *2 are the multipliers associated
with the control bounds. The Hamiltonian necessary conditions are:

{$=u, (D2)

*$=&
�,
�{

. (D3)

Fixing x # [0, 1], condition (D3) implies that

*(x)=*(1)+|
1

x

�,(s, {, u)
�{

ds

=*(1)&|
1

x
u(s)[1&F(u(s) | {(s))] g({(s)) ds. (D4)

Substituting (D4) into (D1) and differentiating, the Pontryagin maximum
principle yields the first-order necessary condition:

0=Ju =|
ŵ(u(x))

{(x)
H(u(x) | w) g(w) dw

&|
1

x
u(s)[1&F(u(s) | {(s))] g({(s)) ds+*(1)+*1(x)&*2(x)

=|
ŵ(u(x))

{(1)
H(u(x) | w) g(w) dw

&|
1

x
u(s)[&H(u(x) | {(s))+[1&F(u(s) | {(s))]] g({(s)) ds

+*(1)+*1(x)&*2(x). (D5)
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The complementary slackness conditions are:

u(x)�0, *1(x)�0, *1(x) u(x)=0;
(D6)

u(x)�v� , *2(x)�0, *2(x)(v� &u(x))=0,

for u(x){v
�
, where we use the fact that u=m� {(1)(ŵ(u)) whenever ŵ(u)

varies with u. (H(u | w) jumps down at u=v
�

unless v
�
f (v

�
| w)=0.) Finally,

since { is free at x=1,

*(1)=|
1

0

�,
�{(1)

dx

=|
1

0
g({(1))[u(x)[1&F(u(x) | {(1))]

&(u(x) 7+({(1)))[1&F(u(x) 7+({(1)) | {(1))]] dx

=g({(1)) |
[u(x)>+({(1))]

[u(x)[1&F(u(x) | {(1))]

&+({(1))[1&F(+({(1)) | {(1))]] dx (D7)

By the above existence result, there exist functions { and u that satisfy
(D2), (D5), (D6) and (D7). Let {* and u* denote the solutions, respec-
tively. We make the following observations about the solution.

Lemma D1. At the solution to [S1], *(1)=0. Furthermore, if {*(1) #
[w

�
, w� ], u*(1)�+({*(1)).

Proof. First note from (D7) that *(1)�0 because the integrand of (D7),

u(x)[1&F(u(x) | {(1))]&+({(1))[1&F(+({(1)) | {(1))],

is negative whenever u(x)>+({(1)). This follows from Assumption 1
(concavity of u(x)[1&F(u(x) | {(1))] in u(x)) since +({(1))�m({(1)). We
now show that *(1)=0. Clearly, *(1)=0 if {*(1)>w� or if {*(1)<w

�
. Thus,

it suffices to show that *(1)=0 for {*(1) # [w
�
, w� ]. Suppose, to the contrary,

that *(1)<0. Since u*�u*(1) (by the last condition of [S1]), we must
then have u*(1)>+({*(1)). It follows that ŵ(u*(1))={*(1). Moreover,
since +>0, u*(1)>0, so *1(1)=0 by (D6). Therefore, at x=1, Ju=
*(1)&*2(1)<0. This contradicts (D5), so we conclude that *(1)=0, which
in turn implies that u*(1)�+({*(1)). K

Lemma D2. If {*(1) # [w
�
, w� ), then u*(1)=+({*(1)); if {*(1)<w

�
, then

u*(1)�+({*(1))=+(w
�
).
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Proof. Given Lemma D1, it suffices to show that u*(1)�+({*(1)) if
{*(1)<w� . Suppose, to the contrary, that u*(1)<+({*(1)). Then, since
+<v� , *2(1)=0, by (D6). Therefore, at x=1,

Ju=|
ŵ(u*(1))

{*(1)
H(u*(1) | w) g(w) dw+*(1)>0,

by Lemma C2, since u*(1)<m� {*(1)(w) for w # [{*(1), ŵ(u*(1))) and {*(1)
<ŵ(u*(1)). This contradicts (D5), so u*(1)�+({*(1)) for {*(1)<w� . K

Lemma D3. At the solution, *2(x)=0 for all x # [0, 1].

Proof. Suppose, to the contrary, that *2(x)>0. Then, by (D6), u*(x)=v�
and *(1)=0. It follows that H(u*(x) | w)=&v� f (v� | w), so Ju<0, which
contradicts (D5). Therefore, *2(x)=0 for all x # [0, 1]. K

Lemma D4. Without loss of generality, u*(x)�v
�

for all x # [0, 1].

