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Randomization is commonplace in everyday resource allocation. It is used to break ties

among students applying for overdemanded public schools and for popular after-school pro-

grams, to ration offices, parking spaces and tasks among employees, to allocate courses and

dormitory rooms amongst college students, and to assign jury and military duties among

citizens.1 Randomization is sensible in these examples and many others because the ob-

jects to be assigned are indivisible and monetary transfers are limited or unavailable.2 In

these circumstances, any non-random assignment of resources is likely to be asymmetric and

perceived as unfair. Randomization can restore symmetry, and thus a measure of fairness.

In practice, the most common way to incorporate randomness into an allocation mech-

anism is to randomly prioritize the agents, and then use a deterministic mechanism. The

canonical example of this approach is the popular method known as the “random serial

dictatorship (RSD),” which randomly orders the agents, and then lets them choose objects

one at a time in order.3 Other examples of this approach include the variants of Gale and

Shapley’s deferred acceptance algorithm (Gale and Shapley, 1962) and Gale’s top trading

cycles algorithm (Shapley and Scarf, 1974) that have been proposed for use in school choice

settings. Random priorities are used to break ties in schools’ preferences (priorities) for

students, after which deferred acceptance or top trading cycles can be run in the standard

manner.4 These random mechanisms inherit many of the attractive properties of their deter-

ministic counterparts; in particular, they often lead to allocations that are Pareto efficient

ex post. However, it is now well known that this method of randomization can introduce in-

efficiencies ex ante (Bogomolnaia and Moulin, 2001). That is, there may exist other random

allocations that give every agent in the economy greater expected utility.5

Hylland and Zeckhauser (1979, “HZ”) and Bogomolnaia and Moulin (2001, “BM”) find ex

ante efficient allocations, by developing an alternative approach to the random allocation of

1Lotteries played historical roles in assigning public lands to homesteaders (Oklahoma Land Lottery of
1901), and radio spectra to broadcasting companies (FCC assignment of radio frequencies during 1981-
1993). Lotteries are also used annually to select 50,000 winners of the US permanent residency visas (“green
cards”) from those qualified in the DoJ’s immigration diversity program.
2The limitation of monetary transfers often arises from moral objection to “commoditizing” objects such as
human organs, or from other fairness considerations (Roth, 2007). Assignment of resources based on prices
often favors those with the most wealth rather than those most deserving, and can be regarded as unfair
for many goods and services. See Che, Gale and Kim (2011) for an argument along these lines based on
utilitarian efficiency.
3That is, RSD uniform randomly draws a “serial order” of the agents, and then runs the corresponding
(deterministic) serial dictatorship (Abdulkadiroğlu and Sönmez, 1998). RSD is widely used for many of
the allocation problems listed above. See Chen and Sönmez (2002), Baccara et al. (2009) and Budish and
Cantillon (2009) for empirical studies of variants on RSD.
4See Abdulkadiroğlu and Sönmez (2003b) and Abdulkadiroğlu, Pathak and Roth (2009). In fact, these
random variants of Gale and Shapley’s deferred acceptance algorithm and Gale’s top trading cycles algorithm
are in certain settings equivalent to RSD; see Abdulkadiroğlu and Sönmez (1998) and Pathak and Sethuraman
(2011).
5For an illustration see the example at the beginning of Section 3.
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indivisible objects. Instead of using random priorities to select a deterministic mechanism,

the HZ and BM approach focuses directly on the lotteries agents should receive. Specifically,

their mechanisms directly identify an expected assignment matrix X = [xia], where entry xia

describes the probability with which agent i gets object a. Focusing directly on the lotteries

agents receive is convenient for finding random allocations that have desirable ex-ante welfare

properties. For instance, HZ’s pseudo-market mechanism finds the random allocation that

would emerge were there competitive markets for probability shares; agents are endowed

with equal budgets of an artificial currency, which they use to “buy” their most preferred

affordable bundle at market clearing prices. This allocation is ex-ante efficient by the first

welfare theorem. Similarly, BM’s probabilistic serial mechanism finds an outcome that is

ex-ante efficient in an ordinal sense, by imagining that agents “eat” probability shares of

their most preferred remaining objects, continuously over a unit time interval.

While ingenious, the HZ and BM approach has to date been limited in an important way,

confining attention to the setting in which n indivisible objects are to be assigned among

n agents, one for each. This limits the practical usefulness of this theoretically appealing

methodology.6 The purpose of the present paper is to expand the HZ and BM approach to a

much richer class of matching and assignment environments. Our analysis yields generaliza-

tions of HZ’s and BM’s specific mechanisms, and also yields methodological tools that may

prove useful for other designers. Our model is richer in several important ways. First of all,

our model encompasses problems with multi-unit supply (e.g., schools have multiple slots),

multi-unit demand (e.g., students take multiple courses), and with the possibility that agents

or objects remain unassigned (e.g., a school may have excess capacity). Second, our exten-

sion accommodates a wide variety of constraints that are encountered in real-world settings.

A case in point is “controlled choice” constraints in school assignment, whereby schools are

constrained to balance their student bodies in terms of gender, ethnicity, income, test scores

or geography. For instance, public schools in Massachusetts are discouraged by the Racial

Imbalance Law from having student enrollments that are more than 50% minority.7 Another

example is the scheduling constraints that arise in the context of course allocation: students

are typically prohibited from enrolling in multiple courses that meet during the same time

6Indeed, but for the estate division application described by Pratt and Zeckhauser (1990) we are not aware
of either mechanism ever being used in practice. See footnotes 21 and 34 for more details on the set of
environments for which HZ’s and BM’s original mechanisms are suited.
7There are many other variations of controlled choice constraints. One example is Miami-Dade County Public
Schools, which control for the socioeconomic status of students in order to diminish concentrations of low-
income students at certain schools. In New York City, “Educational Option” (EdOpt) schools must balance
their student bodies in terms of students’ test scores. In particular, 16 percent of students that attend an
EdOpt school must score above grade level on the standardized English Language Arts test, 68 percent must
score at grade level, and the remaining 16 percent must score below grade level (Abdulkadiroğlu, Pathak
and Roth, 2005). In Seoul, public schools restrict the number of seats for those students residing in distant
school districts, in order to alleviate morning commutes.
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slot. Also, there may be curricular constraints that require a student to take at least a

certain number of courses in some discipline, or at most a certain number.

The first part of our paper tackles a methodological issue that is raised by our richer class

of problems. An expected assignment describes the “marginal” probabilities with which

each agent receives each object. In order to actually implement an expected assignment,

one must find a lottery over pure assignments - a “joint distribution” - that resolves the

randomness in a way that respects the underlying constraints. HZ and BM are able to

resolve this issue by appeal to a result known as the Birkhoff-von Neumann theorem.8 We

provide a maximal generalization of Birkhoff-von Neumann, enabling implementation of

expected assignments in a broader class of environments. First, using well-known results in

the combinatorial optimization literature, we identify a condition on the set of constraints

of the allocation problem that is sufficient to guarantee that any expected assignment that

satisfies the constraints in expectation can in fact be implemented. Then we demonstrate

that the same condition is not only sufficient, but also necessary in two-sided assignment

and matching environments. Together, these two results identify the maximum scope for the

methodology pioneered by HZ and BM.

The rest of our paper explores applications. Our first application is a generalization of

BM’s probabilistic serial mechanism, intended for applications like school choice in which

there are multiple slots in each school and various constraints governing how these slots are

assigned. One example is the controlled choice constraints described above. Another kind of

constraint occurs when a school district installs multiple school programs in a single building,

and wishes to allow the enrollments in each specific program to respond to demand, subject

to the total capacity of the building. As in the original BM algorithm, agents continuously

“eat” their most preferred available object over a unit time interval; however, the meaning of

“available” has to be modified to account for the constraints. Our sufficiency result implies

that the expected assignment that results from this generalization of BM’s algorithm is

implementable. We then prove that the attractive efficiency and fairness properties of BM’s

algorithm in its original setting extend to this more general environment.

Our second application is a generalization of HZ’s pseudo-market mechanism to the case of

many-to-many matching. Examples include the assignment of course schedules to students,

and the assignment of shifts to interchangeable workers. As in HZ’s original mechanism,

agents are endowed with equal budgets of an artificial currency, which they use to buy their

8The Birkhoff-von Neumann theorem states that any expected assignment matrix in which rows sum to one
and columns sum to one can be expressed as a convex combination of pure assignment matrices, in which
rows and columns still sum to one but now all entries are zero or one. Thus, in the n agent—n object setting
of HZ and BM, any expected assignment that is consistent with the unit demand and supply constraints in
expectation can in fact be implemented.
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most-preferred bundle of probability shares of objects. The key difference versus HZ is that

we allow for agents to have multi-unit demand and to place various constraints over this de-

mand, such as the scheduling and curricular constraints described above. Another important

difference is that we allow agents to express certain kinds of non-linear substitutable pref-

erences, via Milgrom’s (2009) assignment messages. For instance, in the context of course

allocation, a student might express that whether they prefer finance course a to marketing

course b depends on the number of other finance and marketing courses in their schedule. Or,

in the context of shift assignment, a worker might wish to express that a second overnight

shift in the same week is more costly to work than the first. We establish existence of

competitive equilibrium prices in this pseudo-market, and then invoke our sufficiency result

to ensure implementability of the expected assignment that results from the competitive

equilibrium. We then show that the generalization inherits the attractive properties of the

original HZ mechanism. In particular, it is ex-ante efficient by a first welfare theorem, and

(ex-ante) envy free because all agents have the same budget and face the same prices.

Finally, our implementation result has an unexpected application for promoting ex-post

fairness in multi-unit resource allocation. To illustrate, suppose there are two agents, 1

and 2, dividing four objects, a, b, c, and d, which they prefer in the order listed. Consider

the ex-ante fair expected assignment in which each object is assigned to each agent with

probability 0.5. One way to implement this expected assignment is to assign a and b to 1

and c and d to 2 with probability one half, and a and b to 2 and c and d to 1 with the

remaining probability one half. However, this implementation is unfair ex-post, since some

agent always gets the two best objects while the other gets the two worst. There are other

implementations that are more fair ex-post: whenever an agent gets one of the two best

objects, he must also get one of the two worst objects. In this example, our method would

avoid the unfair implementation by adding artificial constraints that require that each agent

gets one of the two best objects. More generally, we show how to add artificial constraints

that ensure that the pure assignments for a single individual in the implementing lottery

have a limited variation in utility. This procedure can be adapted to the problem of course

allocation, for instance in conjunction with our generalization of HZ, or it can be used in

other multi-unit demand environments such as task assignment and fair division of estates.

This utility guarantee method can also be adapted to a two-sided matching problem, in

which both sides of the market are agents. Starting with any expected matching, we can

introduce ex-post utility guarantees on both sides, ensuring ex-post utility levels that are

close to the promised ex-ante levels. This method can be used, for example, to design a fair

schedule of inter-league sports matchups or a fair speed-dating mechanism.
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The rest of the paper is organized as follows. Section 1 presents the model. Section 2

presents the sufficiency and necessity results for implementing expected assignments. Sec-

tion 3 presents the generalization of BM’s probabilistic serial mechanism, for single-unit

assignment applications such as school choice. Section 4 presents the generalization of HZ’s

pseudo-market mechanism, for multi-unit assignment applications such as course alloca-

tion. Section 5 presents the utility guarantee results, including the application to two-sided

matching. Section 6 collects some negative results for non-bilateral matching environments.

Section 7 concludes.

1. Setup

Consider a problem in which a finite set N of agents is assigned to a finite set O of

objects. A (pure) assignment is described as a matrix X = [xia] indexed by all agents and

objects, where each entry xia is the integer quantity of object a that agent i receives. Note

that we allow for assigning more than one unit of an object and even for assigning negative

quantities.9 The requirement that the matrix be integer-valued captures the indivisibility of

the assignment.

We study problems with multiple constraints of the form q
S
≤
∑

(i,a)∈S xia ≤ qS, where S

is a set of agent-object pairs, i.e., a subset of N×O, and q
S

and qS are integers that represent

floor and ceiling constraints. We call such a set S a constraint set, and we call q
S

and qS
the quota on S. In words, the total amount assigned, over all agent-object pairs (i, a) in

the constraint set S, must be at least the floor quota q
S

and at most the ceiling quota qS.

The full collection of constraints on a problem is represented by a constraint structure H,

which is a collection of constraint sets, and a vector of quotas q = (q
S
, qS)S∈H. We require

that a constraint structure include all singleton sets, i.e., all sets of the form {(i, a)}. The

constraint structure H and the quotas q together restrict the set of assignments. We say

that a pure assignment X is feasible under q if

q
S
≤
∑

(i,a)∈S

xia ≤ qS for each S ∈ H.

For instance, Figure 1 illustrates a feasible assignment in a school choice (i.e., many-to-

one matching) setting: there are four students N = {i1, i2, i3, i4}, corresponding to rows in

the assignment matrix, and three schools O = {o1, o2, o3}, corresponding to columns. Each

student is to be assigned to exactly one school. School o1 has capacity for two students,

while schools o2 and o3 each have capacity for one student. Suppose further that school o1

9Negative quantities can be interpreted as supply obligations. Or, in the context of school choice or house
allocation, negative quantities might be a way to capture the rights of existing students and tenants; their
giving up old seats or rooms can be expressed as negative assignments.
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1 0 0

0 1 0

1 0 0

0 0 1




X =

Figure 1 – A feasible assignment

has a policy of admitting only one student from the set {i1, i2}. The constraints on this

problem are described as follows. The solid horizontal rectangles represent constraints on

the total number of seats assigned to each student; we call these “row constraints.” Formally,

these are the sets {i} × O for each agent i ∈ N , and have quotas q
S

= qS = 1. The dotted

vertical rectangles represent constraints on the number of students that can be assigned to

each school; we call these “column constraints.” Formally, these are the sets N × {a} for

each object a ∈ O; the first column has quotas q
S

= qS = 2, while the other two columns

have quotas q
S

= qS = 1. The group-specific constraint is represented by the solid rectangle

containing the sub-column—the first two entries in the first column—more formally by a set

S = {(i1, o1), (i2, o1)}, with quota q
S

= qS = 1. Not pictured are the constraints on each

singleton set, i.e., on the number of times a specific school a is assigned to a specific student

i; for the singleton sets the relevant quotas are q{(i,a)} = 0 and q{(i,a)} = 1. The constraint

structure H consists of all the row, column, sub-column and singleton constraints. The

assignment X depicted in Figure 1 is feasible because it satisfies the quotas q associated

with each constraint set in the overall constraint structure H. In words, X assigns students

i1 and i3 to school o1, student i2 to school o2, and student i4 to school o3.

Throughout the paper we will give numerous additional examples of constraint sets and

constraint structures; see especially Section 2.1. As in the preceding example, most of

our applications involve constraint structures with two basic groups of constraints. One

group of constraints consists of sets that are columns, subsets of columns, and supersets of

columns, and represents constraints on the assignment from the perspective of the objects.

For example, a constraint set consisting of a subset of a column could be used to represent

affirmative action constraints in the context of school choice. The constraint set would

consist of all students of a particular gender, race, or socioeconomic status; the quotas on

that constraint set would then represent the minimum and maximum number of students

from that group that could be enrolled in the school represented by that column. The second

group of constraints consists of sets that are rows, subsets of rows, and supersets of rows, and
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represents constraints on the assignment from the perspective of the agents. For example,

in course allocation, a row constraint would represent the total number of courses a student

can take, while a sub-row constraint might limit the number of finance courses the student

can take.

Given a constraint structure H and associated quotas q, a random allocation can be

described as a lottery over pure assignments each of which is feasible under quotas q. As with

HZ and BM, however, our approach is to focus directly on the expected assignment matrix as

the basic unit of analysis. Formally, an expected assignment is a matrix X = [xia] indexed

by agents and objects where xia ∈ (−∞,∞) for every i ∈ N and a ∈ O.10 In contrast to

pure assignment matrices, an expected assignment allows for fractional allocations of objects.

One possible expected assignment in the four-students three-schools example is:

0.5 0.2 0.3

0.5 0.5 0

0.8 0 0.2

0.2 0.3 0.5




X =

A natural question is: when can an expected assignment be implemented by some lottery

over pure assignments, each of which satisfies all the constraints? In our example, the

expected assignment X can be expressed in this way:

1 0 0

0 1 0

1 0 0

0 0 1




X = 0.5

0 0 1

1 0 0

1 0 0

0 1 0




+ 0.3

0 1 0

1 0 0

0 0 1

1 0 0




+ 0.2

10In the one-to-one setting, HZ and BM call this matrix a “random assignment matrix.” We use the alternate
terminology “expected assignment” in this paper. This is because, in our general environment, a natural
interpretation of each entry xia is the expected number of object a assigned to agent i. This is in contrast
to the more specialized environments of HZ and BM, where xia is interpreted as the probability that a is
assigned to i.
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In this case, the desired expected assignment X can be implemented by a lottery that

chooses the three pure assignments with probabilities 0.5, 0.3 and 0.2, respectively. Notice

that each of the pure assignments in the support satisfy all constraints, including the sub-

column constraint for agent 1. More formally,

Definition 1. Given a constraint structure H, an expected assignment X is implementable

(as a lottery over feasible pure assignments) under quotas q if there exist positive numbers

{λk}Kk=1 that sum up to one and (pure) assignments {Xk}Kk=1, each of which is feasible under

q, such that

X =
K∑
k=1

λkX
k
.

Recall that the aforementioned expected assignment X itself satisfies the quotas; in par-

ticular, the row for each student sums to one, the column for school o1 sums to two while the

columns for schools o2 and o3 sum to one, and the sub-column for school o1 sums to one. This

is not a coincidence: If an expected assignment violates the quotas, then its implementation

must put positive probability on a pure assignment that violates the quotas. Hence, in the

search for expected assignments implementable, there is no loss in restricting attention to

those that satisfy the quotas q. Formally, X satisfies q if:

(1.1) q
S
≤
∑

(i,a)∈S

xia ≤ qS for each S ∈ H.

The question is then: when is an expected assignment satisfying (1.1) implementable?

Our characterization will be provided in terms of the constraint structure, so the following

definition will prove useful.

Definition 2. Constraint structure H is universally implementable if, for any quotas

q = (q
S
, qS)S∈H, every expected assignment satisfying q is implementable under q.

If a constraint structure H is universally implementable, then every expected assignment

satisfying any quotas defined on H can be expressed as a convex combination of pure as-

signments that are feasible under the given quotas. In other words, for any given quotas,

any expected assignment satisfying (1.1) can be implemented as a lottery over feasible pure

assignments.

Universal implementability aims to capture the sort of information that is likely available

to a planner when the mechanism is being designed. For example, in a school choice prob-

lem, the planner may consider whether to apply certain principled geographic and ethnic

composition constraints — that is, what the constraint structure will be — before knowing

the exact numbers of spaces in each school or the precise preferences of the students. By
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studying universal implementability, we characterize the kinds of constraint structures that

are robust to these numerical details and certain to be implementable.

2. Implementing Expected Assignments

This section provides a condition which guarantees that a constraint structure is uni-

versally implementable. To define our condition, called “bihierarchy”, we first define the

concept of a hierarchy. A constraint structure H is a hierarchy if, for every pair of elements

S and S ′ in H, we have S ⊂ S ′ or S ′ ⊂ S or S ∩ S ′ = ∅.11 That is, H is a hierarchy if,

for any two of its elements, one of them is a subset of the other or they are disjoint. For

instance, in Figure 1, the set of row constraints is a hierarchy, because any two rows are

disjoint. Similarly, the set consisting of the column constraints, the sub-column constraint,

and the singletons is a hierarchy, because any two elements in that set are either disjoint

(e.g., two different columns) or have a subset relationship (e.g., the sub-column and column

corresponding to school o1, or a singleton and its associated column). The overall constraint

structure, consisting of rows, columns, the sub-column, and singletons, is not a hierarchy:

e.g., the first row and the first column are not disjoint nor do they have a subset relationship.

