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Battery cathodes are complex multiscale, multifunctional materials. The length scale at which the dominant impedance arises may
be difficult to determine even with the most advanced experimental characterization efforts, and thus modeling can play an
important role in analysis. Discharge and voltage relaxation curves, interrogated with theory, are used to distinguish between
transport impedance that arise on the scale of the active crystal and on the scale of agglomerates (secondary particles) comprised of
nanoscale crystals. Model-selection algorithms are applied to determine that the agglomerate scale is dominant in the
Li Ni Mn Co O0.33 0.33 0.33 2( ) electrode studied here. Furthermore, conditions where the agglomerate and crystal-scale models yield
distinct simulation results are demonstrated, providing approaches that can be applied to other systems.
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List of symbols

Electrode Scale Symbols

a Specific surface area (cm−1)
c0 Concentration of lithium in the electrolyte (mol cm−3)
cbulk Concentration of lithium in the bulk electrolyte,

1 10 3´ - (mol cm−3) in study.
iapplied Applied current density (A cm−2)
D0 Diffusion coefficient for lithium ions in bulk electrolyte,

1 10 6´ - (cm2 s−1).
D eff0, Effective electrolyte diffusion coefficient (cm2 s−1)
Lcathode Thickness of NMC cathode, 25 ( mm ) in experiment
Lseparator Thickness of separator, 25 ( mm ) in experiment
N+ Flux of lithium ions in electrolyte (cm−2 s−1)
 Void fraction of porous electrode (porosity), 0.673 in

experiment.
s Solid state conductivity (S cm−1)
k Solution conductivity (S cm−1)
zi Species charge
ui Species mobility (cm2 s mol J−1)

1F Solid state potential (V)
2F Solution potential (V)

Crystal Scale Symbols

cs
x Concentration of lithium in NMC111 inside crystals (mol

cm−3)
Dx Diffusion coefficient for lithium in the NMC111 crystals
Lx Average radius of NMC111 crystals, 200 (nm) in experi-

ment
Agglomerate Scale Symbols

aagg Specific surface area inside agglomerate (cm−1)
Aagg Average cross-sectional area of agglomerates (cm2)
Vagg Average volume of agglomerates (cm3)
c agg

0 Concentration of lithium in the electrolyte inside agglom-
erate (mol cm−3)

cs
agg Concentration of lithium in NMC111 inside agglomerate

(mol cm−3)

Dagg Diffusion coefficient for lithium ions in the NMC111
agglomerate (cm2 s−1)

Lagg Average radius of NMC111 agglomerates, 5 (nm) in
experiment

N agg
+ Flux of lithium ions in electrolyte inside agglomerate

(cm−2 s−1)
 agg Void fraction inside agglomerate

agg
1F Solid state potential (V)

agg
2F Solution potential (V)

Reaction Thermodynamics and Charge Transfer Kinetics
Symbols
F Faraday’s constant (96,485 C mol−1)
krxn Reaction rate constant for insertion of lithium inside

NMC (cm5/2 mol−1/2 s−1)
iin Local current density for lithium insertion (A cm−2)
i0 Exchange current density for lithium insertion (A cm−2)
R Ideal gas constant (8.314 J mol−1 K−1)
T Temperature, 298(K) in experiment
U Reversible potential for lithium insertion reaction(V)

aa Anodic charge transfer coefficient, 0.5 in experiment
ca Cathodic charge transfer coefficient, 0.5 in experiment

h Overpotential for lithium insertion reaction (V)

Lithium ion Batteries (LIBs) have garnered great research
attention and wide commercial applications as energy storage
devices on portable devices and electric vehicles (EV).1,2

However, the optimization of LIBs for energy and power density
is still an active research area.3–6 For instance, compared with the
graphite anodes (∼372 mAh g−1 in specific capacity), cathode
materials are lower in capacity (<250 mAh g−1).7 There are
attempts to increase cathode mass loading (mass or capacity per
area) by increasing cathode thickness or reducing porosity (roll
pressing),8 while others focus on increasing the upper limit of the
voltage window, in order to gain more capacity from the cathode.9 In
both cases, transport of lithium and homogeneity of lithium
intercalation/de-intercalation reaction may be crucial to battery
performance.10

During battery operation, these processes occur at multiple length
scales. Lithium ions inside liquid electrolyte diffuse through porous
constructs,11 and lithium within the crystal diffuses between the
surface and the center.12 Meanwhile, charge-transfer reactions occur
at the surface of the electrode material and electrolyte.13 Any of the
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processes may be the performance limiting step depending on
chemistry, mode of operation, and design. Accordingly, under-
standing the detailed mechanism and the impedance of every process
is key to improve the design of batteries.

