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Outline

with a focus on influenza and COVID-19:

» Epidemiology: What is the seasonality of respiratory infections?
» Laboratory studies: How and why?

» Modeling: How to translate the mechanisms into models?

» Forecasting: Can seasonality models help forecast?

» Public Health Action: How all the above can help public health?

@2 COLUMBIA | MAILMAN
UNIVERSITY | of PUBLI




Acknowledgements

» Collaborators
o Flu studies:
+ Virginia Tech: Linsey Marr (phd work);
« Columbia University: Jeff Shaman, Max O’Donnell, Mat Cummings; Haokun
Yuan, Sarah Kramer
+ University of Hong Kong: Ben Cowling, Eric Lau
« Uganda Virus Research Institute: Barnabas Bakamutumaho, John Kayiwa,
Nicholas Owor, Barbara Namagambo, Timothy Byaruhanga, Julius J. Lutwama
o COVID studies:
« Columbia: Jeff Shaman, Sasi Kandula, Haokun Yuan
<« NYC DOHMH: Sharon Greene, Anne Fine, Jaimie Shaff, and many others

» Funding:
o NIH (Al145883; A1135926; ES009089)
o NSF (DMS-2027369)

o CDC/CSTE (NU380T00297; 75D30122C14289)
o NYC DOHMH

& COLUMBIA | M2 %‘
UNIVERSITY | of PUB




RESPIRATORY INFECTION
SEASONALITY: EPIDEMIOLOGY




Seasonality of common respiratory infections
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» Many respiratory infections
seem to follow similar
seasonal pattern:
o Temperate regions:
cold winter-months
o Tropical/subtropical:
two peaks, or year
round (less studied)
Month of the year Li et al. 2020 JID
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Seasonality of common respiratory infections

» COVID-19/SARS-CoV-2: higher incidence, hospitalization, and mortality in the
winter in temperate regions
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General mechanisms behind this seasonality

» Three main mechanisms (Moriyama et al. 2020 Annual Review of virology)
o Host vulnerability

o Host behavior

o Viral stability (Environmental factors: temperature, humidity)

» Flu seasonality v. humidity
o H: Low wintertime humidity drives flu epidemic (Hemmes et al. 1960)
« Temperate regions: Flu epidemic coincides with low indoor humidity

« Influenza virus survives better at lower humidity

o Supports the seasonality in temperate regions, but not the (sub)tropics
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(SELECT) LABORATORY STUDIES:
ENVIRONMENTAL FACTORS, AND
UNDERLYING MECHANISMS




Laboratory studies: Influenza
» Study: Testing flu viability in mucus, under a wide range of humidity
o Including humidity near 100%
» Result: Bimodal response
high viability reduced high viability

viability,
varies with RH

Yang et al. PLoS One 2012
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Laboratory studies: SARS-CoV-2/COVID-19

» Estimated half-life of SARS-CoV-2 on an inert surface vs. Relative
Humidity & Temperature (Morries et al. 2021 elife)

2 C
1007 = 27c efflorescence |* * %"
22°C o
B 10C /
L

colder

half-life (hours)
E B EEEEERN

4.0 6'0 8.0 evaporat.ion phase belov:/ ERH ERH above'ERH
relative humidity (%)

Morries et al. 2021 eLife

& COLUMBIA | MAILMAN 00
UNIVERSITY of PUB A




Potential mechanisms

» Why would a virus within a droplet be affected by ambient humidity?

Relative humidity Kohler theory

P D. |Equilibrium‘ D,

= exp(—

psat pOO :pd ps‘”

The final droplet/aerosol size depends on
ambient humidity

http://www.masterfile.com/stock-
photography/image/700-00911645/Bird-
Flu-Virus-Under-Magnifying-Glass
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Potential mechanisms

» Relative humidity v. droplet size (K6hler theory)
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Yang et al. 2011 PLoS One
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Potential mechanisms: Viability and Three RH Regimes

Efflorescence occurs Minimal
->solutes cannot evaporation ->
harm virus -> physiological

viability is conditions are
maintained maintained in
droplet -> viability is
maintained
solutes in
C?;;z:ﬁ;e e o8 Elevated solute
concentrations may
harm virus

Slide credit: Linsey Marr; Yang et al., 2012, PLoS One; 2012 AEM
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Potential mechanisms:
Viability, Three RH Regimes, and Seasonality

high viability reduced high viability
viability,
varies with RH

* * Rainy

season in
the tropics

Yang et al. PLoS One 2012
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MODEL:
MODELING THE SEASONALITY
USING CLIMATE/ENV. CONDITIONS




Temperate regions: A humidity-forced SIRS model for
influenza (low humidity -> high transmission)

» The model:

o B(t) is modulated by humidity
B (&) = (Romin+(Romax — Romin)e ™ 1801®)y

« g(t): daily specific humidity
+» ROmin/ROmax: min/max bound of RO

» Finding: The model is able to recreate the flu epidemic dynamics

Shaman et al. 2010. PLoS Biol.
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What about the (sub)tropics?

