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A B S T R A C T

Composite solid electrolytes are attractive as they combine the high ionic conductivity of ceramic nanoparticles
and the excellent mechanical properties of polymer electrolytes. Vertically aligned ceramic nanoparticles in the
polymer matrix represent an ideal structure for maximizing ionic conductivity of composite electrolytes. The ice-
templating method was used to build rechargeable solid-state lithium metal batteries with a vertically aligned
ceramic/polymer composite electrolyte composed of high ionic conductivity Li1.5Al0.5Ge1.5(PO4)3 (LAGP) and
polyethylene oxide (PEO) polymer. The vertical LAGP walls provide continuous channels for fast ionic transport,
while the PEO matrix renders the composite electrolyte flexible. This solid-state composite electrolyte has a
conductivity of 1.67×10−4 S cm−1 at room temperature and 1.11×10−3 S cm−1 at 60 °C. LiFePO4 (LFP)/
vertically aligned LAGP- PEO/Li full cells were also developed with a high capacity retention of 93.3% after 300
cycles. This study demonstrates the successful application of vertically aligned ceramic/polymer composite
electrolytes for solid-state batteries with high performance.

1. Introduction

Lithium-based rechargeable batteries with high energy density play
an important role in many applications including electric vehicles, grid-
level energy storage, and communications [1]. Among various elec-
trode materials lithium metal anode is highly attractive as it offers ten
times the specific capacity (3860 mAh g−1) as that of the state-of-the-
art graphite anode (372 mAh g−1) [2,3], however, lithium metal tends
to form dendrites during the charging process. Flammable organic li-
quid electrolytes in Li-ion batteries fail to suppress dendrite formation,
leading batteries to short, causing fires and explosions [4–6]. To ad-
dress this challenge, thermally stable solid state electrolytes (SSEs) are
an attractive solution [7,8]. SSEs are also mechanically stronger, en-
abling them to suppress dendrite formation and significantly extend the
cycling stability and lifetime of rechargeable lithium batteries [9].

Increased interest in solid electrolytes has led to development of
ceramic electrolytes such as sulfides [10,11], perovskite Li3xLa2/3-xTiO3

[12], garnet-type Li5La3Z2O12 [13,14], Li1+xAlxTi2−x(PO4)3, and
Li1+xAlxGe2−x(PO4)3 [15–17] with high ionic conductivity of 10−4-

10−2 S cm−1 [18,19]. Their mechanical properties and interfacial im-
pedance with electrodes, however, are undesirable [20,21]. As a result,
large-scale manufacturing remains a challenge. In contrast to ceramic
electrolytes, polymer electrolytes, which combine polymers (e.g.
polyester, polyether) with lithium salts (e.g. LiClO4, LiAsF6, and LiPF6)
[22], are light, elastic, and compatible with state-of-the-art manu-
facturing processes [23]. Their ionic conductivities, however, are ty-
pically low, on the order of 10−6-10−5 S cm−1 at room temperature
[24–26].

Various strategies have been studied to fabricate polymer/ceramic
composite electrolytes to leverage the advantages of these two types of
solid electrolytes, including the electrospun ceramic electrolyte nano-
wires/polymer composition and the addition of ceramic electrolyte
nanoparticles into a polymer matrix [27–32]. Chen Zi Zhao et al. pro-
posed a flexible anion-immobilized ceramic–polymer composite elec-
trolyte with excellent specific capacities to inhibit lithium dendrites and
construct safe batteries [33]. Jiwoong Bae et al. designed a three-di-
mensional nanostructured garnet framework composite polymer elec-
trolyte with an improved conductivity of 8.5× 10−5 S cm−1 at 25 °C
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[34]. Analysis of tortuosity suggests vertically aligned and inter-
connected ceramic particles are the optimal configuration to create
pathways of high ionic conductivity, while the polymer phase provides
mechanical support and flexibility. This is supported by recent studies
on the ionic conductivity of a LLTO nanofiber/PEO electrolyte, in which
aligned LLTO fibers increased ionic conductivity from
1.78×10−7 S cm−1 to 6.05×10−5 S cm−1 at 30 °C [35]. Xiaokun
Zhang et al. filled an anodic aluminum oxides template with PEO
electrolyte and showed that the vertical interfaces with high con-
ductivity enhanced ionic conductivity of the whole composite by one
order of magnitude [36]. The present study demonstrates vertically
aligned LAGP nanoparticles imbedded in a PEO matrix with a ionic
conductivity of 1.67×10−4 S cm−1 at room temperature. The com-
posite electrolyte was then combined with a lithium anode and a
LiFePO4 cathode to form a full cell, which successfully ran for 300
cycles with only 6.7% loss in capacity.