Physics-based mathematical models play an important role in
data analysis. Newman et al.14,15 developed an approach to couple
the electrode and crystal scales. Such models have been used to
answer questions that are hard to be fully understood by experiment
alone. For example, Srinivasan et al.16 developed a model for a
lithium iron-phosphate electrode to understand the sources of energy
loss at different power densities. Brady et al.17 built a model for
lithium trivanadate (LiV3O8) electrode using method developed by
Newman but foregoing the use of a superposition integral formula-
tion on the crystal scale in favor of a more flexible numerical
algorithm which allows inclusion of more physics. They obtained
the diffusion coefficient of lithium in LiV3O8 and determined that
transport processes within the crystal appear to be more rapid during
charge than discharge.

Compared with other cathode materials, the layered transition-
metal oxide Li(NixMnyCo1−x−y)O2 (NMC) is attractive for electric
vehicles because of its moderate cost and high energy density.18,19

As Figs. 1a, 1b shows, an NMC cathode has a hierarchical structure.
The ∼400 nm primary NMC crystals tends to form spherical
agglomerates with an average diameter of ∼10 μm. Yang et al.20

used focused ion beam (FIB) to lift out NMC crystals and used EDS
to observe the chemical constitutions on the crystal surfaces. The
strong phosphorus signal on the grain boundary conclusively showed
that the electrolyte penetrates into the inside of agglomerated
crystals and the Li oxidation/reduction reaction occurs at the surface
of each of the small crystals instead of at the outer edge of the
agglomerate.

In addition to transport across the bulk electrode (electrode
scale), there are two length-scales that may impact the transport
process: the transport of lithium ion (Li+) throughout the agglom-
erate (agglomerate scale), and the diffusion of Li inside NMC crystal
(crystal scale). Commonly, researchers in modeling couple the
electrode scale to either the agglomerate or crystal scales, but it
may be difficult to know which length scale to use. If a diffusion
coefficient is independently known, the characteristic times asso-
ciated with potential relaxation may prove insightful.21 Often the
diffusion coefficient is not known with certainty. Furthermore,
agglomerate-scale transport processes have important characteristics
that are not always captured with a crystal-scale model, especially at
high rates. This may not always be accounted for, and this can
impact conclusions as discussed here. Since the characteristic length
of the two scales may be vastly different, interpretation of relaxation

times in GITT experiments may lead to a very large variation in
literature-reported diffusion coefficients.

To determine the more important transport process, this paper
compares both electrode-agglomerate scales coupled mathematical
model (agglomerate model) and electrode-crystal scales coupled
model (crystal model) to experimental results. As Fig. 1c shows, in
both models, the assumption is made that the transport process on
the other scale is fast enough and the resulting impedance is
negligible. Both models are compared under multiple current rates,
and model-selection algorithms are used to identify the most
important length scale in an electrode construct, at least from the
point of view of transport limitations. In other words, the efficacy of
models derived from hypothesizing crystal-scale transport limita-
tions are controlling are compared to models derived from hypothe-
sizing agglomerate-scale transport limitations are controlling.

Theory

Mathematical model.—Figure 2a shows the configuration of the
coin cell used in this study. Based on such configuration, two models
were developed following the development by Knehr22 et al. and
Brady et al.23 In order to eliminate electrode-scale transport
limitations, thin LiNi Mn Co O NMC0.33 0.33 0.33 2 111( ) cathodes
25 m, mass loading 2.84 mg cm 2( )m = - were used in the experi-
mental study and in the present analysis. Both scaling arguments and
simulations confirmed that electrode-scale effects were negligible.

