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This paper studies how a recommender system may incentivize users to learn about a product

collaboratively. To improve the incentives for early exploration, the optimal design trades off fully

transparent disclosure by selectively over-recommending the product (or “spamming”) to a fraction

of users. Under the optimal scheme, the designer spams very little on a product immediately after

its release but gradually increases its frequency; and she stops it altogether when she becomes suf-

ficiently pessimistic about the product. The recommender’s product research and intrinsic/naive

users “seed” incentives for user exploration and determine the speed and trajectory of social learn-

ing. Potential applications for various Internet recommendation platforms and implications for

review/ratings inflation are discussed. JEL Codes: D82, D83, M52.

I. Introduction

Most of our choices rely on the recommendations of others. Whether selecting movies,

picking stocks, choosing hotels or shopping online, shared experiences can help us make better

decisions. Internet platforms are increasingly organizing user recommendations for various

products. Amazon (books) and Netflix (movies) are two well-known recommenders, but

there is a recommender for almost any “experience” good: Pandora for music, Google News
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for news headlines, Yelp for restaurants, TripAdvisor for hotels, RateMD for doctors, and

RateMyProfessors for professors, to name just a few. Search engines such as Google, Bing and

Yahoo crowdsource users’ search experiences and “recommend” relevant websites to other

users. Social media such as Facebook and LinkedIn do the same for another quintessential

“experience” good—friends.

These platforms play a dual role in social learning—discovering new information (“explo-

ration”) and disseminating it to users (“exploitation”). How the latter role can be performed

effectively through methods such as collaborative filtering has received ample attention and

remains a primary challenge for recommender systems.1 The former role has received com-

paratively less attention. However, it is also important. Many product titles (e.g., of songs,

movies, or books) are fairly niche and ex ante unappealing2 so that few people will find

them worthwhile to explore on their own even at a zero price.3 Nonetheless, exploring these

products can be socially valuable, as some of them are ultimately worthy of consumption

and their “discovery” will benefit subsequent users. However, the lack of sufficient initial

discovery, known as the “cold start” problem, often leads to the demise of worthy products

and startups. The challenge lies in the fact that users, on whom the recommender relies for

discovery, do not internalize the benefit accruing to future users.

The current paper studies how a recommender may design its policy to overcome that

challenge. Specifically, we consider a model in which a designer (e.g., a platform) decides

whether to recommend a product (e.g., a movie, a song, or breaking news) to users who

arrive continuously after the product’s release. The designer’s recommendation is based

on the information that she collects from internal research or user feedback, both of which

take the form of breakthrough news: when the product is of high quality, the designer

receives a signal confirming it (“good news”) at a Poisson rate proportional to the number

of users having consumed that product. We then identify an optimal recommendation policy,

assuming that the designer maximizes user welfare and has full commitment power. We later

justify these features in the context of Internet recommender systems.

1.Recommenders employ a variety of algorithms to predict users’ preferences based on their consumption
histories, their demographic profiles and their search and click behaviors. The Netflix Prize of 2006–2010
illustrates the challenge associated with finding an efficient algorithm to make accurate predictions (see
https://en.wikipedia.org/wiki/Netflix_Prize). See Schafer et al. (1999) and Bergemann and Ozmen
(2006) for stylized descriptions of collaborative filtering.

2.Obscure titles become increasingly significant due to the proliferation of self-production. For instance,
self-publishing, once considered vanity publishing, has expanded dramatically in recent years with the avail-
ability of easy typesetting and e-books. Bowker Market Research estimates that more than 300,000 self-
published titles were issued in 2011 (New York Times, “The Best Book Review Money Can Buy,” August
25, 2012). While still in its infancy, 3D printing and similar technologies anticipate a future that will feature
an even greater increase in self-manufactured products.

3. For subscribers of the platform, the marginal price of streaming titles is essentially zero. However,
users face the non-zero opportunity cost of forgoing other valuable activities, including streaming other
better-known titles.
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It is intuitive, and shown to be optimal, that a product must be recommended to all

subsequent users if the designer receives good news. The key question is whether and to what

extent she (the designer) should recommend the product even when no news has arrived. This

latter type of recommendation, called “spam,”4 is clearly undesirable from an exploitation

standpoint, but it can be desirable from an exploration standpoint. Indeed, ignoring user

incentives, a classical prescription from the bandit literature calls for a blast of spam, or full

user exploration, even against the interest of the user as long as the designer’s belief about

the product is above a certain threshold. However, such a policy will not work, for users will

ignore the recommendation and refuse to explore if their prior belief is unfavorable. For the

policy to be incentive compatible, the users’ beliefs must be sufficiently favorable toward the

product when called upon to explore that product. The designer can create such beliefs by

sending spam at a suitably chosen rate.

The exact form of spam and its optimal magnitude depends on the specific context.

We explore three different realistic contexts. The first is when the designer can privately

send a personalized recommendation of a product to each agent. In this case, the optimal

policy selects a fraction of randomly-selected agents to receive spam. In the second setting

of interest, the designer’s recommendations become publicly observable to all agents arriving

thereafter. In this case, spam takes the form of an once-and-for-all recommendation campaign

(or product ratings), which lasts for a certain time. The third is when the designer privately

recommends horizontally differentiated products to agents with heterogeneous preferences.

In this setting, the optimal policy determines the breadth of agent types receiving spam on

either product.

For each of these settings, the optimal recommender policy involves hump-shaped dy-

namics. In particular, the optimal recommendation must “start small.” Immediately after

the release of a product, few, if any, will have explored the product, so recommending this

newly released product is likely to be met with skepticism. Therefore, the recommender can

spam very little in the early stages, and learning occurs at a slow pace. Accordingly, the

recommender initially selects a small fraction of agents for personalized recommendations (in

the private recommendation context), a low probability of triggering the once-and-for-all rec-

ommendation campaign (in the public recommendation context), and a narrow bandwidth of

agents for product matching (in the heterogeneous preferences context). Over time, however,

the recommendation becomes credible, so the designer selects a higher fraction of agents, a

higher probability or an increased breadth of agents for spam, depending on the contexts.

Consequently, the pace of learning accelerates. In the first two contexts, the absence of news

eventually makes the recommender sufficiently pessimistic about the product’s quality. At

that point, the designer abandons spam altogether.

4.Throughout this work, the term “spam” means an unwarranted recommendation, more precisely a
recommendation of a product that has yet to be found worthy of said recommendation.
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The main insights and findings are shown to be robust to a number of extensions:

vertical heterogeneity in user preferences, user uncertainty about the product release time,

the presence of behavioral types that follow the designer’s recommendations without any

skepticism, the designer’s investment in learning, and a more general signal structure.

Although our analysis is primarily normative in nature, it has potential applications in

several aspects of Internet platforms. Search engines determine the display order of web pages

based on algorithms such as PageRank, which rely heavily on users’ past search activities.

Hence, they are susceptible to the “entrenchment problem”: the pages that users found

relevant in the past are ranked highly and are thus displayed more prominently, attracting

more visits and reinforcing their prominent rank, whereas newly created sites are neglected

regardless of their relevance. One suggested remedy is the random shuffling of the display

order to elevate the visibility of under-exposed and newly created pages (Pandey et al.,

2005). This is indeed a form of spam, as suggested by our optimal policy. While our analysis

is consistent with this remedy, it also highlights the incentive constraint: the frequency of

random shuffling must be kept at a low level so that the searchers enlisted to “explore” these

untested sites will find them ex ante credible.

A similar concern about user incentives arises when newly launched social media plat-

forms try to recruit users via unsolicited “user-initiated” invites. Some social media sites are

known to have “blasted” invites to a mass of unsuspecting individuals, often unbeknownst

to the inviters through some dubious form of consent.5 Our theory cautions against such

aggressive spam campaigns, for they will undermine the credibility of the recommender. For

invitees to perceive that their acquaintances have initiated unsolicited invites, the frequency

of invites must be kept at a credible level.6

A similar implication can be drawn for reviews/ratings inflation, which is common

in many online purchase sites.7 Ratings are often inflated by sellers—as opposed to the

platforms—who have every reason to promote their products, even against the interests of

consumers.8 However, platforms have instruments at their disposal to control the degree of

ratings inflation, such as filters that detect false reviews, requiring users to verify their pur-

chase before posting reviews and allowing them to vote for “helpful” reviews.9 Our analysis

5. Indeed, users may turn against such social media sites. A class action suit filed under Perkins v.
LinkedIn alleged that LinkedIn’s “Add Connections” feature allowed the platform to scrape users’ email
address books and to send out multiple messages reminding recipients to join these users’ personal networks.
LinkedIn settled the suit for 13 million dollars. See “LinkedIn will pay $13M for sending those awful emails,”
Fortune, 10/5/2015.

6.Note, however, that Section VII.C suggests that such a policy may be optimal for platforms facing a
large fraction of “naive” invitees.

7. Jindal and Liu (2008) find that 60% of the reviews on Amazon have a rating of 5.0, and approximately
45% products and 59% of members have an average rating of 5.

8. Luca and Zervas (2016) suggest that as much as 16% of Yelp reviews are suspected to be fraudulent.
9.Mayzlin et al. (2014) find that Expedia’s requirement that a reviewer verify her stay to review a hotel

4



suggests that some degree of inflation is desirable from the perspective of user exploration,

but keeping inflation under control is in the best interest of the platform/recommender to

maintain its credibility.

Finally, our paper highlights the role of internal research conducted by the recommender.

An example of internal research is Pandora’s music genome project, which famously hires

musicologists to classify songs according to some 450 attributes. While such research is costly,

it can provide significant benefits. As we show below, internal research not only serves as a

substitute for costly user exploration but also enhances the recommender’s credibility and

helps speed/scale up users’ exploration.

The rest of the paper is organized as follows. Section II uses a simple example to

illustrate the main idea of the paper. Section III introduces a model. Sections IV, V, and VI

characterize the optimal policy in three different contexts, serving as main analysis. Section

VII extends the results in a variety of ways. Section VIII describes related literature. Section

IX concludes.

II. Illustrative Example

We begin with a simple example that highlights the main idea of incentivized explo-

ration. Suppose a product, say a movie, is released at time t = 0, and a unit mass of agents

arrive at each time t = 1, 2. The quality of the movie is either “good” (ω = 1), in which

case the movie yields a surplus of 1 to each agent, or “bad” (ω = 0), in which case it yields

a surplus of 0. The quality of the movie is unknown at the time of its release, with prior

p0 := Pr[ω = 1] ∈ [0, 1]. Watching the movie costs each agent c ∈ (p0, 1); thus, without

further information, the agents would never watch the movie.

At time t = 0, the designer receives a signal σ ∈ {g, n} (from its marketing research,

for example) about the quality of the movie with probabilities:

Pr[σ = g | ω] =
{

ρ0 if ω = 1;

0 if ω = 0,

and Pr[σ = n | ω] = 1− Pr[σ = g | ω]. In other words, the designer receives good news only

when the movie is good; but she also may receive no news (even) when the movie is good.10

Suppose the designer has received no news at t = 0 but a fraction α of agents watch the

resulted in fewer false reviews at Expedia compared with TripAdvisor, which has no such requirement.
10. Thus, it follows that the designer’s posterior at time t = 1 on ω = 1 is 1 with a probability of ρ0p

0 (in
the event that she receives good news) and

p1 =
(1− ρ0)p

0

(1− ρ0)p0 + 1− p0
,
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movie at t = 1. Then, the designer again receives conclusively good news with probability:

Pr[σ = g | ω] =
{

α if ω = 1;

0 if ω = 0.

The feature that the signal becomes more informative with a higher fraction α of agents

experimenting at t = 1 captures the learning benefit that they confer to the t = 2 agents.

The designer commits to a recommendation policy that maximizes social welfare. Specif-

ically, she recommends the movie to a fraction of agents in each period based on her infor-

mation at that point in time.11 The designer discounts the welfare in period t = 2 by a

factor δ ∈ (0, 1).

The designer’s optimal policy is then as follows. First, the designer is truthful at time

t = 2, as lying can only reduce welfare and can never improve the incentive for experimen-

tation at t = 1. Consider now time t = 1. If good news has arrived, the designer would

recommend the movie to all agents. Suppose no news has been received but the designer

nevertheless recommends—or “spams”—to a fraction α of the agents. The agents receiving

the recommendation cannot determine whether the recommendation is genuine or spam;

instead, they would form a posterior:

P1(α) :=
ρ0p

0 + αp0(1− ρ0)

ρ0p0 + (1− ρ0p0)α
.

