

Seasonality of Respiratory Infections: From Laboratory to Model, Forecast, and Public Health Action

Wan Yang, PhD Assistant Professor of Epidemiology

Pennsylvania State University CIDD Seminar Sep 14, 2023

Outline

with a focus on influenza and COVID-19:

- **Epidemiology:** What is the seasonality of respiratory infections?
- Laboratory studies: How and why?
- Modeling: How to translate the mechanisms into models?
- **Forecasting:** Can seasonality models help forecast?
- Public Health Action: How all the above can help public health?

Acknowledgements

Collaborators

o <u>Flu studies</u>:

- Virginia Tech: Linsey Marr (phd work);
- Columbia University: Jeff Shaman, Max O'Donnell, Mat Cummings; Haokun Yuan, Sarah Kramer
- University of Hong Kong: Ben Cowling, Eric Lau
- Uganda Virus Research Institute: Barnabas Bakamutumaho, John Kayiwa, Nicholas Owor, Barbara Namagambo, Timothy Byaruhanga, Julius J. Lutwama

O <u>COVID studies</u>:

- Columbia: Jeff Shaman, Sasi Kandula, Haokun Yuan
- NYC DOHMH: Sharon Greene, Anne Fine, Jaimie Shaff, and many others

Funding:

- NIH (AI145883; AI135926; ES009089)
- NSF (DMS-2027369)
- CDC/CSTE (NU38OT00297; 75D30122C14289)
- NYC DOHMH

RESPIRATORY INFECTION SEASONALITY: EPIDEMIOLOGY

Seasonality of common respiratory infections

 Influenza tends to surge in the winter in temperate regions

- Many respiratory infections seem to follow similar seasonal pattern:
 - Temperate regions: cold winter-months
 - Tropical/subtropical: two peaks, or year round (less studied)

Seasonality of common respiratory infections

COVID-19/SARS-CoV-2: higher incidence, hospitalization, and mortality in the winter in temperate regions

Wiemken et al. 2023 Scientific Reports.

General mechanisms behind this seasonality

- Three main mechanisms (Moriyama et al. 2020 Annual Review of virology)
 - Host vulnerability
 - Host behavior
 - Viral stability (Environmental factors: temperature, humidity)

Flu seasonality v. humidity

- H: Low wintertime humidity drives flu epidemic (Hemmes et al. 1960)
 - Temperate regions: Flu epidemic coincides with low indoor humidity
 - Influenza virus survives better at lower humidity

Supports the seasonality in temperate regions, but not the (sub)tropics

(SELECT) LABORATORY STUDIES: ENVIRONMENTAL FACTORS, AND UNDERLYING MECHANISMS

Laboratory studies: Influenza

Study: Testing flu viability in mucus, under a wide range of humidity
 Including humidity near 100%

Result: Bimodal response

Laboratory studies: SARS-CoV-2/COVID-19

Estimated half-life of SARS-CoV-2 on an inert surface vs. Relative Humidity & Temperature (Morries et al. 2021 *eLife*)

Morries et al. 2021 eLife

Potential mechanisms

Why would a virus within a droplet be affected by ambient humidity?

The final droplet/aerosol size depends on ambient humidity

http://www.masterfile.com/stockphotography/image/700-00911645/Bird-Flu-Virus-Under-Magnifying-Glass

Potential mechanisms

Relative humidity v. droplet size (Köhler theory)

Yang et al. 2011 PLoS One

Potential mechanisms: Viability and Three RH Regimes

Slide credit: Linsey Marr; Yang et al., 2012, PLoS One; 2012 AEM

Potential mechanisms: Viability, Three RH Regimes, and Seasonality

MODEL: MODELING THE SEASONALITY USING CLIMATE/ENV. CONDITIONS

Temperate regions: A humidity-forced SIRS model for influenza (low humidity -> high transmission)

► The model:

 $\circ \beta(t)$ is modulated by humidity

$$\beta(t) = (R_{0min} + (R_{0max} - R_{0min})e^{-180q(t)})\gamma$$

- * q(t): daily specific humidity
- R0min/R0max: min/max bound of R0

Finding: The model is able to recreate the flu epidemic dynamics

What about the (sub)tropics?