Nevertheless, a so-called pseudo 2D modeling paradigm24 was
used to most easily connect the smaller-length scale simulations to
the parameters that are controlled during fabrication. Equations
describing transport of lithium inside the NMC agglomerate or
crystal are coupled to the electrode scale equations. As shown in
Fig. 1c, in the crystal model, we assume that the transport through
agglomerates is fast and do not contribute to voltage loss, thus the
agglomerate scale transport loss is neglected. In contrast, crystal
scale transport loss is neglected in the agglomerate model. All the
coupled equations are solved simultaneously using the BAND(J)
algorithms,25 which gives values of dependent variables as a
function of position and time. Detailed governing equations and
boundary conditions are shown in Table I. The coefficients for the
reversible potential in Table I, Eq. 11 were obtained by fitting the
expression to experimental GITT (C/10) data taken after one hour of
relaxation at 11 different state of discharge. While both models
describe similar physics, there are differences. For example, the
description of the interfacial reaction kinetics appears as a boundary
condition in a crystal-scale model but in the governing equation of
an agglomerate-scale model.

Figure 1. (a) (b) SEM images of NMC ;111 (c) Schematic of the assumptions of crystal model and agglomerate model, in which the limiting transport process
occurs on the crystal and agglomerate length scales separately.
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Parameter estimation.—The parameter estimation method fol-
lows the development of Brady et al.26 A designated parameter space
was sampled using Sobol sequences from Python module
sobol_seq.27 After simulations are generated using different sets of
parameters from sobol sampling, the residual sum of squares (RSS)
is calculated to describe how well the simulations emulate the
experimental data. The RSS value of each parameter set is then fed
into a Markov-chain monte-carlo (MCMC)28 method to show
statistical distributions of parameters. The parameter values are
assumed to form a normal distribution, in which the mean value is
the most likely parameter to emulate real electrochemical perfor-
mance, and the standard deviation indicates the uncertainty in this
parameter estimation.

In our study, a three-parameter space comprised of either the
agglomerate or crystal scale diffusion coefficient (Dagg or Dx),
reaction rate constant krxn of lithium intercalation inside NMC
materials and contact resistance (Rct) is sampled. The assumption
that anode impedances can be neglected was tested to confirm the
modeling approach. Results indicate that the anode overpotential is
on the order of 1–2 mV for 0.85 mA cm−2 (2C) discharge. It was
concluded that the estimation of the agglomerate-scale diffusion
coefficient is not impacted by inclusion of the anode overpotential.

Experimental

Cathode casting.—Cathodes were cast on ∼18 μm Al foil with
doctor blades using a mixture of LiNi Mn Co O0.33 0.33 0.33 2 (MSE
Supplies LLC), carbon black (Timcal), and PVDF (Arkema Kynar
761) at a mass ratio of 9:0.5:0.5, dissolved in N-Methyl-2-
Pyrrolidone (NMP) (Sigma-Aldrich). The as-casted electrode was
heated on a hot plate to 110 °C to evaporate NMP solvent and
cathode with mass loading ∼2.84 mg cm−2 could be obtained. Such
25 μm NMC111 cathode contains NMC agglomerates with average
diameter of 10 μm and NMC crystals with an average diameter of
400 nm.

Coin cell assembling.—CR2032 Coin cells were made inside an
argon filled glovebox. A commercial electrolyte, 1 M LiPF6 in EC/
DEC (5:5, w/w) (Gotion Inc.) was used as liquid electrolyte. 250 μm
lithium metal foils were used as counter electrode. After assembly,
two formation cycles at a C/10 rate were conducted prior to the
galvanostatic and GITT experiments, which were performed em-
ploying a Landt battery tester.

Results

Select cathode thickness to eliminate electrode scale transport
effect.—Mass transport processes occur at a minimum of at least
three different length scales inside the NMC electrode: electrode
scale, agglomerate scale and crystal scale. In order to characterize
the agglomerate scale and crystal scale mass transport, it is helpful to
design experiments in which variations on the electrodes scale are
negligible. Intuitively, this implies the use of thin electrodes, and
Brady et al.26 showed that mock experiments can quantitively show
when a parameter is not important. Specifically, in this case, when
the simulated uncertainty D0s of the electrode-scale effective
diffusion coefficient is large and Daggs is small, the electrode scale
is not important. Figure 3 shows the normalized parameter estima-
tion results for cathodes with different thickness (mock experi-
ments). Comparing the uncertainty of electrode scale diffusion
coefficient ( D0s ) and agglomerate scale diffusion coefficient ( Daggs ),
the result suggests that for thick cathodes ( 100 mm> ), the electrode
scale mass transport is more important. While for thin electrodes, the
electrode scale transport impedance is negligible. Thus, as we want
to eliminate the electrode effect, a thin cathode (25 μm) was used to
obtain experimental data for further study.