Flu in Hong Kong (stibtropical)

» Differences vs. temperate climates
o (Sub)tropics: Flu can occur year round

Flu cases per 100,000
9 | 20|00 | 40|00 | 60|00 |

o Humidity: response is not monotonic
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« Recall: viability is high at both very low
and very high humidity

Flu in Uganda (tropic)
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Yang et al. 2018a Epidemics;
o Temperature: Also play a key role Yang et al. 2018b IRV;

Yang et al. 2020 PLoS Comput Biol
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A unified climate forced model (influenza)
T

» Model:  R,(t) = [aq?(t) +bq(t) + C][T(i)]Tex”
Bimodal response o |pclyde the impact
humidity, q(t) of temperature, T(t)

» Model testing and parameter estimation:

o Combined with an SIRS model, tested using flu incidence data in Hong
Kong (subtropical) over ~20 years

» Results:
o Model captures the bimodal epidemics in HK
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Yuan, Kramer et al. 2021 PLoS Comput Biol
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A unified climate forced model (influenza)

» Model form:  Ro(t) = [aq*(t) +bq(t) + C][
» Results:
o Model captures the bimodal epidemics in HK

o Covers both (sub)tropical and temperate climate conditions
o Consistent with lab virus survival/transmission data
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(A) Seasonal RO vs. Humidity & Temperature (B) Estimate Rt vs Lab data on viral survival
A
“ S ) :
30 e ° 0, # |Sampling
IS Time
— A
< 607 . ° 1;12hhr
> o A 12 hr
2 Modelfit (Rsqured
s T(CC) 2301 — o 045 ey 3)72 = thr
o 25 = A—7 3 1/2 hr: 0.46 IS =0,022)
i I - 1hr:0.47 (P 0.020)
3 1.2 16 20
‘g 20 Rt
% 20 (C) Estimate Rt vs Lab data on transmission
L 10 ~ 100 .
*
c 757 .
.g - Fitted
15 @ 50
f r
- )
. S odel-fit (Rsqured) * Data
[= 04 e—o— 0.67 (p <0.001)
5 10 15 20 ' ' ' '
0.8 1.2 1.6 2.0
Specific humidity (g/kg) Rt Yuan, Kramer et al. 2021

PLoS Comput Biol

& COLUMBIA | MAILMAN 00
UNIVERSITY 0 'l:' A




Can we use the model for SARS-CoV-2/COVID-19?

» Method: Scale the estimates to the annual Ro(t) = [ag?(t) +bq(t) + ][ 2 [Texo

T(t)

average -> extract the seasonal trend _

by = Ry(£)/Ry(1)
» Incorporate the seasonal trend into epi-models S R bemgBls
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Example Seasonal trend for India vs. other factors
(Yang & Shaman 2022 RSIF)
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Example: Modeling COVID-19 in India (monsoon climate)

» Study: Combining key transmission determinants and data to model the COVID-19
pandemic in Indian (1%t wave and the Delta wave)

Model validation
showed the system is
able to capture the
underlying dynamics

R; fluctuated over time
VS.

Transmissibility (Ryy) /1

following rise of Delta

Yang & Shaman: 2021 Nature Comm; 2022 RSIF; 2022 eLife
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FORECAST:
USING THE SEASONALITY MODELS TO
IMPROVE FORECAST ACCURACY




Overview of our forecast system

» 3 components: Model + Data + Data Assimilation

» 2 stages: Training + Forecast

/Epi-model \ - Stage1: Training

lﬁgﬁ ﬁ;\"—S—I_M

allﬁﬁ;aﬁa"z s I Optimize the model;
AR get initial conditions
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Surveillance dat

Data Assimilation

/

« Stage 2: Forecast
Predict epi-unfolding
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Example forecast

New York, NY 07-08 season; Week 48
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Example retrospective forecast. The forecast is increasingly accurate

as more observations are assimilated.
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Influenza forecast

» Study: Test the forecast accuracy using different settings of humidity
forcing vs no humidity included in the model

» Result: The inclusion of humidity improves accuracy

Average across all models and filters
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Fig 1. Percentage of forecasts accurate for
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The humidity-forced SIRS model has been

used in flu real-time forecast since 2012
Shaman et al.: http://cpid.iri.columbia.edu

Shaman et al. 2017 PLoSCB



COVID-19 forecast

» Study: Test multiple strategies to improve long-lead COVID-19 forecast
o Study period: July 2020 — Sep 2022 (multiple waves)
o 10 states, one each from the 10 HHS regions -> different seasonality

» Result: Including seasonality -> high accuracy in general, more so during

the respiratory virus season
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(C) Example forecasts comparing seasonality settings
(New York; Cases; deflation = .9; new variants; 2020-07-05)

No seasonality

Estimate/Forecast
(median, IQR, 80% Cl)

oS

@010\

\0@\2\ PR

@0'10\

9000

6000

& 300
P 4

©
o
20

oS

0 A 00
@ o

@020\

Fixed seasonality

o
L

A ©
@0\\0\\16 »\"L\Q
Q/Q rL()

06\@\ 0%\\6

@010\ @010\

Yang & Shaman 2023 PLoS CB



PUBLIC HEALTH ACTION:
HOW WOULD BETTER UNDERSTAND
SEASONALITY HELP?




How would this help public health?

» Use the seasonal timing/infection risk to guild vaccination campaign, public
health messaging

» More accurate epidemiological parameter estimation -> better gauge risk
» More accurate forecast -> better aid public health preparation

» Example: Modeling and projection of COVID-19 in NYC

o Two versions of model-inference systems: Cases

+ With vs. w/o seasonality
40000

o The system with seasonality predicted
the 2nd wave (Fall/winter 2020),
6 months in advance
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Fig: Model projection vs observations 6 months later
Red line: projection made on 6/30/2020;

Yang et al. 2020 Lancet ID; 2021 RSIF; 2022 Sci Adv surroundl.ng area: projection mterquartlle range;
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SUMMARY
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Summary

» Infection seasonality plays a key role in epidemic dynamics

» Climate/environmental conditions (humidity and temperature) can
modulate infection seasonality

o This interaction is causal, medicated by several mechanisms

» Incorporating the response to environmental factors can improve the
accuracy of infectious disease models and infectious disease forecasts

» The model estimates and forecasts can be used to guild public health
action

» “Knowledge is power”

thank you!
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