But, the overall constraint structure is what we call a bihierarchy, defined as follows:

Definition 3. A constraint structure H is a bihierarchy if there exist hierarchies H1 and

H2 such that H = H1 ∪H2 and H1 ∩H2 = ∅.

In words, a bihierarchy is a constraint structure that can be expressed as the union of two

disjoint hierarchies. Note that the partition of H into H1 and H2 need not be unique. For

instance, in Figure 1, the singleton sets in the constraint structure could be placed in the

row hierarchy instead of the column hierarchy, or in fact could be divided between the two

hierarchies in any arbitrary fashion. Several other examples of bihierarchies will be provided

in Section 2.1.

Our first result, which follows readily from the combinatorial optimization literature, es-

tablishes that the bihierarchy condition is sufficient for universal implementability.

Theorem 1. (Sufficiency) If a contraint structure is a bihierarchy, then it is universally

implementable.

Proof. Suppose that constraint structure H is a bihierarchy. Consider any expected assign-

ment X that satisfies q given constraint structure H. Since q
S

and qS are integers for each

S ∈ H, we must have q
S
≤ bxSc ≤ xS ≤ dxSe ≤ qS, where xS :=

∑
(i,a)∈S xia, bxSc is the

11Hierarchies are usually called laminar families in the combinatorial optimization literature.



10 ERIC BUDISH, YEON-KOO CHE, FUHITO KOJIMA, AND PAUL MILGROM

largest integer no greater than xS, and dxSe is the smallest integer no less than xS. Hence,

X must belong to the setX ′ = [x′ia]

∣∣∣∣bxSc ≤ ∑
(i,a)∈S

x′ia ≤ dxSe,∀S ∈ H

 .(2.1)

The set (2.1) forms a bounded polytope. Hence, any point of it, including X, can be written

as a convex combination of its vertices. To prove the result, therefore, it suffices to show that

the vertices of (2.1) are integer-valued. Hoffman and Kruskal (1956) show that the vertices of

(2.1) are integer-valued if and only if the incidence matrix Y = [y(i,a),S], (i, a) ∈ N×O, S ∈ H,

where y(i,a),S = 1 if (i, a) ∈ S and y(i,a),S = 0 if (i, a) 6∈ S, is totally unimodular.12 Finally, the

stated result follows since the bihierarchical structure of H implies the total unimodularity

of matrix Y (Edmonds, 1970). A fuller self-contained proof is available in Appendix C. �

As is clear from the proof, the pure assignments used in the implementing lottery in

Theorem 1 not only are feasible under the given quotas; in addition, the implementation

ensures that each of the resulting pure assignments is rounded up or down to the nearest

integer for each constraint set, which is a stronger property.

For practical purposes, knowing simply that an expected assignment is implementable

is not satisfactory; implementation must be computable, preferably by a fast algorithm.

Fortunately, there exists an algorithm, formally described in Appendix D, that implements

expected assignments in polynomial time.13 At each step of the algorithm, an expected

assignment X satisfying the given quotas is decomposed into a convex combination γX ′ +

(1 − γ)X ′′ of two expected assignments, X ′ and X ′′, each of which satisfies the quotas and

is closer to being a pure assignment in the following sense: every constraint set S ∈ H that

is integer valued in X (i.e.,
∑

(i,a)∈S xia ∈ Z) remains integer valued in both X ′ and X ′′,

and there is at least one additional integer valued constraint set in both X ′ and X ′′. Then,

a random number is generated and with probability γ the algorithm continues by similarly

decomposing X ′, while with probability 1− γ the algorithm continues by decomposing X ′′.

The algorithm stops when it reaches a pure assignment. As argued more formally in the

appendix, this process has a run time polynomial in |H|.

2.1. Examples of Bihierarchy. In this section we provide several examples of constraint

structures that satisfy the bihierarchy condition, and are thus universally implementable per

Theorem 1.

12A zero-one matrix is totally unimodular if the determinant of every square submatrix is 0, −1 or +1.
13We thank Tomomi Matsui and Akihisa Tamura for suggesting the algorithm. An earlier draft of this
paper included an alternative algorithm generalizing the stepping-stones algorithm described by Hylland
and Zeckhauser (1979).
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x1a x1b x1c

x2a x2b x2c

x3a x3b x3c




Figure 2 – Endogenous Capacities and Group-Specific Quotas

2.1.1. One-to-one assignment and the Birkhoff-von Neumann theorem. Suppose n agents

are to be assigned n objects, one for each. Notice that any pure assignment is described

as an n × n permutation matrix; namely, each entry is zero or one, each row sums to one,

and each column sums to one. Any expected assignment is in turn represented as an n× n
bistochastic matrix, i.e., a matrix with entries in [0, 1], satisfying the same row-sum and

column-sum constraints. The Birkhoff-von Neumann theorem states that any bistochastic

matrix can be expressed as a convex combination of permutation matrices. Clearly, this

result follows from Theorem 1; all rows are disjoint and thus form a hierarchy, and all

columns form another. (Singletons can be added arbitrarily to either hierarchy).

Corollary 1. (Birkhoff, 1946; von Neumann, 1953) Every bistochastic matrix is a

convex combination of permutation matrices.

2.1.2. Endogenous Capacities. Consider a school choice problem in which the school author-

ity wishes to run several education programs within one school building. An assignment in

such an environment can be described as a matrix in which rows correspond to students

and columns correspond to education programs; each school building then corresponds to

multiple columns. Formally, we can let H1 include all rows, while H2 includes all columns,

as well as sets of the form N × O′, where O′ corresponds to multplie educational programs

that share a building. The ceiling qN×{a} describes the total number of students who can be

admitted to program a, while the ceiling qN×O′ describes the total capacity of the building

housing the programs in O′. If the sum of ceilings
∑

a∈O′ qN×{a} is larger than the ceiling

qN×O′ , then that means the sizes of programs within the school building can be adjusted,

subject to the building’s overall (say, physical) capacity. For instance, in Figure 2, columns b

and c represent two programs within a school each of which is subject to a quota, and there

is a school-wide quota impinging on b and c, together. Since each school program belongs to

just one building, the constraint structure H2 is a hierarchy, hence H1 ∪H2 is a bihierarchy

and is universally implementable.
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2.1.3. Group-specific Quotas. Affirmative action policies are sometimes implemented as quo-

tas on students of a specific gender, race, or socioeconomic status.14 A similar mathematical

structure results from New York City’s Educational Option programs, which achieve a mix

of students by imposing quotas on students with various test scores (Abdulkadiroğlu, Pathak

and Roth, 2005). Quotas may also be based on the residence of applicants: The school choice

program of Seoul, Korea, limits the percentage of seats allocated to applicants from outside

the district.15 A number of school choice programs in Japan have similar quotas based on

residential areas as well.

As above, let H1 include all rows, which correspond to students, and let H2 include all

columns, which correspond to schools. Group-specific quotas can be handled by including

“sub-columns” in H2; formally a sub-column is a set of the form N ′ × {a} for a ∈ O and

N ′ $ N . The ceiling qN ′×{a} then determines the maximum number of students school a can

admit from group N ′. Quotas on multiple groups can be imposed for each a without violating

the hierarchy structure as long as they do not overlap with each other.16 For instance, in

Figure 2, school a has a maximum quota for its student body (entire column) but also has

a maximum quota on a particular group of students represented by rows 1 and 2 (dashed

sub-column). Moreover, a nested series of constraints can be accommodated. For instance,

a school system can require that a school admit at most 50 students from district one, at

most 50 students from district two, and at most 80 students from either district one or two.

It is also possible to accommodate both flexible-capacity constraints and group-specific

quota constraints within the same hierarchy H2. Flexible-capacity constraints are defined

on multiple columns of an expected assignment matrix X, whereas group-specific quota

constraints are defined on subsets of single columns of X. Any subset of a single column will

be a subset of or disjoint from any set of multiple columns. Figure 2 provides an illustration.

14 Abdulkadiroğlu and Sönmez (2003b) and Abdulkadiroğlu (2005) analyze assignment mechanisms under
affirmative action constraints.
15See “Students’ High School Choice in Seoul Outlined,” Digital Chosun Ilbo, October 16, 2008
(http://english.chosun.com/w21data/html/news/200810/200810160016.html).
16In fact, some overlap of constraint sets can be accommodated with a small error. Suppose a school has
maximal quotas for white and male at 60 and 55, respectively. Suppose an expected assignment assigns 40.5
white male, 14.5 black male, and 19.5 white female students to that school. Notice both ceilings are binding
at this expected assignment. This expected assignment can be implemented recognizing only white and male,
white and female, and male as the constraint sets, which then forms a hierarchy. Implementing with this
modified constraint structure may violate the maximal quota for whites, since the constraint set for “white”
is not included in the structure; for instance, the school may get 41 white male, 14 black male and 20 white
female students. However, the violation is by only one student. In fact, the degree of violation is at most one
when there is only one overlap of constraint sets. Such a small violation can often be tolerated in realistic
controlled-choice environments. In case the quotas are rigid, the quota can be set more conservatively; for
instance in the above example, the quota for whites can be set at 59 instead of 60.
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2.1.4. Course Allocation. In course allocation, each student may enroll in multiple courses,

but cannot receive more than one seat in any single course. Moreover, each student may

have preference or feasibility constraints that limit the number of courses taken from certain

sets. For example, scheduling constraints prohibit any student from taking two courses that

meet during the same time slot. Or, a student might prefer to take at most two courses on

finance, at most three on marketing, and at most four on finance or marketing in total.

Many such restrictions can be modeled using a bihierarchy, with H1 including all rows

and H2 including all columns. Setting q{(i,a)} = 1 and q{i}×O > 1 for each i ∈ N and a ∈ O
ensures that each student i can enroll in multiple courses but receive at most one seat in each

course. Letting F and M be the sets of finance courses and marketing courses, respectively, if

H1 contains {i}×F , {i}×M , and {i}×(F∪M), then we can express the constraints “student

i can take at most q{i}×F courses in finance, q{i}×M courses in marketing, and q{i}×(F∪M) in

finance and marketing combined.” Scheduling constraints are handled similarly; for instance,

F and M can be sets of classes offered at different times (e.g., Friday morning and Monday

morning). It may be impossible, however, to express both subject and scheduling constraints

while still maintaining a bihierarchical constraint structure.

Note that the flexible production and group-specific quota constraints described in Sections

2.1.2-2.1.3 can also be incorporated into the course allocation problem without jeopardizing

the bihierarchical structure. These constraints can be included in H2, while the preference

and scheduling constraints described above can be included in H1. So long as H1 and H2

are both hierarchies, H = H1 ∪H2 is a bihierarchy.

2.1.5. Interleague Play Matchup Design. Our framework can also be applied to matching

problems, in which N and O are both sets of agents, and entry (i, a) in the assignment

matrix represents whether (and, in some applications, how many times) i is matched with a.

As an example, consider sports scheduling. Many professional sports associations, including

Major League Baseball (MLB) and the National Football League (NFL), have two separate

leagues. In MLB, teams in the American League (AL) and National League (NL) had

traditionally played against teams only within their own league during the regular season,

but play across the AL and NL, called interleague play, was introduced in 1997.17 Unlike the

intraleague games, the number of interleague games is relatively small, and this can make

the indivisibility problem particularly difficult to deal with in designing the matchups.

For example, suppose there are two leagues, N and O, each with 9 teams. Suppose each

team must play 15 games against teams in the other league. This can be represented by

forming a 9 × 9 matrix where entry (i, a) corresponds to the number of times team i ∈ N

17See “Interleague play”, Wikipedia (http://en.wikipedia.org/wiki/Interleagueplay).
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plays team a ∈ O. The constraint that each team must play 15 games against teams in the

other leagues can be handled by adding all row and column constraints, each with floor and

ceiling set equal to 15. Ignoring indivisibility, a fair matchup will require each team in one

league to play every team in the other league the same number of times, that is, 15/9 ≈ 1.67

times. Of course, this fractional matchup itself is infeasible, but one can implement this

expected matchup as a convex combination of feasible matchups. In doing so, one can also

specify additional constraints: e.g., each team in N has a geographic rival in O and they

must play at least once; or, teams in each league must face opponents in the other league of

similar difficulty. Specifically, one could require each team to play at least 4 games with the

top 3 teams, 4 games with the middle 3 teams and 4 games with the bottom 3 teams of the

other league, by adding the appropriate sub-row and sub-column constraints. Our approach

can produce a feasible matchup that implements the uniform expected assignment while also

satisfying these additional constraints.

2.2. Necessity of a bihierarchical constraint structure. Theorem 1 shows that bihier-

archy is sufficient for universal implementability. This section identifies a sense in which it

is also necessary. Doing so also provides an intuition about the role bihierarchy plays for

implementation of expected assignments. We begin with an example of a non-bihierarchical

constraint structure that is not universally implementable.

Example 1. Consider the environment depicted in the following matrix, with two objects a, b

and two agents 1, 2, and a constraint structure H that includes the “first row” {(1, a), (1, b)},
the “first column” {(1, a), (2, a)}, and a “diagonal set” {(1, b), (2, a)}. Clearly, this constraint

structure is not a bihierarchy, since no two of the constraints can be placed in the same

hierarchy. Suppose each of these constraint sets has a common floor and ceiling quota of

one. The following expected assignment

0.5 0.5

0.5 0.5


X =

satisfies the quotas, but it cannot be implemented as a lottery over feasible pure assignments.18

To see this, first observe that the lottery implementing X must choose with positive probability

a pure assignment X in which x1a = 1. Since the first row has a quota of one, it follows

that x1b = 0. Since the diagonal set has a quota of one, it follows that x2a = 1. This is

18Notationally, the convention throughout the paper is that the ith row of the expected assignment matrix
from the top corresponds to agent i while the first column from the left corresponds to object a, the second
column corresponds to object b, and so on.
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a contradiction because the quota for the first column is violated at X since x{(1,a),(2,a)} =

x1a + x2a = 2.

Is bihierarchy necessary for universal implementability? It turns out this is not the case.19

Yet, we now show that bihierarchy implies universal implementability for an important class

of constraint structures. In two-sided assignment problems, there are often quotas for each

individual agent and quotas for each object. We say that H is a canonical two-sided

constraint structure if H contains all “rows” (i.e., sets of the form {i} × O for each

i ∈ N) and all “columns” (i.e., sets of the form N × {a} for each a ∈ O). The next result

demonstrates that bihierarchy is necessary for universal implementability for such constraint

structures.

Theorem 2. (Necessity) If a canonical two-sided constraint structure is not a bihierarchy,

then it is not universally implementable.

The formal proof of Theorem 2 is in the Appendix. The proof shows that whenever a

canonical two-sided constrained structure fails to be a bihierarchy one can always find an

expected assignment and quotas that lead to the situation much like that of Example 1.

(See Section 6 for a necessary condition for universal implementability that generalizes the

idea behind Example 1.) Thus, in the context of typical two-sided assignment and matching

problems, bihierarchy is both necessary and sufficient for universal implementability. We

now turn to applications.

3. A Generalization of The Probabilistic Serial Mechanism for Assignment

with Single-unit Demand

In this section, we consider a problem of assigning indivisible objects to agents who can

consume at most one object each. Examples include university housing allocation, public

housing allocation, office assignment, and student placement in public schools.

19 To see that bihierarchy is not necessary, consider an environment with 2 objects and 2 agents as before,
but let

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, a), (2, b)}},
and the floor and ceiling quotas for each constraint set be one. Note H is not a bihierachy. Yet, any expected
assignment

X =
(

s t
t t

)
,

with s + t = 1, can be decomposed by a convex combination of pure assignments as

X =
(

s t
t t

)
= s

(
1 0
0 0

)
+ t

(
0 1
1 1

)
.
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A common method for allocating objects in such a setting is the random serial dic-

tatorship. In this mechanism, every agent reports preference rankings of the objects. The

mechanism designer then randomly orders the agents with equal probability. The first agent

in the realized order receives her stated favorite (most preferred) object, the next agent re-

ceives his stated favorite object among the remaining ones, and so on. The random serial

dictatorship is strategy-proof, that is, reporting preferences truthfully is a weakly dominant

strategy for every agent. Moreover, the random serial dictatorship is ex-post efficient, that is,

every pure assignment that occurs with positive probability under the mechanism is Pareto

efficient.

Despite its many advantages, the random serial dictatorship may entail unambiguous

efficiency loss ex ante. Adapting an example by Bogomolnaia and Moulin (2001), suppose

that there are two objects a and b, each in unit supply, and a “null object” ø representing

the outside option. There are four agents 1, 2, 3 and 4, where agents 1 and 2 prefer a to b

to ø while agents 3 and 4 prefer b to a to ø. By calculation, the random serial dictatorship

results in the expected assignment

X =


5/12 1/12 1/2

5/12 1/12 1/2

1/12 5/12 1/2

1/12 5/12 1/2

 .

This assignment entails an unambiguous efficiency loss. Notice first that every agent

consumes her less preferred of the two objects with positive probability. This happens

since two agents with the same preferences (e.g., agents 1 and 2) are chosen with positive

probability to be the first two in the serial order, in which case the second agent will claim

her less preferred object. Clearly, it would benefit all if agents 1 and 2 trade their 1/12

shares of b for agents 3’s and 4’s 1/12 shares of a. In other words, every agent prefers the

alternative expected assignment,

X ′ =


1/2 0 1/2

1/2 0 1/2

0 1/2 1/2

0 1/2 1/2

 .

An expected assignment is said to be ordinally efficient if it is not first-order stochasti-

cally dominated for all agents by some other expected assignment. The example implies that

the random serial dictatorship may result in an ordinally inefficient expected assignment.

The probabilistic serial mechanism, introduced by Bogomolnaia and Moulin (2001) in

the simple one-to-one assignment setting, eliminates this form of inefficiency. Imagine that
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each indivisible object is a divisible object of probability shares: If an agent receives fraction

p of an object, we interpret that she receives the object with probability p. Given reported

preferences, consider the following “eating algorithm.” Time runs continuously from 0 to 1.

At every point in time, each agent “eats” her reported favorite object with speed one among

those that have not been completely eaten up. At time t = 1, each agent is endowed with

probability shares of objects. The probabilistic serial assignment is defined as the resulting

probability shares.

In the above example, agents 1 and 2 start eating a and agents 3 and 4 start eating b at t =

0 in the eating algorithm. Since each object is in unit supply and two agents are eating it, each

object is completely eaten away at time t = 1
2
. As no (proper) object remains, agents consume

the null object between t = 1
2

and t = 1. Thus the resulting probabilistic serial assignment

is given by X ′ defined above. In particular, the probabilistic serial mechanism eliminates

the inefficiency that was present under the random serial dictatorship. More generally,

Bogomolnaia and Moulin (2001) show that the probabilistic serial random assignment is

ordinally efficient with respect to any reported preferences.20

The main goal of this section is to generalize the probabilistic serial mechanism to accom-

modate constraints absent in the simple setting.21 To begin, we consider our basic setup with

agents N and objects O, where O now contains a “null” object ø with unlimited supply.22

We then consider a bihierarchy constraint structure H = H1∪H2 such that H1 is comprised

of all singleton sets and all rows while H2 includes (but is not restricted to) all columns. We

assume that q{i}×O = q{i}×O = 1 for all i ∈ N , that is, each agent obtains exactly one object,

rather than at most one. This is without loss of generality since O contains ø. We assume

that q
S

= 0 for any S ∈ H that is not a row, that is, there are no other floor constraints.

