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ROBUSTLY COLLUSION-PROOF IMPLEMENTATION

BY YEON-KOO CHE AND JINWOO KIM 1

A contract with multiple agents may be susceptible to collusion. We show that agents’
collusion imposes no cost in a large class of circumstances with risk neutral agents, in-
cluding both uncorrelated and correlated types. In those circumstances, any payoff the
principal can attain in the absence of collusion, including the second-best level, can
be attained in the presence of collusion in a way robust to many aspects of collusion
behavior. The collusion-proof implementation generalizes to a setting in which only a
subset of agents may collude, provided that noncollusive agents’ incentives can be pro-
tected via an ex post incentive compatible and ex post individually rational mechanism.
Our collusion-proof implementation also sheds light on the extent to which hierarchical
delegation of contracts can optimally respond to collusion.

KEYWORDS: Robustly collusion-proof implementation, pairwise identifiability, sub-
group collusion, hierarchical delegation.

1. INTRODUCTION

THERE HAS BEEN A GROWING INTEREST in studying collusion among asym-
metrically informed agents, in various settings ranging from internal organiza-
tion, regulation, and auctions, to oligopolistic competition.2 Although most of
these studies explore how agents can effectively collude against exogenously
given institutions, a few recent studies have begun to investigate an optimal
organizational/contractual response to agents’ collusion. In particular, Laffont
and Martimort (1997, 2000) have developed a modeling framework that inte-
grates collusion as part of the general mechanism design analysis.3 An impor-
tant insight gained from this framework is that agents’ asymmetric information
imposes transaction costs on their abilities to carry out collusive arrangements.

1The authors are grateful for comments and suggestions from a co-editor and three referees, and
from Gorkem Celik, Jacques Crémer, Ian Gale, Lucía Quesada, Larry Samuelson, Bill Sandholm,
Sergei Severinov, Guofu Tan, and seminar participants at USC, UCSD, Korea University, and
Yonsei University. The authors acknowledge warm hospitality they received from Yonsei Univer-
sity and the University of Wisconsin, respectively, during their visits. The authors have benefited
from financial support from the Shoemaker Fellowship and from Yonsei University.
2Tirole (1986), Baliga and Sjöström (1998), Celik (2004), Faure-Grimaud, Laffont, and
Martimort (2003), Severinov (2003), and Mookherjee and Tsumagari (2004) study collusion in
internal organization and the value of delegation. Graham and Marshall (1987), McAfee and
McMillan (1992), Mailath and Zemsky (1991), Marshall and Marx (2004), Brusco and Lopomo
(2002), Caillaud and Jehiel (1998), and Esö and Schummer (2004) study collusion in one-shot
auctions of various formats, while Aoyagi (2003), Blume and Heidhues (2002), Skrzypacz and
Hopenhayn (2004), and Abdulkadiroğlu and Chung (2003) study collusion in repeated auctions.
3Earlier literature concerned about coalition formation in Groves’ mechanisms includes Green
and Laffont (1979) and Crémer (1996). The former paper envisions a coalition of symmetrically
informed agents, whereas the latter allows for their possible asymmetric information. Although
the latter framework resembles that of Laffont and Martimort, and even considers subgroup col-
lusion, it restricts attention to dominant strategy implementation (at both grand and coalitional
mechanism design) and does not consider participation constraints.
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Just how far these transaction costs can be exploited in contract design is still
unknown. In procurement/public good settings, Laffont and Martimort (here-
after LM) have shown that the optimal outcome can be made collusion-proof
at no cost to the principal if the agents’ types are uncorrelated (LM, 1997), but
if the types are correlated, preventing collusion entails strict cost to the prin-
cipal (LM, 2000). The former result—i.e., collusion is preventable at no cost
with uncorrelated types—is reproduced by Quesada (2004) with a different
coalition formation process, and by Jeon and Menicucci (2005) in a nonlin-
ear pricing model that allows collusive consumers to arbitrage on their pur-
chases. These models have special structures, though. Laffont and Martimort
and Quesada (2004) assume two agents with two possible types and Leontief
production technologies/preferences, and Jeon and Menicucci (2005) assume
n ≥ 2 agents with two types or two agents with three types, along with several
preference restrictions.

Intriguing as these results are, their reliance on special structures raises sev-
eral questions. First, it is unclear whether the results are generalizable beyond
the assumed environments. Second, even if the results are generalizable, the
method of collusion-proof implementation is specific to the assumed setting,
so it does not provide a general method that may work in other settings. Third,
the specificity of the models and the lack of a general method also make it dif-
ficult to isolate the economic insight that explains under what circumstances
collusion is preventable and why it is preventable in those circumstances.

The current paper advances on these fronts by developing a general method
for collusion-proofing a mechanism. Using this method, we show that any
payoff attainable by the principal in the absence of collusion, including the
second-best level, can be attained in the presence of collusion in a large class
of environments with risk neutral agents, for both uncorrelated and correlated
types cases. Our collusion-proof implementation does not rest on any special
assumptions about preferences/technologies or type structures. For example,
the agents’ types can be discrete or continuous (at least for the uncorrelated
types case) or even multidimensional, and no special features on preferences
or technology, such as single crossing, are needed for our results.

Furthermore, our collusion-proof implementation is robust to many aspects
of collusion behavior, such as the identity of the agent organizing/initiating col-
lusion, the manipulation technology employed by the coalition (e.g., whether
the coalition can arbitrage on an initial allocation), the coalition’s objective
and the bargaining power of its members (e.g., whether the coalition caters to
the interests of some agents more than others), and the exact makeup of the
coalition (e.g., whether collusion involves all agents or only some agents). In
fact, the principal need not even know how the collusion operates along many
of these dimensions.

Our method of collusion-proof implementation utilizes the idea of “selling
the firm to the coalition.” Specifically, for any expected payoff level that the
principal can attain in the absence of collusion, we construct a new mechanism
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that gives the principal an ex post constant payoff equal to the original ex-
pected payoff. This mechanism forces the (grand) coalition to become a resid-
ual claimant of the entire surplus, after paying off the principal an ex post
constant surplus, when it manipulates the outcome. That such a mechanism is
implementable in the adverse selection setting is not obvious and will be an
important part of our analysis. Also not obvious is that such a mechanism, if
implementable, is immune to collusion. In fact, being the residual claimant, the
coalition would prefer the first-best allocation over the intended allocation in
case the latter involves distortion, so it will try to manipulate so that the former
allocation arises. Yet, such a manipulation never succeeds. The reason is that
the coalition faces an asymmetric information problem just like the principal
in the original noncollusive mechanism design. This informational asymme-
try means that an appropriate amount of information rent must be given to
the members of the coalition to implement a particular allocation. However,
since the principal is paid off to realize a desired level of surplus irrespective
of the induced allocation, implementing any other allocation by the coalition
would violate budget balancing.4 (This intuition will become more transparent
in Section 5, with the aid of a figure.) In short, by making the agents resid-
ual claimants, our mechanism forces them to internalize precisely the same
amount of informational cost that the principal faces in noncollusive mecha-
nism design, and in this sense exploits the coalitional transaction cost fully.

This idea of collusion-proof implementation does not rely on the agents’
types being uncorrelated, although making the agents residual claimants while
preserving their incentives proves more challenging in a correlated type envi-
ronment. If there are only two agents, our method of collusion-proofing indeed
does not work, much consistent with LM’s (2000) finding in their two agents
model. With more than two agents, however, given a reasonable type structure,
our collusion-proof implementation works quite generally, implying again that
the principal can attain any noncollusive payoff in a robustly collusion-proof
fashion even with correlation. An important corollary of this result is that the
principal can typically implement the first-best allocation and extract the entire
rents from the agents even in the presence of collusive agents.

We then extend our analysis to consider a mechanism that would prevent
collusion by a subgroup of agents. Although the issue of preventing collusion
by a subgroup has rarely been analyzed before, it is practically relevant be-
cause in many settings, only a subgroup of agents is often in a position to col-
lude. Collusion-proofing in this environment poses a new challenge because
the coalition may prey on noncollusive agents as much as on the principal.
Protecting the interests of noncollusive agents thus becomes an important con-
sideration for the principal. Our collusion-proof implementation idea general-
izes in a remarkable way to this problem: If at least two collusive agents are

4The intuition is the same as the one showing that implementing the first-best allocation would
run a budget deficit in Myerson–Satterthwaite (1983) bargaining. The difference is that this prob-
lem is endogenously/deliberately created by our design to prevent collusion from being feasible.
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identified, then we can construct a mechanism that can handle any collusion
that involves these two, including the grand collusion. This result strengthens
the robustness in the way the collusion problem is thwarted since the princi-
pal need not know the exact size or makeup of the coalition. Although this
result requires an additional condition that the outcome must be ex post im-
plementable in the noncollusive setup (i.e., ex post incentive compatible and
ex post individually rational), the condition is known to hold in a large class of
uncorrelated types environments.

The collusion-proof implementation result also advances our understanding
of the value of hierarchical delegation of contracts. Despite its practical sig-
nificance, delegation of contracting authority has been difficult to justify, since
it involves a loss of control for the principal (see Melumad, Mookherjee, and
Reichelstein (1995), for instance). Whether collusion can change this view has
been the subject of much recent research (see Laffont and Martimort (1998),
Faure-Grimaud, Laffont, and Martimort (2003), Celik (2004), Mookherjee and
Tsumagari (2004)). Since collusion creates control loss even with centralized
contracts, delegation may be relatively more attractive and may even serve as
an optimal response to collusion. This latter conjecture turns out not to be
true, however. Our results imply that collusion imposes no real cost to central-
ized contracting, which suggests that delegation cannot be more justifiable in
the presence of collusion than in its absence.

The rest of the paper is organized as follows. Section 2 illustrates the idea of
the main results using a simple example. Section 3 describes the model, includ-
ing the economic environments studied. Section 4 describes the noncollusive
benchmark. Section 5 develops the notion of robust collusion-proofness. Sec-
tion 6 constructs a robustly collusion-proof mechanism that implements any
noncollusive payoff for the principal, in the uncorrelated type environment.
Section 7 generalizes the analysis to the correlated type environment. Section 8
then studies collusion-proofing when only a subset of agents may collude. Sec-
tion 9 establishes robustness of the result to an alternative modeling of coali-
tion formation. Section 10 draws implications for hierarchical delegation of
contracts. Section 11 is the conclusion.

2. AN ILLUSTRATIVE EXAMPLE

It is useful to begin with an example that illustrates our main idea. Suppose
a buyer procures a good from one of two suppliers, agents 1 and 2. Agent
i = 1�2 can supply the good at a cost θi, which is drawn uniformly from [0�1],
and the buyer values the good more than 2. If the agents cannot collude, it is
optimal for the buyer to use a standard auction, such as a second-price auc-
tion. (No binding reserve price is employed since the seller’s valuation of the
object is sufficiently high.) Specifically, the agents bid supply prices, and the
low bidder wins and performs the job at the payment that equals the high bid.
Consequently, the buyer procures the good at the expected price of 2/3, which
is the best the buyer can do, as is well known from Myerson (1981).
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Suppose now the agents can collude. It is easily seen that the second-price
auction is susceptible to collusion. Prior to bidding, the firms can organize a
knockout auction wherein the agents bid for the right to participate in the
second-price auction uncontested; i.e., the loser bids 1 and the winner bids
his cost.5 Hence, with collusion, the buyer essentially pays the price of 1 to the
winner of the knockout auction.

Now consider a different mechanism. The buyer holds an auction in which
the agents bid for a payment bi and again the low bidder wins. The mechanism
differs in the payment arrangement: The buyer pays a fixed amount, 2/3, to
the losing (high) bidder, say j, who then pays the winning bidder its bid bi

to perform the job. Intuitively, the losing bidder is a “prime contractor” who
“outsources” the job to the winning bidder and in the process finances the
difference, bi − 2/3.

Absent collusion, the bidding game has a unique equilibrium in which the
agents adopt a symmetric increasing bidding strategy 1

2 + 1
3θ for each type

θ ∈ [0�1]. Consequently, the job is allocated efficiently as in the optimal mecha-
nism and the buyer procures the good at the fixed price of 2/3. Since the alloca-
tion is the same and the buyer pays the same on average as in the (noncollusive)
second-price auction, the revenue equivalence theorem implies that the in-
terim payoffs of both firms are the same as in that game. Hence, it is equilib-
rium for both agents to participate in the auction game. In sum, the proposed
mechanism implements the optimal procurement policy, in the absence of col-
lusion. More importantly, the new mechanism is not susceptible to collusion.
In the bidding game, the agents become residual claimants of the social surplus
after paying a fixed amount of 2/3 to the buyer. Since the allocation is efficient,
they have no incentive to collude in that bidding game.

This example illustrates the main idea of preventing collusion, namely that
of “selling the firm” to the agents. In what follows, this idea will be used to
construct a general collusion-proof mechanism that works in a more com-
plicated environment. The example also illustrates another feature of our
collusion-proof mechanism, distinguished from the existing literature (e.g., LM
(1997, 2000)). Unlike the traditional approach, our mechanism guarantees the
buyer a desired level of ex post surplus, whether collusion actually occurs or
not. Hence, in the example, the buyer could achieve the same outcome by del-
egating the procurement job to a “consortium” of agents (run by some unin-
formed third party) at a fixed price of 2/3; the consortium will then organize
its own auction to allocate the job efficiently. Such delegation may provide a
more practically relevant implementation of our mechanism.