Testing hypotheses by comparing models to galvanostatic
experimental data.—To compare the simulation results derived
from the two alternative hypotheses, the agglomerate model and
crystal model were trained using galvanostatic experiments. The cell
was operated between 3.0 V and 4.3 V under 0.2 C, 0.33 C, 0.5 C,
1 C and 2 C, in which 1 C = 150 mA g−1. For model training,
models were fitted to discharge voltage profiles under the 5 current
rates, and a single set of parameters was obtained. For the
agglomerate model, the diffusion coefficient
D 1.2 0.2 10 cm s ,agg

9 2 1( )=  ´ - - which is within a reasonable
range compared with others’ reports.29,30 This low diffusion
coefficient might result from the close packing of NMC crystals
inside the agglomerate, which can be observed in Fig. 1b. For the
crystal scale model, a value of D 5.2 2.6 10 cm sx

12 2 1( )=  ´ - -

is obtained. The diffusion coefficient obtained from a crystal scale
model is characterized by a significantly higher uncertainty. The
higher uncertainty is because the parameter estimation algorithm
suggests that the transport impedance is less dominant in the crystal-
scale model.

Figure 4 shows the experimental voltage profiles and simulation
results for both models. Simulation results do not extend to the

Figure 2. (a) Configuration of real battery. (b) Configuration of physical based continuum model, with electrode scale governing equations and boundary
conditions.
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Table I. Governing equations and boundary conditions for mathematical model of NMC cell.

Electrode Scale Equation
Governing Equation Li Anode Separator Edge Current

Collector
(1) Solid State Current (i1)  ai1 0in

2
1( )s-  F - = i 01 = i 01· = i iapplied1 =

(2) Electrolyte Current (i2)  F z D z D c ai 0in2
2

0· ( ) ( )k F + +  + =+ + - - 02F = i 02· = i 02 =

 F z u z u c2 2 2
0( ( ) )k = ++ + - -

(3) Electrolyte Concentration
(c0)

 Nc

t

ai

F
in0 ·= - +¶

¶ + N
i

F

applied=+
N 0· =+ N 0=+

N D c z D ceff
F

RT0, 0 0 2( )= -  - F+ + +

(4) Solid State Concentration
(cs)

1 c

t

a i

F
s in( ) ·- = -¶

¶
— — —

Crystal Scale equation
Governing equation Crystal Center Crystal Edge

(5) Lithium balance (cs
x) D cc

t x s
x2s

x
= ¶

¶
c 0s

x = D cx s
x i

F
in-  =

Agglomerate Scale equation
Governing equation Agglomerate Center Agglomerate

Edge
(6) Solid State Current (i agg

1 ) i a iagg agg
in
agg

1· = i 0agg
1 = i iagg

surface agg1 ,=

i FV A1surface agg
C

t agg agg agg,
s( )( )/= -¶

¶

(7) Electrolyte Current (i agg
2 ) i a iagg agg

in
agg

2· = i 0agg
2 = agg

2 2F = F
(8) Electrolyte Concentration

(c agg
0 )

 Nagg c

t
agg a i

F

agg agg
in
agg

0 ·= - +
¶

¶ +
N 0agg =+ c cagg

bulk=+

N D c z D cagg agg
agg

agg F

RT agg
agg agg

0 0 2( )= -  - F+ +

(9) Solid State Concentration
(cs

agg)
1 agg c

t

a i

F
s
agg agg

in
agg

( )- = -¶
¶

— —

Electrochemical Reaction Rate
(10) Current Density (iin) i i exp expin

F

RT

F

RT0
a c⎡⎣ ⎤⎦( ) ( )= - -a h a h U1 2h = F - F -

Exchange Current Density (i0) i Fk c c c crxn0 0 , max
a c a( )= -a

a
a

a a
a

Reversible Potential

(11)
U U

A c

ln

2 1

ref
RT

F

c

c

c

c

k k
k c k c

c

1

0

10
max

1 2 1

2 1 k

0

max

max

max max

max
1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )( )
( ¯ )