The ceiling quota for each object a, qN×{a}, can be an arbitrary nonnegative integer. Recall

20The contribution of Bogomolnaia and Moulin has led to much subsequent work on random assignment
mechanisms for single-unit assignment problems. The probabilistic serial mechanism is generalized to allow
for weak preferences and existing property rights by Katta and Sethuraman (2006) and Yilmaz (2009).
Kesten (2009) defines two random assignment mechanisms and shows that these mechanisms are equivalent
to the probabilistic serial mechanism. Ordinal efficiency is characterized by Abdulkadiroğlu and Sönmez
(2003a), McLennan (2002) and Manea (2008). Behavior of the random serial dictatorship and probabilistic
serial mechanism in large markets is studied by Che and Kojima (2010), Kojima and Manea (2010), and
Manea (2009). In the scheduling problem (a special case of the current environment), Crès and Moulin
(2001) show that the probabilistic serial mechanism is group strategy-proof and first-order stochastically
dominates the random serial dictatorship, and Bogomolnaia and Moulin (2002) give two characterizations
of the probabilistic serial mechanism.
21BM primarily study environments in which n different objects are assigned to n agents. They describe
in their conclusion how their analysis extends almost verbatim to settings in which the numbers of objects
and agents are different, and to settings in which some objects have multi-unit capacity. The additional
constraints described in this section, such as the controlled choice requirements in student placement, cannot
be accommodated in the original BM framework.
22Formally, we assume that qS = +∞ for each constraint set S that is not a row and has a nonempty
intersection with N × {ø}.
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that an expected assignment X is said to satisfy quotas q if q
S
≤
∑

(i,a)∈S xia ≤ qS for each

S ∈ H. Each agent i has a strict preference �i over the set of objects.23 We write a �i b if

either a �i b or a = b holds. We write � for (�i)i∈N and �−i for (�j)j∈N\{i}.

As mentioned earlier, the bihierarchy structure in this section accommodates a range of

practical situations faced by a mechanism designer. First, the objects may be produced

endogenously based on the reported preferences of the agents, as in the case of school choice

with flexible capacity (Section 2.1.2). Second, a mechanism designer may need to treat

different groups of agents differently, as in the case of school choice with group-specific

quotas (Section 2.1.3).

Now we introduce the generalized probabilistic serial mechanism. As in BM, the

basic idea is to regard each indivisible object as a divisible object of “probability shares.”

More specifically, the algorithm is described as follows: Time runs continuously from 0

to 1. At every point in time, each agent “eats” her reported favorite object with speed one

among those that are “available” at that instance, and the probabilistic serial assignment

is defined as the probability shares eaten by each agent by time 1. In order to obtain an

implementable expected assignment in the presence of additional constraints, however, we

modify the definition of “available”. More specifically, we say that object a is “available” to

agent i if and only if, for every constraint set S such that (i, a) ∈ S, the total amount of

consumption over all agent-object pairs in S is strictly less than its ceiling quota qS. This

algorithm is formally defined in Appendix A. Given reported preferences �, the generalized

probabilistic serial assignment is denoted PS(�).

Note that two modifications are made in the definition of the algorithm from the version

of Bogomolnaia and Moulin (2001). First, we specify availability of objects with respect to

both agents and objects in order to accommodate complex constraints such as controlled

choice. Second, we need to keep track of multiple constraints for each agent-object pair (i, a)

during the algorithm, since there are potentially multiple constraints that would make the

consumption of object a by agent i no longer feasible.

Since the constraint structure in this section is a bihierarchy, and the generalized PS

mechanism always produces an expected assignment that satisfies the given quotas, Theorem

1 implies that the resulting expected assignment is always implementable:

Corollary 2. For any preference profile �, the generalized probabilistic serial assignment

PS(�) is implementable.

23Katta and Sethuraman (2006) generalize the original PS mechanism to allow for weak preferences, by
reconceptualizing BM’s eating algorithm as a maximum flow problem. Their approach can be incorporated
into our framework without much modification, allowing our generalized PS mechanism to accommodate
weak preferences as well. See Appendix F for details.
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Proof. The result follows immediately from Theorem 1, because the constraint structure

under consideration forms a bihierarchy and PS(�) satisfies all quotas associated with that

constraint structure by construction. �

In this sense, the mechanism is well-defined as an expected assignment mechanism in the

current setting. The following example illustrates how the mechanism works.

Example 2. There are four agents (students) 1, 2, 3, 4 and two objects (schools) a, b. In

addition, there is a null object ø. School a has two seats, school b has one seat, and the

null object has unlimited supply. Further, school a has a quota of one for students {1, 2, 3}.
Hence, in addition to the columns, H2 includes a sub-column S = {(1, a), (2, a), (3, a)}, with

qS = 1.

Suppose students 1 and 2 prefer a to b to ø, while students 3 and 4 prefer b to a to ø. The

eating algorithm defining the generalized probabilistic serial mechanism works as follows. At

time t = 0, students 1 and 2 start eating a while 3 and 4 start eating b. At time t = 1/2, the

quota for the constraint set S = {(1, a), (2, a), (3, a)} becomes binding. So does the quota

for school b. After t = 1/2, student 4 starts eating a (since one unit of a is still available to

him), but the remaining students can only eat ø. At time t = 1, all students complete their

eating, so we have the following expected assignment:

1/2 0 1/2

1/2 0 1/2

0 1/2 1/2

1/2 1/2 0




X =

The assignment under the random serial dictatorship24 is given by

11/24 1/12 11/24

11/24 1/12 11/24

1/12 5/12 1/2

7/12 5/12 0




X ′ =

24In the current setup, we define the random serial dictatorship as follows: (i) randomly order agents with
equal probability, and (ii) the first agent obtains her favorite object, the second agent obtains her favorite
object among the remaining objects, and so on, except that we do not allow an agent to select an object
that would cause some quota to be violated.
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In the above example, notice that the generalized probabilistic serial assignment X leaves

school a unassigned with positive probability, even though students 1, 2 and 3 would have

preferred a over the null school they receive. Nevertheless, the assignment X is (constrained)

efficient, in that no other “feasible” assignment can make the students better off.

By contrast, the random serial dictatorship assignment is not even constrained efficient in

this example: for instance, students 1 and 3 would benefit from exchanging 1/12 probability

share of their respective less preferred schools for the same probability share of their more

preferred schools, and this trade would not violate the constraints. The room for such an

improvement exists since students 2 and 1 are chosen with positive probability to be the first

and second in the serial order, in which case 1 will claim her less preferred school b because

of the quota q̄S = 1, while students 4 and 3 are chosen with positive probability to be the

first and the second in the serial order, in which case 3 will claim her less preferred school a

because b has only one seat overall.

The next subsection demonstrates that the efficiency advantage of the generalized proba-

bilistic serial mechanism is general.

3.1. Properties of The Generalized Probabilistic Serial Mechanism. We begin by

formally defining ordinal efficiency in our environment. A lottery xi = [xia]a∈O for an agent

(first-order) stochastically dominates another lottery x′i = [x′ia]a∈O at �i if∑
b�ia

xib ≥
∑
b�ia

x′ib,

for every object a ∈ O, and xi strictly stochastically dominates x′i if the former stochas-

tically dominates the latter and xi 6= x′i.

An expected assignment X = [xi]i∈N ordinally dominates another expected assignment

X ′ = [x′i]i∈N at � if X ′ 6= X, and, for each i, xi stochastically dominates x′i at �i. If X

ordinally dominates X ′ at �, then every agent i prefers xi to x′i according to any expected

utility function with utility index consistent with �i. An expected assignment that satisfies

q is ordinally efficient at � if it is not ordinally dominated at � by any other expected

assignment that satisfies q. Note that our model allows for a variety of constraints, so the

current notion has the flavor of “constrained efficiency” in that the efficiency is defined within

the set of expected assignments satisfying the quota constraints.

Bogomolnaia and Moulin (2001) show that the probabilistic serial mechanism results in

an ordinally efficient expected assignment in their setting. Their result can be generalized

to our setting, although its proof requires new arguments.25

25In BM’s environment, ordinal efficiency is equivalent to the nonexistence of a Pareto-improving trade in
probability shares among agents (in the sense of leading to an ordinally dominating expected assignment).
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Theorem 3. For any preference profile �, the generalized probabilistic serial expected as-

signment PS(�) is ordinally efficient at �, and every realization of the lottery is ex-post

Pareto efficient.

Bogomolnaia and Moulin (2001) also show that the probabilistic serial mechanism is fair

in a specific sense in their setting. Formally, an expected assignment X = [xi]i∈N is envy-

free at � if xi stochastically dominates xj at �i for every i, j ∈ N . It turns out that the

generalized probabilistic serial assignment is not necessarily envy-free in our environment. In

Example 2, the assignment for agent i = 1, 2, 3 is stochastically dominated by the assignment

for agent 4, at the former’s preferences. However, the existence of envy may be inevitable

in this case because agents 1, 2, and 3 are more constrained than agent 4, that is, there

is a constraint on group S = {(1, a), (2, a), (3, a)}. Such envy may not be normatively

problematic: Fewer constraints are imposed on some agents than others precisely because

the social planner intends to treat the former more preferably. By contrast, envy by a

(weakly) less constrained agent of a (weakly) more constrained agent is normatively more

problematic. In Example 2, no such envy exists; each of agents 1, 2, and 3 prefers her own

assignment to the others in this group, and agent 4 prefers his own assignment to those of

any other agent. To formalize this idea, say agent i weakly envies agent j at X = [xi]i∈N

at � if xi does not stochastically dominate xj at the former’s preference. We say an expected

assignment X = [xi]i∈N is constrained envy-free at � if whenever i weakly envies j in

X, there exists S ∈ H2 binding in X (i.e., XS = qS) such that (i, a) ∈ S but (j, a) 6∈ S, for

some a ∈ O.26 In words, constrained envy-freeness requires that an agent can never even

weakly envy another if there is no binding constraint on a set in H2 that only the former

faces. This means in particular that if agent i faces constraints in H2 that are weak subsets

of agent j’s, then agent i cannot weakly envy agent j. In the above example, the outcome of

the generalized probabilistic serial is constrained envy-free. This observation is generalized

as follows.27

This enables a characterization of ordinal efficiency in terms of a certain binary relation over objects, which is
crucial in BM’s proof of their mechanism’s ordinal efficiency. There are two main difficulties for generalizing
the result to our setting. First, not all trades in probability shares are feasible because the new expected
assignment may violate constraints such as group-specific quotas. Second, the nonexistence of a Pareto-
improving trade does not imply ordinal efficiency because, thanks to flexible capacity, a different aggregate
supply of objects may exist that makes every agent better off. We address these complications by defining
a new binary relation over agent-object pairs. See Appendix G.1 for details.
26Example 2 suggests that one cannot expect the generalized probabilistic serial assignment to satisfy a
stronger notion of envy-freeness. For instance, a natural notion would require that whenever an agent i
envies j, exchanging their assignments must violate a constraint. Clearly, X fails this notion since agent 1
envies agent 4, and exchanging their assignments would not violate any constraints.
27The proof is a simple adaptation of Bogomolnaia and Moulin (2001). For completeness, we include it in
Appendix G.2.
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Theorem 4. For any preference profile �, the generalized probabilistic serial expected as-

signment PS(�) is constrained envy-free at �.

Two remarks are worth making. First, Theorem 4 obviously means that those facing

the same constraints have no envy of each other. This means that if no group specific

constraints are present (i.e., all constraints in H2 involve full columns), then the generalized

probabilistic serial assignment satisfies the standard notion of envy-freeness. Second, the

random serial dictatorship also admits the same type of envy as the generalized probabilistic

serial mechanism. This can be seen in Example 2 where agents 1, 2, and 3 all envy agent 4

(in the sense of stochastic dominance). More importantly from the standpoint of Theorem 4,

the random serial dictatorship violates even constrained envy-freeness unlike the generalized

probabilistic serial mechanism: in Example 2, agent 3 weakly envies agent 1 even though

both face the same constraints.

Unfortunately, the probabilistic serial mechanism is not strategy-proof, that is, there are

situations in which an agent is made better off by misreporting her preferences. However,

Bogomolnaia and Moulin (2001) show that the probabilistic serial mechanism is weakly

strategy-proof in their setting, that is, an agent cannot misstate his preferences and obtain

an expected assignment that strictly stochastically dominates the one obtained under truth-

telling. With some additional arguments, we can generalize their claim to our environment.

Formally, we claim that the generalized probabilistic serial mechanism is weakly strategy-

proof, that is, there exist no �, i ∈ N and �′i such that PSi(�′i,�−i) strictly stochastically

dominates PSi(�) at �i in our more general environment.28 29

Theorem 5. The generalized probabilistic serial mechanism is weakly strategy-proof.

One limitation of our generalization is that the algorithm is defined only for cases with

maximum quotas: The minimum quota for each group must be zero. In the context of

school choice, this precludes the administrator from requiring that at least a certain number

of students from a group attend a particular school. Despite this limitation, administrative

28As will be seen in Appendix G.3, the proof is conceptually similar to BM’s proof of weak strategy-proofness,
but requires one new technical result (Lemma 9) that shows that the effect of an agent’s preference misreport
is in a certain sense small with respect to all constraint sets. In the BM environment one only needs to keep
track of the time at which each object reaches capacity, whereas in our environment one needs to keep
track of the time at which each constraint set (including but not limited to single-object constraints) reaches
capacity.
29Kojima and Manea (2010) show that truth-telling becomes a dominant strategy for a sufficiently large
market under the probabilistic serial mechanism in a simpler environment than the current one. Showing
a similar claim in our environment is beyond the scope of this paper, but we conjecture that the argument
can be extended.
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goals can often be sufficiently represented using maximum quotas alone.30 For instance, if

there are two groups of students, “rich” and “poor”, a requirement that at least a certain

number of poor students attend some highly desirable school might be adequately replaced

by a maximum quota on the number of rich students who attend.

4. A Generalization of the Pseudo-market Mechanism for Assignment with

Multi-Unit Demand

In an influential paper, Hylland and Zeckhauser (1979) propose an ex-ante efficient mecha-

nism for the problem of assigning n objects among n agents with single-unit demand. Based

on the old idea of a competitive equilibrium from equal incomes, the mechanism can be de-

scribed as follows. Agents report their von Neumann-Morgenstern preferences over individual

objects. Each agent is allocated an equal budget of an artificial currency. The mechanism

then computes a competitive equilibrium of this market, where the objects being priced and

allocated are probability shares of objects. As the allocations are based on a competitive

equilibrium, each agent is allocated a probability share profile that maximizes her expected

utility subject to her budget constraint at the competitive equilibrium prices. This expected

assignment is ex-ante efficient by the first welfare theorem. It is also envy-free in the sense

that each agent weakly prefers her lottery over anyone else’s according to her expected util-

ity, because all agents have identical budget constraints. The resulting expected assignment

can be implemented by appeal to the Birkhoff-von Neumann theorem.

By contrast, designing desirable mechanisms has been challenging in problems where

agents have multi-unit demand, as in the assignment of course schedules to students or

the assignment of athletes to sports teams.31 For instance, axiomatic results on the prob-

lem are mostly negative,32 and the mechanisms used in practice suffer from inefficiency and

fairness problems.33 In this section, we generalize HZ’s pseudo-market mechanism to the

multi-unit demand setting, and show that our new mechanism satisfies the same efficiency

and fairness properties that the original HZ satisfies in the unit-demand environment.34

30See Kojima (2012) and Hafalir, Yenmez and Yildirim (2011) on the limits of this approach. See also Ehlers
et al. (2011) for an approach that accommodates floor constraints provided that they are interpreted as “soft
constraints.”
31Similar problems include the assignment of tasks within an organization, the division of heirlooms and
estates among heirs, and the allocation of access to jointly-owned scientific resources.
32Papai (2001) shows that sequential dictatorships are the only deterministic mechanisms that are non-
bossy, strategy-proof, and Pareto optimal; dictatorships are unattractive for many applications because they
are highly unfair ex post. Ehlers and Klaus (2003), Hatfield (2009), and Kojima (2009) provide similarly
pessimistic results.
33See Sönmez and Ünver (2010) and Budish and Cantillon (2009).
34HZ primarily study environments in which each agent requires exactly one object. In an unpublished
appendix they mention that their results are easily generalized to a special case of multi-unit demand in
which each agent requires exactly k > 1 objects, and each agent’s marginal utility for an additional unit
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To begin, consider our basic setup with agents N and objects O. It is convenient to fo-

cus on the course allocation application, and think of N as students who must register for

courses O. The constraint structure H is again divided into a family H1 of constraint sets

that includes all rows (student-specific constraints) and a family H2 of sets that includes

all columns (course-specific constraints). On the courses side, we assume that there are no

other constraints in H2 other than the column constraints, and let qa describe the maximum

capacity for course a. On the student side, we assume that the family H1 consists of hier-

archies {H1i}i∈N corresponding to each student i. Each H1i contains the i-th row, and the

associated ceiling quota represents student i’s overall capacity constraint, i.e., the maximum

number of courses she can take. In addition, H1i may include sub-rows of the form {i}×O′,
for O′ ⊂ O; the associated ceiling quota q{i}×O′ represents the maximum number of courses

she can take within courses O′ (e.g., the courses in O′ may meet in the same time block or

belong to the same subfield). Last, each H1i includes all of the singleton sets {(i, a)} for

a ∈ O, with ceiling quotas q{(i,a)} = 1 representing the constraint that each student can take

each course at most once. We set all floor constraints, in both H1 and H2, equal to zero;

this will play a role in our proof that a competitive equilibrium exists. Note that the overall

constraint structure H = H1 ∪H2 forms a bihierarchy.

Initially, we assume that the students’ preferences are additive subject to their constraints

(we illustrate how to extend the framework to more general preferences in Section 4.2).

Formally, let via ∈ R denote student i’s value for course a, and let X i denote the set

of pure consumption bundles that are feasible for student i given his constraints; that is,

X i := {xi = [xia] ∈ Z|O||0 ≤
∑

(i,a)∈Si xia ≤ qSi ,∀Si ∈ Hi}. For each pure consumption

bundle xi ∈ X i, student i’s utility is given by

ui(xi) =
∑
a∈O

xiavia(4.1)

This form of utility function can easily be extended to “expected consumption bundles.”

Given linearity of preferences, agent i’s expected utility from any expected consumption

bundle that satisfies his quotas, i.e., any element in the set Xi := {xi = [xia] ∈ R|O||0 ≤∑
(i,a)∈Si xia ≤ qSi ,∀Si ∈ Hi}, can be expressed by the same formula as in (4.1).

We now define the generalized pseudo-market mechanism.

The Generalized Pseudo-Market Mechanism:

of an object is independent of the other objects assigned to that agent (including additional copies of that
object). This environment is isomorphic to the original unit-demand environment. HZ also mention that
while it would be useful to allow for additional constraints—e.g., assigning each agent to no more than a
single copy of each object—their method of proof does not generalize. As illustrated later, our alternative
formulation of the problem enables us to incorporate such constraints.
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(1) Each agent i reports her cardinal object values and her consumption constraints, as

described above.

(2) Let B be a positive number, which we interpret as the equal budget endowment of

each agent in artificial currency. The mechanism computes a vector of nonnegative

item prices p∗ = (pa)a∈O and an expected assignment X∗ = [x∗i ]i∈N which clears the

market in the sense below:

• Each agent i is allocated a (possibly fractional) consumption bundle x∗i which

maximizes her (reported) utility subject to the budget constraint, that is,

x∗i ∈ arg max
xi∈Xi

{
ui(xi) subject to

∑
a∈O

p∗axia ≤ B

}
.