2. Experimental description

2.1. Materials and chemicals

Poly(ethylene glycol) (PEG, Mw 400), Poly(ethylene glycol) di-
methyl ether (PEGDME, Mw 500), Poly(ethylene oxide) (PEO, Mw
600,000), acetonitrile (anhydrous, 99.8%), Poly(vinyl alcohol) (PVA,
Mw, 85,000–124,000), 1-Octanol, Lithium bis(tri-
fluoromethanesulfonyl)imide (LiTFSI), 2,4,7,9-tetramethyl-5-decyne-
4,7-diol ethoxylate were received from Sigma-Aldrich. LAGP
(200–500 nm) were purchased from MTI corporation. LiFePO4 particles
were provided by Hydro-Québec.

2.2. Electrolyte preparation

The starting suspension of ice templated PEO/LAGP electrolyte was
composed of 3.5 wt % PVA as binder, 60 wt % H2O, 2.5 wt % PEG (Mw,
400) as plasticizer, 4.9 wt % 2,4,7,9-tetramethyl-5-decyne-4,7-diol
ethoxylate as surface active agent, and 1wt % 1-Octanol as defoaming
agent. LAGP (26 wt %) was then added into the starting suspension and
stirred to achieve homogeneity. Using a doctor-blade, the suspension
was coated onto an Al2O3 substrate, which was then placed on the
thermoelectric plate of an ice-templating device at a cooling rate of
3 °C/min. After the suspension stayed at −20 °C for 10min, ice crystals
were removed by vacuum drying; the resulting porous LAGP film was
sintered at 800 °C for 5 h. The polymer solution of PEO
(Mw=600,000)/PEGDME (Mw∼ 500)/LiTFSI in acetonitrile was
added on the upper and lower surfaces of the LAGP sample. The weight
ratio of PEO : PEG=1:1, and the molar ratio of ethylene oxide (EO) to
LiTFSI= 8:1. The electrolyte samples were dried in a desiccator for
12 h. To remove trace amount of residual water, the electrolyte was
further heated at 80 °C for 24 h and allowed to rest for another 48 h
inside a glovebox before testing.

For the random PEO/LAGP electrolyte, 0.16 g PEO (Mw, 600,000)
and 0.16 g PEGDME-500 were dissolved in acetonitrile and stirred at
50 °C for 6 h. 0.13 g LiTFSI and 0.68 g LAGP were then added into the
PEO/PEG acetonitrile solution and stirred for another 4 h. The prepared
suspension was casted into a Teflon mold, and dried in a desiccator for
12 h. The process of removing acetonitrile and water was the same as
above.

2.3. Material characterization

SEM images were acquired by a Zeiss SIGMA VP scanning electron
microscope, with EHT at 3 kV during the measurement. The TGA
measurement was carried out by a TA Instrument Q500. All samples
were tested under O2 atmosphere with a heating rate of 10 °C/min. The
crystal structures of the synthesized materials were characterized by
PANalytical XPert 3 Powder XRD.

2.4. Battery fabrication

Symmetric stainless steel/electrolyte/stainless steel cells were as-
sembled for EIS measurements in the pouch cell configuration. Cyclic
voltammetry measurements were performed in lithium/SPE/stainless
steel cells in the coin cell configuration. The lithium metal anode used
in half-cell cycling was 250 μm in thickness and the LiFePO4 (LFP)
cathode was 2.53mg cm−2 (∼0.4 mAh cm−2). LFP cathode was as-
sembled by slurring the active material (80 wt% LFP, 10 wt% carbon
black, and 10wt% Polyvinylidene fluoride (PVDF)) in N-methyl-2-
pyrrolidone (NMP) and coating onto the aluminum substrate. The NMP
was evaporated at 110 °C and then the electrode was punched with a
diameter of 12mm. To achieve a good contact between LFP and elec-
trolyte, molten PEO/LiTFSI (EO/Li= 8:1, PEO Mw=10,000) at 150 °C
was quickly added onto the cathode surface prior to cell assembly. The
electrode was then heated at 110 °C for 4 h to let the molten solution
penetrate into pores in the LFP electrode. All procedures were carried
out in an argon-filled glovebox with O2 < 0.1 ppm and
H2O < 0.1 ppm.