If the designer spams to all agents (i.e., α = 1), then they will find the recommendation

completely uninformative, and hence P1(1) = p0. Since p0 < c, they would never watch the

movie. By contrast, if the designer spams rarely (i.e., α ≃ 0), then P1(α) ≃ 1, i.e., they

will be almost certain that the recommendation is genuine. Naturally, the agents receiving a

recommendation will definitely watch the movie in this case. Because the recommendation

is more credible the less the designer spams, Pi(α) is decreasing in α. In particular, there is

a maximal fraction α̂ =: (1−c)ρ0p0

c(1−ρ0p0)−p0(1−ρ0)
of agents who can be induced to experiment.

Social welfare,

W (α) := p0(ρ0 + (1− ρ0)α)(1− c)(1 + δ)− α(1− p0)c,

with a probability of 1− ρ0p
0 (in the event that she receives no news).

11. The designer would not gain from a stochastic recommendation policy. To see this, compare two choices:
i) the designer recommends the movie to a fraction α of agents, and ii) the designer recommends it to all
agents with probability α. For agents in t = 1, the two options are the same in terms of welfare and thus in
terms of incentives. For agents in t = 2, the good news is learned with probability p0(ρ0+(1−ρ0)α) in either
way. This equivalence means that public recommendation entails no loss. This equivalence holds only because
no experimentation is prescribed in t = 2, and breaks down in our general model where experimentation is
prescribed over a duration of time, with the optimal spammed fraction featuring temporal correlation.
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consists of the benefit from the good movie being recommended (the first term) and the

loss borne by the t = 1 agents from a bad movie being recommended (the second term). In

particular, it also includes the benefit experimentation by the t = 1 agents confers to the

t = 2 agents (captured by the term p0(1− ρ0)α(1− c)δ).

The optimal policy is to spam up to α̂, if W is increasing in α, i.e., if the social value

of experimentation at date 1 justifies the cost:

(1) p0 ≥ p̂0 :=
c

(1− ρ0)(1 + δ)(1− c) + c
.

Note that the right-hand side is strictly less than c when ρ0 <
δ

1+δ
. In that case, if p0 ∈ (p̂0, c),

the designer will spam some of the agents at t = 1 to consume against their myopic interest.

III. Model

Our model generalizes the example in terms of its timing and information structure.

A product is released at time t = 0, and, for each time t ∈ [0,∞), a unit mass of agents

arrives and decides whether to consume the product. The agents are assumed to be myopic

and (in the baseline model) ex ante homogeneous. Consuming the good costs each agent

c ∈ (0, 1), which can be the opportunity cost of time spent or the price charged. The product

is either “good,” in which case each agent derives the (expected) surplus of 1, or “bad,” in

which case the agent derives the (expected) surplus of 0. The quality of a product is a priori

uncertain but may be revealed over time.12 At time t = 0, the probability of the product

being good, or simply “the prior,”is p0. We will consider all values of the prior, although the

most interesting case will be p0 ∈ (0, c), which makes non-consumption myopically optimal.

Agents do not observe previous agents’ decisions or their experiences. Instead, the

designer mediates social learning by collecting information from past agents or her own

research and disclosing all or part of that information to the arriving agents.

The designer’s signal. The designer receives information about the product in the form

of breakthrough news. Suppose a flow of size α ≥ 0 consumes the product over some time

interval [t, t + dt). Then, the designer learns during this time interval that the product is

“good” with probability λ(ρ+α)dt if the product is good (ω = 1) and with zero probability

if the product is not good (ω = 0), where λ > 0 measures the rate at which user consump-

tion produces breakthrough news and ρ > 0 is the rate at which the designer obtains the

12.The agents’ preferences may involve an idiosyncratic component that is realized ex post after consuming
the product; the quality then captures only their common preference component. The presence of an
idiosyncratic preference component does not affect the analysis because each agent must decide based on the
expected surplus that he will derive from his consumption of the product.
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information regardless of the agents’ behaviors.13 In a reduced form, the signal structure de-

scribes the extent to which consumers who explore a product contribute to a recommender’s

learning about that product.14 The “background” learning, parameterized by ρ, can arise

from the designer’s own product research (e.g., Pandora’s music genome project). It may

also arise from a flow of “fans” who do not mind exploring the product; i.e., they face a

zero cost of exploration. The designer begins with the same prior p0 as the agents, and the

agents do not have access to “free” learning.

The designer’s recommendation policy. Based on the information received, the de-

signer provides feedback to the agents. Since agents’ decisions are binary, without loss of

generality, the designer simply decides whether to recommend the product. The designer

commits to the following policy: At time t, she recommends the product to a fraction

γt ∈ [0, 1] of (randomly selected) agents if she learns that the product is good, and she

recommends the product to, or spams, a fraction αt ∈ [0, 1] if no news has arrived by t. The

recommendation is private in the sense that each agent observes only the recommendation

made to him; i.e., he does not observe recommendations made to the others in the past or

present. (We consider public recommendations in Section V.) We assume that the designer

maximizes the intertemporal net surplus of the agents, discounted at rate r > 0, over the

(measurable) functions (α, γ), where α := {αt}t≥0 and γ := {γt}t≥0.

The designer’s beliefs. The designer’s information at time t ≥ 0 is succinctly summarized

by the designer’s belief about ω = 1, which is 1 if good news has arrived by that time

or some pt ∈ [0, 1] if no news has arrived by that time. The “no news” posterior, or simply

posterior pt, must evolve according to Bayes’ rule. Specifically, suppose for time interval

[t, t + dt), (total) exploration occurs at rate µt = ρ + αt, where ρ is background learning

and αt is the flow of agents exploring at time t. If no news has arrived by t + dt, then the

designer’s updated posterior at time t+ dt must be

pt + dpt =
pt(1− λ(ρ+ αt)dt)

pt(1− λ(ρ+ αt)dt) + 1− pt
.

Rearranging and simplifying, the posterior must follow the law of motion:

ṗt = −λ(ρ+ αt)pt(1− pt),(2)

13. Section VII.E extends our model to allow for (conclusively) bad news and (conclusively) good news.
Our qualitative results continue to hold in this more general environment.

14.Avery, Resnick, and Zeckhauser (1999) and Miller, Resnick and Zeckhauser (2004) take a structural
approach to elicit honest reviews via monetary incentives.
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with the initial value at t = 0 given by the prior p0. Notably, the posterior decreases as time

passes, as “no news” leads the designer to become pessimistic about the product’s quality.

Agents’ beliefs and incentives. In our model, agents do not directly observe the de-

signer’s information or her beliefs. However, they can form a rational belief about the

designer’s beliefs. They know that the designer’s beliefs are either 1 or pt, depending on

whether good news has been received by time t. Let gt denote the probability that the de-

signer has received good news by time t. This probability gt is pinned down by the martingale

property, i.e., that the designer’s posterior must, on average, equal the prior:

gt · 1 + (1− gt)pt = p0.(3)

Notably, gt rises as pt falls; i.e., the agents find it increasingly probable that news has arrived

as time progresses.

In addition, for the policy (α, γ) to be implementable, the agents must have an incentive

to follow the recommendation.15 Since the exact circumstances surrounding the recommen-

dation (whether the agents receive the recommendation because of good news or despite no

news) are kept hidden from the agents, their incentives for following the recommendation

depend on their posterior regarding the designer’s information:

qt(pt) :=
gtγt + (1− gt)αtpt
gtγt + (1− gt)αt

.

The denominator accounts for the probability that an agent will be recommended to consume

the product, which occurs if either the designer receives good news (the first term) or the

designer receives no news but selects the agent for spam (the second term); the numerator

accounts for the probability that the agent receives a recommendation when the product is

good. An agent will have an incentive to consume the product, if and only if the posterior

that the product is good is no less than the cost:

qt(pt) ≥ c.(4)

The designer’s objective and benchmarks. The designer chooses a (measurable) pol-

icy (α, γ) to maximize social welfare, namely,

W(α, γ) :=

∫
t≥0

e−rtgtγt(1− c)dt+

∫
t≥0

e−rt(1− gt)αt(pt − c)dt,

15.There is also an incentive constraint for the agents not to consume the product when the designer does
not recommend it. Because this constraint will not be binding throughout—as the designer typically desires
more exploration than the agents—we will ignore it.
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where (pt, gt) must follow the required laws of motion: (2) and (3).16 Welfare consists of the

discounted value of consumption—1 − c in the event of good news and pt − c in the event

of no news—for those the designer recommends to consume the product. To facilitate the

characterization of the optimal policy, it is useful to consider the following benchmarks:

• No Social Learning: The agents receive no information from the designer; hence,

they decide solely based on the prior p0. When p0 < c, no agent consumes.

• Full Transparency: The designer truthfully discloses her information—or her beliefs—

to the agents. Formally, full disclosure is implemented through the policy of γt ≡ 1

and αt = 1{pt≥c}, which fulfills the exploitation goal of the designer, maximizing the

short-term welfare of the agents.

• First-Best Policy: The designer optimizes her policy (α, γ) to maximize W subject

to (2), (3). By ignoring the incentive constraint (4), the first-best captures the classic

tradeoff between exploitation and exploration, as studied in the bandit literature (see

Rothschild (1974) and Gittins et al. (2011)). Comparing first-best and full transparency

thus highlights the designer’s exploration goal.

• Second-Best Policy: In this regime, the focus of our study, the designer optimizes

her policy (α, γ) to maximize W subject to (2), (3) and (4). Comparing second-best

and first-best policies highlights the role of incentives.

Applicability of the model. The salient features of our model conform to Internet plat-

forms that recommend products such as movies, songs, and news headlines. First, the

assumption that the recommender is benevolent is sensible for platforms that derive revenue

from subscription fees (e.g., Netflix and Pandora) or advertising (e.g., Hulu), as maximizing

subscriptions leads them to maximize the gross welfare of users.17

Second, the assumption of recommender commitment power is plausible if the recom-

mender can resist the temptation of over-recommending a product (to a level that would

result in users ignoring its recommendations). A recommender can achieve commitment

power by building a good reputation. If a recommender handles multiple titles, a simple way

to build reputation is to limit the number of titles that it recommends;18 users may then

16.We allow the designer to randomize over (α, γ), although our proof of Proposition 1 in Appendix I
shows that such a policy is never optimal.

17.An Internet platform earning ad revenue from user streaming may be biased toward excessive recom-
mendations. Even such a platform recognizes that recommending bad content will result in users leaving the
platform, and it will try to refrain from excessive recommendations.

18. If the recommender handles many products that are, say, identically distributed with varying release
times, the optimal policy will involve recommending a constant fraction of the products each time. Netflix,
for instance, used to recommend ten movies to a user, and it currently presents a “row” of recommended
movies for each genre.
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“punish” deviation by ignoring future recommendations. Another way to build reputation is

by hardwiring a recommendation technology. For example, Pandora’s music genome project

puts a severe bottleneck on the number of tunes that can be recommended.19

Third, our model does not consider monetary incentives for exploration. Indeed, mon-

etary incentives are rarely used to compensate for the online streaming of movies, music

and news items or for user feedback on these items.20 Monetary incentives are unreliable if

the quality of exploration is difficult to verify. For instance, paying users to stream a movie

or a song or to post a review does not necessarily elicit genuine exploration. Even worse,

monetary incentives may lead to a biased reviewer pool and undermine accurate learning.

Finally, a central feature of our model is “gradual” user feedback, which makes social

learning nontrivial. This feature may result from noise in the reviews due to unobserved

heterogeneity in preferences or from infrequent user feedback, which is particularly the case

with headline-curation and song-selection sites.21

IV. Optimal Recommendation Policy

We now characterize the first-best and second-best policies. We first observe that in

both cases, the designer should always disclose the good news immediately; i.e., γt ≡ 1.

This follows from the fact that raising the value of γt can only increase the value of objective

W and relax (4) without affecting any other constraints. We will thus fix γt ≡ 1 throughout

and focus on the designer’s optimal spam policy α.