• The probability-shares market clears in the sense that∑
i∈N

x∗ia ≤ qa for all a ∈ O (object constraints)

< qa only if p∗a = 0 (complementary slackness)

(3) The expected assignment X∗ is implemented.

We refer to a price vector p∗ above and its associated expected assignment X∗ as a compet-

itive equilibrium. To show that the mechanism is well defined we need the following results.

The first result is that a competitive equilibrium exists.35

Theorem 6. There exists a competitive equilibrium (p∗, X∗) under the generalized pseudo-

market mechanism.

The next result shows that the expected assignment produced by the mechanism can be

implemented.

Corollary 3. The expected assignment X∗ produced by the generalized pseudo-market mech-

anism is implementable. Moreover, there exists a lottery over pure assignments implementing

X∗ such that the expected utility of each agent i is ui(x
∗
i ).

35The proof of Theorem 6 is in Appendix H. Standard competitive equilibrium existence results cannot be
applied here because local non-satiation is violated (cf. footnote 14 of HZ). Our existence proof exploits two
key assumptions of our environment: first, that demand is bounded above, which helps us avoid the usual
issue that demand goes to infinity as price goes to zero; second, that floor constraints are zero, which means
we avoid the existence problems typically associated with complementarities. HZ assume strictly positive
floor constraints—each agent requires exactly one object—and for this reason their method of proof is more
involved and does not generalize to our environment. See Remark 3 in Appendix H for details of why HZ’s
method of proof breaks down under multi-unit demand and floor constraints.
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Proof. The agents’ constraints form one hierarchy, while the objects’ capacity constraints

form a second hierarchy, hence the constraint structure is a bihierarchy. Since the expected

assignment X∗ satisfies all of the constraints, it is implementable by Theorem 1. �

4.1. Properties of the Generalized Pseudo-Market Mechanism. The original HZ

mechanism is attractive for single-unit assignment because it is ex-ante efficient and envy

free. We show that these properties carry over to our more general environment.

For the ex-ante efficiency result, we make one additional technical assumption, which is

that each agent’s bliss point is unique. That is, for each agent i, there is a unique element

of X i that maximizes 4.1 for student i.36

Theorem 7. The expected assignment X∗ is ex-ante Pareto efficient, and every realization

of the lottery is ex-post Pareto efficient.

Proof. Suppose there exists an expected assignment X̃ = [x̃i]i∈N that Pareto improves upon

X∗. If ui(x̃i) > ui(x
∗
i ) then revealed preference implies that p∗ · x̃i > p∗ · x∗i . Suppose

ui(x̃i) = ui(x
∗
i ). We claim that p∗ · x̃i ≥ p∗ · x∗i . Towards a contradiction, suppose that

p∗ · x̃i < p∗ · x∗i . Let x̂i denote i’s bliss point. From our assumption that bliss points are

unique it follows that ui(x̂i) > ui(x̃i) = ui(x
∗
i ). Since p∗ · x̃i < p∗ · x∗i ≤ B there exists

λ ∈ (0, 1) such that p∗ · (λx̂i + (1−λ)x̃i) ≤ B. By concavity of u and uniqueness of the bliss

point, ui(λx̂i + (1− λ)x̃i) > ui(x̃i) = ui(x
∗
i ), which contradicts x∗i being a utility maximizer

for i in Step (2) of the generalized pseudo-market mechanism. Hence p∗ · x̃i ≥ p∗ · x∗i .

From the above and from the assumption that X̃ is a Pareto improvement on X∗, we have

established that p∗ · x̃i ≥ p∗ ·x∗i for all i with at least one strict. Thus
∑

i p
∗ · x̃i >

∑
i p
∗ ·x∗i .

It then follows that there exists a ∈ O such that p∗a > 0 and
∑

i x̃ia >
∑

i x
∗
ia. But this

contradicts the complementary slackness condition of the pseudo market defined earlier,

which implies that
∑

i x
∗
ia = qa. We thus conclude that X∗ is (ex-ante) Pareto efficient.

Ex-ante efficiency immediately implies ex-post efficiency; if some realization of a lottery

were ex-post inefficient, then by executing Pareto improvements for that realization we could

generate an ex-ante Pareto improvement. �

Theorem 8. The expected assignment X∗ is ex-ante envy free. That is, for any agents i 6= j,

ui(x
∗
i ) ≥ ui(x

∗
j).

36This assumption is made for technical convenience. Remark 4 in Appendix H illustrates why this as-
sumption is necessary to obtain ex-ante Pareto efficiency under our mechanism as defined above, and also
illustrates how our mechanism can be modified to obtain ex-ante efficiency even in cases in which an agent’s
bliss point is not unique.
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Proof. Follows immediately from the definition of the mechanism given that all agents have

the same budget. �

Theorem 8 concerns ex-ante fairness. The main result of Section 6 can be used to enhance

ex-post fairness in cases where agents’ bids take a simple additive-separable form without

additional constraints.

Aside from accommodating multi-unit demand, our generalization of the pseudo-market

mechanism allows agents to express several kinds of constraints that may be useful for

practice. To fix ideas we focus on constraints specific to the problem of course allocation.

• Scheduling Constraints: Scheduling constraints can often be expressed by means of a

hierarchy. One example is students at Harvard Business School, who require 10 courses

per school year, of which 5 should be in each of the two semesters, and of which no more

than one should meet at any given time. These constraints form a hierarchy because the

semester constraint sets are disjoint subsets of the school-year constraint set, and the time-

slot constraint sets are disjoint subsets of the semester constraint sets.

• Curricular Constraints: Students often seek variety in their schedules due to diminishing

returns. Our class of preferences can accommodate constraints of the form “at most 2 courses

in Finance,” and it can also accommodate more elaborate constraints like “at most 2 courses

in Finance, at most 2 courses in Marketing, and at most 3 courses in Finance or Marketing.”

As was seen above, such constraints can be incorporated into the individual hierarchies

{H1i}i∈N . A limitation of our formulation, however, is that we may not be able to accom-

modate multiple kinds of these constraints simultaneously. While ruling out some practical

applications, this restriction is necessitated by implementability. For instance, if there is a

Finance course and a Marketing course that meet at time slot 1 (f1,m1), and another Finance

course and another Marketing course that meet at time slot 2 (f2,m2), then scheduling con-

straints on {f1,m1} and {f2,m2} and curricular constraints on {f1, f2} and {m1,m2} cannot

coexist in the same hierarchy.37

4.2. Accommodating nonlinear preferences. So far, we have assumed that agents’ pref-

erences are linear (additive) on a domain specified by certain constraints. Yet, certain non-

linear preferences seem quite relevant in real applications. In course allocation, for instance,

diminishing marginal utilities for similar courses may be natural; an MBA student may value

37Budish (2009) proposes a multi-unit assignment mechanism that accommodates arbitrary ordinal prefer-
ences over schedules, but which is only approximately ex-post efficient. It too is based on the idea of CEEI,
but uses the framework to find an ex-post sure assignment; by contrast, we use CEEI to find an “expected”
assignment. Additional discussion on the tradeoffs between these two approaches can be found in Section
8.2 of the working paper version of Budish (2009).
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a course in finance more when he takes fewer other finance courses. Or, in the context of

assigning nurses to hospital shifts, a nurse might find a second overnight shift in the same

week more costly to work than the first. Other kinds of non-additivity may also prove useful

in various applications.

Fortunately, we can accommodate certain nonlinear substitutable preferences using Mil-

grom (2009)’s integer assignment messages. The idea is to encode nonlinear preferences into

linear objectives by allowing agents to describe multiple “roles” that objects can play for

them in generating utility, with utility then additive across roles.

As a simple illustration of the idea of roles, suppose that baseball teams are drafting

players and a particular team needs to add two players — one to play centerfield and one

to play first base. A team may value players a, b and c at (20, 20), (14, 8) and (12, 10) in

the two roles, respectively: player a can play either position equally well, while players b

and c are better at centerfield than at first base but to varying degrees. Then the packages

{a, b}, {a, c}, and {b, c} of players have values of 34, 32, and 24 for the team, respectively, as

the team can optimally assign the two players between the two roles. Note that the team’s

value of player c depends on which other player the team hires; his value is 12 when a is also

hired and 10 when b is also hired. The role-contingent bid thus captures a team’s nonlinear

preference, together with the constraints that the team demands at most one player in each

role and at most one role for each player.

In a context such as course allocation, roles can be used to describe diminishing marginal

utilities amongst similar courses. For instance, suppose that there are two finance courses

f1 and f2, a marketing course m1, and a strategy course s1, and that a particular student

is especially eager to take at least one finance course. This student might describe her

preferences in terms of two roles: role r1 for the first finance course, and role r2 for all

courses other than her first finance course. By placing a higher value on each finance course

in role r1 than in role r2, she represents diminishing marginal utilities from finance courses.

The following table provides an example of one possible preference report along these lines

(boldface identifies information that is supplied by the student):38

38In addition to the preference information directly supplied by the student, we also impose the constraint
that each student can take at most one unit of each course; e.g., the student whose report is depicted here
cannot take f1 twice, once in role r1 and once in role r2. In course allocation, students need not specify these
constraints themselves in their report since these constraints are already known to the course administrator.
In other contexts, such constraints can be expressed by the agents in terms of what we call “individual-object
constraints”, described below.
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Role
Maximum Courses

in this Role

Utility for Courses You Wish to Rank
f1 f2 m1 s1

r1 1 15 11

r2 2 6 6 8 4

Overall 2

This preference report encodes the following non-additive preferences over course bundles:

Course Bundle f1, f2 f1, m1 f1, s1 f2, m1 f2, s1 m1, s1 f1 f2 m1 s1

Utility 21 23 19 19 15 12 15 11 8 4

More formally, for each object a we allow each agent i to define role r for which she will

use a, and to submit an associated value vira, interpreted as her value of using object a in

role r. With this enriched language, we must extend the expected assignment matrix as

well. We do so by associating each pair (i, r) with a separate row, and associating each

object a, just as before, with a column. Intuitively, we have each agent “own” several rows

of the expected assignment matrix, one row for each of her roles. Each agent submits two

kinds of constraints: a hierarchy of role constraints, each of which constitutes one or more

rows of the expected assignment matrix; and a hierarchy of individual-object constraints,

each of which constitutes a subset of a column of the expected assignment matrix. The

individual-object constraints govern which roles a particular object can play when the goods

are heterogeneous; e.g., the student depicted above cannot use the marketing course m1

to fulfill role r1. The individual-object constraints can also encode capacity limits, e.g., in

course allocation each student can take each course at most once. Since the constraint sets

submitted by different agents are disjoint, the set of all agent constraints forms a bihierarchy.

And, since each agent’s individual-object constraints consists only of sub-column constraints,

we can incorporate the column constraints that describe the capacity of each object, and still

have the overall constraint structure form a bihierarchy. Given the bihierarchical constraints,

the pseudo-market mechanism can be extended in a rather straightforward way, as described

in Appendix B.

5. The Utility Guarantee for Multi-Unit Assignment and Matching

We call our third application the “utility guarantee.” In general, there can be many ways

to implement a given expected assignment, and the choice among them may be important.

To fix ideas, suppose that two agents are to divide 2n objects (with n ≥ 2), that the agents’

preferences are additive, and that agents’ ordinal rankings of the items are the same.39

Suppose the “fair” expected assignment specifies that each agent receive half of each object.

39We described a special case with n = 2 in the introduction.



30 ERIC BUDISH, YEON-KOO CHE, FUHITO KOJIMA, AND PAUL MILGROM

One way to implement this is to randomly choose n objects to assign to the first agent and

then give the remaining n objects to the other. This method, however, could entail a highly

“unfair” outcome ex post, in which one agent gets the n best objects and the other gets the

n worst ones.

In the above example, the unfair ex post pure assignment was possible despite the fairness

of the original expected assignment because the former was very different from the latter. In

other words, the method employed in the above example allowed pure assignments used in

the implementing lottery to differ greatly from the original expected assignment. To avoid

such large discrepancies, we utilize Theorem 1 to develop a method to implement a given

expected assignment with small variation in realized utility.

To state our result, consider an environment in which the only constraints directly related

to agents are their overall capacities. Formally, assume that the constraint structure H =

H1 ∪ H2 is such that H1 is a hierarchy composed of all rows and H2 is a hierarchy that

includes all columns, and that an expected assignment X satisfies given quotas associated

with the constraint structure. Assume without loss of generality that the row sum
∑

a xia

is an integer for each i ∈ N .40 Throughout this section, we assume that preference of

each agent i is additive in the sense that there exist values (via)a∈O such that, for any pure

assignment x̄i for i, her utility for x̄i is given by
∑

a∈O x̄iavia. Given an additive preference

of agent i and random assignment X, let max{via − vib|a, b ∈ O, xia, xib /∈ Z} be called the

maximum single-unit utility difference for agent i at X. Agent i’s maximum single-unit

utility difference at X is the utility difference between i’s most valuable and least valuable

fractionally assigned objects at X. With these concepts, we are ready to state the main

result of this section.

Theorem 9. (Utility Guarantee) Any expected assignment X is implementable by a

lottery such that, for each i,

(1) for any pair X̄ and X̄ ′ of pure assignments used in the lottery, the difference between

i’s utility under X̄ and her utility under X̄ ′ is at most her maximum single-unit utility

difference at X,

(2) for any pure assignment X̄ used in the lottery, the difference between i’s utility un-

der X̄ and her expected utility under (any lottery implementing) X is at most her

maximum single-unit utility difference at X.

40This assumption is without loss of generality because any expected assignment with non-integral row sums
is equivalent to an expected assignment with an additional column representing a null object, the sole purpose
of which is to ensure that rows sum to integer amounts.
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This theorem establishes that, given an expected assignment, there exists a lottery over

pure assignments implementing it with small utility variation. More specifically, the first

property (1) implies that the utility difference between any two pure assignments used in the

lottery is at most the utility difference between the agent’s most valuable and least valuable

(fractionally assigned) objects. For instance, recall the example in the Introduction where

two agents are assigned to two of four objects which they rank the same way. (See also

Figure 3 below.) In that example, uniform assignment means that all goods are fractionally

assigned, so the bound coincides with an agent’s utility difference between objects a and

d.41 Notice that the Theorem 9 bound is vacuous when agents have single-unit demand,

and is most powerful when agents demand many goods each. The second property (2) is

an immediate corollary of the first one, providing a bound on the difference between the

expected utility of the given expected assignment and the utility of any pure assignment

used in the lottery.

A proof sketch of Theorem 9 can be given based on Theorem 1. The idea is to supplement

the actual constraints of the problem with a set of artificial “utility proximity” constraints

as follows. For each agent i and integer k, the kth constraint set of agent i, Sik, consists of

his 1st, 2nd, . . . , kth most preferred objects; its floor and ceiling constraints are
⌊∑

a∈Sik xia
⌋

and
⌈∑

a∈Sik xia
⌉
, respectively. The resulting constraint structure is still a bihierarchy after

this addition, so Theorem 1 guarantees that the expected assignment can be implemented

with all of the constraints satisfied. Satisfying the artificial “utility proximity” constraints

means that in each realized assignment, each agent receives her k most preferred objects,

for each k, with approximately the same probability as in the original expected assignment,

thus resulting in small utility variation. To illustrate, recall the example in the Introduction

where two agents are assigned to two of four objects which they rank the same way. The

supplementary constraints are depicted in Figure 3, and entail the requirement: each agent

must get one of a and b, at most two out of a, b, and c, and two objects in total.42 The utility

difference between the best and worst implementation is then no more than the difference

between one’s values of a (most preferred) and d (least preferred), as stated by Theorem 9.

Theorem 9 can be used to augment ex-post fairness in conjunction with some multi-unit

expected assignment algorithm. We say that an expected assignment X satisfies ex-ante

equal treatment of equals if, for any pair of agents i and j whose utility functions are

41If the assignment were to assign good a to agent 1 for sure and assign the other goods with probability
1/3 each say, then the bound will become her utility difference between good b and good d, since the agent
receives a for sure in each pure assignment chosen.
42In the 2n object example at the beginning of this section, for instance, the above artificial constraints
require that an agent receive either zero or one unit of her top object, exactly one from her top two objects,
either one or two from her top three, exactly two from her top four, and so on.
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Figure 3 – Illustration of the Utility Guarantee

identical, i and j are indifferent between xi and xj. The following claim is an immediate

corollary of Theorem 9.

Corollary 4. Suppose that i and j have identical utility functions and a given expected

assignment X satisfies ex-ante equal treatment of equals. Then there exists a lottery imple-

menting X such that, for any pure assignment used in the lottery, the difference between i’s

utility under her pure assignment and her utility under j’s pure assignment is at most her

maximum single-unit utility difference at X.

One useful application of this idea may be in conjunction with our generalized pseudo-

market mechanism developed in Section 4. Any assignment produced by the generalized

pseudo-market mechanism is ex-ante envy free (Theorem 8) because all agents have the

same budget and face the same prices, implying that it satisfies ex-ante equal treatment of

equals. By utilizing Corollary 4, we can bound ex-post envy to some extent as well.

5.1. Application: Two-Sided Matching. With slight modification, the utility guarantee

method can also be applied to two-sided matching environments. Let both N and O be sets

of agents and consider many-to-many matching in which each agent in N can be matched

with multiple agents in O, and vice versa. We focus on a problem where the constraint

structure consists of all rows and columns (in addition to all singletons).

As we did above for agents in N , we assume that each agent a ∈ O also has additive

preferences. The maximum single-unit utility difference for a is defined as for i ∈ N .43 With

these concepts, we are ready to state the following result.

Theorem 10 (Two-Sided Utility Guarantee). Any expected assignment X is implementable

by a lottery such that, for any agent in N ∪O,

(1) for any pair X̄ and X̄ ′ of pure assignments used in the lottery, the difference between

her utility under X̄ and her utility under X̄ ′ is at most her maximum single-unit

utility difference at X, and

43Formally, we assume that utility of each a ∈ O is additive in the sense that there exist associated values
(wia)i∈N such that, for any pure assignment x̄a for a, her utility for x̄a is given by

∑
i∈N x̄iawia. The

maximum single-unit utility difference is defined as max{wia − wja|i, j ∈ N, xia, xja /∈ Z}.
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(a) Inter-league Matchup Design
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(b) Feasible Fair Matchup

Figure 4 – Matchup Design

(2) for any pure assignment X̄ used in the lottery, the difference between her utility

under X̄ and her expected utility under X is at most her maximum single-unit utility

difference at X.

Proof. The proof is a straightforward adaptation of the proof of Theorem 9 and hence is

omitted. �

As a possible application, consider two leagues of sports teams N and O, say the National

League (NL) and the American League (AL) in professional baseball, and the planner who

wants to schedule interleague play. For concreteness, suppose there are four teams in each

league, and each team must play 6 games against teams on the other league.

The planner wants to ensure that the strength of opponents that teams in a league play

against is as equalized as possible among teams in the same league. For that goal, the planner

could first order teams in each league by some measure of their strength (e.g., win/loss ratio

from the prior season), and give a uniform probability for each match, which requires each

team to play every team of the other league 1.5 times: That will give one specific expected

assignment in which each pair of teams in the same league is treated equally. Theorem 10

can then be used to find a pure assignment, in which differences in schedule strength are

bounded by the difference between one game with the strongest opponent and one with the

weakest opponent in the other league. The idea is to add artificial constraints, one for each

upper contour set for each team, but on both sides, as depicted in Figure 4-(a). Applying

our method produces a feasible (i.e., integer) matchup schedule which is approximately fair.

An example outcome is depicted in Figure 4-(b).
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We note that transforming this feasible match into a specific schedule — i.e., not only how

often does Team A play Team B, but when — is considerably more complicated. For example,

the problem involves scheduling both intraleague and interleague matches simultaneously,

dealing with geographical constraints and so forth. See Nemhauser and Trick (1998) for

further discussion of sport scheduling.

