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For convenience, we recall from the main text the following equilibrium conditions:

µi(b) = 1 if qibi > q−ib−i (1)

qi > 0 =⇒ E [bi | qibi ≥ q−ib−i] ≥ max {b0,E [b−i | qibi ≥ q−ib−i]} , (2)

qi = 1 ⇐= E [bi | qibi ≥ q−ib−i] > max {b0,E [b−i | qibi ≥ q−ib−i]} . (3)

Also recall the definition of strong ordering:

Definition 1. The two projects are strongly ordered if

E[b1|b1 > b2] > E[b2|b2 > b1], (R1)

and, for any i ∈ {1, 2},

E[bi|bi > αb−i] is nondecreasing in α for α ∈ (0, bi/b−i). (R2)

B Omitted Proofs

This Appendix provides proofs that were omitted from Appendix A. For convenience, we restate

the relevant results before providing their proofs.

Lemma 1. Fix generic distributions (F1, F2) and a generic outside option b0. Then any equi-

librium is outcome-equivalent to one in which: (i) the agent plays a pure strategy whose range
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consists of at most two messages; (ii) the DM’s strategy is such that following any message m, if

project i ∈ {1, 2} is chosen with positive probability then project −i is chosen with zero probability.

Proof. Here, we will prove part (ii) of the lemma. Part (i) then follows from Lemma 8 in

Appendix D. For any m ∈ M , let α(i|m) is the probability that the DM chooses project i

following message m. As we are interested in outcome-equivalence, we can ignore the behavior

of any zero measure set of agent types.

Suppose there is an on-path message m∗ such that min {α (1|m∗) , α (2|m∗)} > 0. (If m∗

does not exist, we are done.) We can assume that there is some other on-path message that

induces a different action distribution from the DM, because otherwise E [b1] = E [b2], which is

non-generic. Moreover, we can assume that no on-path message leads to the outside option with

probability 1, since the agent will never (except possibly for a zero measure of types) use such a

message given the availability of m∗.

Step 1: There exist constants q1 > α (1|m∗) and q2 > α (2|m∗) such that for any on-path

message m, either(i) α (m) = α (m∗), or (ii) α (1|m) = 0 and α (2|m) = q2, or (iii) α (1|m) = q1

and α (2|m) = 0.

To prove this, suppose m is on path and α (m) 6= α (m∗). We cannot have the agent

strictly prefer m∗ to m or vice-versa independent of his type, so suppose α (1|m) > α (1|m∗) and

α (2|m∗) > α (2|m), with the opposite case treated symmetrically below. Then m∗ will be used

by the agent only if

b1α (1|m∗) + b2α (2|m∗) ≥ b1α (1|m) + b2α (2|m) ,

or b2 ≥ b1k, where k := α(1|m)−α(1|m∗)
α(2|m∗)−α(2|m)

. If k ≥ 1, E [b2|m∗] > E [b1|m∗], which cannot be,

hence k < 1. Analogously, message m will be used by the agent only if b1 ≥ b2
k

. Since k < 1,

E [b2|m] < E [b1|m], which implies that α (2|m) = 0 < α (1|m).

A symmetric argument applies to the case of α (1|m) < α (1|m∗) and α (2|m∗) < α (2|m),

establishing that in this case α (2|m) > 0 = α (1|m).

Finally, note that all on-path messages that lead to (possibly degenerate) randomization

between project 1 and the outside option must put the same probability on project 1, call it

q1, and this must be strictly larger than α (1|m∗) — otherwise they would not be used (except

possibly by a zero measure of types). Analogously for project 2 and the outside option.

Step 2: Suppose there is an on-path message m1 such that α (1|m1) = q1 and an on-path

message m2 such that α (2|m2) = q2. We cannot have q1 = q2 = 1, for then only at most a zero

measure of types will induce randomization from the DM. So suppose q1 = 1 > q2. Then m∗

will only be used by types such that b2 > b1, contradicting E [b2|m∗] = E [b1|m∗]. Similarly for
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q1 < 1 = q2. Therefore, max {q1, q2} < 1, which implies

E [b1|m1] = E [b2|m2] = b0. (6)

Since m1 is used by the agent when q1−α(1|m∗)
α(2|m∗) b1 ≥ b2, and m2 is used by the agent

when α(1|m∗)
q2−α(2|m∗)b1 ≤ b2, we can visualize the b1 − b2 rectangle as being partitioned into three

regions by the two line segments b2 = xb1 and b2 = yb1 where y := q1−α(1|m∗)
α(2|m∗) and x := α(1|m∗)

q2−α(2|m∗) .

Message m1 (or other messages that lead to the same distribution of projects) is used in the

bottom region, m∗ (or messages that lead to the same distribution of projects) is used in the

middle region, and m2 (or messages that lead to the same distribution of projects) in the top

region. By the genericity of the prior distributions, there are at most a countable number of

(x, y) that can satisfy E[b1|m∗] = E[b2|m∗]. But then, only non-generic b0 satisfy (6).

Step 3: Suppose that any on-path message m with α (m) 6= α (m∗) has α (2|m) = 0. (A

symmetric argument applies to the other case where α (1|m) = 0.) Then there is some m1 with

α (1|m1) = q1. We must have q1 < 1 because otherwise the agent will use m1 whenever b1 ≥ b2,

contradicting E [b1|m∗] = E [b2|m∗]. Thus E [b1|m1] = b0. But now analogously to step 2, we

can view the type space as partitioned into two regions by a line segment b2 = q1−α(1|m∗)
α(2|m∗) b1, with

message m1 (or others that lead to the same distribution over projects) being used in the lower

cone and m∗ (or other messages that lead to the same distribution over projects) being used in

the upper cone. By the genericity of prior distributions, there are most a countable number of

values of y := q1−α(1|m∗)
α(2|m∗) that can satisfy E[b1|m∗] = E[b2|m∗]. But then, only non-generic b0 can

also satisfy E[b1|m1] = b0. Q.E.D.

Lemma 2. If an equilibrium has acceptance vector q ∈ [0, 1]2, then (2) and (3) are satisfied for

all projects i such that Pr{b : qibi ≥ q−ib−i} > 0. Conversely, for any q ∈ [0, 1]2 satisfying (2)

and (3) for all i such that Pr{b : qibi ≥ q−ib−i} > 0, there is an equilibrium where the DM plays

q and the agent’s strategy satisfies (1).

Proof. The first statement is immediate. For sufficiency, fix any q satisfying (2) and (3) for all i

with Pr{b : qibi ≥ q−ib−i} > 0. We consider two cases:

(i) Suppose first there is some i with qi > 0. Then the agent has a best response, µ,

that satisfies (1) and also has the property that any project that is recommended on path has

positive ex-ante probability of being recommended. Such a µ and q are mutual best responses

and Bayes Rule is satisfied. The only issue is assigning an appropriate out-of-equilibrium belief

when any off-path project j is recommended; one can specify the off-path belief that bk = b0 for

all k, which clearly rationalizes qj.

(ii) Now suppose qi = 0 for all i. Then for all i, Pr{b : qibi ≥ q−ib−i} = 1 and

E [bi | qibi ≥ q−ib−i] = E[bi]. It follows from (3) that for all i, E[bi] ≤ b0, and hence there is

an equilibrium where the DM always chooses the outside option with “passive beliefs”of main-
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taining the prior no matter the recommendation, and the agent always recommends project

one. Q.E.D.

Lemma 4. If (x, y) is an incentive compatible mechanism, then for all θ, (x(θ, b2), y(θ, b2)) =

(x(θ, b′2), y(θ, b′2)) for any b2 6= b′2.

Proof. Consider two types (θ, b2) and (θ, b′2). Then, incentive compatibility means that

b2[θx(θ, b2) + y(θ, b2)] ≥ b2[θx(θ, b′2) + y(θ, b′2)]

and

b′2[θx(θ, b2) + y(θ, b2)] ≤ b′2[θx(θ, b′2) + y(θ, b′2)],

implying that θ[x(θ, b2) + y(θ, b2)] = θx(θ, b′2) + y(θ, b′2). It follows that if x(θ, b2) = x(θ, b′2),

then y(θ, b2) = y(θ, b′2). It thus suffices to show that for every θ, x(θ, b2) = x(θ, b′2) for any

b2, b
′
2 ∈ [b2, b2]. To prove this, consider a correspondence X : Θ ⇒ [0, 1] defined by

X(θ) = {x ∈ [0, 1] | ∃b2 ∈ [b2, b2] s.t. x(θ, b2) = x}.

Pick any selection x̂(·) from X(·), and for any θ, let ŷ(θ) be corresponding value of y, i.e.

ŷ(θ) := y(θ, b2) for any b2 such that x(θ, b2) = x̂(θ). For any θ′ and θ, incentive compatibility

implies

θx̂(θ) + ŷ(θ) ≥ θx̂(θ′) + ŷ(θ′) and θ′x̂(θ′) + ŷ(θ′) ≥ θ′x̂(θ) + ŷ(θ).

Rearranging the inequalities yields

θ′[x̂(θ′)− x̂(θ)] ≥ ŷ(θ)− ŷ(θ′) ≥ θ[x̂(θ′)− x̂(θ)].

As θ → θ′, it follows that ŷ(θ)→ ŷ(θ′), which in turn implies that x̂(θ)→ x̂(θ′).

Since the selection x̂(·) was arbitrary, X(·) must be a single-valued correspondence, which

proves the result. Q.E.D.

Theorem 6. Assume the two projects are strongly ordered and that J(·) is piecewise monotone.

If the best cheap-talk equilibrium is q∗ < 1, then an optimal simple mechanism is optimal in the

class of all mechanisms without transfers.

Proof. In light of Lemma 4, we can without loss focus on a direct revelation mechanism (x, y) :

Θ → A; in other words, treat the agent’s type as just θ. Let Ω be the set of such mappings.

Recall the DM’s net benefits from choosing the two projects:

A1(θ) := E[b1|b1/b2 = θ]− b0, and A2(θ) := E[b2|b1/b2 = θ]− b0.

Note that the assumption that the best cheap-talk equilibrium is q∗ < 1 implies, from

Theorem 1, that E[A2(θ)] < 0.
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To begin the analysis, assume θ <∞; the case of θ =∞ is treated later. Define the utility

of the agent with type θ when she reports θ′ as U(θ′|θ) := θx(θ′) + y(θ′). Let u(θ) := U(θ|θ).
Notice the resemblance with standard mechanism design with transfers: here, the probability

of choosing project 2 serves as a transfer. The analogy is not perfect since y(θ) ∈ [0, 1 − x(θ)]

need to be satisfied. This difference makes the subsequent analysis more involved than in the

standard mechanism design exercise.

By the standard argument, incentive compatibility holds if and only if

u(θ) = u(θ) +

∫ θ

θ

x(θ̃)dθ̃, (Env)

and

x(·) is nondecreasing. (M)

Therefore, the DM’s problem is:

max
(x,y)∈Ω

∫ θ

θ

[A1(θ)x(θ) + A2(θ)y(θ)]f(θ)dθ (P0)

subject to (x, y) satisfies (Env) and (M).

To solve this problem, we first substitute (Env) into the objective function in (P0). Rewrite

(Env) as:

y(θ) = −θx(θ) + u(θ) +

∫ θ

θ

x(s)ds. (7)

Substituting (7) into the objective function in (P0) yields:∫ θ

θ

[
A1(θ)x(θ)− A2(θ)

(
θx(θ)− u(θ)−

∫ θ

θ

x(s)ds

)]
f(θ)dθ

=

(∫ θ

θ

A2(θ)f(θ)dθ

)
u(θ) +

∫ θ

θ

[
(A1(θ)− A2(θ)θ)x(θ) + A2(θ)

∫ θ

θ

x(s)ds

]
f(θ)dθ

=

(∫ θ

θ

A2(θ)f(θ)dθ

)
u(θ) +

∫ θ

θ

[
−(1− θ)b0x(θ) + A2(θ)

∫ θ

θ

x(s)ds

]
f(θ)dθ

=

(∫ θ

θ

A2(θ)f(θ)dθ

)
u(θ) +

∫ θ

θ

[
−(1− θ)b0f(θ) +

∫ θ

θ

A2(s)f(s)ds

]
x(θ)dθ, (8)

where the second equality follows from the observation that

A1(θ)− A2(θ)θ = E[b1 − θb2|b1/b2 = θ]− (1− θ)b0 = −(1− θ)b0, (9)
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and the third equality follows from an application of Fubini’s theorem.1

Recall the definition of the “virtual valuation”:

J(θ) := −(1− θ)b0f(θ) +

∫ θ

θ

(
E
[
b2

∣∣∣∣b1

b2

= s

]
− b0

)
f(s)ds.