Next, by using (3) and γt = 1, the incentive constraint (4) simplifies to:

αt ≤ α̂(pt) := min

{
1,

(1− c)(p0 − pt)

(1− p0)(c− pt)

}
(5)

if pt < c and α̂(pt) := 1 if pt ≥ c. In words, α̂(pt) is the maximum spam that the designer

19.An industry observer comments that “the decoding process typically takes about 20 minutes per song
(longer for dense rap lyrics, five minutes for death metal) and Westergren points out ‘Ironically, I found
over the years that the fact that we couldn’t go fast was a big advantage...The problem that needs solving
for music is not giving people access to 2.5 million songs. The trick is choosing wisely”’ (Linda Tischler,
“Algorhythm and Blues,” 12/01/2005; http://www.fastcompany.com/54817/algorhythm-and-blues).

20.Attempts made in this regard have been limited in scope. For instance, the Amazon Vine Program
rewards selected reviewers with free products, and LaFourchette.com grants discounts for (verified) diners
who write reviews and make reservations via their site. See Avery, Resnick, and Zeckhauser (1999) and
Miller, Resnick and Zeckhauser (2004), who study the design of monetary incentives that encourage users to
share product evaluations.

21.Due to breakthrough news, the mix of news items changes rapidly, making it difficult for users to
send feedback and for the platform to adjust its selection based on their feedback in real time. Likewise, a
significant number of Pandora users use the service while driving or working, which limits their ability to
send feedback (“thumbs up” or “thumbs down”).
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can send, subject to the posterior qt(pt) of the recommended agents being no less than the

cost c. We thus interpret α̂(pt) as the designer’s spamming capacity.

The capacity depends on the prior p0. If p0 ≥ c, then the agents have myopic incentives

to explore, even at the prior. From then on, the designer can keep the agents from updating

their beliefs by simply spamming all agents, inducing full exploration at α̂(pt) = 1 for all

pt.
22 Therefore, (4) is never binding in this case.

By contrast, if p0 < c, the constraint is binding. In this case, it is optimal to set αt =

α̂(pt), which keeps the posterior qt of the recommended agents equal to c. More important,

α̂(pt) < 1 in this case, so not all agents are spammed. Intuitively, if the designer spams

all agents (i.e., α = 1), then they will find the recommendation completely uninformative;

therefore, their posterior equals p0. Since p0 < c, they will never consume the product. By

contrast, if the designer rarely spams (i.e., α ≃ 0), then the posterior of the recommended

agents will be close to 1; i.e., they will be almost certain that the recommendation is genuine.

Naturally, there is an interior level of spam that will satisfy incentive compatibility. The

spamming capacity α̂(pt) is initially zero and increases gradually over time. Immediately

after the product’s release, the designer has nearly no ability to spam because good news

never arrives instantaneously, and the agents’ prior is unfavorable. Over time, however, α̂(pt)

increases because, even when no news is received and pt falls as a result, the arrival of good

news becomes increasingly probable. The designer can thus build her credibility and expand

her capacity to spam as time progresses.

In essence, spamming “pools” recommendations across two very different circumstances:

when good news has arrived, on the one hand, and when no news has arrived, on the other.

Although the agents in the latter case will never knowingly follow the recommendation,

pooling the two circumstances for recommendations enables the designer to incentivize the

agents to explore—as long as the recommendation in the latter circumstance is kept suf-

ficiently infrequent/improbable. Since the agents do not internalize the social benefits of

exploration, spamming becomes a useful tool for the designer’s second-best policy. We next

characterize the optimal recommendation policy.

Proposition 1. (i) The first-best policy prescribes exploration

αFB(pt) =

{
1 if pt ≥ p∗;

0 if pt < p∗,

where

p∗ := c

(
1− rv

ρ+ r(v + 1
λ
)

)
,

22.Of course, this is possible because agents are not told whether the recommendation is the result of
news or simply spam. Formally, the martingale property implies that qt(pt) = p0 if α = 1.
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Figure I: Path of α for (c, ρ, p0, r, λ) = (2/3, 1/4, 1/2, 1/10, 4/5).

and v := 1−c
r

denotes the continuation payoff upon the arrival of good news.

(ii) The second-best policy prescribes exploration at

αSB(pt) =

{
α̂(pt) if pt ≥ p∗;

0 if pt < p∗.

(iii) If p0 ≥ c, then the second-best policy implements the first-best policy, and if p0 <

c, then the second-best policy results in slower exploration/learning than the first-best

policy. Whenever p0 > p∗, the second-best policy induces more exploration/learning than

both no social learning and full transparency.

The first-best and second-best policies have a cutoff structure. They induce maximal

feasible exploration, which equals 1 under the first-best policy and the spamming capacity α̂

under the second-best policy—as long as the designer’s posterior remains above the threshold

level p∗. Otherwise, no exploration is chosen. The optimal policies induce interesting learning

trajectories, which are depicted in Figure I for the case of p0 < c.

The optimality of the cutoff policy and the associated cutoff can be explained by the
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main tradeoff that the designer faces for any given belief p:

λpv

(
1

(λρ/r) + 1

)
︸ ︷︷ ︸

value of exploration

− c− p︸ ︷︷ ︸
cost of

exploration

.(6)

To understand the tradeoff, suppose that the designer induces an additional unit of explo-

ration at p, which entails flow costs for the exploring agents (the second term) but yields

benefits (the first term). The benefits are explained as follows: With probability p, the

product is good, and exploration will reveal this information at rate λ, which will enable the

future generation of agents to collect the benefit of v = (1− c)/r. This benefit is discounted

by the rate 1
(λρ/r)+1

at which the good news will be learned through “background learning,”

even with no exploration. Note that the benefits and the costs are the same under the

first-best and second-best policies.23 Hence, the optimal cutoff p∗ (which equates them) is

the same.

If p0 ≥ c, the designer can implement the first-best policy by simply spamming all

agents as long as pt ≥ p∗. The agents comply with the recommendation because their belief

is “frozen” at p0 ≥ c under that policy. Admittedly, informational externalities are not

particularly severe in this case because early agents will have an incentive to consume on

their own. Note, however, that full transparency does not implement the first-best policy

in this case, as agents will stop exploring once pt reaches c. In other words, spamming is

crucial to achieve the first-best, even in this case.

In the more interesting case with p0 < c, the second-best policy cannot implement the

first-best policy. In this case, the spamming constraint for the designer is binding. As seen

in Figure I, spamming capacity is initially zero and increases gradually. Consequently, ex-

ploration starts very slowly and builds up gradually over time until the posterior reaches the

threshold p∗, at which point the designer abandons exploration. Throughout, the exploration

rate remains strictly below 1. In other words, learning is always slower under the second-best

policy than under the first-best policy, even though the total exploration is the same (due

to the common threshold). Since the threshold belief is the same under both regimes, the

agents are encouraged to experiment longer under the second-best regime than under the

first-best regime, as Figure I shows. In either case, as long as p0 > p∗, the second-best policy

implements higher exploration/learning than either no social learning or full transparency,

outperforming each of these benchmarks.

Comparative statics reveal further implications. The values of (p0, ρ) parameterize the

severity of the cold start problem facing the designer. The lower these values, the more

23. In particular, the benefit of forgoing exploration, i.e., relying solely on background learning, is the
same under both regimes. This feature does not generalize to some extensions, as noted in Sections VII.A
and VII.E.
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Figure II: (Second-best) spamming as a function of ρ (here,
(k, ℓ0, r, λ) = (2/5, 1/3, 1/2, 1)). The dots on the x axis indicate stopping times

under the first-best policy.

severe the cold start problem. One can see how these parameters affect optimal exploration

policies and the speed of social learning.

Corollary 2. (i) As p0 increases, the optimal threshold remains unchanged in both the

first-best and the second-best policies. The learning speed remains the same in the first-

best policy but increases in the second-best policy.

(ii) As ρ increases, the optimal threshold p∗ increases, and the total exploration decreases

under both the first-best and the second-best policies. The speed of exploration remains

the same in the first-best policy but increases in the second-best policy, provided that

p0 < c.24

Unlike under the first-best policy, the severity of the cold start problem affects the rate of

exploration under the second-best policy. Specifically, the more severe the cold start problem

is, in the sense of (p0, ρ) being smaller, the more difficult it is for the designer to credibly

spam the agents, thereby reducing the rate of exploration that the designer can induce.

In our model, background learning seeds the exploration; for example, if ρ = 0, the

designer has no credibility, and no exploration ever takes place. This observation has cer-

tain policy implications. For example, Internet recommenders such as Pandora make costly

investments to raise ρ, which can help the social learning in two ways. First, as shown by

24.Recall that we are assuming that ρ > 0. If ρ = 0, then no exploration can be induced when p0 < c.
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Corollary 2-(ii), such investments act as a “substitute” for agents’ exploration.25 This sub-

stitution helps lower the exploration costs of agents and speeds up learning in the second-best

regime, particularly in the early stages when incentivizing user exploration is costly. Second,

the designer investments have an additional benefit in the second-best regime: background

learning makes spamming credible, which allows the designer to induce a higher level of user

exploration at each t. Importantly, this effect is cumulative, or dynamically multiplying,

as increased exploration makes subsequent spamming more credible, which in turn enables

further exploration. Figure II shows that this indirect effect can accelerate social learning

significantly: as ρ rises, the time required to reach the threshold belief is reduced much more

dramatically under the second-best policy than under the first-best policy. We will see in

Section VII.D how this effect causes the designer to front-load background learning when

she chooses it endogenously (at a cost).

V. Public Recommendations

Thus far, we have assumed that recommendations are private and personalized, mean-

ing that agents can be kept in the dark about the recommendations that other users have

received. Such private/personalized recommendations are an important part of the Internet

recommender system; Netflix and Pandora make personalized recommendations based on

their users’ past viewing and listening histories, respectively. Likewise, search engines per-

sonalize the ranking of search items based on users’ past search behaviors. However, some

platforms make their recommendations public and thus commonly observable to all users.

The case in point are product ratings. Ratings provided by Amazon, Yelp, Michelin, and

Parker on books, restaurants and wines are publicly observable. In this section, we study

the case in which the designer’s recommendation at each time becomes publicly observable

to all agents who arrive thereafter.26

Public recommendations are clearly not as effective as private recommendations in terms

25. Indeed, an increase in ρ raises the opportunity costs of exploration, calling for its termination at a
higher threshold under both the first-best and the second-best policies.

26. In practice, users can access past ratings directly or indirectly through search engines. For instance,
Amazon makes all reviews visible to users; Yelp explicitly allows users to see monthly ratings trends for each
restaurant, which often span many years. Whether users can observe past and current recommendations
is an important consideration for our analysis. Public recommendations restrict the designer because they
give the agents the ability to observe, and draw inferences from, past recommendations, and not simply
because agents from a given cohort get a common recommendation. Indeed, if agents do not see past
recommendations, there are ways for the designer to get around the latter constraint only, and implement
optimal private recommendations, as described in Section IV. For instance, to spam one out of seven users,
the designer can divide each interval [t, t + dt) into seven equal-sized subintervals, pick one at random and
spam only those users arriving in that subinterval. This policy is clearly incentive compatible (an agent is
unable to discern whether he is being targeted at random or good news has arrived) and achieves virtually the
same payoff as the optimal private recommendation with an arbitrarily “fine” partitioning of time intervals.
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of incentivizing user exploration. Indeed, the optimal private recommendation identified

earlier is not incentive compatible when made public. If only some fraction of users are

recommended to explore, the action reveals the designer’s private information, and users

will immediately recognize that the recommendation is merely spam and thus ignore the

recommendation. Hence, if the designer wishes to trigger user exploration, she must adopt a

different approach. We show that although spam becomes less effective as an incentive when

recommendations are public, it is still part of the optimal policy.

To focus on a nontrivial case, we assume p∗ < p0 < c, where p∗ is the threshold belief

under the first-best and second-best private recommendation policies (defined in the previous

section).27 As we show below, given this assumption, the designer can still induce agents to

explore through a public recommendation policy, but the policy must be random.

To begin, observe first that if the designer receives news at any point in time, she will

thereafter recommend the product to all agents. Plainly, the sharing of good news can only

increase agents’ welfare and relax their incentives, just as before.