Proof. Fix x # [0, 1] and suppose that u(x)<v
�
, which implies that

H(u(x) | w)=1 for all w. Since m� z(w)�v
�

for all z and for w # [z 7 w
�
, w� ],

we have ŵ(u(x))=w� . It then follows that Ju�0. (In the second line of
(D5), the first integral term is nonnegative since H(u(x) | w)=1 when
u(x)<v

�
. The second integral term is also nonnegative since &H(u(x) | {(s))

+[1&F(u(s) | {(s))]=&1+[1&F(u(s) | {(s))]�0.) Therefore, u*(x)�v
�is optimal. K

Lemma D5. Suppose that {*(1)<w� . Then, a solution to (D1) satisfies
(2) whenever u*(x)>0.

Proof. By Lemma D3, *2=0. Also, whenever u*(x)>0, *1(x)=0 by
(D6). Hence, (D5) must hold with *1(x)=*2(x)=0 whenever u*(x)>0. If
{*(1)<w� , then ŵ(u*(1))=w� >{*(1). By the implicit function theorem, the
derivative of u* exists whenever u*(x)>0, and it is characterized by (2),
which is obtained by totally differentiating both sides of (D5) with respect
to x (using *1(x)=*2(x)=0). In the process of differentiating, we use the
fact that the derivative of Ju with respect to u, through ŵ(u), vanishes. This
point is not trivial, since ŵ may jump down. We prove the result as follows.
First, since ŵ is monotonically decreasing, it can only jump down at countably
many points. In particular, the left-hand derivative of ŵ is well-defined. (Since
ŵ(u)#inf[w # [{(1), w� ] | m� {(1)(w)<u], ŵ(u$) is strictly decreasing in u$ for
u$ # (u&=, u] for some =>0. Therefore, the left-hand derivative exists, by
the implicit function theorem.) Let ŵ$ denote the left-hand derivative. Next,
let w~ (u)#sup [w # [{(1), w� ] | m� {(1)(w)>u] if the set is non-empty; other-
wise w~ (u)#{(1). Then, for the same reason, the right-hand derivative of w~
exists, and we denote it by w~ $.
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The left-hand derivative of Ju with respect to u, through ŵ(u), is

lim
u$ A u

� ŵ(u$)
ŵ(u) H(u | w) g(w) dw

u$&u
=ŵ$(u) H(u | ŵ(u)) g(ŵ(u))=0,

since u=m� {(1)(ŵ(u))=m(ŵ(u)) whenever ŵ is strictly decreasing.
Now consider the right-hand derivative of Ju with respect to u, through ŵ(u):

lim
u$ a u

�ŵ(u$)
ŵ(u) H(u | w) g(w) dw

u$&u

=lim
u$ a u

�w~ (u)
ŵ(u) H(u | w) g(w) dw+� ŵ(u$)

w~ (u) H(u | w) g(w) dw
u$&u

=0+lim
u$ a u

� ŵ(u$)
w~ (u) H(u | w) g(w) dw

u$&u

=w~ $(u) H(u | w~ (u)) g(w~ (u))=0,

where the second equality holds by Lemma C2 and the last equality holds
since u=m� {(1)(w~ (u))=m(w~ (u)) whenever w~ is strictly decreasing. K

We now show that the solution to the relaxed program satisfies all of the
constraints of [S].

Lemma D6. The solution to [S1], {*, is convex and continuous.

Proof. By Assumption 1, J(x, {, u) is strictly concave in u # [v
�
, v� ], so

J*(x, u)#J(x, {*(x), u) attains a unique maximum at u=u*(x). This,
together with the fact that , is C1 for u # (v

�
, v� ), implies that u* is con-

tinuous (see Theorem 6.1 of Fleming and Rishel [4, p. 75]). Continuity of
u* immediately implies that {* is continuous. Continuity of u* also implies
convexity of {*. To see this, observe from (1) that {* is convex for {*(x) #
(w

�
, w� ), and it is linear elsewhere. Combined with the continuity of u*, this

means that u* can never decrease, implying that {* is convex. K

By Lemma D6, the solution to the relaxed program [S1], {*, satisfies all
of the constraints of [S]. Hence, {* must solve [S]. Lemma 4 then implies
that there exists T* with the stated properties that implements the optimal
selling mechanism.
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