5More precisely, they can organize a knockout auction in which the agents bid to pay their rivals
for “uncontested bidding” in the official auction. This knockout auction game has a unique sym-
metric equilibrium in which an agent with cost θ bids 1

3 − 1
3θ. This equilibrium implements the

direct revelation (strong) cartel mechanism studied by McAfee and McMillan (1992). A similar
problem arises with the first-price auction.
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3. PRIMITIVES

There are a principal and n ≥ 2 agents, with N := {1� � � � � n} representing the
total set of agents. Each agent i has type θi drawn from some arbitrary measur-
able set Θi. A vector of realized types is denoted θ := (θ1� � � � � θn) ∈ ×n

i=1Θi =:
Θ. Until more specific cases are considered, we maintain a general assump-
tion that θ is distributed according to some prior distribution µ0 ∈ �Θ. Hence,
θ can be discrete or continuous (or a mixture of those), or multidimensional.
The realized value of θi is private information observed only by agent i; all oth-
ers, including the principal, only know its distribution along with other aspects
of the game structure. We adopt the following notation: θ̃, θ̃i, and θ̃−i represent
random variables; E[·] := ∫

Θ
[·]dµ0(θ̃) and Eθ̃−i

[·] := ∫
Θ−i

[·]dµ0(θi� θ̃−i) are ex-
pectation operators based on the prior distribution; and Eµ[·] := ∫

Θ
[·]dµ(θ̃)

represents an expectation operator based on an arbitrary probability distribu-
tion µ ∈ �Θ.

An economic decision is described by x ∈X for some arbitrary set X . Given
a profile of types θ ∈ Θ and a decision x ∈ X , agent i ∈ N realizes a gross
surplus of ai(x�θ) and the principal obtains w(x). We allow for a random
decision, so we focus on a probability measure q on X and call it an alloca-
tion. Let Q = �X be the set of all allocations (i.e., all probability measures on
X ). Then any allocation q (or randomization over x) yields a gross surplus of
si(q�θ) := ∫

X ai(x�θ)dq(x) and v(q) := ∫
X w(x)dq(x) to agent i and to the

principal, respectively, given type profile θ ∈Θ.
All players are risk neutral.6 Hence, given types θ, if allocation q ∈Q is cho-

sen and the principal pays ti to agent i in expected value, he receives expected
payoff of

si(q�θ)+ ti

and the principal receives expected payoff7

v(q)−
∑
i∈N

ti�

6As will be remarked, our results continue to hold even if the principal is risk averse.
7In several models including LM, the principal is a government agency that cares about the
agents’ welfare. In that case, the principal’s payoff is described as

v(q)−
∑
i∈N

ti + λ
∑
i∈N

[si(q�θ)+ ti]

for some λ ∈ (0�1]. This objective function is relevant for a public good problem or Baron and
Myerson’s (1982) regulation problem, where λ > 0 reflects the government’s shadow value of
firms’ revenue. Our method works even in this case for the optimal noncollusive mechanism, but
works according to LM’s weak collusion-proofness criterion, which is weaker than the one that
will be developed here. The precise notion and the result are discussed in Appendix A of our
working paper version (Che and Kim (2004)).
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If there is no contract, agent i with type θi collects a reservation utility
of Ui(θi).

Virtually all known adverse selection problems with “quasilinear prefer-
ences” satisfy the above preference and information structure. The following
list details some well-known examples.
• Internal Organization, Procurement, and Regulation. An employer/regulator

procures a set K of goods in varying quantities from a set N of workers/firms.
The decision x := (xk

i )k∈K�i∈N then represents vectors of goods supplied by
the workers. This situation easily fits into our model, where ai(xi� θi) repre-
sents worker i ∈ N ’s payoff (i.e., negative of cost) associated with supplying
a vector of quantities xi = (xk

i )k∈K ≥ 0 given his realized type θi (which can
be multidimensional) and w(x) represents the seller’s value of procuring x.
An allocation then is a probability distribution over different production as-
signments.

• Nonlinear Pricing. A firm produces/markets a set of goods K in varying
quantities to a set N of consumers. This is just the mirror image of the pro-
curement problem, with a decision x that represents the bundles of goods
consumed by the buyers, and with ai(x�θi) that represents consumer i’s util-
ity from consumption and w(x) that represents the negative of the firm’s
cost of producing x.

• Auctions. An auctioneer allocates a (finite) set of goods or procurement
projects K to n bidders and possibly to herself. Let X be the set of all par-
titions, or “assignments,” of K into the set of all players, including the auc-
tioneer. Suppose that ai(x�θ), i ∈ N , is bidder i’s gross surplus and w(x) is
the auctioneer’s gross surplus when partition x ∈ X is chosen and the bid-
ders realize types θ. This model covers many situations of interest, ranging
from a one-unit independent private value (IPV) (seller or buyer) auction
as the simplest form, to interdependent valuations (seen by the possible de-
pendence of ai on θ−i), bundling, and Jehiel–Moldovanu–Stacchetti (1999)
type allocation externalities. In such a model, an allocation q = (qx)x∈X
denotes a vector of probabilities of different partitions being chosen, and
si(q�θ) = ∑

x∈X qxai(x�θ), i = 1� � � � � n, and v(q) = ∑
x∈X qxw(x).

To describe the sequence of events, it is useful to begin with a time line under
a noncollusive game:
• At date −1, each agent learns his type, θi, which is drawn from Θi.
• At date 0, the principal proposes a mechanism (to be described fully).
• At date 1, each agent either accepts or rejects the mechanism.
• At date 2, the game form proposed in the mechanism is played if the agents

all accepted the mechanism or else no mechanism is played and the agents
collect their respective reservation utilities.
To study possible collusion among the agents, we follow LM (2000) by con-

sidering possible coalition formation between date 1 and date 2, initiated by a
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third party8:
• At date 1 1

4 , a third party proposes a collusive arrangement.
• At date 1 1

2 , each agent accepts or rejects the collusive mechanism.
• At date 1 3

4 , the game form specified in the collusive mechanism is played,
which binds the play of the coalition members at date 2, if all agents ac-
cepted the collusive mechanism at date 1 1

2 . If at least one agent rejects the
collusive mechanism, no collusion occurs, so the agents play the game at
date 2 noncooperatively.
Note that the coalition is formed after the agents make participation deci-

sions. The implication of this formulation will be discussed in the Conclusion.
Further details of how collusion operates will be discussed in Section 5.

4. BENCHMARK: A NONCOLLUSIVE ENVIRONMENT

We first analyze the noncollusive game with no action between date 1 and
date 2. Absent collusion by agents, the revelation principle guarantees that an
equilibrium consequence of any contract that the principal offers can be stud-
ied by a direct revelation mechanism. In our setup, a direct mechanism (mech-
anism for short) consists of measurable functions (q� t) :Θ �→ Q × R

n, which
determine an allocation q(θ) and a vector of transfers t(θ) = (t1(θ)� � � � � tn(θ))
to the agents when they report θ ∈ Θ. The function q(·) is called an allocation
rule and the function t(·) is called a transfer rule. Any such pair (q� t) also rep-
resents an outcome realized at each state θ and will be sometimes referred to
as an outcome below.

Absent collusion, a mechanism M = (q� t) is feasible if it is individually ratio-
nal,

UM
i (θi) := Eθ̃−i

[
si(q(θi� θ̃−i)� θi� θ̃−i)+ ti(θi� θ̃−i)|θi

] ≥Ui(θi) ∀ i� θi�(IR)

and incentive compatible,

UM
i (θi) ≥ Eθ̃−i

[
si(q(θ

′
i� θ̃−i)� θi� θ̃−i)+ ti(θ

′
i� θ̃−i)|θi

]
(IC)

=: uM
i (θ

′
i� θi) ∀ i� θi� θ

′
i�

where Ui(θi) is the reservation utility level of agent i with type θi. Notice that
both incentive compatibility and individual rationality are required at the in-
terim level. Let M be the set of all feasible mechanisms, i.e., the set of all
allocation and transfer rules M := (q� t) that satisfy (IC) and (IR). We assume
that the set M is nonempty.9

8In Section 9, we will study a variation in which collusion is initiated by one of the agents.
9It is reasonable in most situations that the principal has an option to offer a null contract, in
which case this assumption holds trivially.
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A mechanism M = (q� t) ∈M implements an (expected) payoff of V ∈ R for
the principal if

V = E

[
v(q(θ̃))−

∑
i∈N

ti(θ̃)

]
�

in which case we say a payoff V is implementable. Let V denote the set of all
implementable payoffs for the principal. Of special interest is the highest im-
plementable payoff V ∗ = supV . This payoff, henceforth referred to as noncol-
lusive optimal or second-best payoff, is implementable, namely, V ∗ ∈ V under
very weak conditions (see Balder (1996), for example). Subsequently, we will
be interested in the collusion-proof implementability of any arbitrary V ∈ V ,
but particularly the second-best payoff V ∗.

For any payoff V ∈ V , there may be more than one mechanism that imple-
ments it. For the most part, how we select a mechanism in such a case does
not matter. On a couple of occasions (Propositions 2 and 3), however, we se-
lect a mechanism M = (q� t) that efficiently implements V ∈ V in the sense that
M yields the highest total surplus among all feasible mechanisms that imple-
ment V :

E

[
v(q(θ̃))+

∑
i∈N

si(q(θ̃)� θ̃)

]
≥ E

[
v(q′(θ̃))+

∑
i∈N

si(q
′(θ̃)� θ̃)

]

for any mechanism M ′ = (q′� t ′) that implements V . The existence of such a
mechanism for any given V ∈ V involves a restriction, but it is a very weak
one.10 In particular, the second-best allocation—the allocation rule that imple-
ments V ∗—is often unique, in which case any optimal mechanism will imple-
ment V ∗ efficiently.

5. MODEL OF COLLUSION AND COLLUSION-PROOFNESS

The Laffont–Martimort model of collusion postulates that the agents can
commit, via an uninformed benevolent representative, to a mechanism that
manipulates their reports to the principal. Below, we expand this modeling
framework to accommodate a much broader range of collusion possibilities.
We then develop a notion of collusion-proofness that requires a mechanism to
be robust against all such collusion possibilities.

5.1. Modeling Collusive Behavior

We study a collusive arrangement that allows the agents (i) to collectively
manipulate their reports to the principal, (ii) to reallocate q assigned by the

10For instance, if the set of allocation rules associated with mechanisms that implement V is
compact, then there exists a mechanism that efficiently implements V , since the principal and
agents’ payoff functions are linear in q.
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grand contract, and (iii) to exchange transfers among the agents in a budget-
balanced way. Following LM, we assume that such an arrangement is enforced
by a side contract proposed by a benevolent representative. By the revelation
principle, a side contract is described without loss of generality by a pair of
functions (µ� y) :Θ �→ �Θ× R

n that map from the agents’ types into (possibly
random) reports they will submit to the principal and side transfers they will ex-
change with one another. Specifically, a side contract (µ� y) asks the agents to
report their types and, for any profile θ of reported types, it instructs them to
randomize their reports over Θ according to a probability measure µ(θ) and
to exchange side transfers y(θ) = (y1(θ)� � � � � yn(θ)) among them. We require
a side contract to be budget balanced:

∑
i∈N yi(·)= 0.11

For our purpose, it is more convenient to work directly with the outcome
that is implemented as a result of enforcing a balanced-budget side contract.
Given any grand mechanism M , we say a mechanism M̃ := (q̃(·)� t̃(·)) is a re-
allocational manipulation of M if there exists a balanced-budget side contract
(µ� y) :Θ �→ �Θ× R

n such that, for each θ ∈ Θ,

t̃(θ)= Eµ(θ)[t(θ̃)] + y(θ) and v(q̃(θ))= Eµ(θ)

[
v(q(θ̃))

]
�(1)

and we let RMM denote the set of all reallocational manipulations of M . In
words, a reallocational manipulation of M is any outcome M̃ = (q̃� t̃) that the
coalition can induce from grand contract M by manipulating the reports from θ
via randomization µ(θ) and reallocating the resulting assignment in any way
that gives rise to the same gross surplus to the principal (the second equation
of (1)), and by redistributing transfers to the agents in a budget-balanced way
(the first equation of (1)).

It is worth noting that the second equation of (1) encompasses all standard
scenarios of reallocation. In an auction, for instance, a bidding ring may be
able to reallocate the goods among themselves after they are initially auc-
tioned off by the seller. This power to reallocate matters only when the good
is sold to one of the members, however. The equation captures (a weaker
form of ) this restriction. To be more concrete, consider a single-unit auction
with n bidders and a seller with a reservation value of v0 ≥ 0. Suppose the
seller wishes to implement an allocation rule q(·) = (q1(·)� � � � � qn(·)), where
qi(·) is the probability of the object being allocated to agent i (as a function
of θ). If the bidders can reallocate the object once it is assigned, they can in-
duce any q̃(θ) = (q̃1(θ)� � � � � q̃n(θ)) as long as

∑
i∈N q̃i(θ) = Eµ(θ)[∑i∈N qi(θ̃)]

for some µ(θ) ∈ �Θ; i.e., the probability of at least one of them getting the

11In fact, all results except Proposition 1 hold with a weaker ex ante version of budget balanced-
ness, i.e., E[∑i∈N yi(θ)] = 0. This means that all of our collusion-proof implementation method
works, even when the coalition is allowed to obtain financing from outside the coalition. Like-
wise, our collusion-proof implementation of optimal mechanisms works even when the coalition
is allowed to burn money, i.e., with a weaker requirement

∑
i∈N yi(·) ≤ 0.
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good matches that under some (possibly randomized) reports. However, this
condition implies

v(q̃(θ)) = v0 ·
(

1 −
∑
i∈N

q̃i(θ)

)
= v0 ·

(
1 − Eµ(θ)

[∑
i∈N

qi(θ̃)

])

= Eµ(θ)

[
v(q(θ̃))

]
�

which is precisely what we require under reallocational manipulation. In an-
other example, as Jeon and Menicucci (2005) or Mookherjee and Tsumagari
(2004) envisioned, consumers who face nonlinear pricing or suppliers who face
nonlinear contracts may be able to reallocate their initial allocation/assignment
to increase their joint surplus. In this case, our equation corresponds to
the restriction that the reallocation cannot affect the total amount of the
goods/outputs being (re)allocated to all consumers/suppliers.