Differences vs. temperate climates

- (Sub)tropics: Flu can occur year round
- Humidity: response is not monotonic
 - Recall: viability is high at both very low and very high humidity

Yang et al. 2012 Plos One; Yang et al. 2018a *Epidemics*; Yang et al. 2018b *IRV*; Yang et al. 2020 *PLoS Comput Biol*

A unified climate forced model (influenza)

• Model: $R_0(t) = [aq^2(t) + bq(t) + c][\frac{T_c}{T(t)}]^{T_{exp}}$

Bimodal response to humidity, q(t)

Include the impact of temperature, T(t)

Model testing and parameter estimation:

 Combined with an SIRS model, tested using flu incidence data in Hong Kong (subtropical) over ~20 years

Results:

Model captures the bimodal epidemics in HK

Yuan, Kramer et al. 2021 PLoS Comput Biol

A unified climate forced model (influenza)

► Model form: $R_0(t) = [aq^2(t) + bq(t) + c][\frac{T_c}{T(t)}]^{T_{exp}}$

Results:

- Model captures the bimodal epidemics in HK
- Covers both (sub)tropical and temperate climate conditions

Consistent with lab virus survival/transmission data

Can we use the model for SARS-CoV-2/COVID-19?

- Method: Scale the estimates to the annual average -> extract the seasonal trend
- Incorporate the seasonal trend into epi-models to account for infection seasonality

$$R_{0}(t) = [aq^{2}(t) + bq(t) + c][\frac{T_{c}}{T(t)}]^{T_{exp}}$$

$$b_{t} = R_{0}(t)/\overline{R_{0}(t)}$$

$$\begin{cases} \frac{dS}{dt} = \frac{R}{L_{t}} - \frac{b_{t}e_{t}m_{t}\beta_{t}IS}{N} - \varepsilon - v_{1,t} - v_{2,t} \\ \frac{dE}{dt} = \frac{b_{t}e_{t}m_{t}\beta_{t}IS}{N} - \frac{E}{Z_{t}} + \varepsilon \\ \frac{dI}{dt} = \frac{E}{Z_{t}} - \frac{I}{D_{t}} \\ \frac{dR}{dt} = \frac{I}{D_{t}} - \frac{R}{L_{t}} + v_{1,t} + v_{2,t} \end{cases}$$

Example Seasonal trend for India vs. other factors (Yang & Shaman 2022 RSIF)

Example: Modeling COVID-19 in India (monsoon climate)

 Study: Combining key transmission determinants and data to model the COVID-19 pandemic in Indian (1st wave and the Delta wave)

Model validation showed the system is able to capture the underlying dynamics

R_t fluctuated over time vs. Transmissibility (R_{TX}) ↗ following rise of Delta

By accounting for <u>seasonality</u>, NPIs etc., we can *estimate variant-specific properties* Applicable to diverse climate conditions and variants (Alpha in UK: NH temperate; Beta/Omicron in S Africa: SH temperate; Gamma in Brazil: tropical; Delta in India: monsoon)

Yang & Shaman: 2021 Nature Comm; 2022 RSIF; 2022 eLife

FORECAST: USING THE SEASONALITY MODELS TO IMPROVE FORECAST ACCURACY

Overview of our forecast system

- 3 components: Model + Data + Data Assimilation
- 2 stages: Training + Forecast

Example forecast

COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH

Influenza forecast

- Study: Test the forecast accuracy using different settings of humidity forcing vs no humidity included in the model
- Result: The inclusion of humidity improves accuracy

The humidity-forced SIRS model has been used in flu real-time forecast since 2012 Shaman et al.: http://cpid.iri.columbia.edu

Shaman et al. 2017 PLoSCB

COVID-19 forecast

Study: Test multiple strategies to improve long-lead COVID-19 forecast
 Study period: July 2020 – Sep 2022 (multiple waves)

- 10 states, one each from the 10 HHS regions -> different seasonality
- Result: Including seasonality -> high accuracy in general, more so during the respiratory virus season

Yang & Shaman 2023 PLoS CB

PUBLIC HEALTH ACTION: HOW WOULD BETTER UNDERSTAND SEASONALITY HELP?

How would this help public health?

- Use the seasonal timing/infection risk to guild vaccination campaign, public health messaging
- More accurate epidemiological parameter estimation -> better gauge risk
- More accurate forecast -> better aid public health preparation
- Example: Modeling and projection of COVID-19 in NYC
 - Two versions of model-inference systems:
 - With vs. w/o seasonality
 - The system with seasonality predicted the 2nd wave (Fall/winter 2020),
 6 months in advance

Fig: Model projection vs observations 6 months later Red line: projection made on 6/30/2020; surrounding area: projection interquartile range; blue dots: observed (Yang et al. 2021 RSIF)

Yang et al. 2020 Lancet ID; 2021 RSIF; 2022 Sci Adv

MAILMAN SCHOOL

of PUBLIC HEALTH

COLUMBIA

SUMMARY

Summary

- Infection seasonality plays a key role in epidemic dynamics
- Climate/environmental conditions (humidity and temperature) can modulate infection seasonality
 - This interaction is causal, medicated by several mechanisms
- Incorporating the response to environmental factors can improve the accuracy of infectious disease models and infectious disease forecasts
- The model estimates and forecasts can be used to guild public health action
- "Knowledge is power"

