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C Proofs for the Results from Section 5

C.1 Proof of Lemma 1

We provide a C1 solution to the HJB equation of the planner, which by verification implies

that this solution is equal to the value function, and the associated policy an optimal policy.

There are two cases to consider. For completeness, the case c ∈ [1/2, 1] is covered. As before,

we work with ` := p/(1− p) and k := c/(1− c),

1. Case 1: rk >
√
ma + r

√
mb + r. This case is a straightforward extension of the baseline

model, in which “on each half” of the unit interval, we have experimentation with only

one type of agent. More specifically, let

`b :=
r

mβ + r
k, `a :=

mα + r

rk
,

where as before k = c/(1 − c). Note that rk >
√
ma + r

√
mb + r is equivalent to

`a < `b. and the optimal policy is given by, in terms of ` = p/(1− p),

(αa, αb) =


(1, 0), for ` ≤ `a,

(0, 0), for ` ∈ (`a, `b)

(0, 1), for ` ≥ `b.

As for optimality, consider (wlog) the case ` ≥
√
`a`b. Then the value function

V (`) =


0, for ` ∈ [1, `b),

mb

(
`b

(
mb

(
`
`b

)− r
mb −mb−r

)
+r`

)
(`+1)(`b(mb+r)+r)

, for ` ≥ `b,

is a C1 function that alongside the candidate policy solves the HJB equation

rV (`) = max
αa,αb
{r(mbαb(p− c) +maαa(1− p− c)) + pmbαb(mb(1− c)− V (`))

+ (1− p)maαa(ma(1− c)− V (`)) + `(αama − αbmb)V
′(`).

2. Case 2: rk ≤
√
ma + r

√
mb + r. The policy now involves two thresholds, `, ¯̀, with
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0 < ` ≤ ¯̀ such that

(αa, αb) =


(1, 0), for ` < `,

(1,ma/mb), for ` = `,

(1, 1), for ` ∈ (`, ¯̀)

(0, 1), for ` ≥ ¯̀.

Again, the proof is by verification. We show that `, ¯̀ exists such that the resulting payoff

function is C1 and solves the HJB. In fact, we define

` :=
k (ma + r)

kma +mb + r
.

as well as ¯̀ as the root ` ≥ ` of(
`
− ma
mb−ma + `

− mb
mb−ma

)
`

ma
mb−ma (`/`)

− r
mb−ma =

((ma + r)(1− k`) + kmb) (1 + `)

k (mb −ma) `
, (1)

which can be readily shown to exist and be unique given rk ≤
√
ma + r

√
mb + r. We define

V1(`) =
k (ma + r(1 + `))

(
ma`

r
ma `−

ma+r
ma − ma+r

`
+ r

`

)
(k + 1) (ma + r)

,

V2(`) =
rma

(
(`+ 1) ((k`− 1) (ma + r)− kmb) + k (mb −ma)

(
`

ma
ma−mb + `

mb
ma−mb

)
`

r
ma−mb

+1
`
ma+r
mb−ma

)
(`+ 1)2 (ma + r)

,

and

V3(`) =
(`/¯̀)

− r
mb

(
mb(k − ¯̀) + (k + 1)(¯̀+ 1)V2(¯̀)

)
+mb(`− k)

(k + 1)(`+ 1)
.

We finally set

V (`) =


V1(`), for ` ≤ `,

V2(`), for ` ∈ (`, ¯̀),

V3(`), for ` ≥ ¯̀,

The formulas for Vj, j = 1, 2, 3 are precisely those that result from the HJB equation

evaluated at α = (1, 0), (1, 1) and (0, 1), respectively, taking as given `, ¯̀. The value of ` has

been picked so that V1−V2 is C1 at `, and that the coefficient on αb of the right-hand side of

equation (1) is zero at ` (as it happens, both conditions are satisfied simultaneously at that

value), while the choice of ¯̀ has been chosen so that the coefficient on αb of the right-hand

side of equation (1) is zero at ¯̀ (here as well, it also follows that V1 − V2 is C1 at ¯̀). It is
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readily verified that these coefficients have the right variations as a function of `, given our

candidate V , namely, the coefficient on αb (αa) is increasing (decreasing) in `, ensuring that

the HJB equation is satisfied.

Finally, we note that, by definition ` < k, so that p = `/(1 + `) < c. On the other hand,

equation (1) is equivalent to h(`) = 0, where

h(`) =

(`+ 1) (ma(k`− 1)− kmb + r(k`− 1)) + k (mb −ma)
(
`

ma
ma−mb + `

mb
ma−mb

)
`
− ma+r
ma−mb `

r
ma−mb

+1

k + 1
.