We can thus rewrite the objective function in (P0) as

E[A2(θ)](θx(θ) + y(θ)) +

∫ θ

θ

J(θ)x(θ)dθ.

We now recall the constraint that for all θ, (x(θ), y(θ)) ∈ A, which given x(·) ∈ [0, 1] is

equivalent to requiring that for all θ, y(θ) ∈ [0, 1 − x(θ)]. In what follows, we solve a relaxed

program by only imposing y(·) ≥ 0 and y(θ) ≤ 1; we will show that the solution to this relaxed

program is such that for all θ, y(θ) ∈ [0, 1− x(θ)] and hence solves the original program.

Using (7) and u(θ) = θx(θ) + y(θ), the constraint that y(·) ≥ 0 can be expressed as

∀θ : −θx(θ) + θx(θ) + y(θ) +

∫ θ

θ

x(s)ds ≥ 0. (10)

Since (M) implies that the left-hand side of the inequality above is nonincreasing in θ,2 the

constraint will be satisfied for all θ if it is satisfied at θ = θ. Hence, (10) can be replaced with

θx(θ) ≤ θx(θ) + y(θ) +

∫ θ

θ

x(s)ds. (11)

Therefore, the original program (P0) can be replaced by the relaxed program3

max
y(θ)∈[0,1],x(·)∈[0,1]

E[A2(θ)](θx(θ) + y(θ)) +

∫ θ

θ

J(θ)x(θ)dθ (P ′0)

1Note that∫ θ

θ

[
A2(θ)

∫ θ

θ

x(s)ds

]
f(θ)dθ =

∫ θ

θ

∫ θ

θ

A2(θ)x(s)1{s<θ}dsf(θ)dθ =

∫ θ

θ

x(s)

[∫ θ

θ

A2(θ)1{s<θ}f(θ)dθ

]
ds

=

∫ θ

θ

(∫ θ

s

A2(θ)f(θ)dθ

)
x(s)ds =

∫ θ

θ

(∫ θ

θ

A2(s)f(s)ds

)
x(θ)dθ.

2For any θ < θ′, −θx(θ)+θx(θ)+y(θ)+
∫ θ
θ
x(s)ds−

[
−θ′x(θ′) + θx(θ) + y(θ) +

∫ θ′
θ
x(s)ds

]
= θ′x(θ′)−θx(θ)−∫ θ′

θ
x(s)ds, which is non-negative when x(θ′) ≥ x(θ).
3Recall, this is relaxed because we are ignoring the constraint that for all θ, y(θ) ≤ 1− x(θ).
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subject to (M) and (11).

Lemma 5. In any optimal solution to (P ′0), the constraint (11) binds.

Proof. Suppose, to contradiction, that there is an optimum at which (11) does not bind. Then

(M) and (11) imply that y(θ) > 0. Since E[A2(θ)] < 0, slightly reducing y(θ) would lead to a

strict improvement in the value of the objective in (P ′0) while still satisfying all the constraints,

a contradiction. Q.E.D.

Lemma 5 implies that at any optimal solution to (P ′0),

y(θ) = θx(θ)−
∫ θ

θ

x(θ)dθ − θx(θ), (12)

and hence the program simplifies to:

max
x(·)∈[0,1]

E[A2(θ̃)]θx(θ) +

∫ θ

θ

(
J(θ)− E[A2(θ̃)]

)
x(θ)dθ (P)

subject to (M) and

θx(θ)− θx(θ)−
∫ θ

θ

x(θ)dθ ≤ 1. (13)

Lemma 6. For some some integer n > 1, there exist sequences

θ = θ̂1 < · · · < θ̂n < θ̂n+1 = θ and 0 ≤ x̂1 ≤ · · · ≤ x̂n ≤ 1

such that an optimal solution to (P) is given by x̂(·) is defined as: x̂(θ) = x̂1, and for all

i = 1, . . . , n, x̂(θ) = x̂i for θ ∈ (θ̂i, θ̂i+1].

Proof. Existence of an optimal solution to (P) is assured by compactness of the feasible set, so

let x(·) be an optimal solution to (P). Since J(·) is piecewise monotone, we can partition [θ, θ]

into subintervals {[θi, θi+1]}i=1,...,m for some m ∈ N, such that J(θ) is either nondecreasing or

nonincreasing within each subinterval. By (M), x(θi) ≤ x(θi+1). We then construct x̂(·) for each

subinterval (θi, θi+1] as follows. There are two cases.

Suppose first J(θ) is nondecreasing on [θi, θi+1]. Then, we set x̂(θ) = x(θi) for θ ∈ (θi, θ̂i)

and x̂(θ) = x(θi+1) for θ ∈ [θ̂i, θi+1], for θ̂i ∈ [θi, θi+1] such that and∫ θi+1

θi

x̂(θ)dθ =

∫ θi+1

θi

x(θ)dθ.

Such a θ̂i exists because the LHS of the above equation is continuous in θ̂i, and is no less than

then RHS when θ̂i = θi while being no greater than the RHS when θ̂i = θi+1. (If i = 1, we also
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set x̂(θ1) = limθ↓θ1 x̂(θ).) In this case, changing from x(·) to x̂(·) can only increase the integral

term in the objective function of (P) for the subinterval since∫ θi+1

θi

(
J(θ)− E[A2(θ̃)]

)
x̂(θ)dθ −

∫ θi+1

θi

(
J(θ)− E[A2(θ̃)]

)
x(θ)dθ

=

∫ θi+1

θi

J(θ)(x̂(θ)− x(θ))dθ ≥
∫ θi+1

θi

J(θ̂i)(x̂(θ)− x(θ))dθ = J(θ̂i)

[∫ θi+1

θi

(x̂(θ)− x(θ))dθ

]
= 0,

where the weak inequality follows from the facts that for θ ≥ θ̂i, J(θ) ≥ J(θ̂i) and x̂(θ) ≥ x(θ),

while for θ < θ̂i, J(θ) ≤ J(θ̂i) and x̂(θ) ≤ x(θ), and the final equality follows from
∫ θi+1

θi
x̂(s)ds =∫ θi+1

θi
x(s)ds. Furthermore, in case i = m, the fact that θi+1 = θ and x̂(θi+1) = x(θi+1) implies

that the first term of the objective function of (P) is unchanged.

Suppose next J(θ) is nonincreasing on [θi, θi+1]. Then, we set x̂(θ) = x̌i for all θ ∈ (θi, θi+1],

for x̌i ∈ [x(θi), x(θi+1)] such that and∫ θi+1

θi

x̂(θ)dθ =

∫ θi+1

θi

x(θ)dθ.

Clearly, such a x̌i exists. (If i = 1, we also set x̂(θi) = x̌i.) Again,changing from x(·) to x̂(·) can

only increase the integral term in the objective function of (P) for the subinterval since, denoting

θ̃i := inf{θ ∈ [θi, θi+1]|x(θ) ≥ x̂(θ) = x̌i},∫ θi+1

θi

(
J(θ)− E[A2(θ̃)]

)
x̂(θ)dθ −

∫ θi+1

θi

(
J(θ)− E[A2(θ̃)]

)
x(θ)dθ

=

∫ θi+1

θi

J(θ)(x̂(θ)− x(θ))dθ ≥
∫ θi+1

θi

J(θ̃i)(x̂(θ)− x(θ))dθ = J(θ̃i)

[∫ θi+1

θi

(x̂(θ)− x(θ))dθ

]
= 0,

where the weak inequality holds since for θ ≥ θ̃i, J(θ) ≤ J(θ̃i) and x̂(θ) = x̌i ≤ x(θ), while for

θ < θ̃i, J(θ) ≤ J(θ̃i) and x̂(θ) = x̌i ≥ x(θ), and the final equality follows from
∫ θi+1

θi
x̂(s)ds =∫ θi+1

θi
x(s)ds. Furthermore, in case i = m, the fact that x̂(θi+1) = x̌ ≤ x(θi+1) implies the first

term of the objective function of (P) can have only weakly increased since E[A2(θ̃)] < 0.

Clearly, the x̂(·) constructed above for all subintervals is of the form stated in the lemma.4

Moreover, x̂(·) satisfies (M) because x(·) satisfies (M) by hypothesis. Further, the facts that

x̂(θ) ≤ x(θ), x̂(θ) ≥ x(θ), and
∫ θ
θ
x̂(θ)dθ =

∫ θ
θ
x(θ)dθ imply that x̂(·) satisfies (13) since x(·) does

by hypothesis. As we have shown that x̂(·) can only increase the value of the objective function,

it follows that x̂ is an optimal solution to program (P). Q.E.D.

Therefore, we can without loss restrict attention in solving program (P) to step functions

4That n > 1 in the statement of the lemma can always be satisfied is because the sequence of x̂i’s is not
required to be strictly increasing.

8



that take the form described in Lemma 6. Simplifying both the objective function in (P) and the

constraint (13) accordingly, and using the fact that the proof of Lemma 6 bounds the number

of steps an optimal solution need take, it follows that there is some integer N > 1 such that

program (P) can be simplified to:

max
(x̂,θ̂)∈An,n∈{2,...,N}

n−1∑
i=1

(∫ θ̂i+1

θ̂i

(J(θ)− E[A2(θ̃)])dθ

)
x̂i +

(
θ̂nE[A2(θ̃)] +

∫ θ

θ̂n

J(θ)dθ

)
x̂n, (P ′)

where for any n ∈ N \ {1},

An :=

{
(x,θ) ∈ [0, 1]n ×Θn : x1 ≤ · · · ≤ xn, θ = θ1 ≤ · · · ≤ θn ≤ θ,

n−1∑
i=1

θi+1(xi+1 − xi) ≤ 1

}
.

Lemma 7. Program (P ′) has a solution in A2.

Proof. Assume, to contradiction, that there is no solution to the program in A2. Then a solution

exists in An for some n > 2 because the feasible set is compact. We first argue that if there is

any solution in An for some n > 3, then there is a solution in An−1, which implies by induction

that there is a solution in A3. To prove the inductive step, fix a solution to (P ′), (x̂, θ̂) ∈ An for

some n > 3.

Case 1: If x̂i = x̂i+1 for some 1 ≤ i < n or θ̂i = θ̂i+1 for some 1 ≤ i ≤ n, then there is

clearly an equivalent solution in An−1.

Case 2: If Case 1 does not apply, then x̂ and θ̂ are strictly increasing sequences. We

can then change x̂n−1 and x̂n−2 in opposite directions (raising one and lowering the other) while

keeping
∑n−1

i=1 θ̂i+1(x̂i+1 − x̂i) constant and hence staying within An (note that n > 3 ensures

that xn−2 can be lowered). Since the objective function in (P ′) is linear in each x̂i, it must be

one of these two kinds of changes does not affect the value of the objective function. One can

then continue making the change until either x̂n−1 = x̂n or x̂n−1 = x̂n−2 or x̂n−2 = x̂n−3 binds,

at which point Case 1 applies.

Therefore, we conclude that there is a solution to (P ′), (x̂,θ) ∈ A3. Since by hypothesis

there is no solution in A2, it must be that θ = θ̂1 < θ̂2 < θ̂3 < θ, for otherwise the solution can

be redefined to be in A2 just as Case 1 above. Furthermore, we must have 0 = x̂1 < x̂2 < x̂3 = 1,

because an argument akin to the one used in Case 2 above shows that otherwise there would

be an equivalent solution in A2. This implies that
∫ θ̂3
θ̂2

(J(θ)− E[A2(θ̃)])dθ < 0, for otherwise it

would remain optimal to raise x̂2 until it coincides with x̂3 (this is feasible because raising x̂2

only relaxes the last requirement in the definition of A3), which cannot be. But then reducing x̂2

would strictly improve the value of the objective function, so it must be that this is not feasible

in A3, which implies that 1 = θ̂3 − (θ̂3 − θ̂2)x̂2, and consequently θ̂3 > 1.
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The derivative of the objective function in (P ′) with respect to θ̂3 is

(
E[A2(θ̃)]− J(θ̂3)

)
(1− x̂2) =

[∫ θ

θ

A2(s)f(s)ds+ (1− θ̂3)b0f(θ̂3)−
∫ θ

θ̂3

A2(s)f(s)ds

]
(1− x̂2)

=

[∫ θ̂3

θ

A2(s)f(s)ds+ (1− θ̂3)b0f(θ̂3)

]
(1− x̂2) < 0,

where the first equality is from definitions, and the inequality holds because x̂2 ∈ (0, 1) and∫ θ̂3

θ

A2(s)f(s)ds = F (θ̂3)E[b2 − b0|b1 < θ̂3b2] ≤ F (θ̂3)E[b2 − b0|b1 < b2] < 0,

which in turn is because of strong ordering, θ̂3 > 1, and E[b2|b1 < b2] < b0 since q∗ < 1.

