Comparing Farmer Perceived Soil Quality And Measured Soil Quality In Tanzania: Do They Align?

Leigh Anderson Mary Kay Gugerty Allison Kelly

UNIVERSITY of WASHINGTON

Outline

- Motivation: Agricultural Yield Gaps
- Theory: Identifying Causes of Yield Gaps
- Methods, Data, and Findings:
 - Comparing conceptions of "Soil Quality"
 - Comparison of Measured and Perceived Soil Quality
- Conclusion

Defining Agricultural Yield Gaps

- "Yield Gaps" discrepancies between potential agricultural yields and actual agricultural yields.
- Estimated mixed-maize small farm production in Sub Saharan Africa:
 - Potential yields (Theoretical):
 - Actual yields: 1 3 tons/ha
- Tanzanian maize production:
 - Potential yields (90th Percentile):
 - Actual median farmer yields:

2 tons/ha 0.66 tons/ha

5 -10 tons/ha

Addressing Agricultural Yield Gaps

- Programs encourage: fertilizer use, soil conservation, composting, crop cover use, and other techniques.
- Lower than expected adoption rates.
- Potential explanations for variation in adoption: farmer education level, age, farm size, land tenure, and many others.
- No universal consensus has emerged.

Identifying Causes of Yield Gaps

Source: Gibbon et al. 2007. Beyond Drought Tolerant Maize: Study of Additional Priorities in Maize Report to Generation Challenge Program.

Do Soil Quality Assessments Align?

- Adoption of soil improvement techniques is lower than expected.
- Experts believe low soil quality drives yield gaps.
- Adoption of new techniques requires awareness of a problem.
- Do farmer and soil scientist assessments of soil quality align?

Comparing Conceptions of "Soil Quality"

Soil Science Phosphorous Nitrogen Potassium Sulfur Porosity Total carbon Electrical conductivity Soil temperature Effective root depth Mechanical resistance Soil Aggregates **Bulk density** Clay content Soil pH Source: Anderson et al., 2013.

Local Knowledge Slope Drainage Plant color Shared Soil Depth Organic matter Soil workability Soil macro fauna Stoniness / Soil texture (Earthworms) Crop yield/Crop vigor Water content/ Crop health /Crop growth Water retention/ rate/Plant development Moisture Manure Requirements Soil color Indicator weeds / Spontaneous vegetation/ Presence of local plants Fertility Erosivity Acidity

7/14

Measured Soil Quality

Soil Qualities	Soil Characteristics (HWSD)		
Nutrient availability	Soil texture, soil organic carbon, soil pH, total exchangeable bases		
Nutrient retention capacity	Soil Organic carbon, Soil texture, base saturation, cation exchange capacity of soil and of clay fraction		
Rooting conditions	Soil textures, bulk density, coarse fragments, vertic soil properties and soil phases affecting root penetration and soil depth and soil volume		
Oxygen availability	Soil drainage and soil phases affecting soil drainage		
Excess salts.	Soil salinity, soil sodicity and soil phases influencing salt conditions		
Toxicity	Calcium carbonate and gypsum		
Workability (constraining field management)	Soil texture, effective soil depth/volume, and soil phases constraining soil management (soil depth, rock outcrop, stoniness, gravel/concretions and hardpans)		
_			

Source: Fisher et al., 2008.

Soil Quality Perceptions

- Tanzania National Panel Survey Integrated Survey on Agriculture (TZNPS)
 - Nationally representative
 - 3,280 households
 - October 2008 and October 2009

Soil Quality Questions:

- How do you know the quality of your soil?
 - Response options: "Scientifically tested" (0.59%), "Own experience" (97.95%), and "Other" (1.46%)
- What is the soil quality of this plot?
 - Response options: "Good" (50.8%), "Average" (44.26%) or "Bad" (4.95%)

Linking Soil Quality Assessments

Tanzania Nutrient Availability

Data Sources: Fisher et al. 2007; GADM 2011; ILRI 2011.

Comparisons of Perceptions and Measurements

Good / No Constraint

Average / Moderate Constraint

Bad/Severe Constraint

0% 20% 40% 60% 80% Perception Measurement

In general, soil quality perceptions are higher than measurements.

Cross Tabulation of Soil Perception and Measurement (Nutrient Availability)

Measurement	No or Slight	Moderate Constraint	Severe Constraint	Total
Perception	Constraint			
Good	536	1,065	247	1,848
Row %	29.00	57.63	13.37	100.00
Average	563	918	129	1,610
Row %	34.97	57.02	8.01	100.00
Bad	41	110	29	180
Row %	22.78	61.11	16.11	100.00
Total	1,140	2,093	405	3,638
	31.34	57.53	11.13	100.00

Pearson chi2(4) = 41.0382 Pr < 0.000

Strong mismatch between measurement and perception.

Mismatch between measurement and perception.

Conclusion and Continued Research

- In general soil quality perceptions are than measurements.
- In our sample, 39.61 percent of plots have perceptions higher than measured assessments and 19.63 percent have perceptions lower than measurements.
- Low adoption of soil improving activities could be linked to a mismatch in soil quality assessments.
- Are mismatches driven by different comparatives in use by farmers and researchers?

Thank You!

- Thank you to the IPWSD3 planning committee.
- Thank you to the Agricultural Development group at the Bill and Melinda Gates Foundation for their generous support of this research.
- Questions or comments?