Without loss, we scale ma,mb, so that ma +mb = 1, and we evaluate at ` = k−1. This gives

h(k−1) = (1− 2ma)

(
k2 (ma + r)

(k − 1)ma + r + 1

)
ma+r
1−2ma +ma − 1,

Given that ma < 1/2, this expression is increasing in k, so evaluating at k = 1 (restricting

attention to c ≤ 1/2), we obtain as upper bound,

(1− 2ma)

(
ma + r

r + 1

)
ma+r
1−2ma +ma − 1,

an expression that is convex in x under the change of variable r 7→ (1 − 2ma)x − ma, yet

negative whether x = ma/(1− 2ma) (the lower bound on x when r = 0) as well as negative

when x → ∞. Hence, h(k−1) < 0, yet also lim`→∞ h(`) = +∞, so that h admits a root in

(k−1,∞). Finally, we note that h(`)/(1 + `) is convex. Indeed, taking second derivatives

yields

k (1 + r −ma) (ma + r) `
ma+r
2ma−1 `

r+2−3ma
1−2ma

1− 2ma

> 0,

and so, on the other hand, h admits at most one root. Hence, it admits exactly one root,

and ¯̀> k−1, that is, p̄ > 1− c, for c < 1/2. �

C.2 Proof of Proposition 5

Note that if p0 ∈ [c, 1 − c], or p0 ∈ {0, 1}, the first-best is possible. Hence, fix p0 ∈
(0, 1) \ [c, 1 − c], and as usual `0 = p0/(1 − p0). First, consider, p0 < c. Let p := inf{p ≥
p0 : αb(p) > 0}. Let {pt}t denote the trajectory under the optimal (second-best) policy, and

define t̂ := inf{t : pt ≥ p}. If t̂ = +∞, then consumers b never experiment. Hence, the

solution must coincide with the baseline solution with one type of consumers only (here, the

a-types). If instead, t̂ < +∞, then the first-best is possible once time t̂ is reached, and we can
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consider the finite-horizon problem with only a-types experimenting (in some proportion)

until time t̂, at which point the designer receives the first-best value. Because in either

case, only a-agents experiment (if at all) until t̂, this reduced problem is not constrained by

incentives, and it readily follows that the solution is bang-bang. In case t̂ < +∞, it must be

that p = c (it cannot be lower than c, for b-agents to be willing to experiment, and first-best

is available at that value, so the designer cannot do better once this value is reached). Thus,

we are led to a simple comparison of values. Note that, from the proof of Lemma 2, case 1,

experimentation with only a-type agents would stop at `a = mα+r
rk

. Yet

mα + r

rk
> k ⇐⇒ k ≤

√
1 +

mα

r
,

which is necessarily the case for c < 1/2 (or k < 1). Hence, the optimal policy must be to

experiment with a-types until ` = k is reached, and then switch to the optimal policy.

The reasoning is identical in case p0 > 1−c, noting that, here as well, the threshold where

experimentation with only b-types would stop, `b = r
r+mβ

k is smaller than the threshold at

which agent a are willing to experiment, ` = k−1 (that is, p = 1 − c). Hence, the optimal

policy involves experimenting with b-types only until p is reached, at which point the first-

best policy is followed.

As noted in the discussion following Proposition 5, if c > 1/2, it might be the case

that it is better to simply experiment with one type of agent (e.g., in case p0 < c and

k ≤
√

1 + mα
r

, it might be that the value of stopping experimentation at `a yields a higher

value than experimenting with a-types until ` = k (and getting first-best then). �

D Proofs for the Results from Section 6

D.1 Proof of Proposition 4 (from Section 6.1)

The objective function reads∫
t≥0

e−rt (gt(1− c̄) + (1− gt − bt)(qHαH(pt − cL) + qLαL(pt − cL)) dt,

where c̄ := qHcH + qLcL. Substituting for gt, bt and re-arranging, this gives∫
t≥0

e−rt`(t)

(
αH(t)qH

(
1− cH

(
1 +

1

`(t)

))
+ αL(t)qL

(
1− cL

(
1 +

1

`(t)

))
− (1− c̄)

)
dt.
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As before, it is more convenient to work with t(`) as the state variable, and doing the change

of variables gives ∫ `0

0

e−rt(`)
(
xH(`)uH(`) + xL(`)uL(`)− 1− c̄

ρ

)
d`,

where for j = L,H, xj(`) := 1− cj
(
1 + 1

`

)
+ 1−c̄

ρ
, and uj(`) :=

qjαj(t(`))

ρ+qLαL(t(`))+qHαH(t(`))
are the

control variables that take values in the sets U j(`) = [uk, ūk] (whose definition depends on

first- vs. second-best). This is to be maximized subject to

t′(`) =
uH(`) + uL(`)− 1

ρλ`
.