For feasible collusive behavior, we focus on a reallocational manipulation
that satisfies (IC) and (IR), and we let

MM :=RMM ∩M

be the set of feasible (reallocational) manipulations. Conditions (IC) and (IR)
are sensible properties to assume for coalitional manipulation. First of all,
(IC) is necessary as long as the coalition faces an adverse selection problem,
regardless of how the coalition is formed. For instance, if the coalition is pro-
posed by an (uninformed or informed) agent, the proposal must be incentive
compatible for all agents, including the proposer (see Quesada (2004) and
Mookherjee and Tsumagari (2004)). Likewise, (IR) is necessary for a collusion
proposal to be acceptable to the agents in many circumstances. Whether a par-
ticular collusion proposal is acceptable depends on the belief formed when the
proposal is (unexpectedly) rejected. A standard treatment for this is to assume
“passivity of beliefs,” i.e., no new inferences about the agents’ types are made
in such an event. Given passive beliefs, a manipulation M̃ would be acceptable
if

UM̃
i (θi)≥UM

i (θi) ∀ i�∀θi�(IRM)

Clearly, any manipulation of M that satisfies (IRM) would also satisfy (IR) as
long as M satisfies (IR). Hence, this requires (IR) to accommodate all accept-
able collusive arrangements given passive beliefs, but it also includes arrange-
ments supported by other, possibly extreme, beliefs. In particular, it means that
the coalition can hold the members down to the same outside options, regard-
less of the principal’s contract offer, thus limiting her ability to undermine col-
lusion by manipulating their outside options. In fact, endowing the coalition
with the ability to enforce any manipulation subject only to (IC) and (IR) is
tantamount to assuming that the coalition enjoys the same commitment power
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as the principal. Although some may view this approach as assuming unrealisti-
cally powerful collusion, it can only strengthen our case if our implementation
is robust against all such manipulations—a requirement we formalize as fol-
lows:

DEFINITION 1: A mechanism M ∈ M is robustly collusion-proof (RCP) if
every M̃ ∈ MM gives the same expected payoff to the principal as mecha-
nism M . A payoff V ∈ V is RCP implementable if there exists an RCP mecha-
nism that implements V .

We next explore several features of our collusion-proof notion. Readers who
wish to get to the main results may skip the remainder of this section.

5.2. Implications and Comparison with Existing Notions

Objective of the coalition

Our collusion-proofness notion imposes no restriction on the behavioral ob-
jective of the coalition. To see this, suppose, facing grand mechanism M , the
coalition solves

(CM(α))

max
M ′∈MM

E

[∑
i∈N

αi(θ̃)U
M ′
i (θ̃i)

]

for some α := (α1� � � � �αn) :Θ �→ R
n
+. This formulation of the collusion prob-

lem encompasses a broad class of collusion possibilities, nesting many existing
formulations as special cases. For instance, with α(·)≡ 1, the objective function
treats the agents rather symmetrically, as was assumed by LM. With αi(·) ≡ 1
and αj(·) ≡ 0 for all j �= i, the representative caters to the interest of agent i
at the expense of others, as will happen if agent i proposes a contract (see
Mookherjee and Tsumagari (2004), for instance). In fact, any individually ra-
tional collusion agreement must correspond to some α(·) ∈ A, where A is the
set of all mappings α :Θ �→ R

n
+. All these possible scenarios are captured in

our notion: If M is RCP, then ∀α ∈ A, every solution of (CM(α)) gives the same
expected payoff to the principal as mechanism M . In fact, the principal need not
even know the precise objective of the coalition.

Collusion prevention

Our collusion-proofness requirement does not rule out that collusion oc-
curs on the equilibrium path, but rather ensures that the principal will not be
harmed by collusion, even if it occurs. Clearly, this latter requirement is all
that matters as far as the principal is concerned. Our requirement is, in fact,



ROBUSTLY COLLUSION-PROOF IMPLEMENTATION 1075

natural when the principal does not know the precise objective of the coalition
(i.e., α). If the principal does know the objective, however, she can prevent
collusion, given robust collusion-proofness.

PROPOSITION 1: If a mechanism M ∈M is RCP, then for each α with a non-
empty solution to (CM(α)), there exists a mechanism Mα that gives the same payoff
as M to the principal and solves (CMα(α)).

PROOF: Suppose that M = (q(·)� t(·)) is RCP and let Mα = (qα(·)� tα(·)) be
a solution of (CM(α)). Since M is RCP, Mα gives the same expected payoff
to the principal as M . We prove that Mα solves (CMα(α)). Since Mα ∈ RMM ,
there exists a balanced-budget side contract (µα(·)� yα(·)) such that ∀θ ∈ Θ,

v(qα(θ)) = Eµα(θ)

[
v(q(θ̃))

]
and tα(θ)= Eµα(θ)[t(θ̃)] + yα(θ)�(2)

Now pick any M̃ = (q̃(·)� t̃(·)) ∈ RMMα . Then there exists a balanced-budget
side contract (µ(·)� y(·)) such that ∀θ,

v(q̃(θ))= Eµ(θ)

[
v(qα(θ̃))

] = Eµ(θ)

[
Eµα(θ̃)

[
v
(
q( ˜̃θ))]]

and

t̃(θ) = Eµ(θ)[tα(θ̃)] + y(θ)= Eµ(θ)

[
Eµα(θ̃)

[
t( ˜̃θ)]] + Eµ(θ)[yα(θ̃)] + y(θ)�

where the last equalities follow from (2). Note that Eµ(θ)[Eµα(θ̃)[·]] = Eµ̄(θ)[·] for
some µ̄(θ) ∈ �Θ and if we let ȳ(θ) := Eµ(θ)[yα(θ̃)] + y(θ), then

∑
i∈N ȳi(θ) =

Eµ(θ)[∑i∈N yαi(θ̃)] + ∑
i∈N yi(θ) = 0 for each θ ∈ Θ. Hence, M̃ is a realloca-

tional manipulation of M or M̃ ∈ RMM . We have thus shown that RMMα ⊂
RMM , which in turn implies MMα ⊂ MM . Since Mα ∈ MMα , Mα must then
solve (CMα(α)). Q.E.D.

Relationship with other concepts

The most standard approach follows LM’s weak collusion-proofness. This no-
tion posits collusion organized by an uninformed third party who manipulates
agents’ reports in a way that is acceptable to the agents given their passive be-
liefs and maximizes their joint payoffs, but has no ability to reallocate their
assignment. This notion can be formally stated in a way comparable to ro-
bust collusion-proofness. Given any grand mechanism M , say M̃ = (q̃� t̃) is
a communicative manipulation if there exists a balanced-budget side contract
(µ� y) :Θ �→ �Θ× R

n such that, for each θ ∈Θ,

t̃(θ) = Eµ(θ)[t(θ̃)] + y(θ) and q̃(θ)= Eµ(θ)[q(θ̃)]�(3)
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The second requirement shows inability to reallocate: the agents can influence
the allocation only by manipulating their reports. Letting CMM be the set of
all communicative manipulations, we thus have CMM ⊂RMM .

Formally, a mechanism M is weakly collusion-proof if it maximizes the
objective of (CM(1)) among all communicative manipulations that satisfy
(IC) and (IRM). As LM show, when a mechanism is weakly collusion-proof,
its outcome can be sustained in a collusive environment as a perfect Bayesian
equilibrium. Our RCP notion encompasses this notion because we allow for
any arbitrary α in the coalition’s objective function and reallocational manipu-
lations, and we assume (IR) instead of (IRM) for collusive agreements.12

PROPOSITION 2: If a mechanism M efficiently and RCP implements a payoff
V ∈ V , then it is weakly collusion-proof.

PROOF: Suppose to the contrary that M is not weakly collusion-proof. Then
there must be a mechanism M̃ ∈ CMM that satisfies (IC) and (IRM), and gen-
erates a higher (expected) payoff for agents than M . Since CMM ⊂ RMM

and (IRM) implies (IR), we have M̃ ∈ MM = RMM ∩ M. Since M is RCP,
M̃ yields the same payoff V to the principal. Consequently, M̃ must generate
a strictly higher total surplus than M . However, this contradicts the fact that
M efficiently implements V . Q.E.D.

Our notion does not subsume LM’s strong collusion-proofness, which re-
quires collusion-proofness relative to all possible out-of-equilibrium beliefs.
Our notion allows for a range of reasonable out-of-equilibrium beliefs, includ-
ing passive beliefs, but it implicitly rules out some extreme beliefs that are
inconsistent with the agents’ individual rationality.13

Our concept is also incompatible with a notion that requires agents’ partic-
ipation constraints to hold at the ex post, rather than interim, level. Ex post
participation constraints are motivated either by agents’ colluding on partici-
pation decisions (Dequiedt (2004)) or by their having an exit option from the
grand mechanism ex post (Mookherjee and Tsumagari (2004)). These latter
possibilities are not allowed in our model of collusion, so the ex post participa-
tion constraint is not required in our notion of collusion-proofness. Note that
these other notions do not subsume our notion because we require robustness
to many aspects of collusion discussed earlier.

12Jeon and Menicucci (2005) adopt the same notion except that they allow for reallocation by the
agents. Hence, an RCP implementation will imply their notion as well.
13If such beliefs are admitted, the third party representative may be able to force a collusive
proposal that may not guarantee a reservation utility for some agent. This will undermine imple-
mentation since the latter agent will refuse to participate in the grand contract.
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6. RCP IMPLEMENTATION: UNCORRELATED TYPES

We now present our main collusion-proof implementation result. We begin
with the case in which the types are uncorrelated. Except for type indepen-
dence, we maintain the generality of the environments presented in Section 3.

THEOREM 1: Suppose that types are uncorrelated. Then every V ∈ V is imple-
mentable by a robustly collusion-proof mechanism.

PROOF: Fix any V ∈ V and suppose mechanism M = (q� t) ∈ M imple-
ments V . We now construct an RCP mechanism M̂ = (q̂� t̂) ∈ M that also im-
plements V . Define M̂ = (q̂� t̂) such that q̂(·) := q(·) and that, for each θ ∈Θ,

t̂i(θ) := κiv(q(θ))+ Eθ̃−i

[
ti(θi� θ̃−i)− κiv(q(θi� θ̃−i))

]
(4)

− 1
n− 1

∑
j �=i

Eθ̃−j

[
tj(θj� θ̃−j)− κjv(q(θj� θ̃−j))

] − ρi�

where

ρi := 1
n− 1

E

[
(1 − κi)v(q(θ̃))−

∑
j �=i

tj(θ̃)

]
and

∑
i∈N

κi = 1�

Observe first that t̂(·) gives the same interim transfers to the agents as t(·):
∀ i, ∀θi ∈ Θi,

Eθ̃−i
[t̂i(θi� θ̃−i)](5)

= Eθ̃−i

[
κiv(q(θi� θ̃−i))

] + Eθ̃−i

[
ti(θi� θ̃−i)− κiv(q(θi� θ̃−i))

]

− 1
n− 1

∑
j �=i

Eθ̃j

[
Eθ̃−j

[
tj(θ̃j� θ̃−j)− κjv(q(θ̃j� θ̃−j))

]] − ρi

= Eθ̃−i
[ti(θi� θ̃−i)]�

It follows from (5) that M̂ induces the same interim payoffs to the agents
as M , so M̂ satisfies (IC) and (IR). Furthermore, (5) means that the principal
attains the same expected payoff from M̂ as from M :

E

[
v(q(θ̃))−

∑
i∈N

t̂i(θ̃)

]
= E

[
v(q(θ̃))−

∑
i∈N

ti(θ̃)

]
�

It now remains to show that M̂ is RCP. To this end, we observe, ∀θ ∈ Θ,∑
i∈N

t̂i(θ) = v(q(θ))−
∑
i∈N

ρi�(6)
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Consider any arbitrary reallocational manipulation of M̂ : M̃ = (q̃(·)�
t̃(·)) ∈ MM̂ . Then there exists a balanced-budget side contract (µ� y) :Θ �→
�Θ × R

n such that t̃(θ) = Eµ(θ)[t̂(θ̃)] + y(θ) and v(q̃(θ)) = Eµ(θ)[v(q(θ̃))] for
each θ ∈ Θ. Thus, for each θ ∈Θ,

∑
i∈N

t̃i(θ) =
∑
i∈N

Eµ(θ)[t̂i(θ̃)] +
∑
i∈N

yi(θ) = Eµ(θ)

[∑
i∈N

t̂i(θ̃)

]
(7)

= Eµ(θ)

[
v(q(θ̃))

] −
∑
i∈N

ρi = v(q̃(θ))−
∑
i∈N

ρi�

where the first and the last equalities follow from the definition of the realloca-
tional manipulation, the second follows from the budget-balancedness of y(·),
and the third follows from (6). It then follows from (7) that

E

[
v(q̃(θ̃))−

∑
i∈N

t̃i(θ̃)

]
=

∑
i∈N

ρi = E

[
v(q(θ̃))−

∑
i∈N

ti(θ̃)

]
�(8)

thus proving that M̂ is RCP. Q.E.D.