It follows that lowering θ̂3 slightly strictly improves the value of the objective function,

and this is feasible because lowering θ̂3 slightly only relaxes the last requirement in the definition

of A3. But this contradicts (x̂,θ) ∈ A3 being optimal. Q.E.D.

By Lemma 7, we can simplify program (P ′) to:

max
(x̂1,x̂2,θ̂)∈A′

(∫ θ̂

θ

(J(θ)− E[A2(θ̃)])dθ

)
x̂1 +

(
θ̂E[A2(θ̃)] +

∫ θ

θ̂

J(θ)dθ

)
x̂2, (P ′′)

where

A′ := {(x̂1, x̂2, θ̂)|0 ≤ x̂1 ≤ x̂2 ≤ 1; θ̂ ∈ [θ, θ]; θ̂(x̂2 − x̂1) ≤ 1}.

We will argue that any solution to (P ′′) also solves the original program (P0) and can be

implemented by a simple mechanism. There are three possibilities to consider.

First, suppose that a solution to (P ′′) has x̂1 > 0. Then x̂2 > 0 and moreover the

coefficient of x̂1 in (P ′′) must be nonnegative, or else one could strictly improve the objective by

lowering x̂1 while keeping x̂2 and θ̂ unchanged. Since the coefficient of x̂1 in (P ′′) is nonnegative,

an optimum is also obtained by keeping the same x̂2 and θ̂ but setting x̂1 = x̂2. Then, by

(12), y(θ) = 0. This solves the original program (P0) because the outcome can implemented by

a feasible mechanism (x, y) where for all θ, x(θ) = x̂2 and y(θ) = 0; note that this obviously

satisfies the feasibility constraint that y(θ) ≤ 1− x(θ) for all θ. In turn, this optimal mechanism

can be implemented by a simple mechanism with q = (x̂2, 0).5

Next, suppose that that x̂2 = x̂1 = 0 at a solution to (P ′′). Then by (12), y(θ) = 0. This

outcome can be implemented by a feasible mechanism (x, y) where x(θ) = 0 and y(θ) = 0 for all

5Indeed, this actually shows x̂1 > 0 cannot be a solution to (P ′′) because we know that q = (x̂2, 0) for any
x̂2 ∈ (0, 1] is never optimal in the class of simple mechanisms, as it is is strictly dominated by full delegation.
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θ. Note that obviously satisfies the feasibility constraint y(θ) ≤ 1− x(θ) for all θ. Since the DM

always picks the outside option at this optimal mechanism, it can be implemented by a simple

mechanism with q = 0.

Finally, suppose x̂2 > 0 = x̂1 at a solution to (P ′′). It must be that the coefficient of x̂2 in

(P ′′) is nonnegative, or else one could strictly improve the objective by lowering x̂2 while keeping

x̂1 and θ̂ unchanged. Therefore, it is also optimal to set x̂2 = min{1, 1/θ̂}. This solution can be

implemented by a feasible mechanism (x, y), where x(θ) = 0 for θ < θ̂ and x(θ) = min{1, 1/θ̂}
for θ > θ̂, and y(θ) = min{θ̂, 1} for θ < θ̂ and y(θ) = 0 for θ > θ̂; since this satisfies both

(12) and the feasibility constraint that y(θ) ∈ [0, 1 − x(θ)] for all θ, it also solves the original

program (P0). In turn, this optimal mechanism can be implemented by a simple mechanism with

q = (min{1, 1

θ̂
},min{θ̂, 1}). Notice in this simple mechanism the agent will recommend project

two if b1/b2 < θ̂ and project one if b1/b2 > θ̂. In the former case, project two is implemented with

probability min{θ̂, 1} and the outside option with complementary probability; in the latter case,

project one is implemented with probability min{1, 1/θ̂} while the outside option is implemented

with complementary probability.6

Summarizing, we have shown that the optimal mechanism is implemented by a simple

mechanism. This completes the proof under the assumption that θ <∞.

The case of θ =∞.

Hereafter assume θ =∞. This introduces two difficulties with the method used above for

θ <∞: first, the application of Fubini’s theorem to derive (8) is not necessarily valid since it is

possible that E[θ] =∞; second, objects such as x(θ) and hence constraints such as (11) are not

well defined. We thus take a different approach. Note that the value of (P0) is bounded because

E[bi] <∞ for i = 1, 2.

To begin, consider a subproblem [Pt] in which the agent draws θ from [θ, t] for t < ∞,

according to density gt(θ) := f(θ)/F (t). Analogous to (P0), the DM’s objective is to now

maximize

Φt(x, y) :=
1

F (t)

∫ t

θ

[x(θ)A1(θ) + y(θ)A2(θ)]f(θ)dθ.

The associated virtual value is given by

Jt(θ) := −(1− θ)gt(θ) +

∫ t

θ

A2(s)gt(s)ds =
J(θ)

F (t)
−
∫∞
t
A2(s)f(s)ds

F (t)
.

It follows from our preceding analysis that there is a simple mechanism that is optimal in this

subproblem. In particular, by Theorem 4, there exists an optimal simple mechanism indexed by

(θ̂, x) ∈ [0, 1]2 such that (x(θ), y(θ)) = (0, θ̂x) for θ < θ̂, and (x(θ), y(θ)) = (x, 0) for θ ∈ (θ̂, t].

6Indeed, Theorem 4 implies that θ̂ < 1 (since by assumption q∗ < 1).
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There exists a sequence {tn}∞n=1 with tn →∞ as n→∞ such that for each n the simple

mechanism (xtn , ytn) indexed by (θ̂tn , xtn) ∈ [0, 1]2 is optimal for subproblem [Ptn ]. As n → ∞,

(xtn , ytn) converges (in subsequence) to a simple mechanism (x∗∗, y∗∗) indexed by (θ̂∗∗, x∗∗) =

limn→∞(θ̂tn , xtn).7

Fix any feasible mechanism (x, y) : [θ,∞) → A for the original problem. Its restriction

to [θ, tn], (xtn , ytn) := (x, y)|θ<tn is clearly feasible for the subproblem [Ptn ]. Since (xtn , ytn) is

optimal for subproblem [Ptn ], we have that for each n,

Φtn(xtn , ytn) ≥ Φtn(xtn , ytn). (14)

As n→∞, the right side of (14) converges to

lim
n→∞

Φtn(xtn , ytn) = lim
n→∞

Φtn(x, y) =

∫ ∞
θ

[x(θ)A1(θ) + y(θ)A2(θ)]f(θ)dθ,

which is the value of the original objective function (P0) under (x, y).

Meanwhile, as n→∞, the left side of (14) converges to

lim
n→∞

Φtn(xtn , ytn) = lim
n→∞

xtn
F (tn)

(∫ θ̂tn

θ

A1(θ)f(θ)dθ + θ̂tn

∫ tn

θ̂tn

A2(θ)f(θ)dθ

)

= x∗∗

(∫ θ̂∗∗

θ

A1(θ)f(θ)dθ + θ̂∗∗
∫ ∞
θ̂∗∗

A2(θ)f(θ)dθ

)

=

∫ ∞
θ

[x∗∗(θ)A1(θ) + y∗∗(θ)A2(θ)]f(θ)dθ,

which is the value of the original objective function (P0) under (x∗∗, y∗∗).

Since the inequality in (14) is preserved in the limit as n → ∞, the simple mechanism

(x∗∗, y∗∗) gives a weakly higher value than (x, y) in the original problem (P0). Since (x, y) is an

arbitrary feasible mechanism, (x∗∗, y∗∗) is optimal in the original problem, thus establishing the

optimality of a simple mechanism. Q.E.D.

C Leading Examples

This Appendix provides detailed computations for the leading examples with n = 2. We prove

that they satisfy strong ordering and verify the expressions provided in Examples 1 and 2 from

the main text.

7This follows from the fact that {(θ̂tn , xtn)}∞n=1 has a convergent subsequence because each element lies in
[0, 1]2.
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C.1 Scale-invariant uniform distributions

Assume that b2 is uniformly distributed on [0, 1], while b1 is uniformly distributed on [v, 1 + v]

with v ∈ (0, 1). Assumption (A1) requires b0 < 1; this also guarantees (A3).

Strong ordering: We compute

E[b2|b2 > αb1] =

∫ 1+v

v

∫ 1

αb1
b2db2db1∫ 1+v

v

∫ 1

αb1
db2db1

=
3v2α2 + 3vα2 + α2 − 3

3α + 6vα− 6
for α ∈

[
0,

1

1 + v

]
,

and

E[b2|b2 > αb1] =

∫ 1/α

v

∫ 1

αb1
b2db2db1∫ 1/α

v

∫ 1

αb1
1db2db1

=
2

3
+
α

3
v for α ∈

(
1

1 + v
,

1

v

]
. (15)

Both expressions are increasing in α in the relevant range. Note that E[b2|b2 > αb1] is not

defined for α > 1/v.

Similarly, it can be computed that

E[b1|b1 > αb2] =


v + 1

2
if α ≤ v

−2v3+3v2α+6vα−α3+3α
−3v2+6vα−3α2+6α

if α ∈ (v, 1 + v)
6v2+6v+2

6v+3
if α ≥ 1 + v,

(16)

which is nondecreasing in α.

Therefore, (R2) is satisfied. It is also routine to verify that (R1) is satisfied using formulas

(15) and (16) with α = 1. We conclude that strong ordering holds.

The Largest Equilibrium: From Theorem 1 and formula (15),

b∗0 = E[b2|b2 > b1] =
2

3
+
v

3
.

For b0 > b∗0, a pandering equilibrium q∗ = (1, q∗2) with q∗2 ∈ (0, 1) requires E[b2|b2 > b1/q
∗
2] = b0.

Substituting from (15) yields the solution

q∗2(b0) =
v

3b0 − 2
(17)

so long as the right hand side above is larger than v, which is guaranteed since b0 < 1. That

q∗1 = 1 implies E[b1|b1 > q∗2(b0)b2] ≥ b0, into which we substitute (17) to obtain

E
[
b1|b1 >

v

3b0 − 2
b2

]
≥ b0.

By substituting from (16), it can be verified that the left-hand side of the above expression is
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continuous and weakly decreasing in b0, while the right-hand side is, obviously, strictly increasing.

Moreover, by the definition of b∗0, E
[
b1|b1 >

v
3b∗0−2

b2

]
= E[b1|b1 > b2] > b∗0. Therefore, there is a

unique b∗∗0 such that

E
[
b1|b1 >

v

3b∗∗0 − 2
b2

]
= b∗∗0 ,

and b∗∗0 > b∗0. It can be verified that b∗∗0 < 1 if and only if v < 1
2
. It follows that a pandering

equilibrium q∗ = (1, q∗2) with q∗2 ∈ (0, 1) exists if and only if b0 ∈ (b∗0,min{1, b∗∗0 }). If b∗∗0 < 1 (i.e.,

v < 1/2), then for b0 ∈ (b∗∗, 1) the only equilibrium is q = (0, 0).

Remark 1. Finally, what happens if b0 > 1, so that Assumptions (A1) and (A3) fail? If v < 1/2,

then E[b1] = v+ 1
2
< b0, hence q = (0, 0) is the only equilibrium. If v > 1

2
, then for b0 ∈

(
1, 1

2
+ v
)
,

q = (1, 0) is the only equilibrium, whereas for b0 >
1
2

+ v, q = (0, 0) is the only equilibrium.

Thus, a violation of (A1) and (A3) allow for the non-influential equilibrium (1, 0) to be the largest

equilibrium for certain values of b0.

C.2 Exponential distributions

Assume that b1 and b2 are exponentially distributed with respective means v1 and v2, where

v1 > v2 > 0. Assumption (A1) is obviously satisfied for any b0 ∈ R++; we will show below that

(A3) requires b0 < 2v2.