2.5. Electrochemical characterizations

The EIS and cyclic voltammetry were measured by a Bio-logic VMP3
potentiostat at voltage amplitude of 10mV and a frequency range of
1MHz – 0.1 Hz. The cyclic voltammetry was measured between
−0.2 V and 4.5 V vs. Li/Li+ at 60 °C with a scan rate of 5mV/s.
Galvanostatic cycling was conducted on a standard eight-channel LAND
battery testing system (CT2001A). The voltage range was 2.5–3.8 V at
60 °C. The cell temperature was controlled by a gravity convection oven
(DHG-9015, MTI Corporation).

3. Results and discussion

Fig. 1 illustrates the process of preparing the ice-templated ceramic
nanoparticles/polymer composite electrolyte. The ice-templating pro-
cess has been used to form vertical structures for battery electrodes and
other functional materials in previous studies [37–40]. The starting
suspension of ice templated PEO/LAGP electrolyte was coated onto an
Al2O3 substrate, and cooled at a preset speed controlled by a thermo-
electric plate (Fig. S1). Freezing the suspension caused ice crystals to
grow from the bottom and eject the LAGP nanoparticles to the side,
forming vertical walls. The ice was then removed by vacuum drying,
and a porous structure with vertically aligned LAGP was obtained. The
porous film was further annealed at 800 °C for 5 h to densify the film
and form better connections among LAGP nanoparticles, which fa-
cilitated the transport of lithium ions. Finally, PEO-based polymer
electrolyte was drop cast onto the porous film to fill into all pores to
provide mechanical support and reduce interfacial resistance among
LAGP particles. To form a good contact at the lithium/electrolyte in-
terface, 10–20% more PEO-based polymer solution was added in the
PEO/LAGP electrolyte.

The samples at different stages were first characterized by a scan-
ning electron microscope (SEM) to verify the vertically alignment of the
structure. Fig. 1b and c indicate that well-defined vertically aligned
LAGP walls spaced 10–20 μm from each other are formed after ice
templating. After annealing at 800 °C, the binder and the plasticizer
were removed and LAGP nanoparticles were better sintered together.
The vertically aligned structure can still be observed in top view and
cross-sectional view (Fig. 1d and e). Then LiTFSI/PEO/PEG polymer is
filled inside by drop casting (Fig. 1f and g), where the weight ratio of
PEO: PEG is 1:1, and the molar ratio of ethylene oxide and LiTFSI is 8:1.
As a result, a composite solid electrolyte with vertically aligned ceramic
electrolyte filler is successfully prepared. Thermogravimetric analysis
(Fig. S2) shows that the resulting samples contain a 40 vol% of LAGP
nanoparticles. The volumetric percentage can vary from 10 to 60% by
changing the proportion of ceramic nanoparticles and water, the rate of
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cooling during the ice-templating process and the sintering tempera-
ture, which have been studied in the past [41–45], demonstrating the
flexibility of using ice templating to achieve desired compositions.

The electrochemical impedance spectroscopy (EIS) of stainless
steel/ice-templated LAGP/PEO composite electrolyte film/stainless
steel cells was measured at different temperatures to determine that the
vertically aligned structure could facilitate the transport of Li+ ions and
enhance the electrolyte's ionic conductivity. The typical sample size
was 1 cm2 and the thickness was between 100 and 200 μm. The room
temperature conductivity reaches 1.67×10−4 S cm−1 at 120Ω in
Fig. 2a. As the sintered LAGP pellet and the PEO-based polymer elec-
trolyte have ionic conductivities of 3.37×10−4 S cm−1 (Fig. S3) and
1.92×10−5 S cm−1 (Fig. S4), respectively, and LAGP occupies 40% in
volume, therefore, the theoretical conductivity of a perfectly vertically
aligned LAGP phase is 1.46× 10−4 S cm−1. This theoretical value is
consistent with the experimental value of the ice-templated LAGP/PEO
composite electrolyte.

The temperature-dependent EIS measurements shows that the ionic
conductivity of ice templated LAGP/PEO reaches 1.11× 10−3 S cm−1

at 60 °C. The corresponding activation energy (Ea) is 0.45 eV based on
the Arrhenius plots in Fig. 2c, while the activation energy of pure LAGP,
PEO/PEG/LiTFSI polymer, and PEO with randomly distributed LAGP
are 0.32 eV, 0.99 eV and 0.68 eV, respectively (Fig. 2c, Fig. S3). As Ea of
vertically aligned LAGP/PEO is closer to pure LAGP, this indicates that
Li+ ions mainly move through the LAGP phase.