As before, we invoke Pontryagin’s principle. There exists an absolutely continuous function

η : [0, `0]→ R, such that, a.e.,

η′(`) = re−rt(`)
(
xH(`)uH(`) + xL(`)uL(`)− 1− c̄

ρ

)
,

and uj is maximum or minimum, depending on the sign of

φj(`) := ρλ`e−rt(`)xj(`) + η(`).

This is because this expression cannot be zero except for a specific value of ` = `j. Namely,

note first that, because xH(`) < xL(`) for all `, at least one of uL(`), uH(`) must be extremal,

for all `. Second, upon differentiation,

φ′H(`) = e−rt(`)
((

λ− r

ρ

)
(1− c̄) + ρλ(1− cH) + ruL(`)(cH − cL)

(
1 +

1

`

))
implies that, if φH(`) = 0 were identically zero over some interval, then uL(`) would be

extremal over this range, yielding a contradiction, as the right-hand side cannot be zero

identically, for uL(`) = ūL(`). Similar reasoning applies to uL(`), considering φ′L(`). Hence,

the optimal policy is characterized by two thresholds, `H , `L, with `0 ≥ `H ≥ `L ≥ 0, such

that both types of regular consumers are asked to experiment whenever ` ∈ [`H , `0], low-cost

consumers are asked to do so whenever ` ∈ [`L, `0], and neither is asked to otherwise.

We now characterize the threshold beliefs under first-best and second-best policies. Through-

out, we shall use superscript ∗∗ to denote the first-best and superscript ∗ to denote the

second-best policy. By the principle of optimality, the threshold `L must coincide with

`∗ = `∗∗ in the case of only one type of regular consumers (with cost cL). To compare `∗H
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and `∗∗H , we proceed as in the bad news case, by noting that, in either case,

φH(`H) = 0,

and

φH(`L) = φL(`L) + ρλ`Le
−rt(`L)(xH(`L)− xL(`L)) = −ρλe−rt(`L)(cH − cL) (1 + `L) .

Hence, ∫ `H

`L

ert(`L)φ′H(`)d` = ρλ(cH − cL) (1 + `L)

holds both for the first- and second-best. Note now that, in the range [`L, `H ],

ert(`L)φ′H(`) = e
−r
∫ `
`H

uL(l)+uH (l)−1

ρλl
dl

((
λ− r

ρ

)
(1− c̄) + ρλ(1− cH) + ruL(`)(cH − cL)

(
1 +

1

`

))
.

Because ᾱL(`) > ᾱH(`), ū∗L(`) > ū∗∗L (`), and also ū∗∗L (`) + ū∗∗H (`) ≥ ū∗L(`) + ū∗H(`), so that,

for all ` in the relevant range,

ert(`L) dφ∗∗H (`)

d`
< ert(`L) dφ∗H(`)

d`
,

and it then follows that `∗H < `∗∗H . �

D.2 Proof of Proposition 5 (from Section 6.2)

Let us posit that the candidate equilibrium is the first-best policy. Hence, the agent who

arrives at some random time is being told to experiment if and only if the posterior of the

designer is above `∗ at that moment. Plainly, if she is told not to consume, she will gladly

abide. On the other hand, conditional on being told to consume, she will form a posterior

belief on the time t that might prevail –call the corresponding cdf F– and compute her

expected utility as follows

U =

∫
t≥0

Pr[p̃t = pt]αtpt + (1− Pr[p̃t = pt]) · 1
Pr[p̃t = pt]αt + (1− Pr[p̃t = pt])

dF (t),

which is as before (here, p̃t is the random posterior belief of the principal), except that now

αt is either 0 or 1. Explicitly, if t < t∗, the time at which pt = p∗ conditional on no news,

then αt = 1 and the first term is simply p0; if t ≥ t∗, then α = 0 and the first term is 1.