6. Beyond Two-Sided Assignment

Throughout the paper we have focused on an environment in which the participants are

divided into two sides such as agents and objects. However, some of our results can be

extended beyond two-sided assignment, as described below.

Let Ω be a finite set. An expected assignment is a profileX = [xω]ω∈Ω where xω ∈ (−∞,∞)

for all ω ∈ Ω. A pure assignment is an expected assignment each of whose entries is an integer.

A constraint structure H is a collection of subsets of Ω. The model in the previous sections

corresponds to the case in which Ω is N×O, the set of all agent-object pairs; other examples

will follow below. Universal implementability is defined analogously, just as the notion of

bihierarchy for constraint structures. In this setting, the previous sufficient condition for

universal implementability holds without modification.

Theorem 11. A constraint structure is universally implementable if it forms a bihierarchy.

The proof of Theorem 11 is identical to the one for Theorem 1 and thus is omitted. Note

that the proof of the latter did not rely on any two-sided structure. This observation raises a

question about what situations beyond two-sided assignment are amenable to the expected

assignment approach of HZ and BM. What about assignment problems in which there are

more than two sides (“multi-sided assignment”) or no restriction on matching within a given

side (“roommate matching”)? We shall see below that such structures do not generally admit

universal implementability. To show this, however, it is not enough to show that they are not

bihierarchical, for a bihierarchy is sufficient but not necessary for universal implementability.

We thus develop a necessary condition for universal implementability inspired by Example

1. In that example, a “cycle” formed by three constraint sets (the first row, the first column,

and the diagonal set) leads to a situation where at least one of the constraints is violated.

We will see that in fact a cycle of any “odd” number of intersecting constraint sets can cause

the same sort of situation. To argue this formally, we first define an odd cycle as follows:

Definition 4. A sequence of l constraint sets (S1, . . . , Sl) in H is an odd cycle if:

(1) l is odd
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(2) There exists a sequence of agent-object pairs (s1, . . . , sl) such that, for each i =

1, . . . , l, we have

(a) si ∈ Si ∩ Si+1 (subscript l + 1 should be interpreted as 1)

(b) si /∈ Sj for any j 6= i, i+ 1

An argument generalizing Example 1 yields the following (a formal proof is in the Appen-

dix).

Lemma 1. (Odd Cycles) If a constraint structure contains an odd cycle, then it is not

universally implementable.

Remark 1. Theorem 11 and Lemma 1 together imply that a bihierachical constraint struc-

ture is universally implementable and that a universally implementable constrained structure

cannot involve an odd cycle. We saw in footnote 19 that the converse of the first statement

does not hold. It turns out that the converse of the second statement does not hold, either—

namely, “no odd cycles” does not imply universal implementability. To see this, consider

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, a), (2, b)}, {(1, a), (1, b), (2, a), (2, b)}}. This struc-

ture does not contain an odd cycle (and it is not a bihierarchy). Assume the quota for each

of the first three sets is one and the quota for the last set is two. Now consider the expected

assignment X of Example 1. Even though X satisfies the quotas, it is not implementable.

Importantly, however, the “gaps” across these three conditions—bihierarchy, universal im-

plementability, and no odd cycles—vanish in the canonical two-sided constraint structure.

The proof of Theorem 2 shows that if a canonical two-sided constraint structure fails to be

a bihierarchy, it must involve an odd cycle, thus implying that all three conditions coincide

when the constraint structure is canonically two-sided.

We can apply Lemma 1 to show the difficulty one faces in implementing expected assign-

ments in multi-sided assignment and roommate matching.

6.1. Multi-Sided Assignment. Thus far, we have focused on two-sided assignment envi-

ronments in which agents on one side are assigned objects (or agents) on the other side. As

noted before, many important market design problems fall into the two-sided assignment

environment. Sometimes, however, matching involves more than two sides. For instance,

students may be assigned to different schools and after-school programs, in which case the

matching must be three-sided, consisting of student/school/after-school triples. Or, man-

ufacturers may need to match with multiple suppliers, ensuring mutual compatibility of

products or the right combination of capabilities.

Our main point is most easily made by starting with a three-sided matching problem in

which we introduce another finite set L of (say) agents, in addition to N and O. A matching
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then consists of a triple (i, a, l) ∈ N × O × L, and an expected assignment is defined by a

profile X = [x(i,a,l)](i,a,l)∈N×O×L that assigns a real number to each triple (i, a, l). Constraints

on the expected assignment can be described as before via the constraint structure, i.e.,

the sets of (i, a, l)’s whose entries are subject to ceiling or floor quota constraints. That is,

the constraint structure H ⊂ 2N×O×L is a collection of subsets of N × O × L. As in the

classical setup, the basic constraints arise from the fact that each agent in N , each object

in O, and each agent in L are assigned to some pair in the other two sides (which may

include a null object or a null agent). Hence, it is natural to assume that H contains the

sets {{i} ×O × L|i ∈ N}, {N × {a} × L|a ∈ O}, and {N ×O × {l}|l ∈ L}. We call such a

constraint structure a canonical three-sided constraint structure.

Notice that the problem reduces to that of two-sided assignment if N or O or L is a

singleton set, implying that a canonical three-sided constraint structure in such problems

is universally implementable. It turns out that, except for such cases, no analogue of the

Birkhoff-von Neumann theorem holds in three-sided matching.

Theorem 12. (Impossibility with Three-Sided Assignment) No canonical three-

sided constraint structure with |N |, |O|, |L| ≥ 2 is universally implementable.

Proof. We prove the result by showing that any canonical three-sided constraint structure

H with |N |, |O|, |L| ≥ 2 contains an odd cycle. By Lemma 1, this is sufficient for the failure

of universal implementability (as pointed out before, even though the proof of Lemma 1

formally deals with the two-sided matching setup, its proof does not depend on it).

Fix i ∈ N, a ∈ O, l ∈ L and consider three sets Si := {i}×O×L, Sa := N ×{a}×L, and

Sl := N × O × {l}. Fix i′ ∈ N, a′ ∈ O, l′ ∈ L such that i′ 6= i, a′ 6= a, and l′ 6= l (such i′, a′,

and l′ exist since |N |, |O|, |L| ≥ 2). Then (i, a, l′) ∈ Si ∩ Sa \ Sl, (i, a′, l) ∈ Si ∩ Sl \ Sa, and

(i′, a, l) ∈ Sa ∩ Sl \ Si. We thus conclude that Si, Sa, and Sl form an odd cycle. �

It is clear from the proof that the same impossibility result holds for any multi-sided

matching of more than two kinds of agents.

Remark 2. (Matching with Contracts) Firms sometimes hire workers for different

positions with different terms of contract. For instance, hospitals hire medical residents for

different kinds of positions (such as research and clinical positions), and different positions

may entail different duties and compensations. To encompass such situations, Hatfield and

Milgrom (2005) develop a model of “matching with contracts,” in which a matching specifies

not only which firm employs a given worker but also on what contract terms. At first glance,

introducing contract terms may appear to transform the environment into a canonical three-

sided matching setting. This is in fact not the case. If we let L denote the set of possible
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contract terms, there is no sense in which the constraint structure contains sets of the form

N × O × {l}. In words, there is no reason that each contract term should be chosen by

some worker-firm pair. Rather, matching with contracts can be subsumed into our two-sided

assignment setup by redefining the object set as O′ := O × L.

6.2. Roommate Matching. The “roommate problem” describes another interesting

matching problem, in which any agent can, in principle, be matched to any other. One

example is “pairwise kidney exchange” (Roth, Sonmez and Ünver, 2005), in which a kidney

patient with a willing-but-incompatible donor is to be matched to another patient-donor

pair. If two such pairs are successfully matched, then the donor in each pair donates her

kidney to the patient of the other pair.

Formally, consider a (finite) set of agents, N with |N | ≥ 3. (If |N | < 3, then the problem

is no different from two-sided matching.) Then, a set Ω := {{i, j}|i, j ∈ N} of possible

(unordered) pairs of agents describes a possible roommate matching. If the pair {i, i} is

formed, that means that i is unmatched. An expected assignment is a profile X = [xω]ω∈Ω

where xω ∈ [0, 1] for all ω ∈ Ω and a constraint structure H is a collection of subsets of

Ω. We assume that each i must be assigned to some agent (possibly himself), so H must

contain set Si := {{i, j}|j ∈ N} for each i ∈ N . We call a constraint structure H satisfying

this property a canonical roommate matching constraint structure.

Notice that the problem reduces to that of two-sided matching if there are two or fewer

agents, implying that a canonical roommate matching constraint structure in such problems

is universally implementable. The next result shows that these are the only cases for which

universal implementability holds.

Theorem 13. (Impossibility with Roommate Matching) No canonical roommate

matching constraint structure with at least three agents is universally implementable.

Proof. We prove the result by showing that any canonical roommate matching constraint

structure contains an odd cycle if there are at least three agents. Consider i, j, k ∈ N , who are

all distinct (such agents exist since |N | ≥ 3). Then, {i, j} ∈ (Si∩Sj)\Sk, {j, k} ∈ (Sj∩Sk)\Si,
and {i, k} ∈ (Si ∩ Sk) \ Sj. We thus conclude that Si, Sj, and Sk form an odd cycle. �

7. Conclusion

This paper extends the expected assignment method to an expanded class of problems,

including many-to-one and many-to-many matching, and problems with certain auxiliary

constraints. We apply our results to extend two prominent mechanisms — Bogomolnaia and
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Moulin (2001)’s probabilistic serial mechanism and Hylland and Zeckhauser (1979)’s pseudo-

market mechanism — to accommodate features such as group-specific quotas, endogenous

capacities, multi-unit and non-additive demand, and scheduling constraints. We also develop

a “utility guarantee” method which can be used to supplement the ex-ante fairness promoted

by randomization, by limiting the extent of ex-post unfairness.

Methodologically, the paper identifies a maximal generalization of the Birkhoff-von Neu-

mann theorem, demonstrating that the bihierarchy condition is both necessary and sufficient

for a constraint structure to be universally implementable in canonical two-sided environ-

ments. We find that there is no similar universal implementability property for matching

with three sides or more, nor for roommate problems.

The central goal of research in market design is to facilitate applications, and we hope

that the tools and mechanisms described herein herald still further applications to come.
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Abdulkadiroğlu, Atila, and Tayfun Sönmez. 2003a. “Ordinal Efficiency and Dominated

Sets of Assignments.” Journal of Economic Theory, 112: 157–172.
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Comptes Rendus Hebdomadaires des Séances de l’ Académie des Sciences (Paris),

254: 1192–1194.

Hafalir, Isa, Bumin Yenmez, and Muhammed Yildirim. 2011. “Effective Affirmative

Action in School Choice.” mimeo.

Hatfield, John W. 2009. “Strategy-proof, Efficient, and Nonbossy Quota Allocations.”

Social Choice and Welfare, 33(3): 505–515.

Hatfield, John W., and Paul Milgrom. 2005. “Matching with Contracts.” American

Economic Review, 95: 913–935.

Hoffman, Alan J., and Joseph B. Kruskal. 1956. “Integral boundary points of convex

polyhedra.” in “Linear Inequalities and Related Systems” (H. Kuhn and A. Tucker, Eds.)

Annals of Mathematics Studies, 38: 223–246.



40 ERIC BUDISH, YEON-KOO CHE, FUHITO KOJIMA, AND PAUL MILGROM

Hylland, Aanund, and Richard Zeckhauser. 1979. “The Efficient Allocation of Indi-

viduals to Positions.” Journal of Political Economy, 87: 293–314.

Katta, Akshay-Kumar, and Jay Sethuraman. 2006. “A solution to the random assign-

ment problem on the full preference domain.” Journal of Economic theory, 131(1): 231–

250.

Kesten, Onur. 2009. “Why Do Popular Mechanisms Lack Efficiency in Random Environ-

ments?” Journal of Economic Theory, 144(5): 2209–2226.

Kojima, Fuhito. 2009. “Random assignment of multiple indivisible objects.” Mathematical

Social Sciences, 57(1): 134–142.

Kojima, Fuhito. 2012. “School Choice: Impossibilities for Affirmative Action.” mimeo.

Kojima, Fuhito, and Mihai Manea. 2010. “Incentives in the probabilistic serial mecha-

nism.” Journal of Economic Theory, 145(1): 106–123.

Manea, Mihai. 2008. “A constructive proof of the ordinal efficiency welfare theorem.”

Journal of Economic Theory, 141(1): 276–281.

Manea, Mihai. 2009. “Asymptotic ordinal inefficiency of random serial dictatorship.” The-

oretical Economics, 4(2): 165–197.

McLennan, Andrew. 2002. “Ordinal Efficiency and The Polyhedral Separating Hyper-

plane Theorem.” Journal of Economic Theory, 105: 435–449.

Milgrom, Paul R. 2009. “Assignment messages and exchanges.” American Economic Jour-

nal: Microeconomics, 1(2): 95–113.

Nemhauser, George, and Michael Trick. 1998. “Scheduling a Major College Basketball

Conference.” Operations Research, 46: 1–8.

Papai, Szilvia. 2001. “Strategyproof and nonbossy multiple assignments.” Journal of Public

Economic Theory, 3: 257–271.

Pathak, Parag A., and Jay Sethuraman. 2011. “Lotteries in student assignment: An

equivalence result.” Theoretical Economics, 6(1): 1–17.

Pratt, John W., and Richard J. Zeckhauser. 1990. “The fair and efficient division of

the Winsor family silver.” Management Science, 36(11): 1293–1301.

Roth, Alvin E. 2007. “Repugnance as a Constraint on Markets.” Journal of Economic

Perspectives, 21: 37–58.

Roth, Alvin E., Tayfun Sonmez, and Utku Ünver. 2005. “Pairwise Kidney Exchange.”
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Sönmez, Tayfun, and Uktu Ünver. 2010. “Course Bidding at Business Schools.” Inter-

national Economic Review, 51(1): 99–123.

von Neumann, John. 1953. “A certain zero-sum two-person game equivalent to the optimal



DESIGNING RANDOM ALLOCATION MECHANISMS 41

assignment problem.” In Contributions to the theory of games, Vol. 2. , ed. H. W. Kuhn

and A. W. Tucker. Princeton, New Jersey:Princeton University Press.

Yilmaz, Ozgur. 2009. “Random assignment under weak preferences.” Games and Economic

Behavior, 66: 546–558.



42 ERIC BUDISH, YEON-KOO CHE, FUHITO KOJIMA, AND PAUL MILGROM

Appendix A. Definition of the generalized probabilistic serial mechanism

Formally, the generalized probabilistic serial mechanism is defined through the following

symmetric simultaneous eating algorithm, or the eating algorithm for short.

Generalized Probabilistic Serial Mechanism. For any (i, a) ∈ S ⊆ N ×O, let

χ(i, a, S) =

1 if (i, a) ∈ S and a �i b for any b with (i, b) ∈ S,

0 otherwise,

be the indicator function that a is the most preferred object for i among objects b such that

(i, b) is listed in S.

Given a preference profile �, the eating algorithm is defined by the following sequence

of steps. Let S0 = N × O, t0 = 0, and x0
ia = 0 for every i ∈ N and a ∈ O. Given

S0, t0, X0 = [x0
ia]i∈N,a∈O, . . . , S

v−1, tv−1, Xv−1 = [xv−1
ia ]i∈N,a∈O, for any (i, a) ∈ Sv−1 define

tv(i, a) = min
S∈H2:(i,a)∈S

sup

t ∈ [0, 1]|
∑

(j,b)∈S

[xv−1
jb + χ(j, b, Sv−1)(t− tv−1)] < qS

 ,(A.1)

tv = min
(i,a)∈Sv−1

tv(i, a),(A.2)

Sv = Sv−1 \ {(i, a) ∈ Sv−1|tv(i, a) = tv},(A.3)

xvia = xv−1
ia + χ(i, a, Sv−1)(tv − tv−1).(A.4)

Since N × O is a finite set, there exists v such that tv = 1. We define PS(�) := Xv to be

the generalized probabilistic serial expected assignment for the preference profile �.

Appendix B. Extended Framework for the Pseudo-Market Mechanism

Here, we discuss how the basic framework of Section 4 can be extended to accommodate

more general preferences, following Milgrom (2009)’s class of integer assignment messages.

As before, each agent i ∈ N submits cardinal values and a set of constraints. The main

difference versus before is that the cardinal utility value associated with a particular object

may vary depending on the “role” that that object plays for the agent. Specifically, agent

i reports the set of roles that are relevant for her, Ri, cardinal utilities vira for each r, a

that describe the value for her of object a in role r, and a set of constraints that satisfy

the following requirements. First, the agent may submit a hierarchical set of constraints

Hir for each role r, with each Hir containing the “row” constraint (i, r) × A; we call these

“single-role constraints”, and associate each agent-role pair (i, r) with its own row of an
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expected assignment matrix. Second, the agent submits a hierarchical set Hi0 of constraints

pertaining to i’s total quantity across multiple roles; each of these sets contains multiple

rows (“multi-role constraints”). Last, for each object a ∈ O the agent submits a hierarchical

set of constraints pertaining to i’s consumption of object a across his multiple rows; each of

these sets corresponds to a subset of the column for object a (“object-specific constraints”).

In course allocation, for instance, these object-specific constraints ensure that each student

gets at most one seat in any course, even if a course appears in multiple rows. Let Hi denote

the union of all of i’s constraints.

As described in the main text, each agent’s valuations and constraints together define her

utility on an extended space of consumption bundles used in particular roles. This formula-

tion induces the agent’s utility function over consumption bundles in a natural manner, as

follows. Let integer-valued vector xi = (xia)a∈O denote a consumption bundle for agent i.

The utility for i from consumption bundle xi is the solution to the following integer program

ui(xi) = max
∑
r∈Ri

∑
a∈O

viraxira subject to

(
∑
r∈Ri

xira)a∈O = xi (adding up constraint)

0 ≤
∑

{((i,r),a)}∈Si

xira ≤ qSi for all Si ∈ Hi (agent constraints)

xira ∈ Z for all r, a.

As with the initial model, this utility function can be extended to a fractional assignment

xi ∈ R|O|, so we can write ui(xi) for the agent’s utility from fractional bundle xi.

Given the assignment messages and utility functions defined this way, it can readily be

seen that the demand correspondence resulting from such a utility function is nonempty,

convex-valued and upper-hemicontinuous. Additionally, as described in the main text, the

constraint structure consisting of the union of individual agents’ constraints as well as the

object capacity constraints forms a bihierarchy. Given these properties, the generalized

pseudo market mechanism can be constructed precisely as in the baseline case in the main

text, and all subsequent results follow without modification of proofs.
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Web Appendix: not intended for publication.

Appendix C. Proofs of Theorems 1 and 11

In this appendix we provide a fuller self-contained proof of Theorems 1 and 11. Since

Theorem 1 is a special case of Theorem 11, we prove the latter.

A matrix is totally unimodular if the determinant of every square submatrix is 0 or −1

or +1. We make use of the following result.

Lemma 2. (Hoffman and Kruskal (1956)) If a matrix A is totally unimodular, then the

vertices of the polyhedron defined by linear integral constraints are integer valued.

The proof strategy for Theorem 11 proceeds in two steps. First we show that if a constraint

structure forms a bihierarchy, then the incidence matrix of the constraint structure is totally

unimodular. Second we apply Lemma 2 to show that the constraint structure is universally

implementable.

After an earlier draft was circulated, we were informed that Edmonds (1970) has previously

shown that the incidence matrix of a bihierarchical constraint structure is totally unimodular.

We include our proof for completeness below. We utilize the following result for our proof.