The conductivity of ice-templated LAGP film soaked in a dilute or-
ganic liquid electrolyte (2.47×10−6 S cm−1), as the film itself is too
fragile to conduct measurements of intrinsic conductivity prior to
combining with polymer, was measured to determine whether LAGP
contributes most to ionic conduction. The measurements yielded a
conductivity of 1.22× 10−4 S cm−1 (Fig. S5). Based on the porosity
(60%) of the film, the corresponding conductivity of the LAGP bulk
phase is estimated to be 2.9× 10−4 S cm−1, which is consistent with
previous conductivity measurements of the LAGP pellet (Fig. S1). This

Fig. 1. The fabrication and characterization of ice-templated ceramic/polymer composite electrolyte. (a) The schematic of preparation process of the ice-templated
LAGP/PEO composite electrolyte. (b) Top view and (c) cross-sectional view of ice templated LAGP before sintering. (d) Top view and (e) cross-sectional view of ice
templated LAGP nanoparticles after sintering. (f) Top view and (g) cross-section view of the solid electrolyte after combining with PEO/PEG/LiTFSI.
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indicates that the high conductivity of the ice-templated composite can
be attributed primarily to LAGP phase.

Continuous pathway in vertically aligned LAGP nanoparticles lead
to higher ionic conductivity compared to other configurations, such as
random LAGP/PEO (conductivity= 2.7×10−5 S cm−1 at room tem-
perature (Fig. 2b, Fig. S6)), as the ion conduction is mainly impeded by
the polymer phase with low ionic conductivity. Compared to random
distribution LAGP/PEO, the interconnected particles in the vertically
aligned structure result in a conductivity increase of nearly 620%.

The conductivity of the ice-templated LAGP/PEO is similar with the
previous work on vertically aligned anodized aluminum oxide (AAO)/
polymer composite electrolyte, which has an ionic conductivity of
1.79×10−4 S cm−1 at room temperature [36]. Meanwhile, it is 2.8
times higher than the polymer electrolytes with well-aligned ceramic
nanowires, 30 times higher as that with randomly ceramic nanowires
[35].The ice-templated composite electrolyte also behaves better when
compared with randomly ceramic-particles/polymer electrolytes, such
as LLZTO/PEO and LLZO/PEO [46–48]. However, as the plasticizer
used are difference, the comparisons should be just used as references.

In addition to the relatively high ionic conductivity, ice-templated
LAGP/PEO composite solid electrolyte also has a Li-ion transference
number (t+) of 0.56, while the randomly dispersed LAGP/PEO elec-
trolyte has a lithium-ion transference numbers of 0.33 (Fig. S7 and
Table S1). This is better than previous work on polyacrylonitrile (PAN)
polymer electrolytes with well-aligned Li0.33La0.557TiO3 (LLTO) ceramic
nanowires (t+=0.42) and PAN polymer electrolytes with random
LLZO ceramic nanowires (t+=0.42) [35,49]. Therefore, the vertically
aligned structure also improves the portion of lithium ions in the ion
conduction.

The electrochemical stability of the LAGP/PEO composite electro-
lyte was further characterized by cyclic voltammetry at 60 °C. Lithium
metal foil and stainless steel were used as the counter electrode and the
working electrode, respectively. As shown in Fig. S8, the peak between
−0.2 V and 1 V vs. Li+/Li is attributed to lithium deposition and dis-
solution. In addition, no redox peak or obvious side reaction is observed
between 1 and 4.5 V vs Li+/Li. These results confirm that the composite

electrolyte is stable up to 4.5 V vs. Li+/Li and can be combined with
conventional cathode materials in lithium ion batteries.

The membrane also shows reasonable flexibility, determined
through measurements of ionic conductivity after bending to a specific
diameter a certain number times (Fig. 2d). When bent down to a dia-
meter of 5 cm for 50 times and 200 times, the resulting conductivities
remain at 83.2% and 80.4% respectively of the conductivity measured
before bending. Similar behavior is also observed when the sample was
bent down to a diameter of 2.5 cm. The conductivity is reduced to
75.8% after 50 cycles, but remains at 70.1% after 200 cycles. This
suggests the initial bending leads to small cracks of ceramic phase in-
side the composite electrolyte, which can readily release stress inside.
Once the cracks of ceramic phase are stabilized, the conductivity
reaches a steady state without further deterioration.