Hence,

U = p0F (t∗) + 1− F (t∗)
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and so incentive compatibility, which requires that U ≥ c, is satisfied if, and only if,

F (t∗) ≤ 1− c
1− p0

=
1 + `0

1 + k
. (2)

It remains to determine the cdf F . Note that the agent assigns probability 1 to being told to

consume when t < t∗, so being told to do so skews her belief towards such times. Explicitly,

for t < t∗,

dF (t) =
Pr[t & “buy”]

Pr[“buy”]

=

∫
j≥t

1
j
ξe−ξjdj∫ t∗

j=0
ξe−ξjdj +

∫
s≥t∗

∫ s
j=t∗

(
p0

s
(1− e−λ(1+ρ)t∗−λρ(j−t∗)) dj

)
ξe−ξsds

. (3)

Integrating (3), we obtain

F (t∗) =
ξt∗E1(t∗ξ) + 1− e−ξt∗

ξp0(e−λt∗E1(t∗(ξ+λρ))+Ei(−t∗ξ)(λρt∗+e−λ(ρ+1)t∗))
λρ

+ (p0 − 1)e−ξt∗ + 1
, (4)

where Ei(x), E1(x) are the exponential integral functions −
∫∞
−x

e−t

t
dt, and

∫∞
x

e−t

t
dt. We

recall the definition of t∗, namely, `0e−λ(1+ρ)t∗ = `∗, or t∗ = 1
λ(1+ρ)

ln `0

`∗
. Hence, we can plug

equation (4) into (2) from the paper to get a condition on the parameters. Taking Taylor

expansions in ξ gives that the condition is satisfied when ξ is small enough.

D.3 Proof of Proposition 6 (from Section 6.3)

Since the designer can induce at most a fraction ê(`t) of the agents to explore (with a slight

abuse of notation), she can attain at most the value:

[SB −Naive] sup
α

∫
t≥0

e−rt
(
`0 − `t − αt (k − `t)

)
dt

subject to

˙̀
t = −λαt`t, ∀t, and `0 = `0, (5)

0 ≤ αt ≤ ê(`t), ∀t. (6)

This problem is the same as [SB], except that ρ = 0 and that the designer can induce any
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measure αt ∈ [0, ê(`t)] of agents to experiment at each time t. Although this latter constraint

is ostensively a relaxation of the true constraint, one can show that any αt ∈ [0, ê(`t)] can be

attained by the designer. Any αt ≤ ᾱ(`t) is attained by simply spamming to a fraction αt
of randomly selected agents, which the rational agents find credible. Any αt ∈ (ᾱ(`t), ρn], if

it is well-defined, can be achieved by “blasting” spam to a fraction αt/ρn, which only naive

agents will follow and rational agents will ignore. It therefore follows that [SB − Naive]

describes the exact problem facing the designer, and can be solved exactly same as [SB].

�

D.4 Formulation of the Problem for Section 6.4

The problem is now written as:∫ ∞
0

e−rt [gt(1− c) + (1− gt)αt(pt − c)− c(ρt)] dt,

where

gt =
p0 − pt
1− pt

=
`0 − `t
1 + `0

,

and

αt ≤
`0 − `t
k − `t

,

(ignoring the uninteresting case k < `0, in which this constraint can be ignored in an initial

phase), c(ρ) = ρ2 is the flow cost of choosing ρ, as well as

˙̀
t = −λ(ρt + αt)`t.

(Recall that k := c/(1 + c), ` := p/(1 + p).)

Rearranging this objective, and ignoring irrelevant constants, the program is equivalent

to solving:

max
α,ρ

∫ ∞
0

e−rt
[
`0 − `t − αt(k − `t)− ρ2

t (1 + `0)(1 + k)
]

dt

such that
˙̀
t = −λ(ρt + αt)`t, `t = `0, (7)

as well as

`0 − `t − αt(k − `t) ≥ 0. (8)

Here, k and `0 are constants such that k > `0 > 0. T

Here, we prove that the optimal learning of experimentation, α, remains extremal, as in
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the baseline model. We use Pontryagin’s maximum principle, with controls α, ρ, and state

`. We define

H(`, α, ρ, µ, t) = e−rt
[
`0 − `t − αt(k − `t)− ρ2

t (1 + `0)(1 + k)
]
− µtλ(ρt + αt)`t,

where µ is the costate variable associated with equation (7), and

L(`, α, ρ, µ, q1, q2, t) = e−rt
[
`0 − `t − αt(k − `t)− ρ2

t (1 + `0)(1 + k)
]

− µtλ(ρt + αt)`t + q1
t (`

0 − `t − αt(k − `t)) + q2
tαt.

with q1
t the Lagrangian associated with equation (8), and q2

t with α ≥ 0. For notational

simplicity, we have ignored the third constraint, ρ ≥ 0. [As explained above, this constraint

does bind, but only for large values of t. The argument that follows does not rely on this.]