Strong Ordering: Denoting the project densities respectively by f1(·) and f2(·), we have that

E[b1|b1 > b2] =

∫∞
0

(E[b1 > b2|b2] Pr(b1 > b2|b2)f2(b2)db2∫∞
0

Pr(b1 > b2|b2)f2(b2)db2

=
v1 + v2

v1

∫ ∞
0

(v1 + b2)e
− 1
v1
b2

(
1

v2

e
− 1
v2
b2

)
db2

=

∫ ∞
0

(v1 + b2)

(
v1 + v2

v1v2

)
e
−
(
v1+v2
v1v2

)
b2db2

= v1 +
v1v2

v1 + v2

.

Similarly,

E[b2|b2 > b1] = v2 +
v1v2

v1 + v2

.

Plainly, (R1) is satisfied. Moreover, since αbi is exponentially distributed with mean αvi, the

above calculations imply

E[bi|bi > αbj] = vi +
αvivj
vi + αvj

. (18)

Since the right-hand side above is strictly increasing in α for any α ∈ R+, (R2) is satisfied and

hence strong ordering holds. Note that since limα→∞ E[bi|bi > αbj] = 2vi, Assumption (A3)

requires b0 < 2v2.
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The Largest Equilibrium: From Theorem 1 and equation (18),

b∗0 = E[b2|b2 > b1] = v2 +
v1v2

v1 + v2

.

For b0 > b∗0, a pandering equilibrium q = (1, q∗2) with q∗2 ∈ (0, 1) requires E[b2|b2 > b1/q
∗
2] = b0.

Substituting from (18) yields the solution

q∗2(b0) =
v1

v2

(
2v2 − b0

b0 − v2

)
. (19)

That q∗1 = 1 implies E[b1|b1 > q∗2(b0)b2] ≥ b0, into which we substitute (18) to obtain

3v1 − b0
v1

v2

≥ b0.

Since the left-hand side of the this inequality is decreasing in b0 and the right-hand side is

increasing in b0, the inequality is satisfied if and only if

b0 ≤ b∗∗0 =
3v1v2

v2 + v1

Note that b∗∗0 < 2v2 if and only if v1 < 2v2. It follows that a pandering equilibrium q∗ = (1, q∗2)

with q∗2 ∈ (0, 1) exists if and only if b0 ∈ (b∗0,min{b∗∗0 , 2v2}). If b∗∗0 < 2v2 (i.e., if v1 < 2v2), then

for b0 ∈ (b∗∗0 , 2v2), the only equilibrium is q = (0, 0).

DM’s Expected Payoff: If b0 < b∗0, the DM’s ex-ante expected payoff is

πt := E [max {b1, b2}]

=

(
v1

v1 + v2

)(
v1 +

v1v2

v1 + v2

)
+

(
v2

v1 + v2

)(
v2 +

v1v2

v1 + v2

)
= v1 + v2 −

v1v2

v1 + v2

.

For b0 ∈ (b∗0,min{b∗∗0 , 2v2)), the DM’s expected payoff is

πp := Pr(b1 > q∗2(b0)b2)E[b1|b1 > q∗2(b0)b2] + Pr(q∗2(b0)b2 > b1)b0

=

(
v1

v1 + q2v2

)(
v1 +

v1q2v2

v1 + q2v2

)
+

(
q2v2

v1 + q2v2

)
b0

=

(
v1

v1 + q2v2

)(
3v1 − b0

v1

v2

)
+

(
q2v2

v1 + q2v2

)
b0

=
1

(v2)2

(
2b0(v2)2 − (v2 + v1)(b0)2 + 4b0v1v2 − 3v1(v2)2

)
= πt − (v1 + v2)

v2
2

(b0 − b∗0)2 .
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Finally, if b0 > (b∗∗0 , 2v2), the DM’s expected payoff is just b0.

Remark 2. What happens if 2v2 < b0, so that Assumption (A3) fails? Then q2 = 0 in any

equilibrium. If v1 < 2v2, then E[b1] = v1 < b0, hence q = (0, 0) is the only equilibrium. If

v1 > 2v2, then for b0 ∈ (2v2, v1), q = (1, 0) is the unique equilibrium whereas for b0 > v1,

q = (0, 0) is the unique equilibrium. Thus, a violation of (A3) allows for the non-influential

equilibrium (1, 0) to be the largest equilibrium, for certain values of b0.

D Many Projects

This Appendix shows that most of the main results generalize to n > 2, with an appropriate

strengthening of the strong ordering condition. The two caveats are:

• The conclusion of Lemma 1 is now an assumption, i.e. we assume that the agent uses a

pure strategy and that the DM responds to any message with a mixture whose support

consists of only one project and the outside option.

• The largest equilibrium that we characterize is not necessarily interim Pareto dominant.

While it is guaranteed to be interim superior to any other for the agent, it need not be for

the DM.

For the remainder of this Appendix, assume n > 2.

D.1 Preliminaries

We study a class of perfect Bayesian equilibria. The agent’s strategy is represented by a function

µ : B → ∆(M) and the DM’s strategy by α : M → ∆(N ∪ {0}), where ∆(·) is the set of

probability distributions. We restrict attention to equilibria where the DM does not randomize

on the equilibrium path between two or more alternative projects. In other words, in equilibrium,

any randomization by the DM must be between the outside option and one project, although

which project it is could depend upon the message received. Given that the only conflict between

the two players is about the outside option, we view this as a natural class of equilibria to study.

Lemma 8. If (α, µ) is an equilibrium in which the DM does not randomize on the equilibrium path

between two or more alternative projects (i.e., for any on-path m ∈M , |Support[α(m)]∩N | < 2),

then the equilibrium is outcome-equivalent to one where no more than n messages are used in

equilibrium and the agent plays a pure strategy.

Before providing a proof, here is the intuition: there are n alternative projects and any

message will (by assumption) lead to a distribution of decisions over the outside option and at
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most one project. Whenever two or more messages result in a particular project being imple-

mented with positive probability, the agent will only use the message(s) that maximize(s) the

acceptance probability of that project. Finally, equilibria in which two or more messages yield

the same acceptance probability are outcome-equivalent to an equilibrium in which only one of

these messages is ever used.

Proof of Lemma 8. Consider any equilibrium (α, µ) with more than n on-path messages. Letting

α(i|m) be the probability that α(·) puts on any project i following message m. By outcome-

equivalence, we can ignore the behavior of any zero measure set of types. Let M∗ be the set of

on-path messages. First suppose that the DM chooses the outside option for sure for all m ∈M∗.

Then for any m ∈ M∗ and any i ∈ N , we must have E[bi|m] ≤ b0, so that E[bi] ≤ b0, and it

follows that there is an outcome-equivalent uninformative or pooling equilibrium with only one

on-path message.

Next, consider the case where some m∗ ∈M∗ leads to an alternative project with positive

probability, i.e. Support[α(m∗)] ∩ N 6= ∅. This requires that Support[α(m)] ∩ N 6= ∅ for all

m ∈M∗, since for almost all types, the agent would never use a message that fails this property

given the availability of m∗. For each project i ∈ N , define pi = 0 if α(i|m) = 0 for all m ∈M∗,

and otherwise define pi = α(i|m) for all m ∈M∗ such that α(i|m) > 0. Note that for any i ∈ N ,

pi is well-defined because if there are two distinct messages m ∈ M∗ and m′ ∈ M∗ such that

α(i|m) > 0 and α(i|m′) > 0, then we must have α(i|m) = α(i|m′) > 0 because otherwise one of

these messages would not be used by any type (except possibly a set of zero measure, which can

be ignored). Therefore, the agent is effectively faced with a choice of which pi he would like to

induce. Since some project has pi > 0, it follows that a full measure of types have a uniquely

optimal choice from the set {p1, . . . , pn}, and we can ignore any zero measure set of types who

do not. Let Bi be the (possibly empty) set of types for whom pi is uniquely optimal from the

set {p1, . . . , pn}; the collection {Bi}i∈N is a partition of B.

Now for each i ∈ N , let M∗
i := {m ∈M∗ : α(i|m) > 0}. Note that for an arbitrary i ∈ N ,

M∗
i could be empty; however, since |M∗| > n, there is some project i∗ ∈ N such that |M∗

i | > 1

and pi > 0. Moreover, optimality for the agent implies that any type b ∈ Bi will not use any

message except those in M∗
i , although it may be mixing over messages within M∗

i . This implies

that the support of the DM’s beliefs about the agent’s type when receiving a message m ∈ M∗
i

must be a non-empty subset of Bi; denote this belief β(m). By the optimality of α for the DM,

we have:

for any m ∈M∗
i∗ , E[bi∗|β(m)] ≥ max{b0,max

j∈N
E[bj|β(m)]}, (20)

for any m ∈M∗
i∗ , E[bi∗|β(m)] = b0 if pi∗ < 1. (21)

Now pick some m ∈ M∗
i and consider a strategy µ̃ defined as follows: for any b /∈ Bi∗ ,

µ̃(b) = µ(b); for any b ∈ Bi∗ , µ̃(b) = m. So µ̃ is identical to µ except that all types that were
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using any message in M∗
i∗ (necessarily types in Bi∗) play a pure strategy of sending message m.

Since |M∗
i∗| > 1, we have reduced the number of used messages by at least 1 in moving from µ

to µ̃. We now argue that (α, µ̃), augmented with the obvious beliefs, constitutes an equilibrium.

Optimality for the agent is immediate because every m ∈ M∗
i∗ has α(i∗|m) = pi∗ > 0. For the

DM, notice that the beliefs over agent types have not changed for any m ∈ M∗
i with i 6= i∗,

so α(m) remains optimal for any such m. For message m, the new beliefs are just the prior

restricted to Bi∗ ; equations (20) and (21) imply that α(m) remains optimal (recall that for any

m ∈M∗
i∗ , β(m) has support within Bi∗).

Since the choice of project i∗ was arbitrary above and only required that |M∗| > n, we

can repeat the above argument to reduce the number of used messages so long as there are more

than n messages being used. Notice further that after repetition of the argument, the resulting

agent’s strategy is a pure strategy because the original {Bi}i∈N was a partition of B. Q.E.D.

In light of Lemma 8, we focus hereafter on equilibria where no more than n messages

are used, which, without loss of generality, can be taken to be the set N . In other words, the

cheap-talk game is effectively reduced to one in which the agent recommends a project i ∈ N (or

ranks i ∈ N above all j ∈ N \ {i}). In turn, the DM’s equilibrium strategy can now be viewed

as a vector of acceptance probabilities, q := (q1, . . . , qn) ∈ [0, 1]n, where qi is the probability

with which the DM implements project i if the agent recommends that project. Thus, if an

agent recommends project i, a DM who adopts strategy q accepts the recommendation with

probability qi but rejects it in favor of the outside option with probability 1− qi.

We are now in a position to characterize equilibria. The agent’s problem is to choose a

strategy µ : B → ∆(N) that maps each profile of project values b to probabilities (µ1(b), ..., µn(b))

of recommending alternative projects in N . Given any q, a strategy µ is optimal for the agent

if and only if

µi(b) = 1 if qibi > max
j∈N\{i}

qjbj. (22)

Accordingly, in characterizing an equilibrium, we can just focus on the DM’s acceptance vector,

q, with the understanding that the agent best responds according to (22). For any equilibrium

q, the optimality of the DM’s strategy combined with (22) implies a pair of conditions for each

project i:

qi > 0 =⇒ E
[
bi | qibi = max

j∈N
qjbj

]
≥ max

{
b0, max

k∈N\{i}
E
[
bk | qibi = max

j∈N
qjbj

]}
, (23)

qi = 1 ⇐= E
[
bi | qibi = max

j∈N
qjbj

]
> max

{
b0, max

k∈N\{i}
E
[
bk | qibi = max

j∈N
qjbj

]}
. (24)

Condition (23) says that the DM accepts project i (when it is recommended) only if she

finds it weakly better than the outside option as well as the other (unrecommended) projects,

given her posterior which takes the agent’s strategy (22) into consideration. Similarly, (24) says
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that if she finds the recommended project to be strictly better than all other options, she must

accept that project for sure. These conditions are clearly necessary in any equilibrium;8 the

following result shows that they are also sufficient.

Lemma 9. If an equilibrium has acceptance vector q ∈ [0, 1]n, then (23) and (24) are satisfied for

all projects i such that Pr{b : qibi = maxj∈N qjbj} > 0. Conversely, for any q ∈ [0, 1]n satisfying

(23) and (24) for all i such that Pr{b : qibi = maxj∈N qjbj} > 0, there is an equilibrium where

the DM plays q and the agent’s strategy satisfies (22).