Lemma 3. (Ghouila-Houri (1962)) A {0, 1} incidence matrix is totally unimodular if and

only if each subcollection of its columns can be partitioned into red and blue columns such

that for every row of that collection, the sum of entries in the red columns differs by at most

one from the sum of the entries in the blue columns.

Proof of Theorem 11. Suppose first H forms a bihierarchy, with H1 and H2 such that H1 ∪
H2 = H, H1∩H2 = ∅ and both H1 and H2 are hierarchies. Let A be the associated incidence

matrix. Take any collection of columns of A, corresponding to a subcollection E of H. We

shall partition E into two sets, B and R. First, for each i = 1, 2, we partition E ∩ Hi

into nonempty sets E1
i , E

2
i , . . . , E

ki
i defined recursively as follows: Set E0

i ≡ ∅ and, for each

j = 1, . . . , we let

Ej
i := {S ∈ (E ∩Hi) \ (

j−1⋃
j′=1

Ej′

i ) | @S ′ ∈ (E ∩Hi) \ (

j−1⋃
j′=1

Ej′

i ∪ {S}) such that S ′ ⊃ S}.

(The non-emptiness requirment means that once all sets in E ∩ Hi are accounted for, the

recursive definition stops, which it does at a finite j = ki.) Since Hi is a hierarchy, any two

sets in Ej
i must be disjoint, for each j = 1, . . . , ki. Hence, any element of Ω can belong to at

most one set in each Ej
i . Observe next for j < l,

⋃
S∈Eli

S ⊂
⋃
S∈Eji

S. In other words, if an

element of Ω belongs to a set in El
i, it must also belong to a set in Ej

i for each j < l.
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We now define sets B and R that partition E:

B := {S ∈ E|S ∈ Ej
i , i+ j is an even number },

and

R := {S ∈ E|S ∈ Ej
i , i+ j is an odd number }.

We call the elements of B “blue” sets, and call the elements of R “red” sets.

Fix any ω ∈ Ω. If ω belongs to any set in E ∩H1, then it must belong to exactly one set

Sj1 ∈ E
j
1, for each j = 1, . . . , l for some l ≤ k1. These sets alternate in colors in j = 1, 2, . . . ,

starting with blue: S1
1 is blue, S2

1 is red, S3
1 is blue, and so forth. Hence, the number of blue

sets in E ∩H1 containing ω either equals or exceeds by one the number of red sets in E ∩H1

containing ω. By the same reasoning, if ω belongs to any set in E ∩H2, then it must belong

to one set Sj2 ∈ E
j
2, for each j = 1, . . . ,m for some m ≤ k2. These sets alternate in colors

in j = 1, 2, . . . , starting with red: S1
2 is red, S2

2 is blue, S3
2 is red, and so forth. Hence, the

number of blue sets in E ∩H2 containing ω is less by one than or equal to the number of red

sets in E ∩ H2 containing ω. In sum, the number of blue sets in E containing ω differs at

most by one from the number of red sets in E containing ω. Thus A is totally unimodular

by Lemma 3.

Choose an arbitrary expected assignment X and consider the set

{X ′|bxSc ≤ x′S ≤ dxSe,∀S ∈ H}.(C.1)

By Lemma 2, every vertex of the set (C.1) is integer valued. Since (C.1) is a convex polyhe-

dron, any point of it (including X) can be written as a convex combination of its vertices.

Since we chose X arbitrarily, the constraint structure H is universally implementable. �

Appendix D. Algorithm for Implementing Expected Assignments

This appendix provides a constructive algorithm for implementing expected assignments.

The algorithm also serves as a constructive proof for Theorem 11 (and hence Theorem 1).

For ease of understanding, we first illustrate the algorithm, using an example. We then

formally define the algorithm.

Consider Ω = {ω1, ω2, ω3, ω4} and H = {{ω1}, {ω2}, {ω3}, {ω4}, S1, S2}, where S1 :=

{ω2, ω3} and S2 := {ω3, ω4}. Observe that H is a bihierarchy consisting of two hierarchies,

H1 = {{ω1}, {ω2}, {ω3}, {ω4}, S1} and H2 = {S2}. Suppose we wish to implement an ex-

pected assignment X with x{ω1} = 0.3, x{ω2} = 0.7, x{ω3} = 0.3 and x{ω4} = 0.7. We represent

the given expected assignment X as a network flow. The particular way in which the flow
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network is constructed is crucial for the algorithm, and we first illustrate the construction

informally based on the example (depicted in Figure 5).
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Figure 5 – A network flow representation of the example X.

Intuitively, we view the total assignment as flows that travel from source s to sink s′ of

a network (s and s′ can be interpreted as corresponding to the entire set Ω). First, the

flows travel through the sets in one hierarchy H1, arranged in “descending” order of set-

inclusion; the flows move from bigger to smaller sets along the directed edges representing

the set-inclusion tree, reaching at last the singleton sets. This accounts for the left side of

the flow network in Figure 5, where the numbers on the edges depict the flows. From then

on, the flows travel through the sets in the other hierarchy H2 which is augmented, without

loss, to include the singleton sets and the entire set Ω, with primes attached for notational

clarity. These sets are now arranged in “ascending” order of set-inclusion; the flows travel

from smaller to bigger sets along the directed edges representing the reverse set-inclusion

tree, reaching at the end the total set s′, or the sink.

Notice that the flow associated with each edge reflects the expected assignment for the

corresponding set. For instance, the flow from ω2 to ω′2 is the expected assignment x{ω2} = 0.7

for set ω2, and likewise the flow from ω3 to ω′3 is x{ω3} = 0.3. The flow from s to S1 represents

the expected assignment ωS1 = 1 for set S1. Naturally, the latter flow must be the sum of

the two former flows. More generally, the additive structure of the expected assignment is

translated into the “law of conservation”: the flow reaching each vertex except for s and s′

must equal the flow leaving that vertex.
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Given the flow network, the algorithm identifies a cycle of agent-object pairs with fractional

assignments. Starting with any edge with fractional flow, say (ω2, ω
′
2), we find another edge

with a fractional flow that is adjacent to ω′2. Such an edge, (ω′2, s
′), exists due to the law

of conservation: if all neighboring flows were integer we would have a contradiction. We

keep adding new edges with fractional flows in this fashion, the ability to do so ensured

by the law of conservation, until we create a cycle. In this case, the cycle of vertices is

ω2 − ω′2 − s′ − ω′1 − ω1 − s− ω4 − ω′4 − S2 − ω′3 − ω3 − S1 − ω2. This cycle is denoted by the

dotted lines in Figure 5.

We next modify the flows of the edges in the cycle. First, we raise the flow of each forward

edge and reduce the flow of each backward edge at the same rate until at least one flow

reaches an integer value. In our example, the flows along all the forward edges rise from 0.7

to 1 and the flows along all the backward edges fall from 0.3 to 0. Importantly, this process

preserves the law of conservation, meaning that the operation maintains the feasibility of

the new expected assignment. The resulting network flow then gives rise to an expected

assignment X ′ where x′{ω1} = 0, x′{ω2} = 1, x′{ω3} = 0, and x′{ω4} = 1. Next, we readjust the

flows of the edges in the cycle in the reverse direction, raising those with backward edges

and reducing those with forward edges in an analogous manner, which gives rises to another

expected assignment X ′′ where x′′{ω1} = 1, x′′{ω2} = 0, x′′{ω3} = 1, and x′′{ω4} = 0. We can now

decompose P into these two matrices, i.e., X = 0.7X ′ + 0.3X ′′.

The random algorithm then selects X ′ with probability 0.7 and X ′′ with probability 0.3.

Since in this particular example both X ′ and X ′′ are integer valued, there is no need to re-

iterate the decomposition process. In general, each step in the algorithm reduces the number

of fractional flows in the network, converting at least one to an integer. The total number of

steps in the random algorithm is therefore limited to the number of fractional flows. Also,

each step visits each remaining fractional flow at most once, so the total number of visits

grows at most as the square of the number of fractional flows. Thus, the run time of the

algorithm is polynomial in |H|.

We now define the algorithm formally. Let H be a constraint structure associated with

a set Ω and assume that H is a bihierarchy, where H1 and H2 are hierarchies such that

H = H1 ∪H2. Let X = [xω] be an expected assignment whose entries sum up to an integer

(the generalization to the case with a fractional sum is straightforward). We construct a

flow network as follows. The set of vertices is composed of the source s and the sink s′, two

vertices vω and vω′ for each element ω ∈ Ω, and vS for each S ∈ H\ [(
⋃
ω∈Ω{ω})∪ (N ×O)].

We place (directed) edges according to the following rule.44

44An edge is defined as an ordered pair of verticies. All edges in this paper are directed, so we omit the
adjective “directed.”
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(1) For each ω ∈ Ω, an edge e = (vω, vω′) is placed from vω to vω′ .

(2) An edge e = (vS, vS′) is placed from S to S ′ 6= S where S, S ′ ∈ H1, if S ′ ⊂ S and

there is no S ′′ ∈ H1 where S ′ ⊂ S ′′ ⊂ S.45

(3) An edge e = (vS, vS′) is placed from S to S ′ 6= S where S, S ′ ∈ H2, if S ⊂ S ′ and

there is no S ′′ ∈ H2 where S ⊂ S ′′ ⊂ S ′.

(4) An edge e = (s, vS) is placed from the source s to vS if S ∈ H1 and there is no

S ′ ∈ H1 where S ⊂ S ′.

(5) An edge e = (vS, s
′) is placed from vS to the sink s′ if S ∈ H2 and there is no S ′ ∈ H2

where S ⊂ S ′.

We associate flow with each edge as follows. For each e = (vω, vω′), we associate flow xe = xω.

For each e that is not of the form (vω, vω′) for some ω ∈ Ω, the flow xe is (uniquely) set

to satisfy the flow conservation, that is, for each vertex v different from s and s′, the sum

of flows into v is equal to the sum of flows from v. Observe that the construction of the

network (specifically items (2)-(5) above) utilizes the fact that H is a bihierarchy.

We define the degree of integrality of X with respect to H:

deg[X(H)] := #{S ∈ H|xS ∈ Z}.

Lemma 4. (Decomposition) Suppose a constraint structure H forms a bihierarchy. Then,

for any X such that deg[X(H)] < |H|, there exist X1 and X2 and γ ∈ (0, 1) such that

(i) X = γX1 + (1− γ)X2:

(ii) x1
S, x

2
S ∈ [bxSc , dxSe], ∀S ∈ H.

(iii) deg[X i(H)] > deg[X(H)] for i = 1, 2.

The following algorithm gives a constructive proof of Lemma 4 and hence the Theorem.

Let X be an expectedassignment on a bihierarchy H with deg[X(H)] < |H|.

� Decomposition Algorithm

(1) Cycle-Finding Procedure

(a) Step 0: Since deg[X(H)] < |H| by assumption, there exists an edge e1 = (v1, v
′
1)

such that its associated flow xe1 is fractional. Define an edge f1 = (v1, v
′
1) from

v1 to v′1.

(b) Step t=1,. . . : Consider the vertex v′t that is the destination of edge ft.

45For the purpose of placing edges, we regard vω as a vertex corresonding to a singleton set {ω} ∈ H1, and
v′ω as a vertex corresonding to a singleton set {ω} ∈ H2.
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(i) If v′t is the origin of some edge ft′ ∈ {f1, . . . , ft−1}, then stop.46 The proce-

dure has formed a cycle (ft′ , ft′+1, . . . , ft) composed of edges in {f1, . . . , ft}.
Proceed to Termination - Cycle.

(ii) Otherwise, since the flow associated with ft is fractional by construc-

tion and the flow conservation holds at v′t, there exists an edge et+1 =

(ut+1, u
′
t+1) 6= et with fractional flow such that v′t is either its origin or

destination. Draw an edge ft+1 by ft+1 = et+1 if v′t is the origin of et+1

and ft+1 = (u′t+1, ut+1) otherwise. Denote ft+1 = (vt+1, v
′
t+1).

(2) Termination - Cycle

(a) Construct a set of flows associated with edges (x1
e) which is the same as (xe),

except for flows (xeτ )t′≤τ≤t, that is, flows associated with edges that are involved

in the cycle from the last step. For each edge eτ such that fτ = eτ , set x1
eτ =

xeτ + α, and each edge eτ such that fτ 6= eτ , set x1
eτ = xeτ − α, where α > 0

is the largest number such that the induced expected assignment X1 = (x1
ω)ω∈Ω

still satisfies all constraints in H. By construction, x1
S = xS if xS is an integer,

and there is at least one constraint set S ∈ H such that x1
S is an integer while

xS is not. Thus deg[X1(H)] > deg[X(H)].

(b) Construct a set of flows associated with edges (x2
e) which is the same as (xe),

except for flows (xeτ )t′≤τ≤t, that is, flows associated with edges that are involved

in the cycle from the last step. For each edge eτ such that fτ = eτ , set x1
eτ =

xeτ − β, and each edge eτ such that fτ 6= eτ , set x1
eτ = xeτ + β, where β > 0

is the largest number such that the induced expected assignment X2 = (x2
ω)ω∈Ω

still satisfies all constraints in H. By construction, x2
S = xS if xS is an integer,

and there is at least one constraint set S ∈ H such that x2
S is an integer while

xS is not. Thus deg[X2(H)] > deg[X(H)].

(c) Set γ by γα + (1− γ)(−β) = 0, i.e., γ = β
α+β

.

(d) The decomposition of X into X = γX1 + (1 − γ)X2 satisfies the requirements

of the Lemma by construction.

Appendix E. Proofs of Lemma 1 and Theorem 2

Since Theorem 2 uses the necessity result from Lemma 1, we first provide its proof. The

proof will be given, however, in the general framework of Section 6 that does not refer to

the two-sided assignment structure.

Proof of Lemma 1. Suppose for contradiction that H is universally implementable and con-

tains an odd cycle S1, . . . , Sl, with ωi ∈ Si ∩Si+1, i = 1, . . . , l− 1 and ωl ∈ Sl ∩S1. Consider

46Since there are a finite number of vertices, this procedure terminates in a finite number of steps.
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an expected assignment X specified by

xω =

1
2

if ω ∈ {ω1, . . . , ωl},

0 otherwise,

where xω is the entry corresponding to ω ∈ N × O. By definition of an odd cycle, xSi = 1

for all i ∈ {1, . . . , k}. Since H is universally implementable, there exist X1, X2, . . . , XK and

λ1, λ2, . . . , λK such that

(1) X =
K∑
k=1

λkXk,

(2) λk ∈ (0, 1] for all k and
∑K

k=1 λ
k = 1,

(3) xkS ∈ {bxSc , dxSe} for all k ∈ {1, . . . , K} and S ∈ H.

In particular, it follows that xkSi = 1 for each i and k. Thus there exists k such that xkω1
= 1.

Since xkS2
= 1, it follows that xkω2

= 0. The latter equality and the assumption that xkS3
= 1

imply xkω3
= 1. Arguing inductively, it follows that xkωi = 0 if i is even and xkωi = 1 if i is odd.

In particular, we obtain xkωl = 1 since l is odd by assumption. Thus xkSl = xkωl + xkω1
= 2,

contradicting xkSl = 1. �

Proof of Theorem 2. In order to prove the Theorem, we study several cases.

• Assume there is S ∈ H such that S = N ′ ×O′ where 2 ≤ |N ′| < |N | and 2 ≤ |O′| <
|O|. Let {i, j} × {a, b} ⊆ S, k /∈ N ′ and c /∈ O′ (observe that such i, j, k ∈ N and

a, b, c ∈ O exist by the assumption of this case). Then the sequence of constraint sets

S1 = S, S2 = {i} ×O, S3 = N × {c}, S4 = {k} ×O, S5 = N × {b},

is an odd cycle together with

ω1 = (i, a), ω2 = (i, c), ω3 = (k, c), ω4 = (k, b), ω5 = (j, b).

Therefore, by Lemma 1, H is not universally implementable.

• Assume there is S ∈ H such that, for some i, j ∈ N and a, b ∈ O, we have

(i, a), (j, b) ∈ S with i 6= j and a 6= b, and (i, b) /∈ S. Then the sequence of constraint

sets

S1 = S, S2 = {i} ×O, S3 = N × {b},

is an odd cycle together with

ω1 = (i, a), ω2 = (i, b), ω3 = (j, b).

Thus, by Lemma 1, H is not universally implementable.
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By the above arguments, it suffices to consider cases where all constraint sets in H have one

of the following forms.

(1) {i} ×O′ where i ∈ N and O′ ⊆ O,

(2) N ′ ×O where N ′ ⊆ N ,

(3) N ′ × {a} where a ∈ O and N ′ ⊆ N ,

(4) N ×O′ where O′ ⊆ O.

Therefore it suffices to consider the following cases.

(1) Assume that there are S ′, S ′′ ∈ H such that S ′ = {i}×O′ and S ′′ = {i}×O′′ for some

i ∈ N and some O′, O′′ ⊂ O, S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset nor a superset of

S ′′. Then we can find a, b, c ∈ O such that a ∈ O′ \O′′, b ∈ O′ ∩O′′ and c ∈ O′′ \O′.
Fix j 6= i, who exists by assumption |N | ≥ 2. Then the sequence of constraint sets

S1 = S ′, S2 = S ′′, S3 = N × {c}, S4 = {j} ×O, S5 = N × {a},

is an odd cycle together with

ω1 = (i, a), ω2 = (i, b), ω3 = (i, c), ω4 = (j, c), ω5 = (j, a).

Therefore, by Lemma 1, H is not universally implementable.

(2) Assume that there are S ′, S ′′ ∈ H such that S ′ = N ′ ×O and S ′′ = N ′′ ×O for some

N ′, N ′′ ⊂ N , S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset nor a superset of S ′′. In such a

case, we can find i, j, k ∈ N such that i ∈ N ′ \ N ′′, j ∈ N ′ ∩ N ′′ and k ∈ N ′′ \ N ′.
Fix a, b ∈ O. The sequence of constraint sets

S1 = S ′, S2 = S ′′, S3 = N × {b},

is an odd cycle together with

ω1 = (j, a), ω2 = (k, b), ω3 = (i, b).

Hence, by Lemma 1, H is not universally implementable.

(3) Assume that there are S ′, S ′′ ∈ H such that S ′ = N ′ × {a} and S ′′ = N ′′ × {a} for

some a ∈ O and some N ′, N ′′ ⊂ N , S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset nor a

superset of S ′′. This is a symmetric situation with Case 1, so an analogous argument

as before goes through.

(4) Assume that there are S ′, S ′′ ∈ H such that S ′ = N ×O′ and S ′′ = N ×O′′ for some

O′, O′′ ⊂ O, S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset nor a superset of S ′′. This is a

symmetric situation with Case 2, so an analogous argument as before goes through.

�
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Appendix F. Extension of The Generalized Probabilistic Serial Mechanism

to The Full Preference Domain

This section provides an extension of our generalized probabilistic serial mechanism to the

full preference domain. That is, we now allow for preferences of agents to be weak, so that

different objects can be equally preferred by an agent.

Katta and Sethuraman (2006) generalize the probabilistic serial mechanism to the full

preference domain for the constraint structure of Bogomolnaia and Moulin (2001) based on

the tools of network flow. Fortunately their method can be incorporated into our generaliza-

tion in a natural manner. In what follows, we use notation used by Katta and Sethuraman

(2006) unless explicitly noted otherwise. Definitions of concepts in network flow can be found

in their paper as well.

Let H = H1∪H2 be a bihierarchy, where H1 is composed of all rows and H2 is a hierarchy

that includes all columns. The assignment is determined through an iterative algorithm.

For each (i, a), let H(i,a) := {S ∈ H2|(i, a) ∈ S} be the all subsets in H2 that contain (i, a).