We have, from the maximum principle, the following optimality conditions:

q1
t ≥ 0,= 0 if `0 − `t − αt(k − `t) > 0, (9)

q2
t ≥ 0,= 0 if αt > 0, (10)

µ̇t = −∂L(`, α, ρ, µ, q1, q2, t)

∂`
= e−rt(1− αt) + µtλ(ρt + αt) + q1

t (1− αt). (11)

and finally, it must be that (αt, ρt) maximize L(`, α, ρ, µ, q1, q2, t) (along the optimal trajec-

tory `). That is, when ρ is interior, taking first-order conditions in L(·) w.r.t. ρt,

2e−rtρt(1 + `t)(1 + k) + µtλ`t = 0. (12)

Also, considering that L(·) is linear in αt, either

αt ∈
{

0,
`0 − `t
k − `t

}
, (13)

or

e−rt(k − `t) + µtλ`t = 0. (14)

More generally,

e−rt(k − `t) + µtλ`t + q1
t (k − `t)− q2

t = 0. (15)

First, we consider the case in which α /∈
{

0, `
0−`t
k−`t

}
, with the purpose of ruling it out. If

so, from equation (9) and equation (11), we have

µ̇t = e−rt(1− αt) + µtλ(ρt + αt),
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and from equation (14),

µt = −e
−rt(k − `t)

λ`t
.

Differentiating, and plugging in the previous equation (using ˙̀), we obtain

kr = [r + λ(1 + ρt)] `t. (16)

At the same time, we may combine equation (12) with equation (14) to get

ρt =
k − `t

2(1 + `t)(1 + k)
. (17)

Plugging in equation (17) in equation (16), we obtain a unique value of `t. Hence, we cannot

have α /∈
{

0, `
0−`t
k−`t

}
over an interval. This proves that α must be extremal.

Next, it is possible to derive first-order differential equations for ρt on each interval, but

these admit no closed-form solution. Hence, we solve the problem numerically for a generic

set of parameters, featured in Figure 7 of the paper.

D.5 Proof of Proposition 7 (from Section 6.5)

Here, we extend our model to allow for both good news and bad news and establish among

others Proposition 7 in the paper. Specifically, if a flow of size µ consumes the good over

some time interval [t, t+dt), then the designer learns during this time interval that the movie

is “good” with probability λg(ρ+ µ)dt, that it is “bad” with probability λb(ρ+ µ)dt, where

λg, λb ≥ 0, and ρ is the rate of background learning.

The designer commits to the following policy: At time t, she recommends the movie to

a fraction γt ∈ [0, 1] of agents if she learns the movie to be good, a fraction βt ∈ [0, 1] if she

learns it to be bad, and she recommends to fraction αt ∈ [0, 1] if no news has arrived by t.

Clearly,

µt = ρ+ αt.

The designer’s belief evolves according to

ṗt = −(λg − λb)µtpt(1− pt), (18)

with the initial value p0 = p0. It is worth noting that the evolution of the posterior depends

on the relative arrival rates of the good news and the bad news. If λg > λb (so the good news

arrive faster than the bad news), then “no news” leads the designer to form a pessimistic

inference on the quality of the movie, with the posterior falling. By contrast, if λg < λb, then

“no news” leads to on optimistic inference, with the posterior rising. We label the former
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case good news case and the latter bad news case. Recall that main body of the paper

treats the special case of λb = 0, a pure good news case.

Let gt and bt denote the probability that the designer’s belief is 1 and 0, respectively.

Given the experimentation rate µt, these probabilities evolve according to

ġt = (1− gt − bt)λgµtpt, (19)

with the initial value g0 = 0, and

ḃt = (1− gt − bt)λbµt(1− pt), (20)

with the initial value b0 = 0.1 Further, these beliefs must form a martingale:

p0 = gt · 1 + bt · 0 + (1− gt − bt)pt. (21)

The designer chooses the policy (α, β, γ), measurable, to maximize social welfare, namely

W(α, β, χ) :=

∫
t≥0

e−rtgtγt(1− c)dt+

∫
t≥0

e−rtbtβt(−c)dt+

∫
t≥0

e−rt(1− gt − bt)αt(pt − c)dt,

where (pt, gt, bt) must follow the required laws of motion: (18), (19), (20), and (21), where

µt = ρ+ αt is the total experimentation rate and r is the discount rate of the designer.2