The proof is omitted since it is the same logic as Lemma 2 for the 2-project case.

For expositional convenience, we will also focus on equilibria with the property that if a

project i has ex-ante probability zero of being implemented on the equilibrium path, then the

DM’s acceptance vector q has qi = 0. This is without loss of generality because there is always an

outcome-equivalent equilibrium with this property: if qi > 0 but the agent does not recommend

i with positive probability, it must be that qibi ≤ qjbj for some j 6= i, so setting qi = 0 does not

change the agent’s incentives and remains optimal for the DM with the same beliefs.

D.2 Terminology

An equilibrium with q = 0 := (0, . . . , 0) is a zero equilibrium. If qi = 1, we say that

the DM rubber-stamps project i, since she chooses it with probability one when the agent

recommends it. The agent is truthful if he always always recommends the best project. An

equilibrium is truthful equilibrium if q = 1 := (1, . . . , 1).9 An equilibrium is influential if

|{i ∈ N : qi > 0}| ≥ 2, i.e. there are at least two projects that are implemented on the equilibrium

path. We say that the agent panders toward i over j if qi > qj > 0. An equilibrium is a

pandering equilibrium if there are some i and j such that the agent panders toward i over j

in the equilibrium. Finally, say that an equilibrium q is larger than another equilibrium q′ if

q > q′, and q is better than q′ if q Pareto dominates q′ at the interim stage where the agent

has learned his type but the DM has not.

D.3 Strong ordering

Definition 2. For n > 2, projects are strongly ordered if

1. For any i < j, and any k ∈ R+,

E[bi|bi > bj, bi > k] > E[bj|bj > bi, bj > k]. (R1-many)

8Strictly speaking, for those projects that are recommended with positive probability on the equilibrium path,
i.e. when Pr{b : qibi = maxj∈N qjbj} > 0.

9There can be a zero equilibrium where the agent always recommends the best project; this exists if and only
if for all i ∈ N , E[bi|bi = maxj∈N bj ] ≤ b0. We choose not to call this a truthful equilibrium.
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whenever both expectations are well-defined.

2. For any i and j, and any k ∈ R+,

E[bi|bi > αbj, bi > k] is nondecreasing in α ∈ R+ (R2-many)

so long as the expectation is well-defined.

The only difference between (R1-many) and (R1), or (R2-many) and (R2), is the extra

conditioning on the relevant random variable being above the non-negative constant k. Obviously,

when k = 0, (R1-many) and (R2-many) are respectively identical to (R1) and (R2), because of

our maintained assumption (A1). Since Definition 2 requires (R1-many) and (R2-many) to hold

for all k ∈ R+, this notion of strong ordering is more demanding than that of Definition 1, even if

there are only two projects. Intuitively, the roles of (R1-many) and (R2-many) are analogous to

that of (R1) and (R2), but modified to account for the fact that when n > 2, a recommendation

for a project i is a comparative statement not only against project j, but also the other n − 2

projects. In other words, the DM’s posterior about i when the agent recommends project i rather

than project j must also account for the fact that i is sufficiently better than all the other non-j

projects as well, for each realization of their values.10

We assert that strong ordering for n > 2 is satisfied for the leading parametric families of

distributions (scale-invariant uniform and exponential); a proof is available on request.

D.4 Results

We first generalize Theorem 1:

Theorem 7. Assume strong ordering, as stated in Definition 2.

1. For any equilibrium q, for any i < j, if qi > 0, then qi ≥ qj, and if qi > 0 and qj < 1, then

qi > qj.

2. There is a largest equilibrium, q∗, such that:

(a) A truthful equilibrium, q∗ = 1, exists if and only if b0 ≤ b∗0 := E[bn|bn = maxj∈N bj].

(b) If b0 ∈ (b∗0, b
∗∗
0 ) for some b∗∗0 ≥ b∗0, then q∗ � 0 and q∗1 = 1; consequently, the largest

equilibrium is a pandering equilibrium. Moreover, for any b̃0 > b0 in this interval,

q∗ > q̃∗, where these are the largest equilibria respectively for b0 and b̃0.

10In this light, some readers may find it helpful to consider the following alternative to part one of the definition:
For any i < j and any (αk)k 6=i,j ∈ Rn−2++ , E[bi|bi > bj , bi > max

k 6=i,j
αkbk] > E[bj |bj > bi, bj > max

k 6=i,j
αkbk] whenever

these expectations are well-defined. A similar modification can also be used for the second part of the definition.
While these requirements are slightly weaker and would suffice, we chose the earlier formulation for greater clarity.
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(c) If b0 > b∗∗0 , then only the zero equilibrium exists, q∗ = 0.

Proof. The proof is in several steps.

Step 1: Fix any equilibrium q and any i < j. If qi > 0, then qi ≥ qj, and if in addition qj < 1,

then qi > qj.

Proof: Fix any equilibrium q and any projects i < j. Suppose to the contrary that

qj > qi > 0. Then

E
[
bi

∣∣∣∣ qibi ≥ max

{
qjbj,max

k 6=i,j
qkbk

}]
= E

[
bi

∣∣∣∣ bi ≥ max

{(
qj
qi

)
bj,max

k 6=i,j

(
qk
qi

)
bk

}]
> E

[
bj

∣∣∣∣ (qjqi
)
bj ≥ max

{
bi,max

k 6=i,j

(
qk
qi

)
bk

}]
= E

[
bj

∣∣∣∣ qjbj ≥ qkbk,∀k 6= j

]
≥ b0,

where the strict inequality is because of strong ordering and the weak inequality is because qj > 0.

But this implies that E[bi |qibi = maxk∈N qkbk] > b0, which is contradiction with qi ∈ (0, 1). This

proves that qi ≥ qj. For the second statement, notice that 0 < qi = qj < 1 implies that the

final inequality above must hold with equality. Since the strict inequality above still applies, the

DM’s optimality requires qi = 1, a contradiction. ‖

For the remaining results, we consider a mapping ψ : [0, 1]n → [0, 1]n such that for each

q = (q1, ..., qn) ∈ [0, 1]n,

ψi(q1, ..., qn) := max

{
q′i ∈ [0, 1]

∣∣∣∣E[bi | q′ibi ≥ qjbj,∀j 6= i] ≥ b0

}
(25)

with the convention that max ∅ := 0. The mapping ψi calculates the highest probability with

which the DM is willing to accept project i when it is recommended according to (1) subject to

the constraint that the posterior belief does not fall below b0.

Step 2: The mapping ψ has a largest fixed point q∗.

Proof: It suffices to prove that the mapping is monotonic, since Tarski’s fixed point

theorem then implies that the set of fixed points is nonempty and contains a largest element. Fix

any q′ ≥ q. We will prove that ψ(q′) ≥ ψ(q). If ψi(q) = 0 for some i then clearly ψi(q
′) ≥ ψi(q).

So suppose ψi(q) > 0 for some i. Then E[bi |ψi(q)bi ≥ qjbj,∀j 6= i] ≥ b0. Since q′ ≥ q, for any

such i, (R2′) implies that E[bi |ψi(q)bi ≥ q′jbj, ∀j 6= i] ≥ E[bi |ψi(q)bi ≥ qjbj,∀j 6= i]. Putting

the two facts together, we have E[bi |ψi(q)bi ≥ q′jbj,∀j 6= i] ≥ b0, from which it follows that

ψi(q
′) ≥ ψi(q). ‖

Step 3: The largest fixed point q∗ of ψ is an equilibrium.
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Proof: By Lemma 9, it suffices to prove that q∗ satisfies (2) and (3). To begin, suppose

q∗i > 0. Then, since q∗i = ψi(q
∗) > 0, we have

E[bi | q∗i bi = max
k∈N

q∗kbk] ≥ b0. (26)

Now consider any project j 6= i with q∗j > 0. If q∗j = 1, then q∗j ≥ q∗i , so q∗i bi ≥ q∗j bj implies

bi ≥ bi. It thus follows that

E[bj | q∗i bi = max
k∈N

q∗kbk] ≤ E[bi | q∗i bi = max
k∈N

q∗kbk]. (27)

If q∗j ∈ [0, 1), then we have

E[bj | q∗i bi = max
k∈N

q∗kbk] ≤ E[bj | q∗j bj = max
k∈N

q∗kbk] ≤ b0, (28)

where the second inequality follows from q∗j = ψj(q
∗) and from the construction of ψ for the case

q∗j < 1, and the first inequality is explained as follows: Define x := maxk 6=i,j q
∗
kbk, and let G be

its cumulative distribution function. Then, the middle term of (28) can be written as

E[bj | q∗j bj = max
k∈N

q∗kbk] =

∫∞
0
bjG(q∗j bj)Fi(

q∗j
q∗i
bj)fj(bj)dbj∫∞

0
G(q∗j bj)Fi(

q∗j
q∗i
bj)fj(bj)dbj

=

∫ ∞
0

bf̂j(b)db,

where

f̂j(z) :=
G(q∗j z)Fi(

q∗j
q∗i
z)fj(z)∫∞

0
G(q∗j z̃)Fi(

q∗j
q∗i
z̃)fj(z̃)dz̃

.

Likewise, the left-most term of (28) can be written as

E[bj | q∗i bi = max
k∈N

q∗kbk] =

∫∞
0
bj

(∫∞
q∗
j
q∗
i
bj
G(q∗i bi)fi(bi)dbi

)
fj(bj)dbj

∫∞
0

(∫∞
q∗
j
q∗
i
bj
G(q∗i bi)fi(bi)dbi

)
fj(bj)dbj

=

∫ ∞
0

bf̃j(b)db,

where

f̃j(z) :=

(∫∞
q∗
j
q∗
i
z
G(q∗i bi)fi(bi)dbi

)
fj(z)

∫∞
0

(∫∞
q∗
j
q∗
i
z̃
G(q∗i bi)fi(bi)dbi

)
fj(z̃)dz̃

.

Note that η̃(z) :=
∫∞
q∗
j
q∗
i
z
G(q∗i bi)fi(bi)dbi is non-increasing in z, while η̂(z) := G(q∗j z)Fi(

q∗j
q∗i
z)
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is nondecreasing in z. Hence, for any z′ > z,

f̃j(z
′)

f̃j(z)
=
η̃(z′)fj(z

′)

η̃(z)fj(z)
≤ fj(z

′)

fj(z)
≤ η̂(z′)fj(z

′)

η̂(z)fj(z)
=
f̂j(z

′)

f̂j(z)
, (29)

whenever the left-most and right-most terms are well defined.

The inequality (29) means that f̂ likelihood-ratio dominates f̃ , which proves the first

inequality of (28). When combined, (26), (27), and (28) imply that q∗ satisfies (2). The con-

struction of ψ implies that q∗ satisfies (3). ‖

Step 4: The largest fixed point q∗ of ψ is the largest equilibrium.

Proof: Suppose to the contrary that there is an equilibrium q̂ 6≤ q∗. Define a mapping

ψ̂ :
∏

i∈N [q̂i, 1]→
∏

i∈N [q̂i, 1] such that for each q = (q1, ..., qn) ∈
∏

i∈N [q̂i, 1],

ψ̂i(q1, ..., qn) := max

{
q′i ∈ [q̂i, 1]

∣∣∣∣E[bi | q′ibi ≥ qjbj,∀j 6= i] ≥ b0

}
,

again with the convention that max ∅ := 0. Since q̂ is an equilibrium, it must satisfy (2), so

ψ̂i(q̂) ≥ q̂i. Hence the mapping is well defined on the restricted domain. Further, since ψi(q̂) ≥ q̂i
for each i, it must be that ψ̂(q) = ψ(q) for any q ∈

∏
i∈N [q̂i, 1]. Hence ψ̂ is monotonic, and

Tarski’s fixed point theorem implies existence of a fixed point, say q̂+. By construction, q̂+ ≥ q̂.

Evidently, q̂+ is a fixed point of ψ as well (in the unrestricted domain). Since q∗ is the largest

fixed point, we must have q∗ ≥ q̂+ ≥ q̂, a contradiction. The result follows since q∗ is an

equilibrium by Step 3. ‖

Step 5: If q∗ 6= 0, then q∗ � 0 and q∗1 = 1.

Proof: Suppose q∗ 6= 0. Then, there must exist k ∈ N such that q∗k > 0. Fix any i 6= k.