As seen from the proof, two features of our mechanism, M̂ , are cen-
tral to its RCP implementation of an arbitrary mechanism M : First, as seen
in (5), M̂ preserves the same interim transfers as M , thus satisfying both
(IR) and (IC) and giving the same expected payoff as M . Second, as seen in (6),
the transfers t̂i(·) are aggregated so that the principal collects the ex post con-
stant payoff equal to the expected payoff he would have enjoyed under M . This
feature forces the coalition to become a “residual claimant” when it manipu-
lates M , ensuring that the principal will attain the desired payoff regardless of
how the agents behave, once they participate. The first feature, i.e., (IC) and
(IR), guarantees an equilibrium in which the agents indeed participate in the
mechanism.

Since every feasible payoff for the principal can be RCP implementable, the
following result is immediate.

COROLLARY 1: If V ∗ ∈ V , then there exists an RCP mechanism that imple-
ments the noncollusive optimal payoff for the principal.

The intuition behind our results can be made more transparent with the aid
of Figure 1. Assume for a moment that there is no collusion problem. It is use-
ful to think of the mechanism design problem as that of implementing a par-
ticular (expected) social surplus level, E[v(q̃(θ)) + ∑

i∈N si(q̃(θ)�θ)], i.e., the
sum of all players’ payoffs including that of the principal. The horizontal axis
of Figure 1 depicts all implementable (expected) social surplus levels, with the
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FIGURE 1.

highest level marking the first-best level, say.14 Obviously, to achieve a given
social surplus level, say S̃, requires a particular allocation rule q̃(·), and to im-
plement the latter in turn requires giving away a certain amount (depicted by A
in Figure 1) of information rent to the agents. Suppose the difference between
the 45 degree line and the curve below it represents the minimal information
rent that must be paid to the agents to implement the corresponding social sur-
plus level. The curve below the 45 degree line then represents the (expected)
surplus that accrues to the principal after paying off the rents to the agents.
The figure depicts a common situation in which the principal’s surplus is max-
imized at a below-first-best social surplus level, S∗, because of the rent-saving
benefit gained from distorting the allocation.15 In the absence of collusion, the
principal would thus choose to implement S∗.

14In general, the first-best allocation may not be implementable even in the noncollusive envi-
ronment. See Jehiel and Moldovanu (2001), for instance. In such a case, SFB should be taken to
mean the highest implementable surplus level.
15This situation is quite common in many mechanism design problems. For instance, an optimal
auction often involves a binding reserve price or handicapping, both of which entail an inefficient
allocation. Likewise, nonlinear pricing often induces too little consumption by the buyers.
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We now introduce collusion and suppose that the principal proposes mech-
anism M̂ . Given mechanism M̂ , by inducing (q̃(·)� t̃(·)) via manipulation say,
the coalition members receive the joint payoff of

∑
i∈N

[
t̃i(θ)+ si(q̃(θ)�θ)

] = v(q̃(θ))+
∑
i∈N

si(q̃(θ)�θ)−
∑
i∈N

ρi�(9)

where the equality follows from (7). Hence, M̂ forces the coalition to become
residual claimants of the social surplus, after guaranteeing the principal an ex
post constant surplus of

∑
i∈N

ρi = E

[
v(q∗(θ̃))−

∑
i∈N

t∗i (θ̃)
]
�

which is described in the figure by the maximized level of the curve, PS∗. Hence,
given M̂ , the coalition receives the difference between the 45 degree line and
the horizontal line tangent at the principal’s maximized surplus PS∗. Clearly,
the mechanism does not eliminate the potential for coalitional manipulation,
since the coalition now prefers SFB over S∗, which the principal wishes to im-
plement.

The reason the coalition cannot implement, via manipulation, SFB—or any
social surplus level other than S∗ for that matter—is as follows: Since the coali-
tion faces the same adverse selection problem that the principal faces without
collusion, the amount of information rents the coalition must pay to the agents
is described as before—by the difference between the 45 degree line and the
curve. Under M̂ , the amount of surplus left to the coalition after paying off
the principal is the gap between the 45 degree line and the horizontal tangent
line, which is strictly less than the information rents needed to implement such
a level, for any social surplus level that differs from S∗. If the collusion orga-
nizer wishes to implement S̃ (via manipulation), for instance, it will require the
information rents of A, but the surplus left over after paying off the principal
is only B, so implementing S̃ would entail a budget deficit of A − B and is
thus infeasible. Any deviation from S∗ is not implementable for the same rea-
son. This is possible precisely because S∗ is optimal for the principal among all
implementable social surplus levels.

REMARK 1: For an RCP implementation, the principal need not deal with
the agents at all, opting rather to contract directly with their third-party
representative. Fix an RCP mechanism (t̂� q̂) that implements any V ∈ V .
The principal can offer a menu {T̂ (θ)� q̂(θ)}θ∈Θ to the representative, where
T̂ (·) := ∑

i∈N t̂i(·) is a menu of total budgets. Facing such a contract, the rep-
resentative will organize the coalition of agents and implement the desired
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payoff V for the principal. Absent collusion, such “delegation” would be trivial
since the representative would act just like the original principal. The signifi-
cance of the delegation is that it works even in the presence of collusion, i.e.,
even when the representative cares intrinsically about the welfare of the agents.
In fact, such delegation may provide a practical way to implement an RCP
mechanism. For instance, instead of hiring and supervising individual suppli-
ers, a buyer may wish to outsource the job to an intermediary (prime contrac-
tor) who organizes and supervises a network of suppliers (subcontractors).

REMARK 2: The design of transfer rules in (4) is reminiscent of the Arrow–
d’Aspremont–Gérard-Varet mechanism (Arrow (1979) and d’Aspremont and
Gérard-Varet (1979)). Their transfers preserve the incentives of the Vickrey–
Clarke–Groves mechanism with zero aggregate transfer. Ours implements the
interim payoffs of any original mechanism with an ex post constant “surplus”
for the principal. Esö and Futos (1999) suggested a similar transfer rule that
gives rise to ex post constant “revenue” as an optimal mechanism for a risk-
averse seller in a single-unit auction. See also Bose, Ozdenoren, and Pape
(2005). These mechanisms serve much different purposes in their analysis.
Nonetheless, our model is more general and our mechanism subsumes theirs
as a special case (with v(·) being constant). For this reason, our construction
would generalize their results. For instance, our RCP mechanism for imple-
menting V ∗ would be (noncollusive) optimal even if the principal were risk
averse.16

7. RCP IMPLEMENTATION: CORRELATED TYPES

We now turn to the case in which the agents’ types are correlated. In this
case, we already know from LM (2000) that collusion cannot be prevented for
free in a public good model with two agents and two types. As we show below,
however, our collusion-proof implementation result holds even in a large class
of correlated type environments if there are more than two agents. Given the
well-known result by Crémer and McLean (1985, 1988), this implies that the
principal can extract full rents and implement the first-best outcome even if
collusion is possible.

Consider our general environment in Section 3, but assume that the joint
type space Θ is finite. (The finite type space will enable us to utilize linear alge-
bra, as will be seen.) Specifically, we assume that the support of agent i ∈ N ’s
type is given by Θi = {θ1

i � � � � � θ

i
i } with 
i = |Θi| ≥ 2. Let L := ∏

i∈N 
i. It is use-
ful to index all elements of Θ (i.e., all possible type profiles) in an arbitrary
order so that Θ = {θ1� � � � � θL}. We then suppose that each type profile θ ∈ Θ is

16More precisely, the RCP mechanism that implements V ∗ is the unique optimal mechanism for
a principal with a strictly concave von Neumann–Morgenstern utility function u0(a(x)−∑

i∈N ti).
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realized by a joint probability µ0(θ) ∈ [0�1] such that
∑

θ′∈Θ µ
0(θ′) = 1, where

µ0 := (µ0(θ1)� � � � �µ0(θL))′ represents the vector of joint probabilities of all
type profiles listed in the order mentioned above.

Fix any mechanism M = (q(·)� t(·)) ∈ M, attainable in a noncollusive en-
vironment. As before, we consider a new mechanism, M̂ = (q(·)� t̂(·)), that
satisfies two properties on the transfer rule: (a) it satisfies both (IC) and (IR)
and yields the same interim transfers to the agents as M , and (b) it ensures
that the principal enjoys an ex post constant surplus that equals the expected
surplus she would enjoy under M .

Formally, (a) holds if

∑
θ−i∈Θ−i

µ0(θk
i � θ−i)t̂i(θ

k′
i � θ−i)(10)

=
∑

θ−i∈Θ−i

µ0(θk
i � θ−i)ti(θ

k′
i � θ−i) ∀ i and ∀θk

i � θ
k′
i ∈ Θi

and (b) holds if

∑
i∈N

t̂i(θ
′)= v(q(θ′))− ρ ∀θ′ ∈ Θ�(11)

where ρ := E[v(q(θ̃))−∑
i∈N ti(θ̃)]. Since t satisfies (IC) and (IR), (10) ensures

that t̂ satisfies (IC) and (IR) and yields the same interim payoffs to all the play-
ers as M . Meanwhile, (11) makes the agents residual claimants. Together, these
two features guarantee that M̂ implements the optimal noncollusive mecha-
nism M in a collusion-proof fashion.

We describe these two restrictions by a system of linear equations. To begin,
define for each i and θk

i � θ
k′
i ∈Θi with θk′

i �= θk
i ,

Ti(θ
k
i ) :=

∑
θ−i∈Θ−i

µ0(θk
i � θ−i)ti(θ

k
i � θ−i)�

Si(θ
k
i � θ

k′
i ) :=

∑
θ−i∈Θ−i

µ0(θk
i � θ−i)ti(θ

k′
i � θ−i)�

In words, Ti(θ
k
i ) and Si(θ

k
i � θ

k′
i ) denote the interim transfer agent i of type θk

i

receives when reporting truthfully and when misreporting to be of type θk′
i ,

respectively, given that all other agents report truthfully. We can then form
interim transfer vectors as

Ti := (Ti(θ
k
i ))θki ∈Θi

and Si :=
(
Si(θ

k
i � θ

k′
i )

)
θki �θ

k′
i ∈Θi�θ

k
i �=θk

′
i
�
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We next form a vector of transfers for the new mechanism. For each i ∈ N ,
let

t̂i := (t̂i(θ
1)� � � � � t̂i(θ

L))′�

(That is, the elements of the vector are listed in the order of Θ = {θ1� � � � � θL}.)
Next, we form a matrix Pi, of size 
i×L, which represents the probabilities over
the reported types of all agents when agent i reports truthfully. Specifically, the
mth element of a row that corresponds to Ti(θ

k
i ) has probability µ0(θk

i � θ−i) if
θm = (θk

i � θ−i) and zero otherwise. Similarly, a matrix Bi, of size 
i(
i − 1)×L,
represents the probabilities over the reported types when agent i lies. Specifi-
cally, the mth element of a row that corresponds to Si(θ

k
i � θ

k′
i ) has probabilities

µ0(θk
i � θ−i) if θm = (θk′

i � θ−i) and zero otherwise.17 Then (10) is expressed as
(
Pi

Bi

)
× t̂i =

(
Ti

Si

)
∀ i ∈ N�

To combine with the second property, we define a vector of length L:

v− ρ := (
v(q(θ1))− ρ� � � � � v(q(θL))− ρ

)′
�

Then (10) and (11) are described in matrix forms as



Π1 · · · 0
���

� � �
���

0 · · · Πn

IL · · · IL


 ×



t̂1
���
t̂n


 =




T1

S1
���
Tn

Sn

v− ρ



�(12)

where Πi :=
(
Pi
Bi

)
and IL is the identity matrix of size L.

The next condition proves to be sufficient for the existence of a solution
to (12):

17It is useful to consider a specific example. Suppose there are three agents and each has two
types, Θi = {1�2}, i = 1�2�3. Suppose Θ is indexed as {111�112�121�122�211�212�221�222},
where the type profile ijk refers to agent 1 being of type i, agent 2 being of type j, and agent 3
being of type k. Then

P2 =
(
µ0(111) µ0(112) 0 0 µ0(211) µ0(212) 0 0

0 0 µ0(121) µ0(122) 0 0 µ0(221) µ0(222)

)

and

B2 =
( 0 0 µ0(111) µ0(112) 0 0 µ0(211) µ0(212)

µ0(121) µ0(122) 0 0 µ0(221) µ0(222) 0 0

)
�

where µ0(ijk) is the probability of agents 1, 2, and 3 being, respectively, of types i� j, and k. The
first and second rows of the above P2 correspond to T2(1) and T2(2), respectively. The first and
second rows of B2 correspond to S2(1�2) and S2(2�1), respectively.
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CONDITION (PI′): There exist agents i and j such that

rank
(
Πi

Πj

)
= rank(Πi)+ rank(Πj)− 1�(13)

Condition (PI′) requires that the spaces spanned by the rows of Πi and those
spanned by the rows of Πj should not intersect except for a one-dimensional
vector space, which accounts for a redundancy in the system of equations.18 In-
tuitively, it requires that the untruthful reports by agents i and all possible re-
ports by agent j induce distinct probability distributions over the entire report
profiles, assuming all others report truthfully. This feature provides the flexi-
bility needed to mimic the incentive design of t and at the same time makes
the agents residual claimants.19

Our main results follow.

LEMMA 1: Given Condition (PI′), a solution, t̂ ∈ R
nL, to (12) exists.

See Appendix A for the proof.