Given policy (α, β, γ), conditional on being recommended to watch the movie, the agent

will have the incentive to watch the movie, if and only if the expected quality of the movie—

the posterior that it is good—is no less than the cost, or

gtγt + (1− gt − bt)αtpt
gtγt + btβt + (1− gt − bt)αt

≥ c. (22)

The following is immediate:

Lemma 1. It is optimal for the designer to disclose the breakthrough (both good and bad)

1These formulae are derived as follows. Suppose the probability that the designer has seen the good news
by time t and the probability that she has seen the bad news by t are respectively gt and bt. Then, the
probability of the good news arriving by time t + dt and the probability of the bad news arriving by time
t+ dt are, respectively, and to the first-order,

gt+dt = gt + λgµtptdt(1− gt − bt) and bt+dt = bt + λbµt(1− pt)dt(1− gt − bt).

Dividing these equations by dt and taking the limit as dt→ 0 yields (19) and (20).
2More precisely, the designer is allowed to randomize over the choice of policy (α, β, γ) (using a relaxed

control, as such randomization is defined in optimal control). A corollary of our results is that there is no
gain for him from doing so.
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news immediately. That is, an optimal policy has γt ≡ 1, βt ≡ 0.

Proof. If one raises γt and lowers βt, it can only raise the value of objective W and relax

(22) (and do not affect other constraints). �

Throughout, it is convenient to define ∆ := δ
λg

= λg−λb
λg

. Then, using `t = pt
1−pt , (18) can

be restated as:

˙̀
t = −`t∆λgµt, `0 :=

p0

1− p0

. (23)

The two other state variables, namely the posteriors gt and bt on the designer’s belief,

are pinned down by `t (and thus by pt) at least when λg 6= λb (i.e., when no news is not

informationally neutral.) (We shall remark on the case of the neutrality case ∆ = 0.)

Lemma 2. If ∆ 6= 0, then

gt = p0

(
1−

(
`t
`0

) 1
∆

)
and bt = (1− p0)

(
1−

(
`t
`0

) 1
∆
−1
)
.

Proof. Let κt := p0/(p0 − gt). Note that κ0 = 1. Then, it follows from (19) and (21) that

κ̇t = λgκtµt, κ0 = 1. (24)

Dividing both sides of (24) by the respective sides of (23), we get,

κ̇t
˙̀
t

= − κt
`t∆

,

or
κ̇t
κt

= − 1

∆

˙̀
t

`t
.

It follows that, given the initial condition,

κt =

(
`t
`0

)− 1
∆

.

We can then unpack κt to recover gt, and from this we can obtain bt via (21). �
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Next, substitute gt and bt into (22) to obtain:

αt ≤ ᾱ(`t) := min

1,

(
`t
`0

)− 1
∆ − 1

k − `t
`t

 , (25)

if the normalized cost k := c/(1− c) exceeds `t and ᾱ(`t) := 1 otherwise.

The next lemma will figure prominently in our characterization of the second-best policy

later.

Lemma 3. If `0 < k and ∆ 6= 0, then ᾱ(`t) is zero at t = 0, and increasing in t, strictly so

whenever ᾱ(`t) ∈ [0, 1).3

Proof. We shall focus on

α̃(`) :=

(
`
`0

)− 1
∆ − 1

k − `
`.

Recall ᾱ(`) = min{1, α̃(`)}. Since `t falls over t when ∆ > 0 and rises over t when ∆ < 0. It

suffices to show that α̃(·) is decreasing when ∆ > 0 and increasing when ∆ < 0.

We make several preliminary observations. First, α̃(`) ∈ [0, 1) if and only if

1− (`/`0)
1
∆ ≥ 0 and k`

1
∆
−1`
− 1

∆
0 > 1. (26)

Second,

α̃′(`) =
(`0/`)

1
∆h(`, k)

∆(k − `)2
, (27)

where

h(`, k) := `− k(1−∆)− k∆(`/`0)
1
∆ .

Third, (26) implies that
dh(`, k)

d`
= 1− k`

1
∆
−1`
− 1

∆
0 < 0, (28)

on any range of ` over which α̃ ≤ 1. Note

h(0, k) = −k(1−∆) = −k λb
λg
≤ 0. (29)

It follows from (28) and (29) that h(`, k) < 0 for any ` ∈ (0, k) and α̃(`) ∈ [0, 1). By (27),

this last fact implies that α̃′(`) < 0 if ∆ > 0 and α̃′(`) > 0 if ∆ < 0, as was to be shown. �

3The case ∆ = 0 is similar: the same conclusion holds but ᾱ need to be defined separately.
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Substituting the posteriors from Lemma 2 into the objective function and using µt =

ρ+αt, and with normalization of the objective function, the second-best program is restated

as follows:

[SB] sup
α

∫
t≥0

e−rt`
1
∆
t

(
αt

(
1− k

`t

)
− 1

)
dt

subject to

˙̀
t = −∆λg(ρ+ αt)`t, (30)

proposition

0 ≤ αt ≤ ᾱ(`t). (31)

Obviously, the first-best program, labeled [FB], is the same as [SB], except that the

upper bound for ᾱ(`t) is replaced by 1. We next characterize the optimal recommendation

policy. The precise characterization depends on the sign of ∆, i.e., whether the environment

is that of predominantly good news or bad news.