By (A3), there exists α > 0 such that

b0 ≤ E
[
bi

∣∣∣∣bi > αbk

]
= E

[
bi

∣∣∣∣ (q∗kα
)
bi > q∗kbk

]
≤ E

[
bi

∣∣∣∣ (q∗kα
)
bi > q∗j bj,∀j

]
,

which implies that, for qi = q∗

α
> 0, E

[
bi

∣∣∣∣qibi > q∗j bj,∀bj
]
≥ b0. It follows that q∗i = ψi(q

∗) ≥

qi > 0. We have thus proven q∗ � 0. Step 1 then implies that q∗i ≥ q∗j for any i < j. Suppose

q∗1 < 1. Then, it must be that E[bi | q∗i bi = maxk∈N q
∗
kbk] = b0 for all i ∈ N . Now consider

q∗ =
(

1
q∗i

)
q∗. Clearly, q∗ is also an equilibrium and q∗ � q∗, which contradicts Step 4. ‖

Step 6: Let q∗(b0) denote the largest equilibrium under outside option b0. Then, q∗(b0) ≥ q∗(b′0)

for b0 < b′0. If b0 < b′0 and q∗(b′0) ∈ (0,1), then q∗(b0) > q∗(b′0).

Proof: Write ψ(q; b0) in (25) to explicitly recognize its dependence on b0. It is easy to see

that ψi(q; b0) is nonincreasing in b0. It follows that the largest fixed point q∗(b0) is nonincreasing
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in b0, proving the first statement. To prove the second, let b0 < b′0 and q∗(b′0) ∈ (0,1). The

statement holds trivially if q∗(b0) = 1. Hence, assume q∗(b0) < 1. By Step 1 and Step 5, we

must have q∗n(b0) ∈ (0, 1), and this implies that E[bn|q∗n(b0)bn = maxk∈N q
∗
k(b0)bk] = b0 < b′0.

Clearly, q∗(b0) 6= q∗(b′0). By the first statement, it follows that q∗(b0) > q∗(b′0). ‖

Step 7: The truthful equilibrium exists if and only if b0 ≤ b∗0 := E[bn|bn = maxj∈N bj].

Proof: If b0 ≤ b∗0, then (R1′) implies that b0 ≤ E[bi|bi = maxj∈N bj] for all i ∈ N , so there

is a truthful equilibrium. If b0 > b∗0, q = 1 clearly violates (2), so there cannot be a truthful

equilibrium. ‖

Step 8: There exists b∗∗0 ≥ b∗0 such that the largest equilibrium is q∗(b0) ∈ (0,1)—it is a

pandering equilibrium—if b0 ∈ (b∗0, b
∗∗
0 ) and it is zero equilibrium if b0 > b∗∗0 . For any b0, b

′
0 ∈

(b∗0, b
∗∗
0 ) such that b0 < b′0, q∗(b0) > q∗(b′0).

Proof: The first statement follows directly from Steps 1, 5, 6, and 7. The second statement

follows directly from Step 7 by noting that q∗(b′0) ∈ (0,1). ‖ Q.E.D.

Remark 3. Unlike with Theorem 1, the largest equilibrium may not be the best equilibrium

when there are many projects.11 Yet, it is compelling to focus on. First, it clearly maximizes the

agent’s (interim) expected payoff. Second, there is a sense in which any non-zero equilibrium q

where qi = 0 for some i must be supported with “unreasonable”off-path beliefs. Informally, a

forward-induction logic goes as follows: by recommending a project i when qi = 0 (which is off

the equilibrium path in a non-zero equilibrium), the agent must be signaling that i is sufficiently

better than all the projects that he could get implemented with positive probability. So the DM

should focus her beliefs on those types that would have the most to gain from such a deviation.

Naturally, the agent has more to gain the higher is bi. But then, with enough weight of beliefs on

high bi’s, the DM should accept i with probability one, contradicting qi = 0. A formal discussion

of this intuition is available upon request or in working paper versions of this article. Given that

when q∗ 6= 0 it will generically be the only equilibrium where all projects are implemented with

positive probability on the equilibrium path,12 and q∗ is obviously better for both players than

the zero equilibrium, we find it reasonable to focus on q∗.

Focusing on the largest equilibrium, Theorem 2 can also be generalized to the multi-

project environment:

Theorem 8. Fix b0 and an environment F = (F1, . . . , Fi, . . . , Fn) that satisfies strong ordering

as in Definition 2. Let F̃ = (F1, . . . , F̃i, . . . , Fn) be a new environment such that either

11To see why, suppose n = 4 and the largest equilibrium is q∗ = (1, q∗2 , q
∗
3 , q
∗
4)� 0 while another equilibrium is

q = (1, q2, q3, 0) with q2 > 0 and q3 > 0. Even if q∗2 > q2 and q∗3 > q3, so that q∗ has less pandering than q toward
project one, it could be that q∗ has more pandering toward project two over three than q, i.e. 1 > q3/q2 > q∗3/q

∗
2 .

If projects two and three are ex-ante significantly more likely to be better than projects one and four, it is possible
that the DM could prefer q over q∗.

12A proof of this statement is available on request.
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(a) F̃ satisfies strong ordering and Fi likelihood-ratio dominates F̃i; or

(b) F̃i is a degenerate distribution at zero.

In either case, let q∗ and q̃∗ denote the largest equilibria respectively under F and F̃. Then

q∗ ≥ q̃∗; moreover, q∗ > q̃∗ if q̃∗ 6= 1 and q∗ > 0 and either (b) holds or the likelihood-ratio

dominance in (a) is strict.

Proof. The proof is very similar to that of Theorem 2, so we do not reproduce the entire argument.

The key difference is that instead of inequality (A2) in that proof,13 we must now show that for

any j ∈ N ,

E[bj|q̃∗j bj = max
k∈N

q̃∗kbk] ≥ E[b̃j|q̃∗j b̃j = max
k∈N

q̃∗k b̃k]. (30)

(As before, case (b) is straightforward, so we focus on case (a) of the Theorem so that F̃i is not

degenerate at zero, and moreover, we can assume q̃∗ � 0. Also, we are supposing the conditional

expectations are well-defined; an analogous argument to that used in the proof of Theorem 2 can

be used to address this issue.) For j = i, (30) follows from likelihood-ratio dominance of Fi over

F̃i. For j 6= i, (30) is proven as follows. Define x := maxk 6=i,j q̃
∗
kbk, and let G be its cumulative

distribution function. We can write

E[bj | q̃∗j bj = max
k∈N

q̃∗kbk] =

∫∞
0
bjG(q̃∗j bj)Fi(

q̃∗j
q̃∗i
bj)fj(bj)dbj∫∞

0
G(q̃∗j bj)Fi(

q̃∗j
q̃∗i
bj)fj(bj)dbj

=

∫ ∞
0

bkj(b)db,

where kj(z) :=
G(q̃∗j z)Fi(

q̃∗j
q̃∗
i
z)fj(z)∫∞

0 G(q̃∗j z̃)Fi(
q̃∗
j
q̃∗
i
z̃)fj(z̃)dz̃

. Likewise,

E[b̃j | q̃∗j b̃j = max
k∈N

q̃∗k b̃k] =

∫ ∞
0

bk̃j(b)db,

where k̃j(z) :=
G(q̃∗j z)F̃i(

q̃∗j
q̃∗
i
z)fj(z)∫∞

0 G(q̃∗j z̃)F̃i(
q̃∗
j
q̃∗
i
z̃)fj(z̃)dz̃

. To prove inequality (30), it suffices to show that kj

likelihood-ratio dominates k̃j. Consider any b′ > b. Algebra shows that

kj (b′)

kj (b)
≥ k̃j (b′)

k̃j (b)
⇔

Fi

(
q̃∗j
q̃∗i
b′
)

Fi

(
q̃∗j
q̃∗i
b
) ≥ F̃i

(
q̃∗j
q̃∗i
b′
)

F̃i

(
q̃∗j
q̃∗i
b
) ,

which is the same inequality as we had in the proof of Theorem 2, so again the right-hand side of

the equivalence is implied by the hypothesis that Fi likelihood-ratio dominates F̃i (see the earlier

proof for additional details).

13This stated that E[bm|q̃∗mbm = maxk∈{1,2} q̃
∗
kbk] ≥ E[b̃m|q̃∗mb̃m = maxk∈{1,2} q̃

∗
k b̃k].
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To finish the proof of the first part of the Theorem, let ψ and ψ̃ denote the mappings (25)

for environments F and F̃, respectively. Then, (30) means that ψ(q̃∗) ≥ ψ̃(q̃∗). This implies

that there exists a fixed point of ψ weakly greater than q̃∗. It follows that q∗ ≥ q̃∗.

Just as in the proof of Theorem 2, the second part of the current Theorem follows from

the fact that inequality (30) has to hold strictly when the likelihood-ratio domination of Fi over

F̃i is strict; hence ψ(q̃∗) > ψ̃ (q̃∗), whereby q∗ > q̃∗. Q.E.D.

E Extensions

E.1 Ignorance can be bliss

Suppose there are two projects, A and B, whose values bA and bB are ex-ante identically dis-

tributed. Suppose the DM, either through her own investigation or verifiable communication

with the agent, can costlessly obtain a signal s ∈ S prior to the agent’s communication of soft

information. Assume for convenience that S is finite. We consider two regimes: (1) No infor-

mation: The DM does not observe s; and (2) Information: the DM and the agent observe the

realized value of s. We say that the signal is value-neutral if E[max{bA, bB}|s] is the same

for all s ∈ S, and it is non-trivial if E[bA|bA > bB, s] 6= E[bA|bA > bB, s
′] for some s, s′ ∈ S.

Value-neutrality captures the notion of the signal being valuable only insofar as it informs the

DM about which of the projects is better, but not about how the best project compares against

the outside option.14

Theorem 9. Consider the best equilibrium under each information regime. If the signal is

value-neutral, then the DM prefers (at least weakly) not observing the signal to observing the

signal. If the signal is also non-trivial, then there exists a non-empty interval [b̂0, b0] such that

the preference for ignorance is strict for b0 ∈ (b̂0, b0).

Theorem 9 shows that observable information can be harmful, and the DM would benefit

from ignorance in the sense of not observing such information. While the result assumes that the

projects are ex-ante identical, it is robust to relaxing this assumption because the DM’s payoffs

from no information and information vary continuously (upon selecting the best equilibrium)

when the assumption is slightly relaxed.

It is clear that the nature of information is crucial for the conclusion of Theorem 9. Just

as a value-neutral signal can only make the DM worse off, other kinds of information can only

benefit the DM. In particular, It can be shown that the DM will always benefit from learning

information with the dual characteristics, i.e. observing a signal that is ranking-neutral in the

14While value-neutrality is generally a strong assumption, it holds for example with the widely-used binary
signal structure: S = {sA, sB} such that for any real valued function h(bA, bB), E[h(bA, bB)|sA] = E[h(bB , bA)|sB ].
Given symmetric binary signals, E[max{bA, bB}|sA] = E[max{bB , bA}|sB ] = E[max{bA, bB}|sB ].
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sense that E[bA|bA > bB, s] and E[bB|bA < bB, s] are constant across s ∈ S and also value-non-

neutral in that E[max{bA, bB}|s] varies with s.

Proof of Theorem 9. Assume the signal is value-neutral. Suppose first the DM has learned some

signal s ∈ S, and a cheap-talk equilibrium q(s) = (qA(s), qB(s)) ensues, where qi(s) denotes the

probability of project i = A,B being accepted by the DM when the agent recommends i given

signal s. There are two possibilities. First, if q(s) = 0, then the DM’s payoff will be b0. Suppose

next q(s) > 0. Then following the argument of Theorem 5, the DM’s payoff is no higher than it is

under delegation. The latter payoff is E[max{bA, bB}|s], which by the value-neutrality assumption

is independent of the signal realization and hence is equal to E[max{bA, bB}]. Thus, regardless of

q(s), the DM’s expected payoff from having learned s is no greater than max {b0,E[max{bA, bB}]}.
But the latter is exactly the DM’s expected payoff under “no information.” More precisely,

since bA and bB are identically distributed, E[bA|bA ≥ bB] = E[bB|bA ≤ bB] = E[max{bA, bB}].
Hence, if E[max{bA, bB}] ≥ b0, then a truthful equilibrium arises under no information, and if

E[max{bA, bB}] < b0, only the zero equilibrium arises under no information. Since the preceding

argument applies to any signal realization, the first statement of the theorem follows.