Next, to see why the recommendation policy must be random, suppose that the designer

commits to spamming—i.e., to recommend the product to users despite having received no

news—at some deterministic time t for the first time. Since the recommendation is public,

all agents observe it. Since the probability of the good news arriving at time t, conditional

on not having done so before, is negligible, the agents will put the entire probability weight

on the recommendation being merely spam and ignore it. Hence, deterministic spam will not

work. Consider the random policy described by F (t), the probability that the designer starts

spam by time t. Here, we heuristically derive F (t), taking several features of the optimal

policy as a given. Appendix II will establish these features carefully.

First, if the designer’s belief falls below p∗ at any point in time, assuming that no

news has been received by then, the designer will stop exploration (or cease spamming).

This follows from the optimal tradeoff between exploitation and exploration identified earlier

under the optimal (private) recommendation policy. Let t∗ be the time at which the designer’s

posterior reaches the threshold belief p∗, provided that no agents have experimented and

news has never been received.28 Clearly, if the designer does not trigger spam by time t∗, she

will not trigger spam after that time, which implies that the distribution F is supported at

[0, t∗]. Second, once the optimal policy sends spam to all agents at some random time t < t∗,

continuing to spam thereafter does not change the agents’ beliefs; the agents have no grounds

to update their beliefs. Hence, once they have incentives to explore, all subsequent agents

27. If either p0 ≥ c or p0 ≤ p∗, the first-best policy is achievable via the public recommendation policy. In
the former case, the designer can spam fully until her belief reaches the threshold p∗; then, the agents do
not update their beliefs, and they are therefore happy to follow the designer’s recommendation. In the latter
case, the first-best policy prescribes no exploration, which is trivial to implement.

28.More precisely, t∗ = − 1
λρ ln

p∗/(1−p∗)
p0/(1−p0) , according to (2) with αt = 0.
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will have the same incentive. Consequently, the optimal policy will continue recommending

the product until the designer’s belief falls to p∗.

Given these features, the distribution F must be chosen to incentivize users to explore

when they are recommended to do so for the first time. To see how, we first obtain the

agents’ belief

qt =
p0e−λρt(λρ+ h(t))

p0e−λρt(λρ+ h(t)) + (1− p0)h(t)
,

upon being recommended to explore for the first time, where h(t) := f(t)/(1 − F (t)) is the

hazard rate of starting spam. This formula is explained by Bayes’ rule. The denominator

accounts for the probability that the recommendation is made for the first time at t either

because the designer receives news at time t (which occurs with probability λρp0e−λρt) or

because the random policy F triggers spam for the first time at t without having received

any news (which occurs with probability (p0e−λρt+1−p0)h(t)). The numerator accounts for

the probability that the recommendation is made for the first time at t and that the product

is good. For the agents to have incentives to explore, the posterior qt must be no less than

c, a condition which yields an upper bound on the hazard rate:

h(t) ≤ λρp0(1− c)

(1− p0)(c− (1− c)eλρt)− p0(1− c)
.

Among other things, this implies that the distribution F must be atomless. As is intuitive

and formally shown in Appendix II, the incentive constraint is binding for the optimal

policy (i.e., qt = c), which gives rise to a differential equation for F , alongside the boundary

condition F (0) = 0.29 Its unique solution is

F (t) =
p0(1− c)(1− e−λρt)

(1− p0)c− p0(1− c)e−λρt
,(7)

for all t < t∗. Since the designer never spams after t∗ (when p = p∗ is reached), F (t) = F (t∗)

for t > t∗.

Examining F reveals various features of the optimal policy. First, as with private

recommendation, the exploration under the second-best policy is single-peaked, though in a

probabilistic sense. The expected exploration starts “small” (i.e., F (t) ≈ 0 for t ≈ 0) but

accelerates over time as the designer’s credibility increases (i.e., F (t) is strictly increasing as

t increases), and it stops altogether when p∗ is reached.

While spam is part of the optimal public recommendation, its randomness makes it

less effective at converting a given probability of good news into incentives for exploration,

29.As mentioned earlier, qt remains frozen at c from then on (until exploration stops).
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leading to a reduced level of exploration. This reduced effectiveness can be seen as follows:

F (t) =
(1− c)p0 − (1− c)p0e−λρt

(1− p0)c− (1− c)p0e−λρt
<

(1− c)p0 − (1− c)pt
(1− p0)c− (1− c)pt

<
(1− c)(p0 − pt)

(1− p0)(c− pt)
= α̂t,

where both inequalities use p0 < c, and the first follows from pt = p0e−
∫ t
0 λ(ρ+αt)dt < p0e−λρt.

Consequently, the rate of exploration is, on average, slower under public recommendations

than under private recommendations:

Proposition 3. Under the optimal public recommendation policy, the designer recommends

the product at time t if good news is received by that time. If good news is not received

and a recommendation is not made by time t ≤ t∗, the designer triggers spam according

to F (t) in (7), and the spam lasts until her belief reaches p∗ in the event that no good news

arrives by that time. The induced exploration under optimal public recommendations is,

on average, slower—and the level of welfare attained is strictly lower—than that under

optimal private recommendations.

A direct computation shows that F (t) is increasing in p0 and ρ, leading to the compar-

ative statics similar to Corollary 2:

Corollary 4. As p0 or ρ increases, the rate of user exploration increases under optimal

public recommendations.

As before, these comparative statics suggest the potential role of product research by the

designer.

VI. Matching Products to Consumers

Categorizing products has become an important tool that online recommenders use to

inform users about their characteristics and to identify target consumers. In the past, movies

and songs were classified by only a handful of genres; now recommenders categorize them into

numerous sub-genres that match consumers’ fine-grained tastes.30 In this section, we show

how a designer can match a product to the right consumer type through user exploration.

To this end, we modify our model to allow for horizontal preference differentiation. As

before, a product is released at t = 0, and a unit mass of agents arrives at every instant

30.Netflix has 76,897 micro-genres to classify the movies and TV shows available in their library (see
“How Netflix Reverse Engineered Hollywood,” The Atlantic, January, 2014). For example, a drama may
now be classified as a “Critically-acclaimed Irreverent Drama” or a “Cerebral Fight-the-System Drama,” and
a sports movie may be classified as an “Emotional Independent Sports Movie” or a “Critically-acclaimed
Emotional Underdog Movie.” Likewise, Pandora classifies a song based on 450 attributes (“music genes”),
leading to an astronomical number of subcategories.
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t ≥ 0. However, the agents now consist of two different preference types, type a and type b,

with masses ma and mb, respectively. We assume that mb > ma = 1−mb > 0.31

The agent types are known to the designer from, say, their past consumption histories.

However, the product’s fit with each type is initially unknown, and the designer’s objective

is to discover the fit so that she can recommend it to the right type of agent. Specifically,

the product is of type ω ∈ {a, b}, which constitutes the unknown state of the world. A

type-ω agent enjoys the payoff of 1 from a type-ω product but 0 from a type-ω′ product,

where ω ̸= ω′ ∈ {a, b}.32 The common prior belief is p0 = Pr[ω = b] ∈ [0, 1]. At any point,

given belief p = Pr[ω = b], a type-b agent’s expected utility is p, while a type-a agent’s

expected utility is 1− p. We call them the product’s expected fits for the two types. The

opportunity cost for both types is c > 0. Therefore, each agent is willing to consume the

product if and only if its expected fit is higher than the cost.

Through consumption, an agent learns whether the product matches his taste; if so,

he reports satisfaction at rate λ = 1. As before, the designer receives feedback in the form

of conclusive news, with arrival rates that depend on the agents’ exploration behaviors.

Specifically, if fractions (αa, αb) of type-a and type-b agents explore, then the designer learns

that the product is of type ω = a, b at the Poisson rate αωmω. (For the sake of simplicity,

we assume that there is no background learning.) Hence, if the product type is not learned,

the belief p drifts according to

ṗ = p(1− p)(αama − αbmb).

Note that the designer’s belief can drift up or down depending on how many agents of each

type are exploring. In particular, if both types explore fully (αa = αb = 1) but no feedback

occurs, the designer’s belief that the product is of type b decreases at a rate proportional to

mb −ma.

Under full transparency, agents will behave optimally given the correct belief: a type-b

agent (type-a agent) will consume if and only if p ≥ c (1− p > c ⇔ p < 1− c), as depicted

in Figure III.

We next consider the first-best and second-best policies, under the assumption that

c < 1/2. This latter assumption means that the product is so popular that both types of

agents are willing to consume it even when uncertainty is high (denoted the “overlapped”

31. If ma = mb, the optimal policy remains the same (as described in Proposition 6), except that beliefs
do not drift when all agents experiment.

32. The current model can be seen as a simple variation of the baseline model. If both types value the
product more highly, say, in state ω = b than in state ω = a, then preferences are vertical, as in the baseline
model. The key difference is that the preferences of the two types are horizontally differentiated in the
current model.

20



ma

mb

0 c 1

2
1− c 1

Figure III: Rates of exploration by two types of agents under full
transparency.

region in Figure III, which includes p = 1/2).33

As before, if the designer receives news, sharing that news is trivially optimal. Hence, a

policy is described by a pair (αa, αb) of spamming rates for the two types—the probabilities

with which alternative types are recommended to consume in the event of no news—as a

function of p.

Lemma 5. The first-best policy is characterized by two thresholds, p and p̄, with 0 < p <

c < 1− c < p̄ < 1, such that

(αFB
a , αFB

b ) =


(1, 0), for p < p,

(1,ma/mb), for p = p,

(1, 1), for p ∈ (p, p̄],

(0, 1), for p ∈ (p̄, 1].

The logic of the first-best policy follows the standard exploration–exploitation tradeoff.34

The policy calls for each type to explore the product as long as its expected fit exceeds

a threshold: p for type b and 1 − p̄ for type a. Due to the informational externalities,

these thresholds are lower than the opportunity costs. In other words, the policy prescribes

exploration for a type even when the product’s expected fit does not justify the opportunity

cost. As seen in Figure IV (compared with Figure III), the first-best policy results in wider

exploration than full transparency.

Some features of the policy are worth explaining. The designer’s belief drifts to p from

33. If c > 1/2, no learning occurs if the prior is in the range of [1 − c, c], as neither type is willing to
consume. For more information on the case of a unpopular product, see the proof of Lemma 5 in Section
C.1 of the Supplementary Material, which treats both c < 1/2 and c > 1/2.

34. The current model resembles that of Klein and Rady (2011), who study two players strategically
experimenting with risky arms that are negatively correlated. Lemma 5 is similar to their planner’s problem.
The difference is that we allow for asymmetry in the size of the two agent types in our model. Of course, the
main analyses are quite distinct: we focus on an agency problem, whereas they focus on a two-player game.
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Figure IV: Rates of exploration by two types of agents under the first-best
policy.

either side (as depicted by the arrows in Figure IV), unless conclusive news arrives. The

reason is that mb > ma, which results in a downward drift of belief when both types of agents

explore. The behavior at p = p is also of interest. In this case, all type-a agents consume,

but only a mass ma of the type-b agents do, so that the belief remains constant without any

updating. However, learning does not stop. Eventually, the product type will be revealed

with probability one.

Not surprisingly, the first-best policy may not be incentive compatible. The second-best

policy illustrates how incentive considerations affect the optimal policy.

Proposition 6. The second-best policy is described as follows:

(i) If p0 < c, then αSB
t = (αSB

a , αSB
b ) = (1, 0) until pt (which drifts up) reaches c;

thereafter, the first-best policy is followed.

(ii) If p0 > 1− c, then αSB
t = (0, 1) until pt (which drifts down) reaches 1− c; thereafter,

the first-best policy is followed.

(iii) If p0 ∈ [c, 1− c], then the first-best policy is followed.

If p0 ∈ [c, 1− c], the first-best policy is incentive compatible. Since both types of agents

initially have incentives to explore, being told to explore is (weakly) good news (meaning

that the designer has not learned that the state is unfavorable). By contrast, if p0 ̸∈ [c, 1−c],

the first-best policy may not be incentive compatible.

Suppose, for instance, that p0 < c. In this case, type-b agents will refuse to explore.