Specifically, we focus on the “bad news” environment: ∆ < 0.4 As before, we perform

a change of variable to produce the following program for the designer: For problem i =

SB, FB,

sup
u

∫ ∞
`0

e−rt(`)`
1
∆
−1

((
1− k

`

)
(1− ρu(`))− u(`)

)
d`,

s.t. t(`0) = 0,

t′(`) = − u(`)

∆λg`
,

u(`) ∈ U i(`),

where as before USB(`) := [ 1
ρ+α(`)

, 1
ρ
] and UFB(`) := [ 1

ρ+1
, 1
ρ
]. Again, a solution exists by the

Filippov-Cesari theorem (Cesari, 1983).

Proposition 7. The first-best policy (absent any news) prescribes no experimentation until

the posterior p rises to p∗∗b , and then full experimentation at the rate of α(p) = 1 thereafter,

for p > p∗∗b , where

p∗∗b := c

(
1− rv

ρ+ r(v + 1
λb

)

)
.

The second-best policy implements the first-best if p0 ≥ c or if p0 ≤ p̂0 for some p̂0 < p∗∗b .

4The results for the “good news” case are remarkably similar to those of Proposition 1 in the paper. The
results for good news and the neutral news case are available upon request from the authors.
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If p0 ∈ (p̂0, c), then the second-best policy prescribes no experimentation until the posterior

p rises to p∗b , and then maximal experimentation at the rate of ᾱ( p
1−p) thereafter for any

p > p∗b , where p∗b > p∗∗b . In other words, the second-best policy triggers experimentation at a

later date and at a lower rate than does the first-best.

Proof. As before, the necessary conditions for the second-best policy now state that there

exists an absolutely continuous function ν : [0, `0] such that, for all `, either

ψ(`) := −φ(`) = ∆λge
−rt(`)`

1
∆

(
ρ

(
1− k

`

)
+ 1

)
− ν(`) = 0, (32)

or else u(`) = 1
ρ+α(`)

if ψ(`) > 0 and u(`) = 1
ρ

if ψ(`) < 0.

Furthermore, we must have

ν ′(`) = −∂H(t, u, `, ν)

∂t
= re−rt(`)`

1
∆
−1

((
1− k

`

)
(1− ρu(`))− u(`)

)
(`− a.e.). (33)

Finally, transversality at ` =∞ (t(`) is free) implies that lim`→∞ ν(`) = 0.

Since ψ(`) = −φ(`), we get from (32) that

ψ′(`) = −e−rt(`)`
1
∆
−2 (r (`− k) + ρ∆λgk + λg (ρ (`− k) + `)) .

Letting ˜̀ :=
(

1− λg(1+ρ∆)

r+λg(1+ρ)

)
k, namely the solution to ψ(`) = 0. Then, ψ is maximized at

˜̀, and is strictly quasi-concave. Since lim`→∞ h(`) = 0, this means that there must be a

cutoff `∗b <
˜̀ such that ψ(`) < 0 for ` < `∗b and ψ(`) > 0 for ` > `∗b . Hence, the solution is

bang-bang, with u(`) = 1/ρ if ` < `∗b , and u(`) = 1/(ρ+ α(`)) if ` > `∗b .

The first-best policy has the same cutoff structure, except that the cutoff may be different

from `∗b . Let `∗∗b denote the first-best cutoff.

First-best policy: We shall first consider the first best policy. In that case, for ` > `∗∗b ,

t′(`) = − 1

∆λg(1 + ρ)`

gives

e−rt(`) = C2`
r

(1+ρ)∆λg ,

for some non-zero constant C2. Then

ν ′(`) = − rk

1 + ρ
C2`

r
(1+ρ)∆λg

+ 1
∆
−2

17



and lim`→∞ ν(`) = 0 give

ν(`) = − rk∆λg
r + (1 + ρ)(1−∆)λg

C2`
r

(1+ρ)∆λg
+ 1

∆
−1
.