THEOREM 2: Given Condition (PI′), every V ∈ V is RCP implementable.

18The redundancy comes from an accounting identity associated with the fact that the equilibrium
transfers specified in top and bottom parts of the system must be consistent with each other. To be
specific, if we premultiply the equations of (12) that correspond to Ti by the probability vector µ0 ′,
we obtain the aggregate expected transfers in equilibrium:∑

i∈N
µ0 ′ · t̂i =

∑
i∈N

E[t̂i(θ̃)] = LHS = RHS =
∑
i∈N

∑
θi∈Θi

Ti(θi) =
∑
i∈N

E[ti(θ̃)]�

This must be consistent with the restrictions on the aggregate transfers in expected value. In
particular, we obtain the same equation by premultiplying the bottom L equations of (12) with
the probability vector µ0 ′:∑

i∈N
E[t̂i(θ̃)] = LHS = RHS = µ0 ′ · (v − ρ)

= E
[
v(q(θ̃))

] − E

[
v(q(θ̃))−

∑
i∈N

ti(θ)

]
=

∑
i∈N

E[ti(θ̃)]�

19Similar conditions have appeared in the literature in the context of repeated games and static
mechanism design with budget balancing (see Fudenberg, Levine, and Maskin (1994, 1995) and
Kosenok and Severinov (2004)). Pairwise identifiability for a pair of agents i and j, considered
by Fudenberg, Levine, and Maskin, requires the same rank condition, except that Πi represents
probability distributions that correspond to different strategies rather than all pairs of reports and
states. So Πi has 



i
i rows in the pairwise identifiability, whereas Πi in our Condition (PI′) has


2
i rows. In fact, it can be shown that the pairwise identifiability is weaker than Condition (PI′)

in the sense that if (13) holds for a pair of agents i and j, then pairwise identifiability holds for
the same pair. Several conditions proposed by Kosnok and Severinov (2004) are closely related
to Condition (PI′). In fact, the genericity of Condition (PI′) follows from the genericity of one of
their conditions, as stated in Lemma 2.
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PROOF: Fix any M = (q� t) ∈M. Then, given Condition (PI′) and Lemma 1,
we can consider a mechanism M̂ = (q(·)� t̂(·)), where t̂(·) solves the system of
linear equations in (12). Since t̂(·) satisfies (10), the interim transfers and, thus,
the interim payoffs for the agents are precisely the same under M̂ as under M
for any possible report each agent may make, assuming that all other agents
report truthfully. This guarantees that M̂ satisfies (IC) and (IR) and yields the
same interim payoffs to all players as M . Next, since t̂ satisfies (11), the same
argument as in the proof of Theorem 1 proves that M̂ is RCP. Q.E.D.

It can be readily checked that Condition (PI′) fails generically if there are
only two agents. In that case, generically, the right-hand side of (13) becomes

i
j + min{
2

i � 

2
j } − 1, thus exceeding the rank of the stacked matrix on its left-

hand side, which equals 
i
j generically.20 This is consistent with LM (2000),
which finds that the principal is strictly worse off from collusion and that the
principal’s optimized payoff is continuous at zero correlation if the agents’
types are correlated. The latter finding of LM contrasts with the noncollusive
mechanism design, which displays a discontinuous shift from a typical second-
best outcome to a full-extraction first-best outcome when an arbitrarily small
amount of type correlation is added.

If there are more than two agents, however, Condition (PI′) holds quite
generally, so LM’s (2000) result does not hold.21 The following result due to
Kosenok and Severinov (2004) makes the statement precise.

LEMMA 2—Kosenok and Severinov: Suppose that n ≥ 3 and that, if n = 3,
at least one agent has more than two types. Then Condition (PI′) holds for
generic µ0(·).22

PROOF: This result follows from steps 3–5 in the proof of Lemma 3 of
Kosenok and Severinov (2004, pp. 26–28). In particular, they prove that, given
the condition, the matrix on the left-hand side of (13) has a one-dimensional
kernel for a generic µ0(·) for j := arg mink∈N 
k and i := arg mink∈N\{j} 
k.
Hence, (13) holds generically for that pair. Q.E.D.

Given Lemma 2, our collusion-proof implementation holds generically for
any n ≥ 3, with the additional requirement that an agent must have more than

20Generically, each matrix on the right-hand side has a full rank since different reports by an agent
induce different distributions over the other agent’s reports when the latter reports truthfully.
Hence, the ranks sum to (
i + 
j)min{
i� 
j} − 1 = 
i
j + min{
2

i � 

2
j } − 1.

21Laffont and Martimort’s result with two agents means, however, that collusion will matter again
if a subgroup of two agents is collusive. As will be noted in Remark 3, our method does not
generalize to the subgroup collusion problem if types are correlated. In this sense, LM’s point
remains valid.
22This condition means that the probability distributions µ0 for which the condition holds have
full Lebesque measure in the (n− 1)-dimensional simplex.
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two types if n = 3. It is not difficult to see why adding a new agent makes it
easier to satisfy the properties required for collusion-proofness. Suppose there
are two agents with two possible types. Then the transfer rule specifies eight
transfer amounts: A transfer amount is specified for each of four joint realiza-
tions of types for each of the two agents. Meanwhile, the number of equations
required by (12) is 12, so the system has no solution. Intuitively, the trans-
fer rule does not give a sufficient number of degrees of freedom to “sell the
firm to the agents” while preserving the original incentive design of t. As the
number of agents increases, the number of unknowns (the transfer amounts
to be specified) increases multiplicatively while the number of restrictions in-
creases only additively. The reason is that the restrictions implied by (a) need
to hold only at the interim level. To be concrete, suppose that there is an-
other agent with three types.23 Then, the number of transfer amounts to be
specified grows to 36 (i.e., a transfer specified for each of 12 joint type real-
izations for each of the three agents), whereas the number of equations re-
quired by (12) grows only to 29. This creates enough flexibility to satisfy both
(a) and (b).24

As is well known from Crémer and McLean (1988), the full-extraction first-
best outcome is implementable for generic µ0(·).25 Lemma 2 implies that the
outcome is attainable even in the collusive environment in a broad set of cir-
cumstances.

COROLLARY 2: Given the condition of Lemma 2, for a generic µ0(·), there
exists an RCP mechanism that implements the full-extraction first-best outcome.

8. COLLUSION BY A SUBGROUP OF AGENTS

So far, we have only considered the possibility of collusion involving all
agents. In many situations, however, only a subset of agents may be in a po-
sition to collude. For instance, in construction procurement auctions in which

23If the third agent has two types, then the system in (12) has more unknowns than the number of
equations, but the matrix on its left-hand side has a two-dimensional kernel, whereas the system
has only one-dimensional redundancy. So, the solution does not exist generically.
24As footnote 23 indicates, the comparison between the number of equations and the number of
unknowns does not inform us of the existence of a solution because of possible linear dependence
across the required equations. Nonetheless, the comparison is suggestive of how the properties
required for collusion-proofness can be met.
25The full-extraction first-best outcome is defined as in Crémer and McLean (1988). In our con-
text, it means that (IR) is binding for all agents for all types and the implemented allocation rule
has

q∗(θ) ∈ arg max
q∈Q

v(q)+
∑
i∈N

si(q(θ)�θ)�

for all θ ∈ Θ. The conditions for this outcome to be implementable are shown to be generic.
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both local and nonlocal firms compete, local firms may be able to collude more
effectively, based on their regular contacts and trade association relationships.
Can such collusion be prevented?

Preventing collusion by a subgroup of agents introduces a new consideration
in mechanism design, since one has to consider the effect of collusion on the
incentives of noncollusive agents. In particular, a coalition may gain from prey-
ing on the noncollusive agents by shifting rents away from them.26 Hence, an
important element of a collusion-proof mechanism is to protect noncollusive
agents’ interests/incentives appropriately. This section discusses how the basic
idea of collusion-proof implementation generalizes to this case. We again re-
strict the economic environment to uncorrelated types; a remark will be made
later on the correlated types case.

We begin with the model of subgroup collusion. To this end, consider a coali-
tion C ⊂ N of agents with 1 < |C| ≤ n. The time line of the game and its model-
ing framework are analogous to the case with collusion by the grand coalition.
Hence, the robust collusion-proofness concept generalizes naturally to this
partial collusion case. To begin, we define a side contract among coalition C ,
called a C-side contract, by a pair of functions (µC� yC) :ΘC �→ �ΘC × R

|C|,
where µC determines the probability distribution of reports on the coalition’s
types in ΘC . Then, for any direct mechanism M = (q(·)� t(·)), we call M̃ =
(q̃(·)� t̃(·)) ∈ M its reallocational manipulation by C if there exists a balanced-
budget C-side contract (µC� yC) :ΘC �→ �ΘC × R

|C|, such that ∀θ,

t̃i(θ) =
{

EµC(θC)
[ti(θN\C� θ̃C)] + yC

i (θC)� if i ∈ C,
EµC(θC)

[ti(θN\C� θ̃C)]� if i ∈ N\C,
(14)

v(q̃(θ))= EµC(θC)

[
v(q(θN\C� θ̃C))

]
�(15)

and

si(q̃(θ)�θ)= EµC(θC)

[
si(q(θN\C� θ̃C)� θ)

] ∀ i ∈ N\C�(16)

Note that a reallocational manipulation is required to be undetectable not only
to the principal (see (15)), but also to the noncollusive agents (see (16)). In a
single-unit auction with two collusive bidders and one noncollusive bidder, for
instance, the latter restriction means that reallocation of the object between
the two colluders is possible only when the object is initially assigned to one of
the two collusive bidders.27

26Whether this problem arises depends on the grand mechanism in place. For instance, if a subset
of bidders collude in a first-price auction, this may actually benefit noncollusive bidders.
27Consider, for instance, a single-unit interdependent value auction in which a bidder i = 1�2�3
realizes the valuation of ai(θ1� θ2� θ3) from winning the good (and zero for not winning), and
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Similar to the grand coalition case, we say that a reallocational manipulation
of M by coalition C , M̃ is feasible if it satisfies

UM̃
i (θi)≥Ui(θi) ∀ i ∈C�θi(IRC)

and

UM̃
i (θi)≥ uM̃

i (θ̃i� θi) ∀ i ∈C�θi� θ̃i�(ICC)

and we let MC
M denote the set of all feasible reallocational manipulations of M

by coalition C . Note that a feasible reallocational manipulation by the coalition
need not satisfy incentive compatibility and individual rationality of the agents
outside that coalition, since the latter does not care about the noncollusive
agents. Instead, we impose these conditions as part of the coalition-proofness
requirements.

DEFINITION 2: A direct mechanism M is robustly collusion-proof (RCP) with
respect to coalition C ⊂ N if MC

M ⊂ M and every manipulation in MC
M gives

the same expected payoff to the principal as does mechanism M .

The notion of collusion-proofness here is essentially the same as before,
except for the additional requirement that every reallocational manipulation
by a coalition must be also incentive compatible and individually rational to
noncollusive agents.28 The extra requirement is added to protect the inter-
ests/incentives of the noncollusive agents against possible manipulation by the
coalition, thus ensuring their participation and ultimately the intended pay-
off of the principal. Suppose the subcoalition wishes to induce a manipulation
M̃ = (q̃� t̃) ∈ MC

M that violates either incentive compatibility or individual ra-
tionality of some noncollusive agent. If such a manipulation is anticipated, then
the latter agent may lie about his type or not participate in M , in which case
the principal may not receive the same expected payoff as M .

suppose for simplicity that the seller never retains the good. Then the reallocation ability by a
coalition C = {1�2} means that a resulting allocation q̃ must satisfy, ∀θ = (θ1� θ2� θ3),

q̃1(θ)+ q̃2(θ) = q1(θ̃1� θ̃2� θ3)+ q2(θ̃1� θ̃2� θ3)

for any manipulation (θ̃1� θ̃2) by C . It then follows that

s3(q̃(θ)�θ) = (1 − q̃1(θ)− q̃2(θ))a3(θ)

= (
1 − q1(θ̃1� θ̃2� θ3)− q2(θ̃1� θ̃2� θ3)

)
a3(θ) = s3(q(θ̃1� θ̃2� θ3)�θ)�

which implies (16).
28This requirement is superfluous in the case of the grand coalition since a feasible manipulation
is assumed to satisfy incentive compatibility and individual rationality for all agents.
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The additional requirement in collusion-proofness translates into an ad-
ditional property to be satisfied in mechanism design. We say a mechanism
M = (q(·)� t(·)) is ex post implementable if it is ex post individually rational,

si(q(θi� θ−i)� θ)− ti(θi� θ−i)≥Ui(θi) ∀ i�∀θi�∀θ−i�(17)

and ex post incentive compatible,

si(q(θi� θ−i)� θ)− ti(θi� θ−i)(18)

≥ si(q(θ
′
i� θ−i)� θ)− ti(θ

′
i� � θ−i) ∀ i�∀θi�∀θ′

i�∀θ−i�

Let VEP denote the set of payoffs that the principal can attain by ex post im-
plementable mechanisms. Clearly, VEP ⊂ V . Later, we provide a clearer sense
about VEP by presenting a sufficient condition for ex post implementability.

THEOREM 3: Suppose the types are uncorrelated and fix any two agents
i� j ∈N . Then any V ∈ VEP is implementable by a mechanism that is RCP with
respect to any coalition C that contains {i� j}.