Therefore, only type-a agents can be induced to explore. We explain the second-best policy in

this case with the aid of two graphs: Figure V, which tracks evolution of the designer’s belief,

and Figure VI, which tracks the evolution of agents’ beliefs, both assuming no breakthrough

news. Since only type-a agents explore in the initial phase (times t ≤ 1), the designer’s belief

will drift up as long as no news obtains, as seen in Figure V (left panel). During this phase,
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Figure V: Evolution of the designer’s belief, first when only type-a agents
explore (left panel) and then when all agents do (right panel).

type-a agents are recommended the product regardless of whether the designer learns the

state is a, so the induced belief remains constant for both types.35

Next, suppose the designer’s belief reaches pt = c. Thereafter, the first-best policy

becomes incentive compatible. The reason is that, alhough the belief drifts down thereafter,

as depicted in Figure V (right panel), the designer can induce both types to become optimistic

about the product’s fitness for them by simply recommending the product to them. A type-a

agent becomes more optimistic (the belief drifts down), since she knows that type-b agents

might be exploring, and were the true state known to be b, she would be told not to consume.

Hence, being told to explore is good news. Meanwhile, a type-b agent’s optimism jumps up

to q(pt) = c at time t = 2 because being told to explore is proof that the designer has not

learned that the state is a. Thereafter, a type-b agent becomes more optimistic (her belief

drifts up) because being told to explore means that the designer has not learned that the

state is a. At some point (t = 5), the designer’s belief reaches p. Because only a fraction of

type-b agents get spammed, being told to explore is another piece of good news (suggesting

that perhaps the designer has learned that the state is b). Type-b agents’ belief jumps

up and drifts up further from then on. To foster such optimism for both types of agents,

the designer simply needs to keep the recommended agents uninformed about whether the

recommendation is genuine or spam and about which recommendation is made to the other

agents.36

The optimal policy shares some common features with that in our baseline model.

First, the second-best policy induces wider user exploration than would be possible under

full transparency. In particular, once pt drifts below c, type b-agents will never explore under

full transparency, but they will continue to explore under the second-best policy. Second,

compared with the first-best policy, the scope of early exploration is “narrower”; the explo-

ration begins with the most willing agents with a high expected fit—type-a agents in the

case of p0 < c—and then gradually spreads to the agents who are initially less inclined to

explore, which is a manifestation of “starting small” in the current context.

35.Recall that the designer can never learn that the state is b if only type-a agents explore.
36. The divergence of the beliefs held by the two types of agents is sustained only through private recom-

mendations. Hence, the optimal policy cannot be implemented through a public recommendation.
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Figure VI: Evolution of agents’ beliefs when the designer receives no news
(c = 2/5,mb = 2/3,ma = 1/3): in red, the type-a agent’s belief; in blue, the

type-b agent’s belief; in green, the designer’s belief.

VII. Extensions

We now extend the baseline model analyzed in Section IV to incorporate several addi-

tional features. The detailed analysis is provided in Section D of the Supplementary Material;

here, we illustrate the main ideas and results.

VII.A. Vertically Heterogeneous Preferences

The preceding section considers agents whose preferences are horizontally differentiated.

Here, we consider agents whose preferences are vertically differentiated. Suppose that the

agents have two possible opportunity costs: 1 > cH > cL > p0. (As in the baseline model,

we assume background learning at rate ρ > 0.) A low-cost agent is more willing to explore

the product than a high-cost agent, so the model captures the vertical heterogeneity of

preferences. As in the preceding section, we assume that the designer observes the type of the

agent from, say, his past consumption history.37 For instance, the frequency of downloading

or streaming movies may indicate a user’s (opportunity) cost of exploration. We illustrate

how the designer tailors her recommendation policy to each type in this case.

37. If the designer cannot infer the agents’ costs, then her ability to induce agents to explore is severely
limited. Che and Hörner (2015) show that if the agents have private information over costs drawn uniformly
from [0, 1], then the second-best policy reduces to full transparency, meaning that the designer will never
spam.
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To begin, one can extend the incentive constraint (4) to yield the spamming capacity

for each type:

α̂i(pt) :=
(1− ci)(p

0 − pt)

(1− p0)(ci − pt)
,

for i = L,H. In other words, each type i = H,L can be spammed with a probability of at

most α̂i(pt), given designer’s belief pt. Note that α̂L(pt) > α̂H(pt), so a low-cost type can

be spammed more than a high-cost type. The optimal policies are again characterized by

cutoffs:

Proposition 7. Both the first-best and the second-best policies are characterized by a pair

of thresholds 0 ≤ pL ≤ pH ≤ p0, such that each type i = L,H is asked to explore

with maximal probability (which is one under the first-best policy and α̂t(pt) under the

second-best policy) if pt ≥ pi, and zero exploration otherwise. The belief threshold for

the low type is the same under the two regimes, but the threshold for the high type is

higher under first-best policy than under the second-best policy.

The overall structure of the optimal policy is similar to that of the baseline model:

the policy prescribes maximal exploration for each type until her belief reaches a threshold

(which is below its opportunity cost), and the maximal exploration under the second-best

policy “starts small” and accelerates over time. Consequently, given a sufficiently high prior

belief, both types are initially induced to explore. The high type’s threshold is reached first,

and from then on only the low type explores. Next, the low type’s threshold is reached, at

which point all exploration stops.

The tradeoff facing the designer with regard to the low type’s marginal exploration is

conceptually the same as before, which explains why the low type’s threshold is the same

under both the first-best and the second-best policies. However, the tradeoff with regard to

the high type’s marginal exploration is different. Unlike the baseline model, stopping the

high type’s exploration does not mean stopping all users’ exploration; it means that only

the low type will explore thereafter. This has several implications. First, the high type

will explore less, making the threshold higher, compared with the case in which only the

high type can explore (a version of the baseline model). Second, this also explains why the

high type will explore more under the second-best policy than under the first-best policy.

The binding incentive constraint means that the low-cost type’s exploration will be lower

under the second-best policy, so the consequence of stopping the high-cost type’s exploration

is worse under the second-best policy than under first-best policy. Third, the high type’s

exploration makes the arrival of news more plausible, thus making the recommendation for

the low type more credible. Hence, the designer “hangs on” to the higher-cost type longer

than she does under the first-best policy.38

38.Che and Hörner (2015) show that this structure holds more generally, for instance, when agents’ costs
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VII.B. Calendar Time Uncertainty

We have thus far assumed that agents are perfectly aware of the calendar time. As we

argue, relaxing this assumption makes it easier for the designer to spam the agents. Indeed,

if they are a priori sufficiently unsure about how long exploration has been occurring, the

designer can achieve the first-best policy. Roughly speaking, uncertainty regarding calendar

time allows the designer to further cloud the meaning of a “consume” recommendation, as

she can shuffle not only histories of a given length (some when she has learned the state,

others when she has not) but also histories of different lengths.

A simple way to introduce calendar time uncertainty is to assume that the agents do

not know when they have arrived relative to the product’s release time. In keeping with

realism, we assume that the flow of agents “dries out” after a random time τ following an

exponential distribution with parameter ξ > 0.39

From the designer’s point of view, ξ is an “additional” discount factor to be added to r,

their original discount rate. Hence, the first-best policy is the same as in the baseline model,

adjusting for this rate. In particular,

p∗ = c

(
1− (r + ξ)v

ρ+ (r + ξ)(v + 1
λ
)

)
,

where v := 1−c
r+ξ

.

The following formalizes the intuition that, provided that the prior belief about calendar

time is sufficiently diffuse, the designer is able to replicate the first-best policy.

Proposition 8. There exists ξ̄ > 0 such that, for all ξ < ξ̄, the first-best policy is incentive

compatible.

This result suggests that it is easier to incentivize users to explore a product that has a

long shelf life or a priori durable appeal than a product that does not. The intuition is as

follows. An agent will have a stronger incentive to explore when it is more likely that she

has arrived after the exploration phase is complete—i.e., after the designer’s belief will have

reached p∗ absent any good news—as any recommendation made in the post-exploration

phase must be an unambiguously good signal about the product. A longer shelf life ξ for

are continuous, as drawn from an interval.
39.An alternative modeling option would be to assume that agents hold the improper uniform prior on

the arrival time. In that case, the first-best policy is trivially incentive compatible, as an agent assigns
probability one to an arrival after the exploration phase is over. Not only is an improper prior conceptually
unsatisfying, but it is also more realistic that a product has a finite (but uncertain) “shelf life,” which is
what the current assumption amounts to—namely, the product’s shelf life expires at τ . Agents do not know
τ or their own arrival time: conditional on {τ = t} (which they do not know), they assign a uniform prior
over [0, t] on their arrival time.
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the product means not only that both the exploration and the post-exploration phases are

longer but also that the agents will put a comparatively higher probability on arriving in the

second phase.

VII.C. Naive Agents

In practice, some users are naive enough to follow the platform’s recommendation with-

out any skepticism. Our results are shown to be robust to the presence of such naive agents,

with a new twist. Suppose that a fraction ρn ∈ (0, 1) of the agents naively follow the de-

signer’s recommendation. The others are rational and strategic, as has been assumed thus

far; in particular, they know about the presence of the naive agents and can rationally re-

spond to the recommendation policy with the knowledge of their arrival time. The designer

cannot tell naive agents apart from rational agents. For simplicity, we now assume no back-

ground learning. Intuitively, the naive agents are similar to fans (background learning) in

our baseline model, in the sense that they can be called upon to seed social learning at the

start of product life. However, naive agents are different from fans in two ways. The naive

agents incur positive costs c > 0, so their learning is not free, which affects the optimal rec-

ommendation policy. Second, their exploration can only be triggered by the designer, and

the designer, due to her inability to separate them, cannot selectively recommend a product

to them.40

The designer’s second-best policy has the same structure as before: at each time t,

absent any news, she spams a fraction αt ∈ [0, 1] of randomly selected agents to explore,

regardless of their types. (She recommends to all agents upon the receipt of good news.)

Due to the presence of naive agents, the designer may now spam at a level that may fail

the rational agents’ incentive constraint. Given policy αt, mass ρnαt of naive agents will

explore, and mass (1− ρn)αt of rational agents will explore if and only if αt ≤ α̂(pt), where

α̂(pt) is defined in (5). Since the rational agents may not follow the recommendation, unlike

the baseline model, the mass of agents who explore may differ from the mass of those who

receive spam. Clearly, the most the designer can induce to explore is

ê(pt) := max{ρn, α̂(pt)} ≥ ρnαt + (1− ρn)αt · 1{αt≤α̂(pt)}.

Proposition 9. In the presence of naive agents, the second-best policy induces exploration

at rate

eSB(pt) =

{
ê(pt) if pt ≥ p∗;

0 if pt < p∗,

where p∗ is defined in Proposition 1—but with ρ = 0.

40.We assume that the naive agents are still sophisticated enough to mimic what rational agents would
say when the designer asks them to reveal themselves.
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The presence of naive agents adds an interesting feature to the optimal policy. To

explain, assume that p∗ < p0 < c. Recall that α̂(pt) ≈ 0 < ρn for t ≈ 0, implying that

ê(pt) = ρn in the early stages, meaning that the optimal policy always begins with a “blast”

of spam to all agents; i.e., αSB
t = 1. Of course, the rational agents will ignore the spam, but

the naive agents will listen and explore. Despite their naiveté, their exploration is real, so

the designer’s credibility and her capacity α̂(pt) to spam the rational agents increase over

time. If ρn < α̂(p∗), then α̂(pt) > ρn for all t > t̂, where t̂ ∈ (0, t∗) is such that ρn = α̂(pt̂).
41

This means that, starting at t̂, the designer switches from blasts of spam to a more controlled

spam campaign at αt = α̂(pt), targeting rational agents (as well as naive ones). If ρn ≥ α̂(p∗),

however, the designer will keep on blasting spam to all agents and thus rely solely on the

naive agents for exploration (until she reaches p∗).

The blasting of spam in the early phases is reminiscent of aggressive campaigns often

observed when a new show (e.g., a new original series) or a new platform is launched. While

such campaigns are often ignored by sophisticated users, our analysis shows that they can

be optimal in the presence of naive users.

VII.D. Costly Product Research

For platforms such as Pandora and Netflix, product research by the recommender con-

stitutes an important source of background learning. Product research may be costly for a

recommender, but as highlighted earlier, it may contribute to social learning. To gain more

precise insights into the role played by the recommender’s product research, we endogenize

background learning. Specifically, we revisit the baseline model, except now that the de-

signer chooses the background learning ρt ≥ 0 at the flow cost of c(ρt) := ρ2t at each time

t ≥ 0. While a closed-form solution is difficult to obtain, a (numerical) solution for specific

examples provides interesting insights. (The precise formulation and method of analysis are

detailed in Section D.4 of the Supplementary Material.)