To demonstrate real applications in batteries, the electrochemical
performance of the ice-templated LAGP/PEO electrolyte was first tested
in the lithium/lithium cell at 60 °C. As shown in Fig. 3a, the Li - LAGP/
PEO - Li symmetric cell has a steady performance under long term of
cycling. At a current density of 0.1 mA cm−2 and 2-h cycling, the
average cell voltage maintains at 0.17 V for 200 h without any increase.
When the current density and deposited capacity further increase to
0.3 mA cm−2 and 0.3 mAh cm−2, respectively, the average over-
potential is steady at 0.39 V for another 200 h. The steady performance
in symmetric Li - Li cells supports the results of cyclic voltammetry,
showing that the prepared PEO/LAGP electrolyte can be cycled for long
time with lithium metal anode.

The LAGP/PEO composite electrolyte is further combined with li-
thium metal anode and LiFePO4 cathode to assemble full solid-state
cells. In the cycling test the cell has an initial specific capacity of 148.7
mAh g−1 at 0.2 C for the first cycle. As the current increases to 0.3 C,
the initial specific capacity is 148.7 mAh g−1 and remains at 138.8 mAh
g−1 after 300 cycles, corresponding to a capacity retention of 93.3%
(Fig. 3b). These results verify that the synthesized composite electrolyte
could successfully bear high voltage and long cycling, not only with
lithium metal but also with LFP cathode. The voltage hysteresis also
remains steady at ∼0.15 V from the 1st cycle to the 300th cycle

Fig. 2. (a) EIS of a SS/ice-templated LAGP/PEO
composite electrolytes/SS cell at different tempera-
tures. The frequency range is 1 MHz - 0.1 Hz. (b) EIS
of a stainless steel (SS)/randomly dispersed compo-
site electrolytes/SS cell at different temperatures.
The frequency range is 1 MHz - 0.1 Hz. (c) Arrhenius
plots of the ice-templated LAGP/PEO, randomly
dispersed LAGP/PEO and polymer electrolytes. (d)
Ionic conductivity after bending for different times.
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(Fig. 3c). The steady capacity and voltage hysteresis demonstrate the
robustness of the PEO/LAGP composite electrolyte for long term op-
eration in lithium batteries. Rate performance further shows the com-
posite electrolyte can function well up to at least 1 C. The specific ca-
pacities reach 150.6 mAh g−1, 139.0 mAh g−1 and 123.7 mAh g−1 at
rates of 0.3 C, 0.5 C, and 1 C, respectively (Fig. 3d). The same cell
subsequently shows steady performance for more than 400 cycles at
0.6 C. The capacity is seen to decrease at a rate of only 3.2% per 100
cycles. Further tests with higher mass loading (e.g. 0.9 mAh cm−2)
show that the overpotential is higher (Fig. S10) and thus that more
optimization (e.g. thinner electrolyte) is needed to achieve high per-
formance with high mass loading (e.g. 2 mAh cm−2, 2 mA cm−2). In
addition, further tests with lithium anode whose capacity is close to
that of the cathode are needed to evaluate performance in practical

cells.

4. Conclusions

In summary, this paper presents the study of rechargeable solid-
state batteries with vertically aligned ceramic/polymer composite
electrolyte, composed of ice-templated LAGP vertically aligned walls
and flexible PEO/PEG polymer. The aligned ceramic phase in the
composite electrolyte allows fast conduction of lithium ions. The con-
ductivity reaches 1.67× 10−4 S cm−1 at room temperature, 6.9 times
of that with LAGP randomly dispersed inside. The vertically aligned
LAGP nanoparticles/PEO cell shows a steady performance in both Li-Li
symmetric cell and Li/LiFePO4 cells. The capacity retention reaches
87.4% after 400 cycles at 0.6 C in full cells. These results demonstrate

Fig. 3. Electrochemical characterizations of the
LAGP/PEO composite electrolyte in Li/Li symmetric
cells and Li/LiFePO4 cells at 60 °C. (a) Voltage pro-
files and the zoom-in profile of a Li-LAGP/PEO-Li cell
at current densities of 0.1 and 0.3mA/cm2, respec-
tively. Each cycle includes 1-h charging and 1-h
discharging. (b) The cycling performance of Li-
LAGP/PEO-LiFePO4 full-cell between 2.5 V to 3.8 V
vs Li+/Li. (c) Galvanostatic charge and discharge
profiles of Li-LAGP/PEO-LiFePO4 at 0.2 C for the first
2 cycles and 0.3 C for the following 300 cycles be-
tween 2.5 V to 3.8 V vs Li+/Li. (d) The rate capacity
of a Li-LAGP/PEO-LiFePO4 full-cell cycled at 0.3, 0.6
and 1 C, followed by 400 cycles at 0.6 C.
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that ice templating is a viable approach in fabricating composite elec-
trolyte with high ionic conductivity for solid state rechargeable lithium
batteries.
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