PROOF: Fix any V ∈ VEP and suppose M = (q� t) ∈ M ex post imple-
ments V . For any two agents i� j ∈ N , we construct a new mechanism M̄ij ∈M
that would RCP implement V . Let a mechanism M̄ij := (q(·)� t̄(·)) be such that,
for each k �= i� j, ∀θ,

t̄k(θ)= tk(θ)

and, for i, ∀θ ∈Θ,

t̄i(θ) = 1
2

[
v(q(θ))−

∑
k �=i�j

tk(θ)

]

+ Eθ̃−i

[
ti(θi� θ̃−i)− 1

2

{
v(q(θi� θ̃−i))−

∑
k �=i�j

tl(θi� θ̃−i)

}]

− Eθ̃−j

[
tj(θj� θ̃−j)− 1

2

{
v(q(θj� θ̃−j))−

∑
k �=i�j

tk(θj� θ̃−j)

}]

− E

[
1
2

{
v(q(θ̃))−

∑
k �=i�j

tk(θ̃)

}
− tj(θ̃)

]
�

and symmetrically for j; i.e., t̄j defined exactly the same with the roles of i and j
switched.

Observe first that, ∀k, ∀θk ∈Θk,

Eθ̃−k
[t̄k(θk� θ̃−k)] = Eθ̃−k

[tk(θk� θ̃−k)]�(19)
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so M̄ satisfies (IC) and (IR) and attains the same value as M . Hence, M̄ im-
plements V .

We next show that M̄ is RCP with respect to any coalition C that contains
agents i and j. To show this, fix any such coalition C and choose any feasible
reallocational manipulation of M̄ by C , say M̃ = (q̃(·)� t̃(·)) ∈MC

M̄
. Then there

exists a balanced-budget C-side contract (µC(·)� yC(·)) that satisfies (14), (15),
and (16). Furthermore, M̃ satisfies (ICC) and (IRC), so it is incentive compat-
ible and individually rational for any collusive agent in C . Consider now any
k ∈ N\C . Then, ∀θk�θ

′
k ∈Θk, ∀θ−k ∈ Θ−k,

sk(q̃(θk�θ−k)� θ)+ t̃k(θk�θ−k)

= EµC(θC)

[
sk(q(θk�θN\C−k� θ̃C)� θ)+ t̄k(θk�θN\C−k� θ̃C)

]
= EµC(θC)

[
sk(q(θk�θN\C−k� θ̃C)� θ)+ tk(θk�θN\C−k� θ̃C)

]
≥ EµC(θC)

[
sk(q(θ

′
k� θN\C−k� θ̃C)� θ)+ tk(θ

′
k� θN\C−k� θ̃C)

]
= sk(q̃(θ

′
k� θ−k)� θ)+ t̃k(θ

′
k� θ−k)�

where the first and last equalities follow from (14) and (16), the second follows
from the construction of t̄k for k ∈ N\C , and the lone inequality follows from
ex post implementability of M . Likewise, ∀k ∈ N\C , ∀θk�θ−k,

sk(q̃(θ)�θ)+ t̃k(θ)

= EµC(θC)

[
sk(q(θk�θN\C−k� θ̃C)� θ)+ tk(θk�θN\C−k� θ̃C)

]
≥ EµC(θC)

[Uk(θk)] = Uk(θk)�

These inequalities prove that M̃ is also incentive compatible and individually
rational for agent k ∈ N\C . In sum, M̃ must satisfy (IC) and (IR). Since M̃ is
an arbitrary element of MC

M̄
, this proves that MC

M̄
⊂M.

It now remains to show that M̃ implements V . Observe, ∀θ ∈Θ,
∑
k∈N

t̃k(θ) =
∑
k∈N

EµC(θC)
[t̄k(θN\C� θ̃C)] +

∑
k∈C

yC
k (θC)

=
∑
k=i�j

EµC(θC)
[t̄k(θN\C� θ̃C)] +

∑
k �=i�j

EµC(θC)
[t̄k(θN\C� θ̃C)]

= EµC(θC)

[∑
k=i�j

t̄k(θN\C� θ̃C)

]
+ EµC(θC)

[∑
k �=i�j

tk(θN\C� θ̃C)

]

= EµC(θC)

[
v(q(θN\C� θ̃C))−

∑
k �=i�j

tk(θN\C� θ̃C)

]



ROBUSTLY COLLUSION-PROOF IMPLEMENTATION 1091

− E

[
v(q(θ̃))−

∑
k∈N

tk(θ̃)

]
+ EµC(θC)

[∑
k �=i�j

tk(θN\C� θ̃C)

]

= v(q̃(θ))− E

[
v(q(θ̃))−

∑
k∈N

tk(θ̃)

]
�

where the first equality follows from (14), the second follows from the budget-
balancedness of the side contract, the third follows from (14) and the switching
of expectation and summation, the fourth follows from the construction of t̄(·),
and the fifth follows from collecting terms and from (15). It follows that

E

[
v(q̃(θ̃))−

∑
i∈N

t̃i(θ̃)

]
= E

[
v(q(θ̃))−

∑
i∈N

ti(θ̃)

]
= V �(20)

proving that M̃ implements V . We thus conclude that M̄ is RCP with respect
to C . Q.E.D.

According to this proposition, the principal needs to identify only two mem-
bers of any possible coalition to handle any collusion that involves the two,
including the grand collusion. Hence, neither the principal nor any noncollu-
sive agents need to know the precise size or the membership of the coalition,
as long as two core members of collusion are identified. The RCP mechanism
that does this has three features: (i) As before, the mechanism involves sell-
ing the firm to the agents as a whole, thus ensuring an ex post constant sur-
plus to the principal. (ii) Unlike before, the mechanism forces the two chosen
agents to bear the principal’s payment risk toward all other agents. (iii) All
other agents’ incentive compatibility and participation utility are preserved at
the ex post level for all feasible reallocational manipulations by the coalition,
including the two agents. Features (ii) and (iii) ensure the participation of non-
collusive agents, which, along with (i), ensures the target level of surplus to the
principal.29 The last feature, (iii), requires ex post implementability of an out-
come. Although that requirement limits the class of allocations/environments
to which the above result applies, many plausible environments are known to
be in that class. For instance, Mookherjee and Reichelstein (1992, Proposi-
tion 2) and Chung and Ely (2003, Proposition 4) provide the following suffi-
cient condition.

LEMMA 3—Mookherjee–Reichelstein and Chung–Ely: Suppose Θi ≡ [θi� θi]
(i.e., one-dimensional support) and Ui(θi) = Ui for all i ∈ N . Then, for any allo-

29Given that the original mechanism is ex post implementable, a mechanism that satisfies (i) can
be made ex post implementable for at most n− 2 agents. This explains why at least two collusive
agents need to be identified.
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cation rule q(·) such that ∀ i, ∀θi�∀θ−i,

∂

∂θi

si(q(θ
′
i� θ−i)� θ) is nonnegative and nondecreasing in θ′

i(21)

there exists a transfer rule t(·) such that M = (q� t) is ex post implementable.30

COROLLARY 3: If any V ∈ V is implementable by M whose allocation rule
satisfies the properties of Lemma 3, then, for any two agents i and j, V is imple-
mentable by a mechanism that is RCP with respect to any C that contains i and j.

The assumed properties in Lemma 3 hold at the optimal mechanism in many
well-known mechanism design problems, such as auctions, procurement, regu-
lation, nonlinear pricing, and public goods provision.31 Although the sufficient
condition presumes a continuous type space, a discrete type problem can be re-
formulated as a continuous type problem without any loss (see Skreta (2006),
for example). Hence, the result applies to all existing models of collusion.

REMARK 3—Correlated Types and Subgroup Collusion: We conjecture that
a version of Theorem 3 holds generically in a large class of correlated types
cases, with |C| ≥ 3. Ex post implementability appears to be problematic, how-
ever. Even though ex post incentive compatibility alone seems feasible gener-
ically (see Mookherjee and Reichelstein (1992)), that requirement combined
with ex post individual rationality is difficult to satisfy for the full-extraction
first-best outcome. Whether and at what cost collusion by a subset of agents
can be prevented remain an open question in the correlated type environment.

9. COLLUSION PROPOSED BY AN INFORMED AGENT

Previous sections have employed the LM modeling approach whereby a
third party representative organizes a collusive agreement on behalf of mem-
bers of the coalition. Even though this approach serves as a useful metaphor
and we have allowed for a variety of scenarios within this approach, this mod-
eling assumption may not be most descriptive of a typical collusion process. In
a typical situation, a member of a coalition may initiate and propose a collusive

30Although Proposition 2 of Mookherjee and Reichelstein (1992), from which this lemma
is adapted, does not prove ex post individual rationality, it is implied as Mookherjee and
Reichelstein (1992) and Chung and Ely (2003) argue because the first condition implies that
there is a single worst type.
31The connection with the literature can be made clearer with the following sufficient conditions
due to Mookherjee and Reichelstein:

(i) One-dimensional condensation: There exist hi :Q → R and di(·� ·) :R ×Θ → R, twice dif-
ferentiable, such that si(q�θ) = di(hi(q)�θ).

(ii) Single crossing: ∂2di/∂hi ∂θi ≥ 0.
(iii) Ex post monotonicity: ∀θ−i ∈ Θ−i , hi(q(θ−i� ·)) is nondecreasing.



ROBUSTLY COLLUSION-PROOF IMPLEMENTATION 1093

agreement. We consider this latter scenario in the current model. The obvious
difficulty with modeling this latter scenario is the “informed principal prob-
lem,” since the agent who proposes a collusive scheme is privately informed
of his type and may thus want to use a contract offer to signal his type to the
other agent. The implications of such problems for coalition formation as well
as for the principal’s response to collusion have not been studied, except for
the recent work by Quesada (2004). She finds the second-best outcome to be
collusion-proof implementable in the LM setting with a binary type and a per-
fect complementarity technology.32 Her result exploits special features of that
setting,33 however, leaving the generality of her result in question. We show
below that our RCP design can be utilized to prevent collusion proposed by an
informed agent in a much more general setting.34

To begin, we assume that there are only two agents and that agent 1 (in-
stead of a third party representative) makes a take-it-or-leave-it collusion of-
fer to the other agent at date 1 1

4 . The rest of the structure remains the same
as before. With this model, we show that there exists an RCP mechanism that
implements the noncollusive optimal outcome in all equilibria supported by
passive out-of-equilibrium beliefs (i.e., the beliefs invoked when agent 2 rejects
agent 1’s collusion offer). To this end, much like Quesada, we apply Maskin and
Tirole’s (1992, Theorem 1∗, p. 35) characterization of the informed principal
problem, with agent 1 taking the role of the informed principal in their setup.
Their characterization assumes two agents (i.e., one principal and one agent)
and finite types distributed independently across the agents. Using their re-
sult thus requires us to restrict our model accordingly. Specifically, each agent
i = 1�2 draws a type independently from a finite set. We further assume that
the second-best outcome is efficiently implementable via an ex post incentive
compatible mechanism.35 As noted in Lemma 3, this set includes most of the
cases considered in the literature.

PROPOSITION 3: Suppose there are only two agents, each with types drawn in-
dependently from a finite set. If there is a mechanism M∗ that efficiently imple-
ments V ∗ and is ex post incentive compatible, then there exists an RCP mechanism

32Quesada (2004) also considers ex ante collusion (on participation decisions) and finds that the
second-best outcome is not collusion-proof implementable.
33The features of the LM model allow the second-best outcome to be collusion-proof imple-
mentable via ex post individually rational dominant strategies.
34A structurally similar problem is “resale” following an auction. Similarly to our problem, the
winning bidder is informed about his type when he deals with the losing bidders in the resale
market. In the resale problem, however, the (resale) contract proposal is made after the initial
assignment, whereas the collusion proposal is made prior to the “play” of the grand mechanism.
This difference turns out to matter. Since the bidders’ types are updated after initial allocation,
the crucial issue that faces the principal is how to “manipulate” the updating of types through
initial assignment (see Zheng (2002)). This issue does not arise in our problem.
35This is weaker than assuming V ∗ ∈ VEP, given that VEP also requires ex post individual rational-
ity.
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M̄ ∈ M that implements the noncollusive optimal payoff V ∗ for the principal in
all perfect Bayesian equilibria supported by passive beliefs.

The proof is given in Appendix B.
Our focus on the equilibria supported by passive beliefs makes our approach

comparable to weak collusion-proof implementation often invoked in the stan-
dard model of collusion. That restriction also makes our result nontrivial.36

Indeed, our collusion-proof equilibrium exploits the RCP design of the mech-
anism and would not work without that feature. As before, our RCP mecha-
nism makes the two agents residual claimants of the net social surplus—after
paying off the principal V ∗—achievable from any feasible collusive proposal
that agent 1 may make. In addition, the mechanism satisfies ex post incentive
compatibility for agent 2. It turns out that these two features guarantee the
same payoffs for both agents in any equilibria supported by the passive beliefs,
as in the noncollusive equilibrium. Hence, both agents participate in any such
equilibria and the RCP feature then guarantees the optimal payoff V ∗ for the
principal.37

Neither the argument of Proposition 3 nor the result of Maskin and Tirole
appears to readily extend to the case of correlated types. Nevertheless, we offer
another result that will be useful for that case. Consider our general model with
n ≥ 2 and an arbitrary type distribution. Given the condition of Lemma 2, the
full-extraction first-best result is generically RCP implementable. The next re-
sult implies that such an outcome is collusion-proof implementable even when
an informed agent proposes collusion.

PROPOSITION 4: Suppose the principal offers a mechanism M∗ = (q∗� t∗) ∈M
that satisfies (6) (and hence is RCP) and implements the first-best allocation, i.e.,

q∗(θ) ∈ arg max
q∈Q

v(q)+
∑
i∈N

si(q�θ) ∀θ ∈ Θ�(22)

Then there exists a perfect Bayesian equilibrium supported by passive beliefs in
which agent 1 proposes the null side contract and outcome M∗ is implemented.