Figure VII illustrates the product research under second-best policy and full trans-

parency.

In this example, as in the baseline model, user exploration αt follows a hump-shaped

pattern; it starts small but accelerates until it reaches a peak, after which it completely

ceases. The intuition for this pattern is the same as before. The interesting new feature is

the front-loading of the designer’s product research ρSBt . As can be seen in Figure VII, ρSBt
is highest at t = 0 and falls gradually. Eventually the product research stops, but well after

user exploration stops.42

41.The threshold time t∗ is the same as that defined in Section IV, except that ρ = 0.
42. The latter feature may be surprising because our cost function satisfies c′(0) = 0. In this example,

designer learning eventually stops because the benefit of product research decreases exponentially as pt
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Figure VII: Functions ρ and α (Here, r = .01, λ = .01, c = .6, p0 = .5).

The front-loading of ρ reflects three effects. First, the marginal benefit from learning is

high in the early phases when the designer is most optimistic. Second, as noted earlier, the

designer’s learning and the agents’ exploration are “substitutes” for learning, and the value

of the former is particularly high in the early phases when the latter is highly constrained.

Third, background learning increases the designer’s capacity to credibly spam the agents,

and this effect is strongest in the early phases due to its cumulative nature mentioned earlier.

These three effects are seen more clearly via comparison with the full-transparency

benchmark, where the designer optimally chooses its research (denoted in Figure VII by

ρFT
t ) against agents choosing αt ≡ 0, their optimal behavior under full transparency. The

first two effects are present in the choice of ρFT
t . In fact, the substitute effect is even stronger

here than in the second-best policy because agents never explore here, which explains why ρFT
t

exceeds ρSBt for a wide range of t. Very early, however, the third effect—relaxing the incentive

constraint—proves quite important for the second-best policy, which is why ρSBt > ρFT
t for

a very low t. In short, the front-loading of designer learning is even more pronounced in

the second-best policy compared with the full-transparency benchmark due to the incentive

effect.43

approaches 0. Hence, unlike in the baseline model, learning is incomplete, despite the arbitrarily small
marginal cost at low levels of background learning. Note also that ρSB

t has a kink at the time that agent
exploration ceases, and it can be increasing just prior that time, as shown in Figure VII. Because the prospect
of future learning through agents’ exploration winds down, the incentives to learn via ρ increase, which can
more than offset the depressing effect of increased pessimism about the state.

43. To avoid clutter, we do not depict the first-best policy in Figure VII, but its structure is quite intuitive.
First, user exploration under the first-best policy is the same as before: a full exploration until p falls to
a particular threshold. Second, the first-best product research ρFB

t declines in t, as is the case under full-
transparency, due to the designer’s declining belief. More importantly, ρFB

t is below ρSB
t everywhere. The
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VII.E. A More General Signal Structure

Thus far, our model has assumed a simple signal structure that features only good news,

which is a reasonable assumption for many products whose priors are initially unfavorable

but can be improved dramatically through social learning. However, for some other prod-

ucts, social learning may involve the discovery of poor quality. Our signal structure can be

extended to allow for such a situation via “bad” news.44 Specifically, news can be either

good or bad, where good news reveals ω = 1 and bad news reveals ω = 0, and the arrival

rates of the good news and bad news are λg > 0 and λb > 0, respectively, conditional on

the state. More precisely, if a flow of mass α consumes the product over some time interval

[t, t+dt), then during this time interval, the designer learns that the product is “good” with

probability λg(ρ + α)dt and “bad” with probability λb(ρ + α)dt. Note that we retain the

assumption that either type of news is perfectly conclusive.

If news arrives, the designer’s posterior jumps to 1 or 0. Otherwise, it follows

ṗt = −pt(1− pt)δ(ρ+ αt), p0 = p0,(8)

where δ := λg − λb is the relative arrival rate of good news, and αt is the exploration rate of

the agents. Intuitively, the designer becomes pessimistic from absence of news if good news

arrives faster (δ > 0) and becomes optimistic if bad news arrives faster (δ < 0). The former

case is similar to the baseline model, so we focus on the latter case. The formal result, the

proof of which is available in Section D.5 of the Supplementary Material (which also includes

the general good news case), is as follows:

Proposition 10. Consider the bad news environment (δ < 0). The first-best policy (absent

any news) prescribes no exploration until the posterior p rises to pFB
b and then full

exploration at a rate of αFB(p) = 1 thereafter, for p > pFB
b , where

pFB
b := c

(
1− rv

ρ+ r(v + 1
λb
)

)
.

The second-best policy implements the first-best policy if p0 ≥ c or if p0 ≤ p̂0 for some

p̂0 < pFB
b . If p0 ∈ (p̂0, c), then the second-best policy prescribes no exploration until the

posterior p rises to p∗b and then exploration at the maximum incentive-compatible level

reason is two-fold: (i) more user exploration occurs under the first-best policy, which lowers optimal product
research through the substitution effect, and (ii) the incentive-promoting effect of product research is absent
under the first-best policy.

44. See Keller and Rady (2015) for the standard bad news model of strategic exploration.
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Figure VIII: Path of α for δ < 0 and (c, ρ, p0, r, λg, λb) = (1/2, 1, 2/7, 1/10, 1, 2)).

thereafter for any p > p∗b ,
45, where p∗b > pFB

b . In other words, the second-best policy

triggers exploration at a later date and at a lower rate than the first-best policy.

Although the structure of the optimal recommendation policy is similar to that in the

baseline model, the intertemporal trajectory of exploration is quite different. Figure VIII

depicts an example with δ < 0 and a sufficiently low prior belief. Initially, the designer

finds the prior to be too low to trigger a recommendation, and she never spams as a result.

However, as time progresses without receiving any news (good or bad), her belief improves

gradually, and as her posterior reaches the optimal threshold, she begins spamming at the

maximal capacity allowed by incentive compatibility. One difference here is that the optimal

second-best threshold differs from that of the first-best threshold. The designer has a higher

threshold, meaning that she waits longer to trigger exploration under the second-best policy

than she would under the first-best policy. This is due to the difference in the tradeoffs at

the margin between the two regimes. Although the benefit of not triggering exploration is

the same in the two regimes, the benefit of triggering exploration is lower in the second-best

regime due to the constrained exploration that follows in that regime.

45.The maximal incentive-compatible level is α̂(pt) := min

1,

(
pt(1−p0)

(1−pt)p
0

)−
λg
δ

−1

(
1−pt
pt

)( c
1−c )−1

.
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VIII. Related Literature

Our paper relates to several strands of the literature. First, our model can be viewed

as introducing an optimal design into the standard model of social learning. In standard

models (for instance, Bikhchandani, Hirshleifer and Welch (1992); Banerjee (1993); Smith

and Sørensen (2000)), a series of agents take actions myopically, ignoring their effects on

the learning and welfare of agents in the future. Smith, Sørensen and Tian (2014) study

altruistic agents who distort their actions to improve observational learning for posterity.46

In an observational learning model such as that of Smith, Sørensen and Tian (2014), agents

are endowed with private signals, and the main issue is whether their actions communicate

the private signals to subsequent agents. By contrast, in our model, agents do not have

private information ex ante and must be incentivized to acquire it.

Whether they want to communicate such information (by providing feedback or taking

an action that signals it) is an important issue, which we do not address. Instead, we

simply posit a stochastic feedback (Poisson) technology. Frick and Ishii (2014) examine

how social learning affects the adoption of innovations of uncertain quality and explain the

shape of commonly observed adoption curves. In these papers, the information structure—

what agents know about the past—is fixed exogenously. Our focus is precisely the optimal

design of the information flow to the agent. Such dynamic control of information is present

in Gershkov and Szentes (2009), but that paper considers a very different environment, as

direct payoff externalities (voting) exist.

Much more closely related to the present paper is a recent paper by Kremer, Mansour

and Perry (2014). They study the optimal mechanism that induces agents to explore two

products of unknown qualities. As in this paper, the designer can incentivize agents to

explore by manipulating their beliefs, and her ability to do so increases over time. While

these themes are similar, there are differences. In their model, the uncertainty regarding

the unknown state is rich (the quality of the product is drawn from some interval), but

user feedback is instantaneous (trying the product once reveals its quality). In the current

paper, the state is binary, but the user feedback is gradual. This distinction matters for

welfare and exploration dynamics. Here, the incentive problem entails a real-time delay

and a non-vanishing welfare loss; in their setup, the loss disappears in the limit, as either

the time interval shrinks or its horizon increases. The exploration dynamics also differ:

our optimal policy induces a “hump”-shaped exploration that depends on the designer’s

belief, whereas their exploration dynamics—namely, how long it takes for a once-and-for-all

exploration to occur—maps to the realized value of the dominant product observed in the

first period. In addition, we explore extensions that have no counterpart in their model,

46. In Section 4.B of their paper, they show how transfers can implement the optimal policy that they
derive in the case of altruistic agents.
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including public recommendations and product categorization. We ultimately view the two

papers as complementary.

Our model builds on the Poisson bandit process for the recommender’s signal, introduced

in a strategic setting by Keller, Rady and Cripps (2005) and applied by several authors in

principal-agent setups (see, for instance, Klein and Rady (2011), Halac, Kartik, and Liu

(2016) or Hörner and Samuelson (2013)). As in these papers, the Poisson bandit structure

provides a tractable tool for studying dynamic incentives. The main distinguishing feature

of the current model is that the disclosure policy of the principal (recommender) and the

resulting control of agents’ beliefs serve as the main tool to control the agents’ behavior.

Our paper also contributes to the literature on Bayesian persuasion that studies how

a principal can credibly manipulate agents’ beliefs to influence their behaviors. Aumann,

Maschler and Stearns (1995) analyze this question in repeated games with incomplete in-

formation, whereas Ostrovsky and Schwarz (2010), Rayo and Segal (2010) and Kamenica

and Gentzkow (2011) study the problem in a variety of organizational settings. The current

paper pursues a similar question in a dynamic setting. In this regard, the current paper joins

a burgeoning literature that studies Bayesian persuasion in dynamic settings (see Renault,

Solan and Vieille (2014), Ely, Frankel and Kamenica (2015), Ely (2017), and Halac, Kartik,

and Liu (2015)). The focus on social learning distinguishes the present paper from these

other papers.47

Finally, the present paper is related to the empirical literature on user-generated reviews

(Jindal and Liu (2008); Luca and Zervas (2016); and Mayzlin et al. (2014)).48 These papers

suggest ways of empirically identifying manipulations in the reviews made by the users

of Internet platforms such as Amazon, Yelp and TripAdvisor. Our paper contributes a

normative perspective on the extent to which the manipulation should be controlled.

IX. Conclusion

Early exploration is crucial for users to discover and adopt potentially valuable products

on a large scale. The present paper has shown how a recommendation policy can be designed

to promote such early exploration. The current study offers several takeaways.

47. Papanastasiou, Bimpikis and Savva (2016) show that the insights of the current paper extend to the
two-product context, although without fully characterizing the optimal mechanism. Mansour, Slivkins and
Syrgkanis (2015) develop an incentive-compatible disclosure algorithm that is near optimal regardless of
the prior in a multi-armed bandit setting, while Mansour, Slivkins and Syrgkanis and Wu (2016) allow for
interactions among the agents. Avery, Resnick, and Zeckhauser (1999) and Miller, Resnick and Zeckhauser
(2004) study monetary incentives to prompt the sharing of product information.

48.Dai, Jin, Lee and Luca (2014) offer a structural approach to aggregate consumer ratings and apply it
to restaurant reviews from Yelp.
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First, a key aspect of a user’s incentives to explore is his beliefs about a product, which

the designer can control by “pooling” a genuine positive signal regarding the product with

spam—a recommendation without any such signal. Spamming can turn users’ beliefs favor-

ably toward the product and can thus incentivize exploration by early users. Consequently,

spamming is part of an optimal recommendation policy.

Second, spamming is effective only when it is properly underpinned by genuine learning.