So we get, for ` > `∗∗b ,

ψ(`) = −∆λgC2`
r

(1+ρ)∆λg `
1
∆
−1 (`(1 + ρ)− kρ) +

rk∆λg
r + (1 + ρ)(1−∆)λg

C2`
r

(1+ρ)∆λg
+ 1

∆
−1
.

Setting ψ(`∗∗b ) = 0 gives

k

`∗∗b
=
r + (1 + ρ)(1−∆)λg
r + ρ(1−∆)λg

=
r + (1 + ρ)λb
r + ρλb

= 1 +
λb

r + ρλb
,

or

p∗∗b = c

(
1− rv

ρ+ r(v + 1
(1−∆)λg

)

)
= c

(
1− rv

ρ+ r(v + 1
λb

)

)
.

Second-best policy. We now characterize the second-best cutoff. There are two cases,

depending upon whether α(`) = 1 is incentive-feasible at the threshold `∗∗b that characterizes

the first-best policy. In other words, for the first-best to be implementable, we should have

ᾱ(`∗∗) = 1, which requires

`0 ≥ k

(
r + ρλb

r + (1 + ρ)λb

)1−∆

=: ˆ̀
0.

Observe that since ∆ < 0, ˆ̀
0 < `∗∗. If `0 ≤ ˆ̀

0, then the designer begins with no experimen-

tation and waits until the posterior belief improves sufficiently to reach `∗∗, at which point

the agents will be asked to experiment with full force, i.e., with ᾱ(`) = 1, that is, given that

no news has arrived by that time. This first-best policy is implementable since, given the

sufficiently favorable prior, the designer will have built sufficient “credibility” by that time.

Hence, unlike the case of ∆ > 0, the first best can be implementable even when `0 < k.

Suppose `0 < ˆ̀
0. Then, the first-best is not implementable. That is, ᾱ(`∗∗b ) < 1. Let `∗b

denote the threshold at which the constrained designer switches to ᾱ(`). We now prove that

`∗b > `∗∗b .

For the sake of contradiction, suppose that `∗b ≤ `∗∗b . Note that ψ(x) = lim`→∞ φ(`) = 0.

This means that∫ ∞
`∗b

ψ′(`)d` =

∫ ∞
`∗b

e−rt(`)`
1
∆
−2 ((r + λbρ)k − (r + λg(ρ+ 1))`) d` = 0,

18



where ψ′(`) = −φ′(`) is derived using the formula in (32).

Let t∗∗ denote the time at which `∗∗b is reached along the first-best path. Let

f(`) := `
1
∆
−2 ((r + λbρ)k − (r + λg(ρ+ 1))`) .

We then have ∫ ∞
`∗b

e−rt
∗∗(`)f(`)d` ≥ 0, (34)

(because `∗b ≤ `∗∗b ; note that f(`) ≤ 0 if and only if ` > ˜̀, so h must tend to 0 as ` → ∞
from above), yet ∫ ∞

`∗b

e−rt(`)f(`)d` = 0. (35)

Multiplying ert
∗∗(˜̀) on both sides of (34) gives∫

`∗b

e−r(t
∗∗(`)−t∗∗(˜̀))f(`)d` ≥ 0. (36)

Likewise, multiplying ert(
˜̀) on both sides of (35) gives∫ ∞

`∗b

e−r(t(`)−t(
˜̀))f(`)d` = 0. (37)

Subtracting (36) from (37) gives∫
`∗b

(
e−r(t(`)−t(

˜̀)) − e−r(t∗∗(`)−t∗∗(˜̀))
)
f(`)d` ≤ 0. (38)

Note t′(`) ≥ (t∗∗)′(`) > 0 for all `, with strict inequality for a positive measure of `. This

means that e−r(t(`)−t(
˜̀)) ≤ e−r(t

∗∗(`)−t∗∗(˜̀)) if ` > ˜̀, and e−r(t(`)−t(
˜̀)) ≥ e−r(t

∗∗(`)−t∗∗(˜̀)) if ` < ˜̀,

again with strict inequality for a positive measure of ` for ` ≥ `∗∗b (due to the fact that the

first best is not implementable; i.e., ᾱ(`∗∗b ) < 1). Since f(`) < 0 if ` > ˜̀ and f(`) > 0 if

` < ˜̀, we have a contradiction to (38).

The sufficiency can be proven by using Arrow sufficiency theorem (Seierstad and Syd-

sæter, 1987, Theorem 5, p.107). The detail is omitted. �
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