Suppose next that the signal is also non-trivial. This implies that

b̂0 := min
s∈S

(min{E[bA|bA ≥ bB, s],E[bB|bA < bB, s]}) < E[max{bA, bB}] =: b0. (31)

Consider any b0 ∈ (b̂0, b0). (31) implies that there is a truthful equilibrium under “no informa-

tion,” which gives the DM a payoff of E[max{bA, bB}]. (31) also implies that there is no truthful

equilibrium following any observed signal; hence, following any observed signal, the DM’s payoff

is strictly less than E[max{bA, bB}]. Integrating over all possible signals, the second statement

of the theorem follows. Q.E.D.

E.2 Preference conflicts over projects

An important extension of our baseline model is to allow the DM and the agent to have non-

congruent preferences over the set of alternative projects. For instance, a seller may obtain

a larger profit margin on a particular product, or a Dean may have a gender bias or prefer

candidates who do research in a particular area. A simple way to introduce such conflicts is to

assume that the agent derives a benefit aibi from project i, where ai > 0 is common knowledge,

while the DM continues to obtain bi from project i.15 The parameter a := a1/a2 > 0 is a sufficient

statistic for the conflict of interest between the two projects: if a > 1, the agent’s preferences

are biased (relative to the DM’s) toward the conditionally better-looking project, whereas when

a < 1 the agent is biased toward the conditionally worse-looking project.

15This multiplicative form of bias is especially convenient to study, but it is also straightforward to incorporate
an additive or other forms of bias.
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We assume that the two projects are strongly ordered, and focus on “ranking equilibria”

where the agent recommends project one if and only if αb1 > b2 for some constant α > 0, just

as in the baseline model. A ranking equilibrium is still characterized by the DM’s acceptance

probabilities q = (q1, q2), but now the agent recommends project one if aq1b1 > q2b2 and project

two otherwise. We will continue to say that the equilibrium is truthful if q1 = q2 = 1 and that

the agent panders toward project i if qi > q−i > 0, i.e. he biases his recommendation toward

project i from the perspective of his preferences, not from the DM’s.16 Consequently, the DM

may benefit from pandering, as we discuss below. To avoid uninteresting cases, assume that the

truthful equilibrium does not exist, i.e. either E[b1|ab1 > b2] < b0 or E[b2|ab1 < b2] < b0, and a

non-zero equilibrium does exist.

Under strong ordering, one can show that there exists a critical threshold of conflict,

a ∈ (1,∞], such that if a ∈ (0, a), the largest equilibrium has pandering toward the conditionally

better-looking project (q∗ = (1, q∗2) with q∗2 ∈ (0, 1)) while for a > a, the largest equilibrium has

pandering toward the conditionally worse-looking project (q∗ = (q∗1, 1) with q∗1 ∈ (0, 1)).17 Notice

that if a < 1, the agent has a preference bias for project two but nevertheless panders toward

project one in order to persuade the DM. If a ∈ (1, a), then pandering reinforces the agent’s bias

to over-recommend project one from the DM’s perspective.18 Finally, when a > a, the agent’s

preferences are so biased toward the good-looking project that a recommendation of project one

is less credible than that of project two; hence the persuasion motive leads him to pander toward

project two. It is not hard to check that even though the agent is pandering toward project two

relative to his true preferences, he still over-recommends project one from the DM’s perspective,

i.e. aq1 ≥ q2 in any equilibrium.

An important difference from the baseline model is that if a < 1 or a > a, the DM benefits

from some pandering in communication, because it counteracts the agent’s preference bias. This

affects the DM’s gains from full delegation. If a < 1, a sufficiently small degree of pandering

toward project one helps mitigate the agent’s preference bias toward project two. Delegation then

dominates communication only when the largest equilibrium has sufficiently severe pandering.19

16From the DM’s point of view, the agent always recommends the better project only if aq1 = q2. Hence, the
agent’s recommendations are distorted whenever aq1 6= q2.

17Formally, a is the value of a that solves E[b2|b2 > ab1] = E[b1|b2 < ab1] if a solution exists (we assume it is
unique, to avoid uninteresting complications), and a =∞ otherwise.

18Interestingly, in this case, the acceptance probability of project two in the largest equilibrium is increasing in
the preference conflict a; the reason is that the agent’s preference bias toward the better-looking project makes his
recommendation of a worse-looking project more credible than the same recommendation made by an unbiased
agent. Nevertheless, the DM’s welfare is constant in the agent’s preference bias so long as a ∈ (0, a). The reason
is that q∗2 ∈ (0, 1) implies E[b2|q∗2b2 > ab1] = b0; hence, in equilibrium, a change in a triggers an offsetting change
in q∗2 that keeps q∗2/a constant, and thus does not affect the agent’s recommendation strategy. Since the DM is
indifferent across all q2 ∈ [0, 1] if we hold fixed the agent’s strategy, the DM’s welfare does not change.

19The same logic also implies that the comparative statics of the DM’s expected utility in the outside option
can be different from the baseline model; in particular, higher outside options even in the pandering region can
raise the DM’s expected utility. To see this, note that when a < 1, the largest equilibrium has pandering only if
b0 > E[b2|b2 > ab1]. As b0 rises from this threshold, q∗2 falls so as to maintain E[b2|q∗2b2 > ab1] = b0. From the
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If a > a, in which case the agent is strongly biased in preference toward project one, the agent’s

pandering toward project two (recall, this is relative to the agent’s preferred alternative) is always

beneficial to the DM, so delegation is never optimal. Only when a ∈ [1, a) is delegation optimal

for any level of pandering.

The above observations highlight that pandering due to conflicts of interests over projects

and pandering due to observable differences between projects have fundamentally different im-

plications. In particular, if projects are identical (F1 = F2) but a 6= 1, then pandering is always

beneficial to the DM: the agent knows that a proposal of a pet project is less credible, so he

restrains himself from recommending such a project, i.e. he panders toward the project his

preference is biased against. Delegation is then suboptimal. By contrast, in our baseline model

where F1 6= F2 and a = 1, we have seen that pandering is always detrimental to the DM, and

delegation is strictly preferred whenever pandering occurs in the largest equilibrium.

E.3 Private information about outside option

The value of the outside option may be known only privately to the DM when the agent rec-

ommends a project. For example, a seller may not be privy to a buyer’s reservation value of

her product, or a CEO may know more than a division manager about the cost of capital. We

can readily accommodate such situations by assuming that the value of the outside option, b0, is

observed privately by the DM prior to the agent’s communication about b. Suppose that b0 is

drawn from a distribution G (·) with strictly positive density on [0,∞). In this setting, a ranking

equilibrium is described not by a vector of acceptance probabilities, but rather by a threshold

vector (b1
0, b

2
0) such that the DM follows the agent’s recommendation of project i ∈ {1, 2} if and

only if b0 ≤ bi0, choosing her outside option otherwise. Assuming strong ordering, one can show

that b1
0 > b2

0 and, hence, there is pandering in any ranking equilibrium.20 Since the agent is uncer-

tain about the outside option when communicating, he prefers to recommend the conditionally

better-looking project, project one, when b1 is only slightly below b2, because this increases the

probability of acceptance.21

What about the DM’s decision to delegate, assuming this is made after she learns the

value of b0? One may think that for values of b0 ∈ (b1
0, b

2
0), the DM does not want to delegate

and instead just accepts project one when it is recommended. This logic is incomplete, however,

because the DM’s decision not to delegate would reveal that her outside option is high and

thereby exacerbate the agent’s pandering. Strikingly, it can be shown that the DM delegates

DM’s point of view, a lower q∗2 is welfare improving until q∗2 = a, which obtains when b0 = E[b2|b2 > b1].
20See the previous subsection for the notion of a ranking equilibrium.
21The DM has an incentive to try to convince the agent that her outside option is low, because the agent

will pander less if he believes the outside option to have a lower value. Such communication from the DM is
not credible, however, if the DM can only make cheap-talk statements about the outside option. By contrast,
if the DM can engage in verifiable disclosure about the outside option value, there will full revelation due to an
unraveling argument.
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project choice in equilibrium if and only if b0 ≤ E [max {b1, b2}] — just as in the baseline model

where b0 was common knowledge.

E.4 Flexibility in resource allocation

In many settings, the DM may have flexibility in allocating resources: she could implement both

projects if she wants, or vary the size of her investment in a project. A first-best outcome would

require that the resources invested should be responsive to the quality of the projects. In reality,

however, business units often receive fixed budgets, university departments are given a fixed

number of hiring slots, and so on. We will show that such an inflexible allocation rule may be

explained as an optimal response to pandering by the agent. As with the previous extensions,

we focus on ranking equilibria as described earlier.

Variable project size. Assume that the DM must decide how much to invest in one of two

projects, where qibi are the returns to investing qi in project i; these are common to both the

DM and the agent. For simplicity, assume further that resource costs are quadratic in qi and

are incurred only by the DM. In equilibrium, projects with higher expected values then receive

more resources from the DM. As a result, one can show that in any ranking equilibrium, the

agent always panders toward the conditionally better-looking project no matter the value of the

outside option.22 Again, the resulting distortion can be mitigated by delegation, provided the

DM can put a cap on the maximum investment the agent can make (knowing that the agent will

always invest the maximum allowed). This is equivalent to giving the agent an inflexible budget

but allowing freedom in how to spend that budget.

Non-exclusive projects. There are many situations in which the DM may choose to imple-

ment multiple projects. For example, a corporate board may approve several capital investment

projects if the expected profits of each exceed their cost of capital, or a Dean may want to hire

both economists if they are both sufficiently good. To fix ideas, assume that the DM may choose

to implement neither, either, or both projects. If both projects are chosen, both the DM and the

agent obtain a payoff of b1 + b2; if only project i ∈ {1, 2} is chosen, the DM gets bi + b0 while the

agent gets bi; and if neither is chosen, the DM gets 2b0 while the agent gets 0.

In this setting, one may wonder if the intuition of pandering toward better-looking projects

in order to persuade would still apply. In particular, is it possible that the agent, in equilibrium,

panders toward the worse-looking project in order to increase the chances that both projects are

selected? Such a possibility is particularly relevant if b0 is such that

E[b1|b1 > b2] > E[b2|b2 > b1] > E[b1|b2 > b1] > b0 > E[b2|b1 > b2], (32)

22This extension permits a comparison with Blanes i Vidal and Moller (2007), who show that a principal may
select a project that she privately knows is inferior but is perceived to be of higher quality by an agent who
must exert costly effort to implement the project. Intuitively, the DM in our model is the agent in theirs whose
implementation effort is increasing in his posterior on project quality.
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because in this case project one appears to “shoe in” (it would be implemented even if the agent

truthful ranks project two ahead of project one), while project two would be implemented if

truthfully ranked ahead but not if truthfully ranked behind.

One can show that any influential ranking equilibrium still has pandering toward the

conditionally better-looking project, project one. In such an equilibrium, when the agent ranks

project one ahead of project two, the DM accepts it and also accepts project two with some

probability. If the agent ranks project two ahead of project one, the DM accepts it but rejects

project one. Hence, even if the DM can implement both projects, the communication is still

biased toward the conditionally better-looking project. Existence of an influential ranking equi-

librium requires E[b2] ≥ b0. If E[b2] < b0, the only equilibrium is the one where the DM always

chooses project one.

Interestingly, if E[b2] < b0, the DM would benefit from committing herself to implement at

most one project. Indeed, the inequalities in (32) imply that the agent will then truthfully reveal

the better project, and the DM will follow this recommendation. By contrast, if the DM does

not make such a commitment, the desire to get both projects adopted destroys the credibility of

the agent’s communication.

F Revelation of Verifiable Information

In this Appendix, we show how revelation of hard information by the agent can lead to asymme-

tries in soft information about projects. This formalizes the assertion at the end of Section II of

the paper that asymmetric distributions for the project values can be viewed as resulting from

either asymmetries that are directly observable to the DM or private but verifiable information

of the agent that is fully revealed.

Formally, suppose that all projects are ex-ante identical. Each project i independently

draws from a distribution G(·) a verifiable component, vi ∈ V , where V is a compact subset of R.

Thereafter, each project draws it’s value bi independently from a family of distributions F (bi|vi)
with density f(bi|vi). The agent privately observes the vector (v,b) and then communicates

with the DM in two stages. First, he sends a vector of messages r := (r1, . . . , rn) about v subject

to the constraint that for each i,

ri ∈ {X : X ⊆ V,X is closed, vi ∈ X}.