¯
¯

¯ ( ¯ )
( ¯ )å

= +

+ - -

-

=
+ -

- -

c
c c

c cmax
s s

s s

,0

, max ,0
¯ = -

-

Parameter Value Parameter Value Parameter Value
c mol cms, max

3( )- 0.0262 A3 0.023162 A8 −0.259945

U Vref ( ) 3.868568 A4 −0.037789 A9 −0.589845

A0 −0.201805 A5 −0.330780 A10 0.052014
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experimental cutoff (2.8 V) because of numerical limitations. Both
models agree with experimental data for C-rates below 1 C. For the
2 C rate, the agglomerate model still agrees well with experimental
performance, while the crystal model is less successful at the large
depth of discharge.

Check consistency of parameter values from different training
sets.—Another method for model selection or hypothesis testing is
to compare parameter estimates of the two models when trained with
different types of experiments. Ideally, the derived parameters are
consistent. Here, models were trained by (1) galvanostatic discharge
experiments and (2) relaxation (voltage recovery) experiments.
Figure 5 show the probability distribution function for the diffusion
coefficient obtained by the two models when trained with discharge
data and relaxation data. The experimental variation (sexp) is
estimated to be 20 mV. It can be seen that for the agglomerate
model, discharge and relaxation experiments yield very similar
estimates. This is seen in Fig. 5c, where
D D 0.85 0.2.discharge relaxation =  In contrast, the mean crystal-

scale state diffusion coefficient (Dx) estimated from discharge and
relaxation is 5.2 10 cm s12 2 1´ - - and 1.7 10 cm s .12 2 1´ - - In
Fig. 5c, we see D D 3.1 1.7discharge relaxation =  for the crystal
model.

For an ideal system with experimental measurements with no
variance, the ratio of diffusion coefficients should be one. In our
case, for the agglomerate model, the distribution of
D Ddischarge relaxation is narrow and has a mean value relatively close
to 1. To be more quantitative, the agglomerate model has a 97%
chance that D Ddischarge relaxation is between 0.6 and 1.4. For the
crystal model, there is only a 17% chance that the ratio falls in this
range. Thus, by comparing parameter values from different experi-
mental sets for model selection, the agglomerate model has a much
higher probability to be correct.

Comparing prediction error.—Another means of model selec-
tion is to evaluate its prediction ability. Similar to leave-one-out
cross validation,31 the model is trained on a combination of data sets
to obtain parameters. Then the trained model is used to predict the
experimental performance of a test set that is not included in the
training sets. In this study, the training sets and test sets were
selected from 0.1C, 0.2C, 0.33C, 0.5C, 1C and 2C discharge
experiments. To start, the models were trained by the lowest rate
(0.1C) to predict the performance at 0.2C. Then the models were
trained using a combination of 0.1C and 0.2C to predict 0.33C
performance. For the last step, all other current rates was used to
predict the performance of 2C discharge. This is named “forward
prediction.” For “backward prediction,” The models are trained by
2C to predict 1C, etc. Figure 6 shows the average prediction error,
which is the average deviation of prediction from experimental data
(esim) normalized by the experimental variation (s 20 mVexp = ):

e
e

s
1sim

sim

exp
¯ [ ]=

For both forward and backward prediction, the prediction errors
are similar for C-rates less than 0.5C. However, the error starts to
differentiate at the higher discharge rates. For 1C prediction, the
backward method for the crystal model has a high normalized error
(e 3sim¯ ~ ), while the error for the agglomerate model is relatively
low (e 1.2sim¯ ~ ). For 2C prediction, the forward prediction by the
agglomerate model has much lower error than crystal model. This
further suggests that the agglomerate scale model is in better
agreement with experiment than the crystal-scale model. The
deviation at 2C is also seen in Fig. 4, but perhaps in a less
convincing manner.