Then, for each H′ ⊂ H2, we define A(i,H′) = {(i, a)|H(i,a) ⊂ H′} and H(i,H′) = {(i, a) ∈
A(i,H′)|a �i b,∀(i, b) ∈ A(i,H′)}.

(1) As initialization, letH′ = H2; X be the zero matrix, i.e., xia = 0 for all i, a; c(i, 1) = 0

for all i ∈ N , and k = 1.

(2) Construct a flow network as follows, with λ ≥ 0 a parameter. The set of vertices is

composed of the source s and the sink s′, a vertex vi for each agent i, and a vertex

vS for each S ∈ H′. We place (directed) edges according to the following rule.

(a) An edge (s, vi) is placed from the source s to vi for each agent i, and each of

these edges is endowed with capacity c(i, k) + λ.

(b) An edge (vi, v(i,a)) is placed from vi to v(i,a) if and only if (i, a) ∈ H(i,H′), and

each of these edges is endowed with capacity ∞.

(c) An edge (vS, vS′) is placed from S to S ′ 6= S where S, S ′ ∈ H′, if S ⊂ S ′ and

there is no S ′′ ∈ H′ where S ⊂ S ′′ ⊂ S ′, and each of these edges is endowed with

capacity q̄S.

(d) An edge (vS, s
′) is placed from vS to the sink s′ if S ∈ H′ and there is no S ′ ∈ H′

where S ⊂ S ′, and each of these edges is endowed with capacity q̄S.

(3) Solve the corresponding parametric max-flow problem. Let λ∗k be the smallest break

point and B be the bottleneck set of constraint sets.

(4) For each agent i, if H(i,H′) ⊆ B, then update c(i, k + 1) = 0 and give her a total

amount c(i, k) + λ∗k of shares from objects in {a ∈ O|(i, a) ∈ H(i,H′)}; otherwise

update c(i, k + 1) = c(i, k) + λ∗k.
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(5) If S ∈ H′ \B and S ′ ∈ B for S ′ ⊂ S such that there is no S ′′ ∈ H′ with S ′ ⊂ S ′′ ⊂ S,

then subtract the ceiling quota of S ′ from the ceiling quota of S. Update H′ = H′ \B
and k = k + 1. If H′ 6= ∅ then go to step 2. Otherwise, terminate the algorithm.

Appendix G. Proof of Theorems 3, 4, and 5

G.1. Proof of Theorem 3. As with Bogomolnaia and Moulin (2001), a different char-

acterization of ordinal efficiency proves useful. To this end, we first define the minimal

constraint set containing (i, a):

ν(i, a) :=
⋂

S∈H(i,a)

S,

if the set H(i, a) := {S ∈ H2 : (i, a) ∈ S,
∑

(j,b)∈S xjb = qS} is nonempty. If H(i, a) = ∅ (or

equivalently
∑

(j,b)∈S xjb < qS for all S ∈ H2 containing (i, a)), then we let ν(i, a) = N ×O.

We next define the following binary relations on N ×O given X as follows:47

(j, b)B1 (i, a) ⇐⇒ i = j, b �i a, and xia > 0,

(j, b)B2 (i, a) ⇐⇒ ν(j, b) ⊆ ν(i, a).(G.1)

We then say

(j, b)B (i, a) ⇐⇒ (j, b)B1 (i, a) or (j, b)B2 (i, a).

We say a binary relation B is strongly cyclic if there exists a finite cycle (i0, a0) B

(i1, a1)B · · ·B (ik, ak)B (i0, a0) such that B = B1 for at least one relation. We next provide

a characterization of ordinal efficiency.

Lemma 5. Expected assignment X is ordinally efficient if and only if B is not strongly

cyclic given X.48

A remark is in order. In their environment, Bogomolnaia and Moulin (2001) define the

binary relation B over the set of objects where b B a if there is an agent i such that b �i a
and xia > 0. Bogomolnaia and Moulin show that in their environment a random assignment

is ordinally efficient if and only if B is acyclic. Our contribution over their characterization is

that we expand the domain over which the binary relation is defined to the set of agent-object

47Given that H2 has a hierarchical structure,

(j, b)B2 (i, a) ⇐⇒ (j, b) ∈ S for any S ∈ H2 such that (i, a) ∈ S, xS = qS .

48In Kojima and Manea (2010), ordinal efficiency is characterized by two conditions, acyclicity and non-
wastefulness. We do not need non-wastefulness as a separate axiom in our current formulation since a
“wasteful” random assignment (in their sense) contains a strong cycle as defined here.
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pairs, in order to capture the complexity that results from a more general environment than

that of BM.

Proof of Lemma 5. “Only if” part. First note that the following property holds.

Claim 1. B1 and B2 are transitive, that is,

(k, c)B1 (j, b), (j, b)B1 (i, a)⇒ (k, c)B1 (i, a),

(k, c)B2 (j, b), (j, b)B2 (i, a)⇒ (k, c)B2 (i, a).

Proof. Suppose (k, c)B1 (j, b) and (j, b)B1 (i, a). Then, by definition of B1, we have i = j = k

and (i) c �i b since (k, c) B1 (i, b) and (ii) b �i a since (j, b) B1 (i, a). Thus c �i a. Since

(j, b)B1 (i, a), we have xia > 0. Therefore (k, c)B1 (i, a) by definition of B1.

Suppose (k, c) B2 (j, b) and (j, b) B2 (i, a). Then ν(k, c) ⊆ ν(j, b) and ν(j, b) ⊆ ν(i, a) by

property (G.1). Hence ν(k, c) ⊆ ν(i, a) which is equivalent to (k, c)B2 (i, a), completing the

proof by property (G.1). �

To show the “only if” part of the Theorem, suppose B is strongly cyclic. By Claim 1,

there exists a cycle of the form

(i0, b0)B1 (i0, a0)B2 (i1, b1)B1 (i1, a1)B2 (i2, b2)B1 (i2, a2)B2 · · ·B1 (ik, ak)B2 (i0, b0),

in which every pair (i, a) in the cycle appears exactly once except for (i0, b0) which appears

exactly twice, namely in the beginning and in the end of the cycle. Then there exists δ > 0

such that a matrix Y defined by

yia =


xia + δ if (i, a) ∈ {(i0, b0), (i1, b1), . . . , (ik, bk)},

xia − δ if (i, a) ∈ {(i0, a0), (i1, a1), . . . , (ik, ak)},

xia otherwise,

satisfies quotas. Since δ > 0 and bl �il al for every l ∈ {0, 1, . . . , k}, Y ordinally dominates

X. Therefore X is not ordinally efficient.

“If” part. Suppose X is ordinally inefficient. Then, there exists an expected assignment Y

which ordinally dominates X. We then prove that B, given X, must be strongly cyclic.

(1) Step 1: Initiate a cycle.

(a)

Claim 2. There exist (i0, a0), (i1, a1) ∈ N × O such that i0 = i1, xi1a1 < yi1a1

and (i1, a1)B1 (i0, a0) given X.
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Proof. Since Y ordinally dominates X, there exists (i1, a1) ∈ N × O such that

yi1a1 > xi1a1 and yi1a = xi1a for all a �i1 a1. So there exists a0 ≺i1 a1 with xi1a0 >

yi1a0 ≥ 0 since x{i1}×N = y{i1}×N by assumption. Hence, we have (i1, a1) B1

(i1, a0) = (i0, a0) given X. �

(b) If (i0, a0) ∈ ν(i1, a1), then (i0, a0)B2 (i1, a1)B1 (i0, a0), so we have a strong cycle.

(c) Else, circle (i1, a1) and go to Step 2.

(2) Step t+ 1 (t ∈ {1, 2 . . . }): Consider the following cases.

(a) Suppose (it, at) is circled.

(i)

Claim 3. There exists (it+1, at+1) ∈ ν(it, at) such that xit+1at+1 > yit+1at+1.

Hence, (it+1, at+1)B2 ν(it, at).

Proof. Note that ν(it, at) $ N × O since if ν(it, at) = N × O, then there

exists (it′ , at′) with t′ < t and (it′ , at′) ∈ ν(it, at), so we have terminated

the algorithm. Thus we have
∑

(i,a)∈ν(it,at)
xia = qν(it,at). Since xitat < yitat ,

there exists (it+1, at+1) ∈ ν(it, at) such that xit+1at+1 > yit+1at+1 . �

(ii) If (it′ , at′) ∈ ν(it+1, at+1) for t′ < t, then we have a strong cycle, (it′ , at′)B

(it+1, at+1)B ...B (it′ , at′), and at least one B is B1.

(iii) Else, square (it+1, at+1) and move to the next step.

(b) Case 2: Suppose (it, at) is squared.

(i)

Claim 4. There exists (it+1, at+1) ∈ ν(it, at) such that it+1 = it, xit+1at+1 <

yit+1at+1, and (it+1, at+1)B1 ν(it, at).

Proof. Since (it, at) is squared, by Claim 3, xitat > yitat . Since Y ordinally

dominates X, there must be (it+1, at+1) ∈ ν(it, at) with it+1 = it such that

xit+1at+1 < yit+1at+1 , and at+1 �it at. Since xitat > yitat ≥ 0, we thus have

(it+1, at+1)B1 ν(it, at). �

(ii) If (it′ , at′) ∈ ν(it+1, at+1) for t′ ≤ t, then we have a strong cycle, (it′ , at′)B

(it+1, at+1)B ...B (it′ , at′), and at least one B is B1.

(iii) Else, circle (it+1, at+1) and move to the next step.

The process must end in finite steps and, at the end we must have a strong cycle. �

Given the above lemma, we are ready to proceed to the proof of Theorems 3.
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Proof of Theorem 3. We prove the claim by contradiction. Suppose that PS(�) is ordinally

inefficient for some �. Then, by Lemma 5 and Claim 1 there exists a strong cycle

(i0, b0)B1 (i0, a0)B2 (i1, b1)B1 (i1, a1)B2 (i2, b2)B1 (i2, a2)B2 · · ·B1 (ik, ak)B2 (i0, b0),

in which every pair (i, a) appears exactly once except for (i0, b0) which appears exactly twice,

namely in the beginning and the end of the cycle. Let vl and wl be the steps of the symmetric

simultaneous eating algorithm at which (il, al) and (il, bl) become unavailable, respectively

(that is, (il, al) ∈ Svl−1\Svl and (il, al) ∈ Swl−1\Swl .) Since (il, bl)B1(il, al), by the definition

of the algorithm we have wl < vl for each l ∈ {0, 1, . . . , k}. Also, by (il, al)B2 (il+1, bl+1), we

have vl ≤ wl+1 for any l = {0, 1, . . . , k} (with notational convention (ik+1, ak+1) = (i0, a0).)

Combining these inequalities we obtain w0 < v0 ≤ w1 < v1 ≤ · · · ≤ wk < vk ≤ wk+1 = w0,

a contradiction. �

G.2. Proof of Theorem 4: Constrained Envy-Freeness of PS.

G.2.1. Notation. An eating function e describes an eating schedule for each agent, ei :

[0, 1] → O for all i ∈ N ; ei(t) represents the object that agent i is eating at time t. We

require that ei be right-continuous with respect to the discrete topology on O (the topology

in which all subsets are open), that is,

∀t ∈ [0, 1),∃ε > 0 such that ei(t
′) = ei(t), ∀t′ ∈ [t, t+ ε).

For an eating function e and constraint set S, let nS(t, e) be the number of agent-object

pairs (i, a) ∈ S such that ei(t) = a and ρS(t, e) be the share of cumulative consumption from

S by time t, i.e.,49

nS(t, e) = |{(i, a) ∈ S|ei(t) = a}|,

ρS(t, e) =

∫ t

0

nS(s, e)ds.

Note that ρS(·, e) is continuous.

For every preference profile �, let e� denote the eating function generated by the eating

algorithm when agents report �. Formally, e�i (t) = a for t ∈ [tv−1, tv) if χ(i, a, Sv−1) = 1,

for (Sv) and (tv) constructed in the definition of the probabilistic serial mechanism.

G.2.2. Proof. Suppose that there exists no set S ∈ H2 that is binding in PS(�) (in the

sense that PSS(�) = qS) such that (i, a) ∈ S but (j, a) 6∈ S, for some a ∈ O. Then for any t

and any set S ∈ H2 such that (i, a) ∈ S and ρS(t, e�) = q̄S, (j, a) ∈ S as well. By definition

of the simultaneous eating algorithm, this implies that, at each time t, if (i, a) has expired

49It can be shown that nS(·, e) is Riemann integrable.
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by time t, then (j, a) has expired by time t as well. Hence the set of objects available for

eating for i at t is a superset of that for j. Therefore e�i (t) �i e�j (t) for every time t ∈ [0, 1].

Thus PSi(�) stochastically dominates PSj(�) at preference �i, completing the proof.

G.3. Proof of Theorem 5: Weak Strategy-Proofness of PS. The main part of the

proof is to establish Lemma 9 below. Informally, this lemma establishes that an agent’s

gain from misreporting her preference is limited in an appropriate sense. More specifically,

the lemma establishes that, when an agent misreports her preference and consequently eats

something other than her most preferred available object for the duration of δ, she can delay

the cumulative consumption of her most preferred available object at most by δ. Given

this lemma, the rest of the proof is relatively easy. The proof establishes that the delay of

the expiration time she can accomplish by preference misreporting is insufficient for her to

increase the share of her preferred objects in total.

To establish the main lemma, Lemma 9, we proceed by showing a series of auxiliary

lemmas. To do so, we continue to use notation defined in Section G.2.1 and introduce

some new ones as follows. Fix a preference profile �, and denote by �′= (�′i,�N\{i}) the

preference profile where agent i reports �′i instead of �i. Let ē be the eating function such

that

ēi(t) =

e�i (t) if e�i (t) = e�
′

i (t)

ø otherwise
,

and at each instance, under ēj agent j 6= i is eating from his most preferred object at speed

1 among the ones still available (accounting for agent i’s specified eating function ēi). Note

that ēj may diverge from e�j or e�
′

j for j 6= i since the available objects at each time may

vary across ē, e� and e�
′

due to the different eating behavior adopted by i.

Let δ(t) denote the sums of the lengths of time intervals, before time t, on which agent i’s

consumption in the eating algorithm is different when the reported preferences change from

� to �′. Formally,

δ(t) =

∫ t

0

1
e�
′

i (s)6=e�i (s)
ds,

where for any logical proposition p, 1p = 1 if p is true and 1p = 0 if p is false.

Equipped with the notation introduced so far, we are now ready to state the first of the

lemmas that we will use for the proof.

Lemma 6. For all t ∈ [0, 1] and (j, a) ∈ N ×O such that the condition

a 6= ø, and ρS(t, e�) < qS for all S ∈ H such that (j, a) ∈ S,(G.2)
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is satisfied, we have

ρ(j,a)(t, e
�) ≥ ρ(j,a)(t, ē)

ρ(j,a)(t, e
�′) ≥ ρ(j,a)(t, ē),

where ρ(j,a)(·, ·) is a shorthand notation for ρ{(j,a)}(·, ·)

Proof. By symmetry, we only need to prove the first inequality. We proceed by contradiction.

Assume that there exist t and (j, a) such that ρ(j,a)(t, e
�) < ρ(j,a)(t, ē) and condition (G.2)

is satisfied. Let

(G.3) t0 = inf{t ∈ [0, 1]|∃(j, a) ∈ N ×O, ρ(j,a)(t, e
�) < ρ(j,a)(t, ē), condition (G.2) holds}.

By continuity of ρ(j,a)(·, e�)− ρ(j,a)(·, ē), it follows that t0 < 1, and

(G.4) ρ(j,a)(t0, e
�)− ρ(j,a)(t0, ē) ≥ 0, ∀(j, a) ∈ N ×O that satisfies condition (G.2).

This holds trivially if t0 = 0.

One consequence of (G.4) is that any agent-object pair (i, a) that has not expired by time

t0 under e� cannot expire by t0 under ē either (that is, if no constraint for (i, a) has been

reached by time t0 under e�, then no constraint for (i, a) has been reached by t0 under ē

either). Hence the set of agent-object pairs available for eating at t0 under e� is a subset of

that under ē. It must be that if agent j ∈ N is eating object a ∈ O \ {ø} at t0 under ē and

(j, a) is available at t0 under e�, then j is eating a at t0 under e�. Formally,

∀j ∈ N, ēj(t0) = a & condition (G.2) ⇒ e�j (t0) = a.

For j = i the latter step follows from the definition of ē. Therefore,

(G.5) ∀j ∈ N, ēj(t0) = a & condition (G.2) ⇒ n(j,a)(t0, e
�) ≥ n(j,a)(t0, ē).

Given the right-continuity of e� and ē, for sufficiently small ε > 0, we have that for all

t ∈ [t0, t0 + ε) and (j, a) such that condition (G.2) is satisfied,

ρ(j,a)(t, e
�) = ρ{(j,a)}(t0, e

�) + n{(j,a)}(t0, e
�)(t− t0)

ρ(j,a)(t, ē) = ρ{(j,a)}(t0, ē) + n{(j,a)}(t0, ē)(t− t0).

Using (G.4) and (G.5) we obtain ρ(j,a)(t, e
�) ≥ ρ(j,a)(t, ē) for all t ∈ [t0, t0 + ε).

By (G.3), ρ(j,a)(t, e
�) ≥ ρ(j,a)(t, ē) for all t ∈ [0, t0) and (j, a) such that condition (G.2) is

satisfied. The arguments above establish that ρ(j,a)(t, e
�) ≥ ρ(j,a)(t, ē) for all t ∈ [0, t0 + ε)

and (j, a) such that condition (G.2) is satisfied, which contradicts the definition of t0. �
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Lemma 7. For all t ∈ [0, 1],

ρø(t, e�)− ρø(t, ē) ≥ −δ(t),

where ρø(·, ·) is a shorthand notation for ρN×{ø}(·, ·)

Proof. Note that

ρø(t, e�)− ρø(t, ē) + δ(t) =

∫ t

0

[nø(s, e�)− nø(s, ē) + 1
e�i (s)6=e�′i (s)

]ds.

Since ρ(j,a)(t, e
�) ≥ ρ(j,a)(t, ē) for all (j, a) such that condition (G.2) is satisfied and t ∈ [0, 1]

by Lemma 6, an argument similar to Lemma 6 leads to

e�i (s) 6= ēi(s) ⇒ nø(s, e�) ≥ nø(s, ē)− 1

e�i (s) = ēi(s) ⇒ nø(s, e�) ≥ nø(s, ē).

Thus the integrand nø(s, e�)− nø(s, ē) + 1
e�i (s)6=e�′i (s)

is non-negative for all s ∈ [0, t], which

completes the proof. �

Let us introduce a condition on S ⊆ N ×O and e�,

ρS′(t, e
�) < qS′ for all S ′ such that S ( S ′.(G.6)

Lemma 8. For all t ∈ [0, 1], S ∈ H such that S ∩ (N ×{ø}) = ∅ and e� for which condition

(G.6) is satisfied,

ρS(t, e�)− ρS(t, ē) ≤ δ(t).

Proof. For each (j, a) ∈ S ′ := (N ×O)\ (S∪ (N ×{ø})), consider the maximal set S ′′, if any,

such that (j, a) ∈ S ′′ and ρS′′(t, e
�) = qS′′ is satisfied. By condition (G.6), S ∩ S ′′ = ∅. Let

S1, . . . , Sk be all such sets, and define S ′′′ := S ′ \ (S1 ∪ · · · ∪ Sk). Note that for all t ∈ [0, 1],

we have the identity

ρS(t, e�)− ρS(t, ē) +
k∑
l=1

[ρSl(t, e
�)− ρSl(t, ē)] +

∑
(j,a)∈S′′′

[ρ(j,a)(t, e
�)− ρ(j,a)(t, ē)] + ρø(t, e�)− ρø(t, ē) = 0.