Excessive spam campaigns can backfire and harm the recommender’s credibility. We have

shown how a recommender can build her credibility by “starting small” in terms of the

amount (in the case of private recommendations), the probability (in the case of public

recommendations) and the breadth (in the case of heterogeneous tastes) of spam, depending

on the context. We have also highlighted the role of the recommender’s independent product

research, such as that performed by Netflix and Pandora. Recommender-initiated research

can not only act as a substitute for costly learning by users but also substantially increase

the credibility with which the recommender can persuade agents to explore. These benefits

are particularly important in the early phases of the product cycle when user exploration is

weakest, causing the designer to front-load her investment.

As noted earlier, our paper yields implications for several aspects of online platforms.

Aside from online platforms, a potentially promising avenue of application is the adaptive

clinical trial (ACT) of medical drugs and procedures. Unlike the traditional design, which

fixes the characteristics of the trial over its entire duration, the ACT modifies the course of

the trial based on the the accumulating results of the trial, typically by adjusting the doses

of a medicine, dropping patients from an unsuccessful treatment arm and adding patients to

a successful arm (see Berry (2011) and Chow and Cheng (2008)). ACTs improve efficiency

by reducing the number of participants assigned to an inferior treatment arm and/or the

duration of their assignment to such an arm.49 An important aspect of the ACT design is the

incentives for the patients and doctors to participate in and stay on the trial. To this end,

managing their beliefs, which can be affected when the prescribed treatment changes over

the course of the trial, is crucial. Note that the suppression of information, especially with

regard to alternative treatment arms, not only is within the ethical boundary of the clinical

trial but also is a key instrument for preserving patient participation and the integrity of

the experiment.50 The insight from the current paper can provide some useful guidance for

future research on this aspect of ACT design.

While the current paper provides some answers on how user exploration can be improved

via recommendations, it raises another intriguing question: How does recommendation-

49.The degree of adjustment is limited to a level that does not compromise the randomized control needed
for statistical power. Some benefits of ACTs are demonstrated in Trippa et al. (2012).

50. For instance, keeping the type of arm to which a patient is assigned—whether a control arm (e.g.,
placebo) or a new treatment—hidden from the patient and his/her doctor is an accepted practice.
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induced user exploration influence the learning of user preferences? For instance, in the

ACT context, the endogenous assignment of patients to alternative treatment arms may

compromise the purity of randomized trial and make the treatment effect difficult to iden-

tify. A similar concern arises with the dynamic adjustment of explorations conducted by

online platforms, as they may make it harder to assess the effect of user exploration. A pre-

cise understanding of the tradeoff between improved user exploration and the observation of

user preferences requires a careful embedding of current insight within the richer framework

Internet platforms employ to understand user preferences. We leave this question for future

research.

Columbia University

Yale University and Toulouse School of Economics

Appendix I. Proof of Proposition 1

Proof. It is convenient to work with the odds ratio, ℓ := p/(1− p), and with the cost ratio,

k := c/(1−c). Using ℓt and substituting for g using (3), we can write the second-best program

as follows:

[SB] sup
α

∫
t≥0

e−rt
(
ℓ0 − ℓt − αt (k − ℓt)

)
dt

subject to

ℓ̇t = −λ(ρ+ αt)ℓt, ∀t, and ℓ0 = ℓ0,(9)

0 ≤ αt ≤ ᾱ(ℓt), ∀t,(10)

where ℓ0 := p0/(1−p0) and ᾱ(ℓt) := α̂( ℓt
1+ℓt

). Obviously, the first-best program, labeled [FB],

is the same as [SB], except that the upper bound for ᾱ(ℓt) is replaced by 1.

To analyze this tradeoff precisely, we reformulate the designer’s problem to conform

with the standard optimal control framework. First, we switch the roles of the variables so

that we treat ℓ as a “time” variable and t(ℓ) := inf{t | ℓt ≤ ℓ} as the state variable, which is

interpreted as the time required for a posterior ℓ to be reached.51 Up to constant (additive

and multiplicative) terms, the designer’s problem is written as follows:

For problem i = SB, FB,

51.This is where the assumption ρ > 0 comes into play, as it ensures that, for any given policy, the map
from time t ≥ 0 to beliefs ℓ ≤ ℓ0 is a bijection.
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sup
α(ℓ)

∫ ℓ0

0

e−rt(ℓ)

(
1− k

ℓ
−

ρ
(
1− k

ℓ

)
+ 1

ρ+ α(ℓ)

)
dℓ

s.t. t(ℓ0) = 0,

t′(ℓ) = − 1

λ(ρ+ α(ℓ))ℓ
,

α(ℓ) ∈ Ai(ℓ),

where ASB(ℓ) := [0, ᾱ(ℓ)], and AFB := [0, 1].

This transformation enables us to focus on the optimal recommendation policy as a

function of the posterior ℓ. Given the transformation, the admissible set no longer depends

on the state variable (since ℓ is no longer a state variable), thus conforming to the standard

specification of the optimal control problem.

Next, we focus on u(ℓ) := 1
ρ+α(ℓ)

as the control variable. With this change of variable,

the designer’s problem (both second-best and first-best) is restated, up to constant (additive

and multiplicative) terms:

For i = SB, FB,

(11) sup
u(ℓ)

∫ ℓ0

0

e−rt(ℓ)

(
1− k

ℓ
−
(
ρ

(
1− k

ℓ

)
+ 1

)
u(ℓ)

)
dℓ,

s.t. t(ℓ0) = 0,

t′(ℓ) = −u(ℓ)

λℓ
,

u(ℓ) ∈ U i(ℓ),

where the admissible set for the control is USB(ℓ) := [ 1
ρ+ᾱ(ℓ)

, 1
ρ
] for the second-best problem;

and UFB(ℓ) := [ 1
ρ+1

, 1
ρ
]. With this transformation, the problem becomes a standard linear

optimal control problem (with state t and control α). A solution exists via the Filippov-

Cesari theorem (Cesari, 1983).

We will thus focus on the necessary condition for optimality to characterize the optimal

recommendation policy. To this end, we write the Hamiltonian:

H(t, u, ℓ, ν) = e−rt(ℓ)

(
1− k

ℓ
−
(
ρ

(
1− k

ℓ

)
+ 1

)
u(ℓ)

)
− ν

u(ℓ)

λℓ
.(12)

The necessary optimality conditions are that there exist an absolutely continuous function
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ν : [0, ℓ0] such that, for all ℓ, either

(13) ϕ(ℓ) := λe−rt(ℓ)ℓ

(
ρ

(
1− k

ℓ

)
+ 1

)
+ ν(ℓ) = 0,

or else u(ℓ) = 1
ρ+ᾱ(ℓ)

if ϕ(ℓ) > 0 and u(ℓ) = 1
ρ
if ϕ(ℓ) < 0.

Furthermore,

(14) ν ′(ℓ) = −∂H(t, u, ℓ, ν)

∂t
= re−rt(ℓ)

((
1− k

ℓ

)
(1− ρu(ℓ))− u(ℓ)

)
(ℓ− a.e.).

Finally, transversality at ℓ = 0 implies that ν(0) = 0 (since t(ℓ) is free).

Note that

ϕ′(ℓ) = −rt′(ℓ)λe−rt(ℓ)ℓ

(
ρ

(
1− k

ℓ

)
+ 1

)
+ λe−rt(ℓ)

(
ρ

(
1− k

ℓ

)
+ 1

)
+

ρkλe−rt(ℓ)

ℓ
+ ν ′(ℓ),

or using the formulas for t′ and ν ′,

(15) ϕ′(ℓ) =
e−rt(ℓ)

ℓ
(r (ℓ− k) + ρλk + λ (ρ (ℓ− k) + ℓ)) ,

Therefore, ϕ cannot be identically zero over some interval, as there is at most one value of ℓ

for which ϕ′(ℓ) = 0. Every solution must be “bang-bang.” Specifically,

ϕ′(ℓ)
>
=
<
0 ⇔ ℓ

>
=
<
ℓ̃ :=

(
1− λ(1 + ρ)

r + λ(1 + ρ)

)
k > 0.

In addition, ϕ(0) = −λe−rt(ℓ)ρk < 0. Therefore, ϕ(ℓ) < 0 for all 0 < ℓ < ℓ∗ for some threshold

ℓ∗ > 0, and ϕ(ℓ) > 0 for ℓ > ℓ∗. The constraint u(ℓ) ∈ U i(ℓ) must bind for all ℓ ∈ [0, ℓ∗)

(a.e.), and every optimal policy must switch from u(ℓ) = 1/ρ for ℓ < ℓ∗ to 1/(ρ + ᾱ(ℓ)) in

the second-best problem and to 1/(ρ + 1) in the first-best problem for ℓ > ℓ∗. It remains to

determinine the switching point ℓ∗ (and establishing uniqueness in the process).

For ℓ < ℓ∗,

ν ′(ℓ) = −r

ρ
e−rt(ℓ)ℓ

1
∆
−1, t′(ℓ) = − 1

ρλℓ
,

so that

t(ℓ) = C0 −
1

ρλ
ln ℓ, or e−rt(ℓ) = C1ℓ

r
ρλ ,

for some constants C1, C0 = −1
r
lnC1. Note that C1 > 0; or else, C1 = 0 and t(ℓ) = ∞ for
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every ℓ ∈ (0, ℓ∗), which is inconsistent with t(ℓ∗) < ∞. Hence,

ν ′(ℓ) = −r

ρ
C1ℓ

r
ρλ ,

and so (using ν(0) = 0),

ν(ℓ) = − rλ

r + ρλ
C1ℓ

r
ρλ

+1,

for ℓ < ℓ∗. We now substitute ν into ϕ for ℓ < ℓ∗ to obtain

ϕ(ℓ) = λC1ℓ
r
ρλ ℓ

(
ρ

(
1− k

ℓ

)
+ 1

)
− rλ

r + ρλ
C1ℓ

r
ρλ

+1.

We now see that the switching point is uniquely determined by ϕ(ℓ) = 0, as ϕ is continuous

and C1 cancels. Rearranging terms, we obtain

k

ℓ∗
= 1 +

λ

r + ρλ
,

which leads to the formula for p∗ in the Proposition (via ℓ = p/(1 − p) and k = c/(1 − c)).

We have identified the unique solution to the program for both first-best and second-best

problems and have shown that the optimal threshold p∗ applies to both problems.

The second-best policy implements the first-best policy if p0 ≥ c, since ᾱ(ℓ) = 1 for

all ℓ ≤ ℓ0 in this case. If p0 < c, ᾱ(ℓ) < 1 for a positive measure of ℓ ≤ ℓ0. Hence, the

second-best policy implements a lower and thus slower exploration than does the first-best

policy.

As for sufficiency, we use the Arrow sufficiency theorem (Seierstad and Sydsæter, 1987,

Theorem 5, p.107). This amounts to showing that the maximized Hamiltonian Ĥ(t, ℓ, ν(ℓ)) =

maxu∈U i(ℓ)H(t, u, ℓ, ν(ℓ)) is concave in t (the state variable) for all ℓ. To this end, it suffices

to show that the terms inside the large parentheses in (12) are negative for all u ∈ U i,

i = FB, SB. This is indeed the case:

1− k

ℓ
−
(
ρ

(
1− k

ℓ

)
+ 1

)
u(ℓ)

≤1− k

ℓ
−min

{(
ρ

(
1− k

ℓ

)
+ 1

)
1

1 + ρ
,

(
ρ

(
1− k

ℓ

)
+ 1

)
1

ρ

}
=−min

{
k

(1 + ρ)ℓ
,
1

ρ

}
< 0,

where the inequality follows from the linearity of the expression in u(ℓ) and the fact that

u(ℓ) ∈ U i ⊂ [ 1
ρ+1

, 1
ρ
] for i = FB, SB. The concavity of the maximized Hamiltonian in t
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therefore follows. We thus conclude that the candidate solution is indeed optimal. □

Appendix II. Proof of Proposition 3

Proof. Write hP
t for the public history up to time t and ht for the private history of the

designer—which includes whether she received positive feedback by time t. Let p(ht) denote

the designer’s belief given her private history.

- Suppose that, given some arbitrary public history hP
t , the agent is willing to consume at

t. Then, he is willing to consume if nothing more is said thereafter. In other words, the

designer can receive her incentive-unconstrained first-best after such a history. Since this is

an upper bound of her payoff, we might assume that she implements it.