Comparing models to experimental dV/dQ profiles.—In some
cases, it may be desirable to predict the changes in voltage rather
than the voltage, especially when an experimental uncertainty (such
as a contact resistance or anode impedance in a cathode study) is
difficult to eliminate. In such cases, models can be trained on for
example a dV/dQ curve, which is the derivative of the voltage with
respect to discharge capacity. The two models were trained using
dV/dQ profiles for 0.33C, 0.5C, 1C and 2C and the resulted
simulation results are shown in Fig. 7. Just as in Fig. 3, by fitting
to dV/dQ curve, the two models are only distinct at 2C. The
agglomerate model agrees better with experimental dV/dQ. Results
gave D 1.2 0.2 10 cm s ,agg

9 2 1( )=  ´ - - identical to values ob-
tained by fitting V vs time. For the crystal scale model,
D 5.9 2.5 10 cm s ,x

12 2 1( )=  ´ - - which are also close to values
obtained by fitting V vs time.

Diffusion coefficient as a function of state of charge (SOC).—
Often, experimental investigations are not closely integrated with
modeling development. Thus, a broadly applied theory is often used
to estimate diffusion coefficient32,33:

Figure 3. Parameter estimation results (normalized uncertainty: D Ds m ) for
electrode scale diffusion coefficient (D0) and agglomerate scale diffusion
coefficient (Dagg) at different cathode thickness.

Figure 4. Comparison of experimental galvanostatic discharge voltage
profile to agglomerate model & crystal model simulation results.
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pt
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D
D

where s( )t is the time duration for each discharge step, mB(g) is the
mass of NMC, MB (g mol−1) is the atomic weight of NMC, VM (cm3

mol−1) is the molar volume of the NMC materials, S (cm2) is the
area of electrode. E Vs ( )D and E Vt ( )D are the change of voltage
between relaxations and during discharge.

Note that Eq. 2 is derived assuming a crystal scale model, and the
inequality constraint arises because the physics used to derive Eq. 2
assumes semi-infinite diffusion.34 The use of Eq. 2 may lead to, for
example, a conclusion that the diffusion coefficient is a function of
the state of charge (SOC). While that is theoretically possible if not
probable, whether it leads to improved agreement with experiment is
a valid question.

To study the apparent SOC dependency of the diffusion
coefficient, voltage recovery data from GITT experiments are used
to determine the diffusion coefficient values from the two models,
with results shown in Table II. Instead of absolute diffusion
coefficients, values of D/L2 are shown, where L is the diffusion
length. Also, D/L2 values calculated from experimental GITT data
by Eq. 2 are listed. Figure 8 shows D/L2 from agglomerate model
fitting, crystal model fitting and from Eq. 2 calculation at 1C.

As shown in Table II and Fig. 8, for the agglomerate model, the
D/L2 value is relatively constant with state of charge. In short, a
constant diffusion-coefficient model is consistent with experiment.
The crystal scale model suggests that Dx increases with state of
charge (this corresponds to decreasing Dx with increasing solid-state
Li concentrations). Note however, that the value of Dx remains
inconsistent with values estimated from the discharge curve (cf.,

Figure 5. (a) and (b) Probability distribution functions of Dagg in the agglomerate model and Dx in the crystal model by fitting to discharge data and relaxation
data respectively. (c) Distribution of D Ddischarge relaxation for agglomerate model and crystal model.

Figure 6. Prediction error for “forward prediction” (solid lines) and “back-
ward prediction” (dashed lines). The stars are the initial fitted model errors
(0.1C for “forward prediction” and 2C for “backward prediction”) emanating
from the initial parameter estimates used for predictions.
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Fig. 4). Furthermore, diffusion coefficients fit through agglomerate
and crystal models are consistent with values obtained by Eq. 2 only
to an order of magnitude.

Discussion

The two models are hard to distinguish at relatively low
discharge rates (lower than 1C in this paper), without simultaneously

considering GITT relaxation data. This was unexpected based on
previous experience.22 Design of experimental conditions that allow
for a distinction between the two models is possible. In this
experimental design, the diffusion coefficient is assumed to be
known. Thus, the problem explores whether an crystal model, which
is fitted to agglomerate model simulations, can predict agglomerate
models results under new conditions. If it can, then the models are
indistinguishable.

Figure 7. Comparison of experimental galvanostatic discharge dV/dQ profile to agglomerate model & crystal model.

Table II. D L2 values from fitting agglomerate model (Agg) and crystal model (Xtal) to relaxation experiments at different SOC, and D L2 values
calculated by Eq. 2.