(G.7)

By definition of S1, . . . , Sk, the second term of the left-hand side,
∑k

l=1[ρSl(t, e
�)−ρSl(t, ē)] =∑k

l=1[qSl−ρSl(t, ē)], is no less than zero. Next, note that (j, a) ∈ S ′′′ and e� satisfy condition

(G.2) by the construction of S ′′′ and the assumption that (S, e�
′
) satisfies condition (G.6).

Therefore, by Lemma 6 the third term
∑

(j,a)∈S′′′ [ρ(j,a)(t, e
�)−ρ(j,a)(t, ē)] is no less than zero.

Finally, by Lemma 7, the last term ρø(t, e�)− ρø(t, ē) is no less than −δ(t). Therefore, the
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left-hand side of the equality (G.7) is no less than

ρS(t, e�)− ρS(t, ē) + 0 + 0− δ(t),

thus obtaining ρS(t, e�) − ρS(t, ē) − δ(t) ≤ 0. Rearranging terms, we obtain the desired

inequality. �

Lemma 9. For all t ∈ [0, 1], S ∈ H such that S ∩ (N × {ø}) = ∅, and e� and e�
′

such that

both (S, e�) and (S, e�
′
) satisfy condition (G.6),

ρS(t, e�)− ρS(t, e�
′
) ≤ δ(t).

Proof. For any (j, a) ∈ S, consider the maximal set S ′′, if any, such that (j, a) ∈ S ′′ and

ρS′′(t, e
�′) = qS′′ is satisfied. By condition (G.6) with respect to �′, S ′′ ⊆ S. Let S1, . . . , Sk

be such sets, and define S ′′′ := S \ (S1 ∪ · · · ∪ Sk). Note that for all t ∈ [0, 1], we have the

following identity:

ρS(t, e�)− ρS(t, e�
′
) = [ρS(t, e�)− ρS(t, ē)]− [ρS(t, e�

′
)− ρS(t, ē)]

= [ρS(t, e�)− ρS(t, ē)]−
k∑
l=1

[ρSl(t, e
�′)− ρSl(t, ē)]−

∑
(j,a)∈S′′′

[ρ(j,a)(t, e
�′)− ρ(j,a)(t, ē)].

Since (S, e�) satisfies condition (G.6), from Lemma 8 the first term of the last expres-

sion [ρS(t, e�) − ρS(t, ē)] is no larger than δ(t). By definition of S1, . . . , Sk, the second

term −
∑k

l=1[ρSl(t, e
�′) − ρSl(t, ē)] = −

∑k
l=1[qSl − ρSl(t, ē)] is no larger than zero. Next,

note that (j, a) ∈ S ′′′ and e�
′

satisfy condition (G.2) by the construction of S ′′′ and the

assumption that (S, e�
′
) satisfies condition (G.6). Therefore, by Lemma 6, the last term

−
∑

(j,a)∈S′′′ [ρ(j,a)(t, e
�′)− ρ(j,a)(t, ē)] is no larger than zero. Therefore we obtain the desired

inequality. �

Now we are ready to prove the weak strategy-proofness of the generalized PS mechanism.

Write X = [xia]i,a = PS(�) and X ′ = [x′ia]i,a = PS(�′). Assume xia ≤ x′ia, where a �i b
for every b ∈ O \ {a}. Let tia be the time at which (i, a) becomes unavailable in the eating

algorithm under �, and t′ia be the time at which (i, a) becomes unavailable in the eating

algorithm under �′. Since xia = tia and x′ia ≤ t′ia, we obtain tia ≤ t′ia. If tia = 1, then x′ia = 1

by x′ia ≥ xia = tia = 1 and hence xi = x′i, so there is nothing to prove. Thus assume tia < 1.

This implies that there exists S ∈ H such that (i, a) ∈ S and ρS(t, e�) = qS. Let S be a

maximal such set. Note that condition (G.6) is satisfied by S and e� by maximality of S.

If condition (G.6) is not satisfied by S and e�
′
, then i cannot eat a any time after tia. Thus

x′ia ≤ tia and, combined with previous relations tia = xia ≤ x′ia, we conclude tia = t′ia and
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xia = x′ia. Hence assume that condition (G.6) is satisfied by S and e�
′
. Then, by Lemma 9,

ρS(tia, e
�′) ≥ ρS(tia, e

�)− δ(tia)

= qS − δ(tia).

Suppose that δ(tia) 6= 0. Then, since tia < 1, there exists an agent-object pair (j, b) ∈ S

such that e�
′

j (tia) = b. By definition of the eating algorithm, this implies that x′ia < tia −
δ(tia) + δ(tia) = tia = xia, a contradiction to the assumption that x′ia ≥ xia. This implies

that δ(tia) = 0, which in tern implies that t′ia = tia = xia = x′ia.

Thus we have shown that xia = x′ia and tia = t′ia. An inductive argument shows that

xi = x′i, completing the proof.

Appendix H. Proof of Theorem 6

First, define a price space P = [0, |N |B]|O|. Let Xi := {xi = [xia] ∈ R|O||0 ≤
∑

(i,a)∈Si xia ≤
qSi ,∀Si ∈ Hi} be the set of fractional consumptions satisfying the quotas for agent i. We

then define for each agent i his demand correspondence d∗i (·) in the usual manner:

d∗i (p) := arg max
xi∈Xi

{
ui(xi) subject to

∑
a∈O

p∗axia ≤ B

}
.

That is, for each p ∈ P , d∗i (p) is the set of fractional consumption bundles that maximize

the utility of agent i subject to the constraint that the total expenditure is at most B under

prices p.

Claim 1: For each i, his demand correspondence d∗i (p) is nonempty- and convex-valued for

all p ∈ R|O|+ , and upper hemicontinuous in p.

Proof. The demand correspondence is nonempty since the feasible set of the linear program

is nonempty (since zero demand is feasible for any price vector, as all floor constraints are

assumed to be zero) and compact (since 0 ≤ xia ≤ qia), and since the objective function

is continuous. The convexity of d∗i (p) is shown as follows. Suppose x, x′ ∈ d∗i (p), and fix

any s ∈ (0, 1). Since the feasible set of the linear program is convex and since its objective

function is linear, it follows that sx+ (1− s)x′ is in d∗i (p) as well. The upper-hemicontinuity

of d∗i (·) follows from Berge’s theorem of the maximum. To see this point, first note that the

objective function, the agent’s utility function, is continuous on the domain of the function.

Second, the correspondence from price vector p to budget set {xi ∈ Xi|
∑

a∈O paxia ≤ B}
is clearly continuous (i.e., both upper-hemicontinuous and lower-hemicontinuous). Thus
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Berge’s theorem implies that the set of the maximizers of the objective function, which is

exactly the demand correspondence d∗i (·), is upper-hemicontinuous. �

Define the excess demand correspondence z(·) by z(p) =
∑

i d
∗
i (p) − q for each p ∈ P .

Note that this correspondence is also upper hemicontinuous and convex-valued because it

is a linear sum of upper hemicontinuous and convex-valued correspondences. Introduce the

following objects:50

(1) Let q = max{maxa∈O qa,maxi∈N,a∈O q{(i,a)}}.
(2) Define an auxiliary enlargement of the price space, P̃ = [−q, |N |B + |N |q]|O|.
(3) Define a truncation function t : P̃ → P by t(p) = (max {0,min{pa, |N |B}})a∈O .

Let a correspondence f : P̃ → P̃ be defined by f(p) = t(p) + z(t(p)). We will show

that we can apply Kakutani’s fixed point theorem. To do so, first note that z(t(p)) is upper

hemicontinuous and convex-valued on P̃ because t(·) is a continuous function and z(·) is an

upper hemicontinuous and convex-valued correspondence. This implies that f(p) is upper

hemicontinuous and convex-valued as well. Second, note that the range of t(p) + z(t(p)) lies

in P̃ as required because, for any p ∈ P̃ and a ∈ O, the excess demand za(p) is at least −q
(because the supply of object a is qa ≤ q̄) and at most |N |q (because the demand of object

a by any agent i is at most q{(i,a)} ≤ q̄). Thus f(p) is an upper hemicontinuous and convex-

valued correspondence defined on the compact and convex set P̃ . Thus by Kakutani’s fixed

point theorem, there exists a fixed point p∗ ∈ f(p∗).

To complete the proof, we will show that any fixed point p∗ of f(·) corresponds to a

competitive equilibrium; specifically, t(p∗) is a competitive equilibrium price vector. To

show this claim, suppose that p∗ is a fixed point of f(·). By the definition of a fixed

point and correspondence f(·), this means that there exists z∗ = [z∗a]a∈O ∈ z(t(p∗)) such

that p∗ = t(p∗) + z∗, or equivalently p∗a = ta(p
∗) + z∗a for all a ∈ O. First suppose that

p∗a ∈ [0, |N |B]. The truncation does not bite for such an object a, that is, ta(p
∗) = p∗a.

Then p∗a = ta(p
∗) + z∗a implies z∗a = 0 (i.e., the demand and supply for object a exactly

clear at t(p∗)). Second, suppose that p∗a < 0. Then ta(p
∗) = 0 and hence p∗a = ta(p

∗) + z∗a
implies z∗a = p∗a < 0.51 Lastly, suppose that p∗a > |N |B. Then ta(p

∗) = |N |B and hence

p∗a = ta(p
∗)+z∗a implies that z∗a = p∗a−|N |B > 0 (i.e., object a is in excess demand at t(p∗)).

But this is impossible because ta(p
∗) = |N |B, so even if all agents spend their entire budget

50These objects prove useful in handling some boundary issues that arise because we allow objects to be in
excess supply at price zero (and preferences are satiable, so prices of zero may actually arise).
51This means that object a is in excess supply at t(p∗). Note that this excess supply does not cause a
problem because ta(p∗) = 0, which is allowed by the “complementary slackness” condition in the definition
of the mechanism.
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on object a at price vector t(p∗), total demand is less than or equal to one (which is weakly

less than supply by assumption). These arguments complete the proof.

Remark 3. In their model, HZ assume positive floor constraints, specifically each agent

needs to consume exactly one object. This constraint makes their proof quite involved, and

they overcome the associated difficulties through a number of techniques as illustrated below.

(1) The first problem is that the set of feasible consumption bundles could be empty:

If the budget is too small relative to the prices, then it is simply infeasible to buy

an expected consumption bundle that satisfies the unit-consumption constraint. To

address this problem, HZ restrict attention to price vectors such that the price of at

least one object is zero, so that some consumption bundle is always feasible.

(2) However, the set of price vectors such that the price of at least one object is zero ob-

viously violates convexity, which is needed to apply Kakutani’s fixed point theorem.52

In order to cope with this problem, HZ consider the space

S = {s ∈ R|O||
∑
a∈O

sa = 0},

and a function f such that fa(s) = sa − min{sb|b ∈ O} for each a ∈ O. The set S

is convex, and given any s ∈ S, f(s) provides a desired price vector. Based on this

idea, HZ proceed to find a fixed point in S.

Unfortunately, their method of proof cannot be generalized to multi-unit demand cases with

floor constraints. To see this point, assume that there are two agents 1 and 2 and three

objects a, b, c. Assume that 1 and 2 can consume multiple objects, but need to consume

exactly one object from {a, b} and {b, c}, respectively. In order to guarantee feasibility, the

price space should be such that at least one price from {pa, pb} is zero and at least one price

from {pb, pc} is zero. Then the counterpart of the set S above should have the additional

property that at least one component from {sa, sb} and at least one component from {sb, sc}
attain the minimum of all the coordinates of s = (sa, sb, sc). Consider two vectors s =

(1/2,−1/4,−1/4) and s′ = (−1/4, 1/2,−1/4). Both vectors satisfy the restrictions, but
1
2
s+ 1

2
s′ = (1/8, 1/8,−1/4) does not, thus violating the desired convexity of the set.

Remark 4. In our analysis, it is assumed that each agent has a unique bliss point. To see

why this assumption is needed, let there be two agents, i and j, and three objects, a, b, and

c. Each object has one unit of supply. Agent i has single-unit demand while j has demand

for at most two units, and utilities for individual objects are given by via = vib = vic = 1,

vja = 2, and vjb = vjc = 1. In this problem, the price vector p∗ = (pa, pb, pc) = (2, 1, 1)

52For instance, price vectors (1, 0) and (0, 1) both satisfy the requirement, but 1
2 (1, 0) + 1

2 (0, 1) = (1
2 , 1

2 ) does
not.
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and an allocation where i gets a and j gets b and c is a competitive equilibrium under

the generalized pseudo-market mechanism (associated with budget B = 2). However, this

allocation is not ex-ante Pareto efficient, because it is a Pareto improvement for i to get b

and j to get a and c. Notice that the non-unique bliss points here arise from preference

indifferences that are not generic (for instance in the sense that the set of vNM values giving

rise to the required indifference has zero Lebesque measure).

As illustrated by the above example, if an agent’s bliss point is not unique, our mechanism

may not produce an ex-ante Pareto efficient allocation. This problem can be solved by

modifying the mechanism to select an expenditure-minimizing bundle whenever multiple bliss

points are feasible for an agent. Specifically, for a given vector (via) of vNM values reported by

agent i and a price vector p, let the mechanism find a consumption bundle that maximizes

ui(xi) − ε[B −
∑

a paxia] subject to the budget constraint, for a small ε > 0, inducing

demand correspondence d∗i (p, ε). A competitive equilibrium (p∗ε , X
∗
ε ) exists in this modified

economy for any small ε > 0 by an argument analogous to the proof of Theorem 9. Consider

an arbitrary sequence (p∗εn , X
∗
εn)∞n=1 where εn > 0 for all n and limn→∞ εn = 0. Because

both the set of feasible expected consumption bundles and the set of price vectors P are

closed and bounded subsets of Euclidean spaces, there exists a subsequence (p∗εnk
, X∗εnk

)∞k=1

of (p∗εn , X
∗
εn)∞n=1 that converges to a pair (p∗, X∗), where p∗ is a price vector and X∗ is a

feasible expected consumption bundle X∗. We define X∗ to be the output of our modified

mechanism. Note that (p∗, X∗) is a competitive equilibrium. To see this, note first that

for each i the demand correspondence d∗i (p, ε) is upper hemicontinuous, so x∗i ∈ d∗i (p∗, 0).

Also note that
∑

i∈N x
∗
ia ≤ qa for all a ∈ O, with a strict inequality only if p∗a = 0 since the

corresponding inequalities hold for each equilibrium associated with εnk .

Now we shall show that X∗ is Pareto efficient. For contradiction, suppose that there

exists X̃ that Pareto improves upon X∗. If ui(x̃i) > ui(x
∗
i ), then revealed preference implies

p∗ · x̃i > p∗ · x∗i . Suppose ui(x̃i) = ui(x
∗
i ). If x∗i is not a bliss point, then by an argument

similar to the one in Theorem 7, we obtain p∗ · x̃i ≥ p∗ · x∗i . Thus suppose that x∗i is a bliss

point. We claim p∗ · x̃i ≥ p∗ · x∗i in this case as well. To show this suppose for contradiction

that p∗ · x̃i < p∗ · x∗i . Then, since (p∗, X∗) is a limit of (p∗εnk
, X∗εnk

)∞k=1, for any sufficiently

large k we obtain p∗εnk
· x̃i < p∗εnk

·x∗i , a contradiction to the definition of d∗i (p
∗
εnk
, εnk). From

the above and the assumption that X̃ is a Pareto improvement on X∗, we have established

that p∗ · x̃i ≥ p∗ · x∗i for all i with at least one strict. Therefore, an argument analogous to

the last part of the proof of Theorem 9 leads to a contradiction, showing that X∗ is Pareto

efficient.
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Appendix I. Proof of Theorem 9

Proof. For each i ∈ N , let (a1
i , a

2
i , . . . , a

|O|
i ) be a sequence of objects in decreasing order of

i’s preferences so that via1
i
≥ via2

i
≥ . . . , v

ia
|O|
i

. Define the class of sets H′ = H′1 ∪H′2 by

H′1 = H1 ∪

 ⋃
i∈N,

k∈{1,...,|O|}

{i} × {a1
i , . . . , a

k
i }

 ,

H′2 = H2.

By inspection, H′ is a bihierarchy. Therefore, by Theorem 1, there exists a convex decom-

position such that

∑
(i,a)∈S

x′ia,
∑

(i,a)∈S

x′′ia ∈


 ∑

(i,a)∈S

xia

 ,

∑

(i,a)∈S

xia


 for all S ∈ H′,(I.1)

for any integer-valued matrices X ′ and X ′′ that are part of the decomposition. In particular,

property (I.1) holds for each {(i, a)} ∈ H′1 and {i} × {a1
i , . . . , a

k
i } ∈ H′1. This means that

• Observation 1: For any i and k, x′
iaki
−x′′

iaki
∈ {−1, 0, 1}. This follows from the fact

that |x′
iaki
− x′′

iaki
| ≤ dxiaki e − bxiaki c ≤ 1 and that x′

iaki
and x′′

iaki
are integer valued.

• Observation 2: By the same logic as for Observation 1, it follows that
∑k

j=1(x′
iaji
−

x′′
iaji

) ∈ {−1, 0, 1} for any i and k.

• Observation 3: Let (akli )ll=1 be the (largest) subsequence of (a1
i , . . . , a

k
i ) such that

x′
ia
kl
i

6= x′′
ia
kl
i

for all l. Then, (i) x
ia
kl
i

6∈ Z for all l, and (ii) x′
ia
k2l′
i

−x′′
ia
k2l′
i

= −(x′
ia
k2l′−1
i

−

x′′
ia
k2l′−1
i

) for any l′ = 1, . . . , l/2.

Observation 3 (ii) can be shown as follows. First, the result must hold for l′ = 1,

or else
∑k2

j=1(x′
iaji
− x′′

iaji
) = x′

ia
k1
i

− x′′
ia
k1
i

+ x′
ia
k2
i

− x′′
ia
k2
i

∈ {−2, 2}, which violates

Observation 2. Now, working inductively, suppose the statement holds for all l′ =

1, . . . ,m− 1 for m ≤ l/2. Then the statement must hold for l′ = m, or else

k2m∑
j=1

(x′
iaji
− x′′

iaji
)

=
m−1∑
l′=1

(
x′
ia
k2l′−1
i

− x′′
ia
k2l′−1
i

+ x′
ia
k2l′
i

− x′′
ia
k2l′
i

)
+ x′

ia
k2m−1
i

− x′′
ia
k2m−1
i

+ x′
ia
k2m
i

− x′′
ia
k2m
i

= x′
ia
k2m−1
i

− x′′
ia
k2m−1
i

+ x′
ia
k2m
i

− x′′
ia
k2m
i

must be either −2 or 2, which again violates Observation 2.
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These observations imply that

∑
a∈O

x′iavia −
∑
a∈O

x′′iavia =

|O|∑
k=1

(x′iaki
− x′′iaki )viaki

=
l∑
l=1

(x′
ia
kl
i

− x′′
ia
kl
i

)v
ia
kl
i

≤
l/2∑
l′=1

v
ia
k2l′−1
i

− v
ia
k2l′
i

≤ v
ia
k1
i
− v

ia
k
l
i

≤ ∆i,

where the first inequality follows from viaki ≥ viak′i
for k < k′ and Observations 1 and 3-(ii),

the second inequality follows from viaki ≥ viak′i
for k < k′, and the last inequality follows from

the definition of ∆i and Observation 3-(i). Therefore, we obtain property (1) of the theorem.

Property (2) of the theorem follows immediately from property (1) of the theorem. �
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