This formulation captures that each vi is hard information: the agent can claim that vi lies in

any subset of V so long as the claim is true. Thereafter, the agent sends a cheap-talk message

just as in our baseline model. Finally, the DM implements a project or the outside option.

The key assumption we make is that the distributions F (b|v) satisfy the monotone likelihood-

ratio property (MLRP): if v > v′, then for all b > b′, f(b|v)
f(b′|v)

> f(b|v′)
f(b′|v′) . Moreover, assume that for
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any vector of hard information, v, the project distributions (F (·|v1), . . . , F (·|vn)) satisfy strong

ordering.

Theorem 10. In this extended model with privately observed hard information and any n ≥ 2,

there is an equilibrium where the agent fully reveals his hard information by sending ri = vi,

and the subsequent cheap-talk subgame outcome is identical to the largest equilibrium, q∗, of our

baseline model where each Fi = F (·|vi).

Proof. Consider a skeptical posture by the DM, where for any hard information report ri ⊆ V ,

the DM believes that vi = min ri. Then for any profile r, the DM plays the q∗ associated with

our baseline model where each Fi = F (·|min ri). Since F (b|v) has the MLRP, Theorem 2 for

for n = 2 and Theorem 8 for n > 2 imply that if the agent deviates from r = v to any other

hard information report, he only induces a weakly smaller acceptance profile from the DM in

the ensuing cheap-talk game. Thus the agent can do no better than playing ri = vi and then

playing according to q∗ of the game where Fi = F (·|vi). Plainly, the DM is playing optimally

as well. Q.E.D.

G On Strong Ordering

G.1 Condition (R2)

In this subsection, we show that the restrictive portion of strong ordering, viz. that (R2) must

be satisfied for each i ∈ {1, 2}, holds if projects are drawn from a number of familiar families of

distributions whose support is contained in the non-negative reals: Pareto distributions, Power

Functions distributions, Weibull distributions, and at least for a subset of its parameters, Gamma

distributions. Note that it is not necessary that the distribution for both projects need be in the

same family.

Recall that Lemma 3 provides a sufficient condition for (R2) that depends only on F−i.

Accordingly, to ease notation, in this subsection only we will drop the project subscript and just

a distribution F (b) with density f(b) and support [b, b], where b ≥ 0 and b ≤ ∞. The sufficient

condition in Lemma 3 is that project −i be drawn a distribution F whose reverse hazard rate

r(b) := f(b)/F (b) is decreasing fast enough so that br(b) is non-increasing. We will use a few

equivalent formulations:

For any b > b′ > b > b : br(b) ≥ b′r(b′), (R2′)

or when the density f is differentiable,

For any b > b > b : − b

r(b)
r′(b) ≥ 1, (R2′′)
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where a prime on a function denotes its derivative. Yet another useful version is generated by

noticing that br(b) being non-increasing is equivalent to F (b)
bf(b)

being non-decreasing, which for a

differentiable density is equivalent to

b− F (b)

f(b)

(
1 + b

f ′(b)

f(b)

)
≥ 0. (R2′′′)

Pareto distribution. The Pareto distribution has support [b,∞) and cdf F (b) = 1− (b/b)k for

some parameters b, k > 0. So f(b) = kbkb−k−1 and (R2′) requires that for any b′ > b ≥ b,(
b′

b

)k
≥ 1− (b/b)k

1− (b/b′)k
.

This inequality holds because it is true when b′ = b and the LHS is strictly increasing in b′ while

the RHS is strictly decreasing in b′.

Power function distribution. The Power function distribution has support [x, y] and cdf F (b) = (b−x)k

(y−x)k

for some ∞ > y > x ≥ 0 and k > 0.23 Note that the case of k = 1 subsumes uniform distribu-

tions. Since f(b) = k
(y−x)k

(b− x)k−1, (R2′) requires that for any y ≥ b′ > b ≥ x,

bk(b− x)−1 ≥ b′k(b′ − x)−1.

This condition simplifies to b′

b
x ≥ x, which is true because b′ > b and x ≥ 0.

Weibull Distribution. The Weibull distribution has support [0,∞) and cdf F (b) = 1− e−(bλ)k

for some λ, k > 0. The density is f(b) = (kλ)(bλ)k−1e−(bλ)k . Note that k = 1 subsumes the

exponential distribution.

We compute

r(b) =
(kλ)(bλ)k−1e−(bλ)k

1− e−(bλ)k

and

r′(b) =
e−(bλ)k(kλ)(bλ)k−2λ

[
(k − 1)(1− e−(bλ)k)− (bλ)kk

]
(1− e−(bλ)k)2

.

Hence,

− b

r(b)
r′(b) =: E(b) =

(bλ)kk

1− e−(bλ)k
+ 1− k.

23In general, one does not need x ≥ 0, but we require it because projects must have non-negative values.
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To verify (R2′′), we must show that E(·) ≥ 1. By L’Hôpital’s rule,

E(0) =
kbk−1kλk

e−(bλ)kkλ(bλ)k−1

∣∣∣∣
b=0

+ 1− k =
k

e−(bλ)k

∣∣∣∣
b=0

+ 1− k = 1.

So it suffices to show that E ′(·) ≥ 0. Differentiating and rearranging yields

E ′(b) ∝ k2λkbk−1
[
1− e−(bλ)k

(
1 + (bλ)k

)]
.

Writing x = bλ, it therefore suffices to show that for any x ≥ 0,

1 ≥ e−x
k (

1 + xk
)

=: g(x).

This is true because g(0) = 1 and

g′(x) = e−x
k

kxk−1 +
(
1 + xk

)
e−x

k (−kxk−1
)

= −e−xkxk−1kxk ≤ 0.

Remark 4. Unlike the Pareto and Power function distributions, whose densities are non-increasing,

the Weibull distribution family includes densities that are strictly increasing in some region of

the domain; this is the case whenever k > 1. Nevertheless, it is known that any Weibull distribu-

tion is log-concave and hence has a decreasing reverse hazard rate (e.g. Bagnoli and Bergstrom,

2005); what we have shown above is that the reverse hazard rate decreases fast enough that br(b)

is non-increasing.

Gamma Distribution. The Gamma distribution has support [0,∞) and density function f(b) = xα−1e−xβ

Γ(α)(1/β)α

for some α, β > 0. The cdf is F (b) =
∫ b
0 u

α−1e−uβdu

Γ(α)(1/β)α
. The density of the Gamma distribution is

non-increasing if and only if α ≤ 1. We will show that (R2′′′) is satisfied when α ≤ 1. Note that

α = 1 subsumes the exponential distribution.

Since f ′(b) = bα−2e−bβ(α−1−bβ)
Γ(α)(1/β)α

, it follows that bf
′(b)
f(b)

= α − 1 − bβ, and hence (R2′′′) is

verified by showing that for any b ≥ 0,

b− F (b)

f(b)
(α− bβ) ≥ 0. (33)

The above inequality clearly holds for all b ≥ α/β. So restrict attention to b < α/β. Observe

that
F (b)

f(b)
=

∫ b
0
uα−1e−uβdu

bα−1e−bβ
≤
∫ b

0
uα−1du

bα−1e−bβ
=

b

αe−bβ
,

where the inequality is because for any u ≥ 0, e−uβ ≤ 1. Hence, (33) is true if b− b
αe−bβ

(α− bβ) ≥ 0,

or equivalently if e−bβ ≥ 1− bβ
α
. This inequality holds for any α ≤ 1 because e−x ≥ 1− x for any
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x ≥ 0.

Remark 5. While we have proven above that condition (R2′′′) is satisfied for Gamma distributions

with α ≤ 1, numerical analyses suggest that it holds even when α > 1.

G.2 Condition (R1)

As discussed in the main text, the first part of strong ordering — condition (R1) — can be

viewed as essentially a labeling convention that project one is the conditionally better-looking

project. Nevertheless, given a fixed labeling of projects with distributions F1 and F2, it is of

interest to know whether (R1) is satisfied. While one may often directly compute the relevant

conditional expectations (as in Appendix C for the leading examples), the following result pro-

vides a demanding but general sufficient condition for (R1). Recall that ri(b) := fi(b)/Fi(b) is

the reverse hazard rate for project i ∈ {1, 2}.

Lemma 10. (R1) is satisfied if

b1 ≥ b2 and r1/r2 is non-decreasing on (max{b1, b2}, b1), (R1′)

and either b1 > b2 or r1/r2 is not constant on the specified interval.

Proof. We first reproduce some notation introduced in the proof of Lemma 3:

Υi (y) := E[bi|bi > ybj] =

∫ ∞
0

bifi(bi|bi > ybj)dbi =

∫ ∞
0

bf̂i(b; y)db,

where

f̂i(b; y) :=


F−i(

b
y

)fi(b)∫∞
0 F−i(

b̃
y

)fi(b̃)db̃
if b ∈ [max{bi, yb−i}, bi]

0 otherwise.

Condition (R1) states that Υ1(1) > Υ2(1). Since the support of each f̂i(·; 1) is [max{b1, b2}, bi],
a well-known consequence of domination in likelihood ratio implies that a sufficient condition for

Υ1(1) > Υ2(1) is that b1 ≥ b2 and

f̂1(b′; 1)

f̂1(b; 1)
≥ f̂2(b′; 1)

f̂2(b; 1)
for all b, b′ such that max{b1, b2} < b < b′ < b2,

with either b1 > b2 or the ratio inequality above holding strictly for a positive measure of (b, b′).

The proof is completed by observing that the above ratio inequality is equivalent to

r1(b′)

r1(b)
≥ r2(b′)

r2(b)
for all b, b′ such that max{b1, b2} < b < b′ < b2,
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because f̂i(b
′;1)

f̂i(b;1)
= F−i(b′)fi(b′)

F−i(b)fi(b)
. Q.E.D.

We apply the sufficiency condition (R1′) in two ways. First, we use it to show that (R1)

is satisfied if the support of F1 contains that of F2 and the two densities are equal within the

support of F2 up to scaling:

Theorem 11. (R1) is satisfied if (i) b1 ≤ b2 and b1 ≥ b2 with at least one strict inequality, and

(ii) there is some x ∈ (0, 1) such that f1(b) = xf2(b) for all b ∈ [b2, b2].

Proof. Pick any b, b′ such that b2 < b < b′ < b2. Then,

r1(b′)

r1(b)
=
f1(b′)

F1(b′)

F1(b)

f1(b)
=

xf2(b′)

F1(b2) + xF2(b′)

(
F1(b2) + xF2(b)

xf2(b)

)
=

f2(b′)

f2(b)

(
F1(b2)/x+ F2(b)

F1(b2)/x+ F2(b′)

)
≥ f2(b′)

f2(b)

F2(b)

F2(b′)
=
r2(b′)

r2(b)
,

where the inequality is because b′ > b. Hence, Lemma 10 applies. Q.E.D.

Second, we can use (R1′) to understand further why the conditionally better-looking

ranking does not necessarily imply that F1 likelihood-ratio dominates F2.

Theorem 12. Assume f1 and f2 are differentiable. If F1 dominates F2 in reverse hazard rate,24

and furthermore r1/r2 is non-decreasing on (b1, b2), then F1 dominates F2 in likelihood ratio.

Proof. Assume the hypotheses. The reverse hazard rate dominance implies both b1 ≥ b2 and

b1 ≥ b2. So it suffices to prove that f1/f2 is non-decreasing on (b2, b2). Using primes for derivatives

and omitting arguments, we have that within the domain (b2, b2),

(ln(r1/r2))′ =
r′1
r1

− r′2
r2

=
F1

f1

F1f
′
1 − (f1)2

(F1)2
− F2

f2

F2f
′
2 − (f2)2

(F2)2
= (r2 − r1) +

(
f ′1
f1

− f ′2
f2

)
and hence

f ′1
f1

− f ′2
f2

= (ln(r1/r2))′ + (r1 − r2) ≥ 0,

where the inequality is by the hypotheses. Since (f1/f2)′ ∝ f2f
′
1 − f1f

′
2, the desired conclusion

follows. Q.E.D.

Theorem 12 says that if (R1′) holds and yet F1 does not dominate F2 in likelihood ratio,

then it must be that F1 does not dominate F2 in reverse hazard rate. This suggests that a failure

24Recall that F1 dominates F2 in reverse hazard rate if b1 ≥ b2, b1 ≥ b2, and r1(b) ≥ r2(b) for all b ∈ (b1, b2).
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of reverse hazard dominance of F1 over F2 is a likely “culprit” when project one is conditionally

better looking but does not dominate project two in likelihood ratio.25
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