SOC
C/2 1C 2C

Equation 2 Agg Xtal Equation 2 Agg Xtal Equation 2 Agg Xtal

83.3% 0.97 6.97 3.94
80% 1.56 4.70 4.72
66.7% 0.88 5.82 2.27 1.68 6.17 3.68
60% 1.42 4.69 3.32
50% 0.77 7.03 1.64
40% 1.08 4.67 1.96
33.3% 0.4 6.16 0.87 0.55 5.33 2.06
20% 0.42 4.47 1.96
m 0.76 6.50 2.17 1.12 4.63 2.99 1.12 5.75 2.87
s 0.22 0.52 1.13 0.44 0.09 1.14 0.56 0.42 0.81
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The algorithm works the same as the prediction test of Fig. 6,
except it is now applied to mock data. For example, the agglomerate
model is fitted to low C-rate crystal model results, and then used to
predict performance at higher rates. The resulting error (red curve) is
shown in Fig. 9a. At high C-rates, the models are distinguishable as
evidenced by the growing error. The reverse is also shown, where
the green curve corresponds to applying the crystal model to
agglomerate model results. In both cases, the errors grow after 1C,
indicating that the 1C rate is the critical current rate in this system.
In other words, for current rates above 1C, the two models perform
differently.

In contrast to the NMC cathode, when Knehr22 et al. applied
model selection to multi-scale magnetite cathodes, crystal and
agglomerate models were distinguishable at all tested C-rates. This
indicates that the critical current rate is dependent on the intrinsic
properties of the materials studied. To explore further, mock
experiments were generated using the agglomerate model, with
smaller D .agg As shown in Fig. 9b, the critical current rate to
distinguish between two models is 0.1C. In an attempt to generalize
this problem, a dimensionless C-rate given by

C C
L

D
L 3rate rate

agg

agg
x¯ · · · [ ]=

where Lagg is the mean radius of the agglomerate and Lx is the mean
radius of the crystal, was introduced.

Figure 10a shows the prediction error with different materials
properties (applied on agglomerate “Mock Data”). The absolute
critical current rate is dependent on D ,agg Laggand L .x When using
dimensionless current rate (Crate¯ ), the errors start to increase near
C 10 ,rate

2¯ ~ - as shown in Fig. 10b. Due to the complexity of the
multiscale model, in which modeling details are chemistry specific,
we did not attempt further analyses to collapse the error to a single
curve. The black star in Fig. 10b shows the dimensionless current
rate of magnetite calculated using parameters from the study by
Knehr22 et al. The value of Crate¯ for C/200 was greater than 0.1 for
magnetite, explaining why the models were easily distinguishable
even at very low C-rates. This result indicates that the critical current
rate to distinguish between agglomerate and crystal model depends
on size of agglomerate (Lagg), the size of crystal (Lx) and the
diffusion coefficient on one of the two smaller scales (Dagg here).

Conclusions

Model selection approaches can be used to determine whether an
agglomerate-scale or crystal-scale model is more consistent with
experiment. Under some experimental conditions, the models are
indistinguishable. Model-guided design of experiments can be used
to most conclusively test competing hypotheses. At low C-rates,
crystal scale and agglomerate scale models are indistinguishable if
the diffusion coefficient is assumed to be an unknown fit to
experiment. For NMC111 material, agglomerate scale diffusion,
which is the diffusion of lithium across the secondary particles
was determined to be rate limiting. This conclusion is supported by
multiple algorithmic approaches that test consistency between
experiments and the prediction efficacy of the models.
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and Eq. 1 at 1C rate experiment.

Figure 9. (a) Prediction error as a function of current rate, using agglomerate model (green) and crystal model (red) to generate “Mock experiments,”
respectively. (b) Prediction error when using agglomerate model with different Dagg to generate “Mock experiment.”
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Figure 10. (a) Prediction Error as a function of absolute current rate, “Mock experiments” generated by agglomerate model with different material parameters.
(b) Prediction Error as a function of dimensionless current rate. For red “Mock experiments,” D 1.17 10 cm ,agg

10 2= ´ - L 5 magg m= and L 200 nm.x =
Each of other “Mock experiments” have one parameter with different value. For magnetite, only dimensionless current rate is shown here to compare with NMC
cathode in this study.
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