36Without this restriction, it is not difficult to implement any feasible mechanism with collusion.
For instance, as in Proposition 8∗ of Maskin and Tirole (1992), given any direct mechanism
M ∈ M, one can design an indirect mechanism that admits two equilibria: one where agents
play M truthfully; the other where agent 2 just receives a very high payment from agent 1. One
can then sustain a perfect Bayesian equilibrium where no collusive proposal is made, given the
(out-of-equilibrium) belief that any rejection by agent 2 of such a proposal would trigger the sec-
ond equilibrium to be much more unfavorable to agent 1. This latter belief is clearly implausible
and makes the equilibrium less than believable.
37This argument does not use the fact that n = 2; neither does Theorem 1∗ of Maskin and Tirole
(1992). We thus conjecture that the result holds for more than two agents.
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See Appendix C for the proof.
This result also exploits the RCP design. As before, the mechanism used in

the proof makes the agents residual claimants of net surplus achievable from
any feasible collusive proposal. This feature makes any deviation from the ef-
ficient allocation rule unprofitable to the proposer, given passive beliefs.

10. HIERARCHICAL DELEGATION OF CONTRACTS

Part of an interest in studying collusion stems from the hope that it may
offer to explain some organizational forms that are otherwise difficult to jus-
tify. Hierarchical delegation of contracts is one such organizational practice.
If a principal delegates to, say agent 1, the authority to contract with agent 2,
then the principal loses the opportunity to communicate with the latter and
to choose his contract terms in her best interest. This control loss makes dele-
gated contracting difficult to justify, despite its popularity. One can at best hope
that delegated contracting does as well as centralized contracting—i.e., imple-
ments the second-best outcome. If agents’ types are uncorrelated, Melumad,
Mookherjee, and Reichelstein (1995) (hereafter, MMR) show that delegation
achieves the second-best outcome if and only if, under delegation, (a) the prin-
cipal monitors individual output contributions by all agents (q in our model)
and (b) agent 1 can be compelled to make his participation decision before
he communicates with agent 2.38 Condition (a) is needed for the principal to
be able to counteract a potential monopoly distortion that may arise from the
increased bargaining power gained by agent 1. Condition (b) is needed for the
individual rationality to hold at the interim level, so as to prevent agent 1 from
commanding rents based on the information he learned about agent 2.

Does collusion make a difference? Although centralization still confers
(weakly) more control to the principal than does delegation,39 the latter
seems relatively more attractive when the former is subject to collusion. To
what extent collusion justifies hierarchical delegation has been the subject
of much recent research, but no general answer has emerged yet. Some au-
thors established equivalence in some cases (Laffont and Martimort (1998),
Faure-Grimaud, Laffont, and Martimort (2003)) whereas others showed non-
equivalence in other cases (Celik (2004), Mookherjee and Tsumagari (2004)).
Our collusion-proof implementation results (under centralization) enable us
to provide some general answer on the issue and fill an important gap in the
literature.

38These conditions are “necessary” for equivalence in the sense that a counterexample can be
found where failure of either condition leads to nonequivalence (see MMR). Mookherjee and
Reichelstein (2001) also extend the sufficiency part to the case with any finite number of agents.
39Specifically, a centralized contract may enable the principal to manipulate agents’ opportunity
cost of participating in collusion since it will determine their status quo payoffs. The principal
enjoys no such leverage relative to agent 2 under delegation.
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Specifically, we have shown that the second-best outcome is achievable un-
der centralization in the presence of collusion, whether it is organized by a
third party (Corollary 1) or by an informed agent (Propositions 3 and 4).
Hence, for delegation to do as well as centralization, the former must imple-
ment the second-best outcome. It then follows from MMR that, for uncorre-
lated types, delegation is inferior to centralization unless conditions (a) and (b)
both hold. In other words, these conditions continue to be the relevant re-
quirements for equivalence of the two arrangements, even in the presence of
collusion.

This perspective explains some of the existing results. For instance, Laffont
and Martimort’s (1998) equivalence result follows immediately from MMR’s
conditions being satisfied in their model; in particular, their perfect com-
plementarity technology makes it trivial for the principal to observe agents’
individual outputs. Also consistent with our perspective, Mookherjee and
Tsumagari (2004) showed delegation to be strictly inferior if agents can re-
allocate output and agent 1 can postpone his participation decision until after
he communicates with agent 2, i.e., both conditions (a) and (b) fail.40

Thus far, no result is available for the case where only one of the MMR con-
ditions holds. For instance, whether delegation is optimal is not known for the
standard case where agents’ participation constraints hold at the interim level
but their technologies/preferences are general enough to admit nontrivial re-
allocational opportunities for the agents. Our results provide an unambiguous
answer for this case. It follows from MMR that the agents’ reallocational abil-
ity, when undetected by the principal, leads to a monopoly distortion under
delegation. By contrast, the agents’ reallocational ability does not prevent the
principal from achieving the second-best outcome via a centralized contract.
Hence, delegation is strictly inferior in this case.41 In sum, our results suggest
that hierarchical delegation is no more justifiable when the agents are collusive
than when they are not, at least if their types are uncorrelated.

REMARK 4—Correlated Types and Delegation: Our result offers no general
perspective when agents’ types are correlated, since there is no MMR-like re-

40Our result does not imply theirs, however, since their model of collusion under centralization
permits colluding agents to exit from the grand contract after communicating with each other, so
their participation constraints hold ex post even for centralized contracting.
41The comparison could, in principle, depend on how one models collusion under centralized
contracting. Laffont and Martimort (1998), for instance, invoke the third-party-initiated collu-
sion, which treats the agents symmetrically in terms of their relative bargaining power. Since a
delegated agent has the full bargaining power under delegation, the latter then involves a shift in
bargaining power within the agents as well as the usual control loss for the principal. Mookherjee
and Tsumagari (2004) adopt a different model where a collusive proposal is made by one agent
(agent 1 in our discussion) in a take-it-or-leave-it fashion under centralization, so that the two for-
mats differ only in terms of the principal’s control loss. Regardless of the differences, our result
implies that the second-best outcome is achievable under centralization. So, the nonequivalence
result is quite robust.
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sult for the no collusion benchmark. Faure-Grimaud, Laffont, and Martimort
(2003) and Celik (2004) consider models in which a nonproductive supervisor
observes an imperfect signal about the type of a productive agent. Differences
in the informational structures have led them to reach different conclusions
on the value of delegation. In both cases, however, conditions (a) and (b) are
met. In particular, the nonproductive role of supervisor makes condition (a)
trivial. If the supervisor also had a productive role, there could be additional
distortion associated with delegation, rendering it unambiguously inferior.

11. CONCLUSION

We have shown that the optimal noncollusive mechanism can be made
collusion-proof in a broad class of circumstances, including both uncorrelated
and correlated types environments, in a way robust to the specifics of a coali-
tion’s objective, its manipulation technique, or its exact makeup. This result
unifies several observations scattered in the literature and provides a general
insight into how the transaction cost associated with agents’ private informa-
tion can be exploited to overcome collusion. An equally valuable lesson from
the current paper may lie in furthering the understanding of the true scope of
collusion. Although the mechanism we propose applies to a general class of
technologies, preferences, and agents’ type structures, it requires several im-
portant conditions. Recognizing these conditions can shed some light on the
factors that can make collusion truly problematic.42

First, we followed the extensive form of LM (1997, 2000) in which a coali-
tion is formed after the agents sign up for the principal’s grand contract. This
means that we do not allow the agents to collude on their participation deci-
sions.43 Although this assumption makes sense in many situations, there are cir-
cumstances in which agents may be able to collude prior to their participation
decisions. To illustrate, consider our example in Section 2 and our collusion-
proof mechanism that charges the agents 2/3. If they can collude prior to par-
ticipating in such a mechanism, they may refuse to participate whenever their
costs exceed 2/3, which will undermine the implementation of the second-best

42When these conditions fail, our method of collusion-proofing may not provide a useful guide
for solving the collusion problem, and the traditional approach of optimizing within the class of
collusion-proof mechanisms may again be useful. In this sense, the current paper complements
the existing approach.
43This assumption may not be as restrictive as it may appear. Many forms of collusion that involve
coordinated participation are replicable by a collusive arrangement in our model. For instance,
McAfee and McMillan (1992) consider collusion that sends only one selected bidder to the offi-
cial auction. This is replicated by an arrangement that sends all bidders, but all of them (except
possibly for one) bid a reserve price. The good can be then reallocated to the selected winner, if
necessary.



1098 Y.-K. CHE AND J. KIM

outcome. The extent and form of contract that can deal with such an early
collusion remain an important question to study.44

Second, our collusion-proof implementation relies largely on the risk neu-
trality of the agents. An important feature of our mechanism is that it makes
the agents residual claimants, which means shifting all payoff risks (i.e., the
payoff variability) to the agents. Imposing such risks requires providing a risk
premium to the agents if they are risk averse. Similarly, our mechanism may
sometimes require positive entry fees, which agents may be either unwilling
or unable to pay due to their risk aversion or liquidity constraints. Risk aver-
sion and liquidity constraints will thus introduce a real trade-off in dealing with
collusion.45

Third, our collusion-proof implementation relies on a Bayesian mechanism,
which cannot generally be made either a dominant strategy or ex post imple-
mentable for all agents. As is often recognized, common knowledge required
for Bayesian implementation is demanding. Relaxing this restriction will likely
entail a real cost of preventing collusion. The exact nature of this cost and the
method of minimizing it remain interesting open questions.
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APPENDIX A: PROOF OF LEMMA 1

We use the following theorem.

THEOREM OF THE ALTERNATIVE—Fredholm46: For a matrix A and a vec-
tor a, the linear system Ax = a has a solution x∗ if and only if, for any vector λ,
λA = 0 implies λa = 0.

44A few interesting papers have already employed an extensive form that permits agents to col-
lude on their participation decisions. See Che and Kim (2005), Dequiedt (2004), Pavlov (2004),
Quesada (2004), and Mookherjee and Tsumagari (2004).
45The logic is precisely the same as why “selling the firm to an agent” does not work in the tra-
ditional moral hazard model with a risk averse agent. Faure-Grimaud, Laffont, and Martimort
indeed show the risk aversion can make dealing with collusion costly.
46See Carter (2001, p. 392), for instance.

mailto:yc2271@columbia.edu
http://www.columbia.edu/~yc2271
mailto:jikim@yonsei.ac.kr
http://eclass.yonsei.ac.kr/jikimdir
http://www.columbia.edu/~yc2271
mailto:jikim@yonsei.ac.kr


ROBUSTLY COLLUSION-PROOF IMPLEMENTATION 1099

Given this theorem, a solution to the system (12) exists if, for any (row)
vectors (λP

i �λ
B
i )

n
i=1 and any (row) vector ξ,

λP
i Pi + λB

i Bi + ξ = 0 ∀ i implies(23) ∑
i∈N

λP
i · Ti +

∑
i∈N

λB
i · Si + ξ · [v−�] = 0�

Note that λP
i , λB

i , and ξ are of sizes 
i, 
i(
i − 1), and L, respectively.
To prove (23), suppose λP

i Pi + λB
i Bi + ξ = 0 for all i, which implies

λP
i Pi + λB

i Bi = λP
j Pj + λB

j Bj = −ξ�(24)

Let agents i and j be the ones that satisfy Condition (PI′). The condition means
that the space spanned by row vectors of Pi and Bi has only one-dimensional
vector space in common with the space spanned by row vectors of Pj and Bj .
According to (24), ξ must belong to this one-dimensional space. However, we
have

e′
1P1 = · · · = e′

nPn = µ0′
�

where ei is the (column) vector of size 
i whose elements are all 1’s. Thus, it
must be that for some scalar β, ξ = βµ0′. Then

∑
i∈N

λP
i · Ti =

∑
i∈N

λP
i Pi · ti = −

∑
i∈N

[λB
i Bi + ξ] · ti

= −
∑
i∈N

λB
i · Si −β

∑
i∈N

µ0′ · ti

= −
∑
i∈N

λB
i · Si −β

∑
i∈N

E[ti(θ̃)]�

Also,

ξ · [v−�] = βµ0′ · [v−�]
= βµ0′ · v−βE

[
v(q(θ̃))

] +β
∑
i∈N

E[ti(θ̃)]

= β
∑
i∈N

E[ti(θ̃)]�

Therefore, we have
∑
i∈N

λP
i · Ti +

∑
i∈N

λB
i · Si + ξ · [v−�]
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= −
∑
i∈N

λB
i · Si −β

∑
i∈N

E[ti(θ̃)] +
∑
i∈N

λB
i · Si +β

∑
i

E[ti(θ̃)]

= 0�

proving (23). Q.E.D.

APPENDIX B: PROOF OF PROPOSITION 3

As stated in the text, our proof applies Theorem 1∗ of Maskin and Tirole
(1992). This requires developing two welfare concepts. To this end, we define
several notations. For each θi ∈Θi, let p0

i (θi) denote the probability that agent
i = 1�2 realizes that type. As before, µ := (p1(·)�p2(·)) denotes an arbitrary
prior distribution of types and µi := pi(·) denotes the prior for agent i = 1�2.
We reserve µ0 := (p0

1(·)�p0
2(·)) and µ0

i := p0
i (·) for true priors. Let

uM
i (θ̃1� θ̃2|θ1� θ2) := si(q(θ̃1� θ̃2)�θ1� θ2)+ t(θ̃1� θ̃2)

denote agent i’s ex post payoff from mechanism M = (q� t) when the agents
have types (θ1� θ2) but report (θ̃1� θ̃2). For each θ1 ∈ Θ1, we let Mθ1 :=
(q(θ1� ·)� t(θ1� ·)) denote a component of a menu that corresponds to a report
of type θ1 by agent 1. Hence, we can write M = {Mθ1}θ1∈Θ1 .