- It follows that only non-trivial public histories are those in which the agents are not yet

willing to buy. Given ht, the designer chooses (possibly randomly) a stopping time τ , which

is the time at which she first tells the agent to consume (she then receives her first-best). Let

F (τ) denote the distribution that she uses to tell them to consume at time τ , conditional

on her not having had good news by time τ ; let Ft(τ) denote the distribution that she uses

if she had positive news precisely at time t ≤ τ . We will assume for now that the designer

emits a single “no consume” recommendation at any given time; we will explain why this is

without loss as we proceed.

- Note that, as usual, once the designer’s belief p(ht) drops below p∗, she might as well resort

to “truth telling,” i.e., telling the agents to abstain from buying unless she has received

conclusive news. This policy is credible, as the agent’s belief is always weakly above the

belief of the designer who has not received positive news, conditional on hP
t . Again, it

gives the designer her first-best payoff; therefore, given that this is an upper bound, it is

the solution. It immediately follows that F (t∗) > 0, where t∗ is the time required for the

designer’s belief to reach p∗ absent positive news, given that µt = ρ until then. If indeed

F (t) = 1 for some t ≤ t∗, then the agent will not consume when told to do so at some time

t ≤ max{t′ : t′ ∈ supp(F )}. (His belief will have to be no more than his prior for some time

below this maximum, which will violate c > p0.) Note that Ft(t
∗) = 1 for all t ≤ t∗: upon

reaching time t∗, the designer’s belief will make truth telling optimal, so there is no benefit

from delaying good news if it has occurred. Hence, at any time t > t∗, conditional on a

“no consume” recommendation (so far), it is common knowledge that the designer has not

received good news.

- The final observation: whenever agents are told to consume, their incentive constraint must

be binding (unless it is common knowledge that exploration has stopped and the designer

has learned that the state is good). If this is not the case for some time t, then the designer
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can increase F (t) (the probability with which she recommends “consume” at that time,

conditional on her not having received good news yet) and raise her payoff, while keeping

the hazard rate F (dt′)/(1 − F (t′)) fixed at later points in time, which will leave future

incentives unchanged.

Let

H(τ) :=

∫ τ

0

∫ t

0

λρe−λρs(1− F (s))dsFs(dt).

This (non-decreasing) function represents the probability that the agent is told to consume

for the first time at some time t ≤ τ , given that the designer has learned that the state is

good at some earlier date s ≤ t. Note that H is constant on τ > t∗ and that its support is

the same as that of F . Because H(0) = 0, F (0) = 0 as well.

Let P (t) denote the agent’s belief, conditional on the (w.l.o.g., unique) history hP
t , such

that he is told to consume at time t for the first time. For any time t in the support of F ,

we have

P (t) =
p0
(
H(dt) + e−ρλtF (dt)

)
p0 (H(dt) + e−ρλtF (dt)) + (1− p0)F (dt)

.

Indifference implies that

P (t) = c, or L(t) = k,

where L(t) is the likelihood ratio

L(t) = ℓ0
H(dt) + e−ρλtF (dt)

F (dt)
.

Combining these facts together, we have, for any t in the support of F ,

(16)
(
k/ℓ0 − e−ρλt

)
F (dt) = H(dt).52

This also holds for any t ∈ [0, t∗], as both sides are zero if t is not in the support of F .

Integrating H by parts yields

H(τ) =

∫ τ

0

λρe−λρt(1− F (t))Ft(τ)dt.

52. If multiple histories of “no consume” recommendations were considered, a similar equation would hold
after any history hP

t for which “consume” is recommended for the first time at t, replacing F (dt) and H(dt)
with F̃ (hP

t ) and H̃(hP
t ), respectively; F̃ (hP

t ) is then the probability that such a history is observed without
the designer having received good news yet, while H̃(hP

t ) is the probability that such a history has been
observed after the designer has received good news by then. We then define F,H : R+ → R+ as (given t) the
expectation F (t) (resp. H(t)) over all public histories hP

t , for which t is the first time at which “consume”
is recommended. Taking expectations over histories hP

t gives equation (16). The remainder of the proof is
unchanged.

40



Integration by parts also yields∫ τ

0

(k/ℓ0 − e−ρλt)F (dt) = (k/ℓ0 − e−ρλτ )F (τ)−
∫ τ

0

λρe−λρtF (t)dt.

Hence, given that H(0) = F (0) = 0, we can rewrite the incentive compatibility constraint

for all t ≤ t∗ as:

(k/ℓ0 − e−ρλτ )F (τ) =

∫ τ

0

λρe−λρt((1− F (t))Ft(τ) + F (t))dt.

Note that this implies, given that Ft(τ) ≤ 1 for all t, τ ≥ t, that

(k/ℓ0 − e−ρλτ )F (τ) ≤
∫ τ

0

λρe−λρtdt = 1− e−λρτ ,

so that

(17) F (t) ≤ 1− e−λρt

k/ℓ0 − e−ρλt
,

an upper bound that is achieved for all t ≤ t∗ if and only if Ft(t) = 1 for all t ≤ t∗.

Before writing the designer’s objective, let us work out some of the relevant continuation

payoff terms. First, t∗ is given by our familiar threshold, which is defined by the belief ℓt∗ =

k λρ+r
λ(1+ρ)+r

; given that exploration occurs at rate ρ until t∗, conditional on a “no consume”

recommendation, we have e−λρt∗ = ℓt∗/ℓ
0.

From time t∗ onward, if the designer has not recommended to consume, good news has

not arrived. Exploration only occurs at rate ρ from that point on. This history contributes

to the expected total payoff by

p0(1− F (t∗))e−(r+λρ)t∗ λρ

r + λρ

1− c

r
.

Indeed, this payoff is discounted by the factor e−rt∗ . It is positive only if the state is good,

and the history is reached with probability p0(1 − F (t∗))e−λρt∗ : the probability that the

state is good, that the designer has not received any good news, and that she has not yet

spammed. Finally, conditional on that event, the continuation payoff is equal to∫ ∞

0

λρe−rs−λρsds · 1− c

r
=

λρ

r + λρ

1− c

r
.

Next, let us consider the continuation payoff if the designer spams at time τ ≤ t∗. As

previously mentioned, she will then experiment at a maximum rate until her belief drops
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below p∗. The stopping time τ+t that she chooses must maximize her expected continuation

payoff from time τ onward, given her belief pτ , that is,

W (τ) = max
t

{
pτ

(
1− r

λρ+ r
e−(λ(1+ρ)+r)t

)
1− c

r
− (1− pτ )(1− e−rt)

c

r

}
.

The second term is the cost incurred on agents during time [τ, τ+t] when the state is bad. The

first is the sum of three terms, all conditional on the state being good: (i) (1−e−rt)(1−c)/r,

the agents’ flow benefit from exploration during [τ, τ + t]; (ii) (1 − e−λ(1+ρ)t)e−rt(1 − c)/r,

the benefit after good news has arrived by time τ + t; and (iii) e−(r+λ(1+ρ))t λρ
r+λρ

(1− c)/r, the

benefit from background learning after time τ + t when no good news has arrived by that

time. Taking first-order conditions, this function is uniquely maximized by

t(τ) =
1

λ(1 + ρ)
ln

(
ℓτ
k

λ(1 + ρ) + r

λρ+ r

)
.

Note that we can write W (τ) = pτW1(τ)−(1−pτ )W0(τ), where W1(τ) (W0(τ)) is the benefit

(resp., cost) from the optimal choice of t given that the state is good (resp., bad). Plugging

in the optimal value of t gives

w1(τ) := rW1(τ)/(1− c) = 1− r

λρ+ r

(
ℓτ
k

λ(1 + ρ) + r

λρ+ r

)−1− r
λ(1+ρ)

,

and

w0(τ) := rW0(τ)/c = 1−
(
ℓτ
k

λ(1 + ρ) + r

λρ+ r

)− r
λ(1+ρ)

.

Note that, given no good news by time t, we have ℓt = ℓ0e−ρt. It follows that

k(1− w0(t))− ℓ0e−λρt(1− w1(t)) = k

(
1− r

λ(1 + ρ) + r

)(
k

ℓt

λρ+ r

λ(1 + ρ) + r

) r
λ(1+ρ)

= Ke
rρ
1+ρ

t,(18)

with

K := k
λ(1 + ρ)

λ(1 + ρ) + r

(
k

ℓ0
λρ+ r

λ(1 + ρ) + r

) r
λ(1+ρ)

.

For future reference, we can use the definition of ℓt∗ to write

(19) Ke
rρ
1+ρ

t∗ = k
λ(1 + ρ)

λ(1 + ρ) + r

(
k

ℓt∗

λρ+ r

λ(1 + ρ) + r

) r
λ(1+ρ)

= k
λ(1 + ρ)

λ(1 + ρ) + r
.
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We can finally write the objective. The designer chooses {F, (Fs)
t∗
s=0} to maximize

J = p0
∫ t∗

0

e−rt

(
1− c

r
H(dt) + e−ρλtW1(t)F (dt)

)
− (1− p0)

∫ t∗

0

e−rtW0(t)F (dt) + p0(1− F (t∗))e−(r+λρ)t∗ λρ

r + λρ

1− c

r
.

The first two terms are the payoffs in case a “consume” recommendation is made over the

interval [0, t∗] and is split according to whether the state is good or bad; the third term is

the benefit accruing if no consume recommendation is made by time t∗.

Multiplying by r
1−c

ert
∗

1−p0
, the objective is rewritten as:∫ t∗

0

e−r(t−t∗)
(
ℓ0H(dt) + ℓ0e−ρλtw1(t)F (dt)− kw0(t)F (dt)

)
+ ℓ0(1− F (t∗))e−λρt∗ λρ

r + λρ
.

We can use equation (16) (as well as ℓ0e−λρt∗ = ℓt∗ = k λρ+r
λ(1+ρ)+r

) to rewrite this equation as

∫ t∗

0

e−r(t−t∗)
(
k(1− w0(t))− ℓ0e−ρλt(1− w1(t))

)
F (dt) + (1− F (t∗))

λρk

λ(1 + ρ) + r
.

Using equation (18) and ignoring the constant term λρk
λ(1+ρ)+r

(irrelevant for the maximization)

gives

ert
∗
K

∫ t∗

0

e−
r

1+ρ
tF (dt)− λρk

λ(1 + ρ) + r
F (t∗).

Integrating this objective by parts and using F (0) = 0 and equation (19), we obtain

ert
∗ rK

1 + ρ

∫ t∗

0

e−
r

1+ρ
tF (t)dt+

(
k

λ(1 + ρ)

λ(1 + ρ) + r
− k

λρ

λ(1 + ρ) + r

)
F (t∗).

Using equation (19) once more to eliminate K, we finally obtain

λk

λ(1 + ρ) + r

(∫ t∗

0

re−
r

1+ρ
(t−t∗)F (t)dt+ F (t∗)

)
.

Note that this objective function is increasing point-wise in F (t) for each t ≤ t∗. Hence, it

is optimal to set F as given by its upper bound provided by equation (17), for all t ≤ t∗,

F (t) =
ℓ0(1− e−λρt)

k − ℓ0e−ρλt
,

and for all t ≤ t∗, Ft(t) = 1.
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To prove the last statement (on the average speed of exploration), fix any t ≤ t∗. Under

optimal public recommendations, spam is triggered at s according to F (s) and lasts until

t, unless the posterior reaches p∗. Let T (s) be the time at which the latter event occurs if

spam is triggered at s. Then, the expected level of exploration performed by time t under

public recommendations is as follows:∫ t

0

(min{t, T (s)} − s)dF (s) ≤
∫ t

0

(t− s)dF (s)

=

∫ t

0

F (s)ds =

∫ t

0

ℓ0 − ℓ0e−λρs

k − ℓ0e−λρs
ds <

∫ t

0

ℓ0 − ℓs
k − ℓs

ds =

∫ t

0

α̂(ℓs)ds,

where ℓs is the likelihood ratio at time s under the optimal private recommendation. The

first equality follows from integration by parts, and the inequality holds because ℓs =

ℓ0e−λ
∫ s
0 (ᾱ(ℓs′ )+ρ)ds′ < ℓ0e−λρs. □
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