As before, we fix an arbitrary grand mechanism M = (q� t) offered by
the principal and consider a reallocational manipulation of M proposed by
agent 1. We first define so-called interim efficiency. A reallocational manipula-
tion of M , M̌ , is said to be interim efficient (IE∗) relative to prior µ̂1 if, for some
(w(θ1))θ1∈Θ1 ∈ R

|Θ1|
++ , M̌ solves

(IE∗(µ̂1;M))

max
M̃∈RMM

∑
θ1∈Θ1

w(θ1)

( ∑
θ2∈Θ2

p0
2(θ2)u

M̃
1 (θ1� θ2|θ1� θ2)

)
�

∑
θ2∈Θ2

p0
2(θ2)u

M̃
1 (θ1� θ2|θ1� θ2)(IC1)

≥
∑
θ2∈Θ2

p0
2(θ2)u

M̃
1 (θ′

1� θ2|θ1� θ2) ∀θ1� θ
′
1 ∈ Θ1�

(IC2(µ̂1))∑
θ1∈Θ1

p̂1(θ1)u
M̃
2 (θ1� θ2|θ1� θ2)

≥
∑
θ1∈Θ1

p̂1(θ1)u
M̃
2 (θ1� θ

′
2|θ1� θ2) ∀θ2� θ

′
2 ∈ Θ2�
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(IR2
M̌
(µ̂1))∑

θ1∈Θ1

p̂1(θ1)u
M̃
2 (θ1� θ2|θ1� θ2)

≥
∑
θ1∈Θ1

p̂1(θ1)u
M̌
2 (θ1� θ2|θ1� θ2) ∀θ2 ∈ Θ2�

Next, a reallocational manipulation of M , M̃RSW(M), is said to be RSW ∗

relative to M if M̃RSW(M) = M̄ and, for each θ1 ∈ Θ1, there exists a mechanism
{M̄θ1� M̌θ′

1
}θ′

1∈Θ1\{θ1} that solves

(RSW∗
θ1
(M))

max
M̃∈RMM

∑
θ2∈Θ2

p0
2(θ2)u

M̃
1 (θ1� θ2|θ1� θ2)

subject to (IC1),

(EPIC2)

uM̃
2 (θ̃1� θ2|θ̃1� θ2)≥ uM̃

2 (θ̃1� θ
′
2|θ̃1� θ2) ∀ θ̃1 ∈Θ1� ∀θ2� θ

′
2 ∈Θ2�

(EPIR2
M)

uM̃
2 (θ̃1� θ2|θ̃1� θ2)≥ uM

2 (θ̃1� θ2|θ̃1� θ2) ∀ θ̃1 ∈Θ1� ∀θ2 ∈ Θ2�

Theorem 1∗ of Maskin and Tirole (1992) proves that, if a RSW∗ mecha-
nism is IE∗ relative to some positive prior, then any mechanism that satisfies
(IC) and (IR), and weakly Pareto-dominates the RSW∗ for agent 1 is supported
as an equilibrium of the game where agent 1 proposes a contract to agent 2.
We apply this result to prove Proposition 3. By the hypothesis, there exists an
ex post incentive compatible mechanism M∗ = (q∗� t∗) that implements V ∗ ef-
ficiently. We now construct mechanism M̄ = (q∗� t̄), where

t̄2(θ) := t∗2(θ)+ ρ(θ1)− Eθ̃1
[ρ(θ̃1)]�(25)

where

ρ(θ1) := Eθ̃2

[
v(q∗(θ1� θ̃2))−

∑
i=1�2

t∗i (θ1� θ̃2)

]

and, for agent 1,

t̄1(θ) := −t̄2(θ)+ v(q∗(θ))− Eθ̃1
[ρ(θ̃1)]�(26)
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As can be seen from (26), the transfers sum to a level that ensures an ex post
constant payoff of Eθ̃1

[ρ(θ̃1)] = V ∗ to the principal. Further, these transfers
ensure the same interim payoffs for both agents and the same ex post incentive
for agent 2, as t∗. Hence, M̄ is RCP.

Suppose the principal offers M̄ . By construction, M̄ is ex post incentive com-
patible for agent 2. This means that M̄ satisfies the constraints of (RSW∗

θ1
(M̄))

for each θ1 ∈ Θ1. Hence, each type θ1 of agent 1 can guarantee an interim pay-
off of UM̄

i (θ1) by offering M̄ , i.e., the null side contract, implying that the payoff
for each type of agent 1 from an RSW∗ mechanism relative to M̄ must be at
least that of M̄ . At the same time, the RSW∗ mechanism relative to M̄ must be
a reallocational manipulation of M̄ , so it gives V ∗ to the principal (by design
of t̄), and it must satisfy (IC) and (IR),47 so it must be noncollusive optimal.
Since M̄ has the same allocation rule as M∗, M̄ must also implement V ∗ effi-
ciently. Then the RSW∗ payoff for each type of agent 1 must equal that of M̄ .
Otherwise, there must be a reallocational manipulation of M̄ that gives strictly
higher payoff to some type of agent 1 and no lower payoff to all other types of
agent 1 and all types of agent 2 (since it must satisfy (EPIR2

M̄)) than M̄ does.
Since M̄ is RCP, this implies there exists a mechanism that implements V ∗ but
generates higher total surplus than M̄ , which contradicts the fact that M̄ effi-
ciently implements V ∗. We thus conclude that any RSW∗ allocation relative to
M̄ must yield the same payoff as M̄ for each type of agent 1.

Next, we prove that M̄ is interim efficient relative to some positive prior. To
this end, consider another program,

max
M̃∈RMM̄

∑
θ1∈Θ1

p0
1(θ1)

( ∑
θ2∈Θ2

p0
2(θ2)u

M̃
1 (θ1� θ2|θ1� θ2)

)
�(IE0)

subject to (IC1), (IC2(µ0
1)), (IR2

M̄(µ
0
1)), and

∑
θ2∈Θ2

uM̃
1 (θ1� θ2|θ1� θ2)p

0
2(θ2)≥U1(θ1) ∀θ1 ∈ Θ1�(IR1)

We claim that M̄ solves (IE0). First, since M̄ is noncollusive optimal and
RCP, any reallocational manipulation of M̄ guarantees V ∗ to the principal. If
there exists a mechanism M̃ ∈ RMM̄ that solves (IE0) and yields agent 1 a
higher (ex ante) payoff than M̄ , then M̃ is feasible and Pareto-dominates M̄ ,

47That the RSW∗ mechanism satisfies (IC1) can be checked easily and is established in Proposi-
tion 1 of Maskin and Tirole (1992). That it satisfies (IC2) follows from (EPIC2), which is required
for (RSW∗

θ1
(M̄)). For each θ1 ∈ Θ1, a solution to (RSW∗

θ1
(M̄)) must satisfy (IR) since it satisfies

(EPIR2
M̄

), and we conclude that it must give at least the payoff of UM̄
1 (θ1) ≥ U1(θ1) to agent 1

with type θ1 ∈ Θ1.
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since the former yields agent 2 no less payoff than the latter (due to a constraint
in (IE0)) and yields the principal V ∗ (since M̄ is RCP), which contradicts that
M̄ efficiently implements V ∗. Thus, M̄ must solve (IE0). Let λ(θ1) ≥ 0 denote
the Lagrangian multiplier associated with the constraint (IR1) for type θ1 ∈ Θ1

at the solution. Then (IE0) can be rewritten as

max
M̃∈RMM̄

∑
θ1∈Θ1

(p0
1(θ1)+ λ(θ1))

( ∑
θ2∈Θ2

p0
2(θ2)u

M̃
1 (θ1� θ2|θ1� θ2)

)

subject to

(IC1)� (IC2(µ0
1))� and (IR2

M̄(µ
0
1))�

from which it follows that M̄ solves (IE∗(µ0
1;M̄)) for w1(θ1) := p0

1(θ1)+λ(θ1),
θ1 ∈ Θ1. We thus conclude that M̄ is IE∗ relative to the true prior µ0

1, which is
positive.

Given the grand mechanism M̄ , let M̄ denote the set of all equilibrium out-
comes supported by the passive belief. Theorem 1∗ of Maskin and Tirole (1992)
states that any outcome M ∈ M̄ satisfies (IC1), (IC2(µ0

1)), and (IR2
M̄(µ

0
1)),

and also weakly Pareto-dominates RSW∗ allocation, that is, UM
1 (θ1)≥UM̄

1 (θ1)
∀θ1 ∈Θ1. Hence, any such equilibrium outcome induces both agents to partici-
pate in the grand mechanism M̄ , which yields the payoff of V ∗ for the principal,
given the RCP feature of M̄ . Q.E.D.

APPENDIX C: PROOF OF PROPOSITION 4

The equilibrium strategies, given grand mechanism M∗, are described as fol-
lows: Agent 1 proposes the null side contract and the contract is accepted by
all other agents, after which each agent reports truthfully in M∗. If agent 1 of-
fers a nonnull contract, then each agent best responds to the following off-the-
equilibrium belief: (1) Following agent 1’s deviation, each agent i �= 1 believes
that agent 1 is of such a type that would benefit strictly from deviation and that
any other agent, agent j ( �= 1� i), will accept the deviation offer if he is of such
a type that would be (weakly) better off from accepting it. (2) Following a re-
jection of any side contract proposed by agent 1, each agent holds the passive
belief and reports truthfully when playing M∗, so M∗ is truthfully implemented.

We show that there is no profitable deviation for agent 1. Suppose to the
contrary that a positive measure of types of agent 1 is better off deviating to
propose a nonnull side contract. For the deviation to be profitable, it must be
accepted by a positive measure of other agents’ types that get weakly better
off by doing so, given the specified belief following that deviation. Let Θ1 de-
note the set of agent 1’s types that are deviating and let Θi with i �= 1 denote
the set of agent i’s types that are accepting the deviation. Let Θ := ×n

i=1Θi,



1104 Y.-K. CHE AND J. KIM

and define Θ−i and Θ−i−j as usual. Also, let M̃ = (q̃� t̃) ∈ RMM∗ denote the
mechanism/outcome being implemented via the deviation side contract. Let
ūM
i (θ) := si(q(θ)�θ)+ ti(θ) denote the ex post payoff that arises from outcome

M = (q� t).
For the deviation to be profitable for agent 1 with type θ1 ∈ Θ1, we must

have

E
[
ūM̃

1 (θ̃)1{θ̃−1∈Θ−1} + ūM∗
1 (θ̃)1{θ̃−1 /∈Θ−1}

∣∣θ̃1 = θ1

]
> E[ūM∗

1 (θ̃)|θ̃1 = θ1]�(27)

To understand the second term of the left-hand side, note that the deviation is
rejected if θ̃−1 /∈ Θ−1 and, given the belief in (2), M∗ is truthfully implemented
whenever a rejection occurs. Rewrite (27) as

E
[
ūM̃

1 (θ̃)1{θ̃−1∈Θ−1}
∣∣θ̃1 = θ1

]
> E

[
ūM∗

1 (θ̃)1{θ̃−1∈Θ−1}
∣∣θ̃1 = θ1

]
�

Taking expectations across all types in Θ1, we obtain

E
[
ūM̃

1 (θ̃)1{θ̃∈Θ}
]
> E

[
ūM∗

1 (θ̃)1{θ̃∈Θ}
]
�(28)

For agent i �= 1 with type θi ∈Θi to accept the side contract, we must have48

E
[
ūM̃
i (θ̃)1{θ̃−i∈Θ−i} + ūM∗

i (θ̃)1{θ̃1∈Θ1�θ̃−1−i /∈Θ−1−i}
∣∣θ̃i = θi

]
≥ E

[
ūM∗
i (θ̃)1{θ̃1∈Θ1}

∣∣θ̃i = θi

]
�

which can be rewritten as

E
[
ūM̃
i (θ̃)1{θ̃−i∈Θ−i}

∣∣θ̃i = θi

] ≥ E
[
ūM∗
i (θ̃)1{θ̃−i∈Θ−i}

∣∣θ̃i = θi

]
�

Taking expectations across all types in Θi yields

E
[
ūM̃
i (θ̃)1{θ̃∈Θ}

] ≥ E
[
ūM∗
i (θ̃)1{θ̃∈Θ}

]
�(29)

Summing (28) and (29) across all agents, we obtain

E

[∑
i∈N

ūM̃
i (θ̃)1{θ̃∈Θ}

]
> E

[∑
i∈N

ūM∗
i (θ̃)1{θ̃∈Θ}

]
�

48This inequality can be explained in a similar way to (27). Here, the right-hand side and the
second term of the left-hand side follow from the fact that agent i’s belief in (1) is correct about
what types of agent 1 would make the deviation offer and what types of each agent j �= 1� i would
accept or reject it.
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which implies that

E

[(
v(q̃(θ̃))+

∑
i∈N

si(q̃(θ̃)� θ̃)

)
1{θ̃∈Θ}

]

> E

[(
v(q∗(θ̃))+

∑
i∈N

si(q
∗(θ̃)� θ̃)

)
1{θ̃∈Θ}

]
�

since M∗ satisfies (6) (or (11)) and M̃ ∈RMM∗ . This contradicts (22). Q.E.D.
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