The U.S. Bioefuel Mandate and World Food Prices: An Econometric Analysis of the Demand and Supply of Calories

Michael Roberts¹ Wolfram Schlenker²

¹North Carolina State University

²Columbia University and NBER

Columbia - February 15, 2010

(日) (日) (日) (日) (日) (日) (日)

Motivation	Background	Methodology	Data 0000000	Results	Conclusions ○
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2 Agriculture and Ethanol

3 Methodology

5 Empirical Results

Motivation	Background	Methodology	Data 0000000	Results	Conclusions O
Outline					

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- 2 Agriculture and Ethanol
- 3 Methodology

4 Data

- 5 Empirical Results
- 6 Conclusions

Motivation ●○○○	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Backgro	ound - Wo	rld Food P	rices		

- Recent threefold increase in price of maize
 - Between Summer 2006 and Summer 2008
 - Prices for wheat, soybeans, and rice increased as well

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Food is basic commodity
 Rising hunger and malnutrition

Potential for increased conflict

Motivation ●○○○	Background	Methodology	Data 0000000	Results	Conclusions ○
Setting the Stage					
Backgro	und - Wo	rld Food P	rices		

- Recent threefold increase in price of maize
 - Between Summer 2006 and Summer 2008
 - Prices for wheat, soybeans, and rice increased as well
- Food is basic commodity
 - Rising hunger and malnutrition
 - New York Times: consumers in developing countries, not U.S. cut back on food consumption
 - Potential for increased conflict
 - Miguel et el.(2004): weather induced income shocks lead to civil conflict in Africa

- Most African countries are net food importers.
- Increase in price implies reduction in real income

Motivation ●○○○	Background	Methodology	Data 0000000	Results	Conclusions o
Setting the Stage					
			_		

Background - World Food Prices

Across Globe, Empty Bellies Bring Rising Anger

In a garbage dump in Port-au-Prince, people recently scavenged for food. More Photos >

By MARC LACEY Published: April 18, 2008

Motivation ●○○○	Background	Methodology	Data 0000000	Results	Conclusions ○			
Setting the Stage								
Background - World Food Prices								

- Recent threefold increase in price of maize
 - Between Summer 2006 and Summer 2008
 - Prices for wheat, soybeans, and rice increased as well
- Food is basic commodity
 - Rising hunger and malnutrition
 - New York Times: consumers in developing countries, not U.S. cut back on food consumption
 - Potential for increased conflict
 - Miguel et el.(2004): weather induced income shocks lead to civil conflict in Africa

(日) (日) (日) (日) (日) (日) (日)

- Most African countries are net food importers
- Increase in price implies reduction in real income

Motivation ○●○○	Background	Methodology	Data	Results	Conclusions o
Setting the Stage					
Backgro	und - Wo	rld Food P	rices		

• Possible explanations for threefold price increase

- Detrimental weather
 - Prolonged drought in Australia
- Rising oil price
- Increased demand for meat (China and India)
 - China: 33fold increase in per-capita meat consumption (1961-2006)
 - Meat requires 5-10 times the area per calorie
 - 20% reduction in U.S. meat consumption equivalent to switching from Camry to Prius

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• U.S. ethanol subsidies / mandate

Motivation ○●○○	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Backgro	und - Wo	rld Food P	rices		

• Possible explanations for threefold price increase

- Detrimental weather
 - Prolonged drought in Australia
- Rising oil price
- Increased demand for meat (China and India)
 - China: 33fold increase in per-capita meat consumption (1961-2006)
 - Meat requires 5-10 times the area per calorie
 - 20% reduction in U.S. meat consumption equivalent to switching from Camry to Prius

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• U.S. ethanol subsidies / mandate

Motivation ○●○○	Background	Methodology	Data 0000000	Results	$_{\odot}$ Conclusions
Setting the Stage					
Backgro	und - Woi	rld Food P	rices		

- Possible explanations for threefold price increase
 - Detrimental weather
 - Prolonged drought in Australia
 - Rising oil price
 - Increased demand for meat (China and India)
 - China: 33fold increase in per-capita meat consumption (1961-2006)
 - Meat requires 5-10 times the area per calorie
 - 20% reduction in U.S. meat consumption equivalent to switching from Camry to Prius

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

U.S. ethanol subsidies / mandate

Motivation ○●○○	Background	Methodology	Data 0000000	Results	\circ
Setting the Stage					
Backgro	und - Wor	ld Food P	rices		

- Possible explanations for threefold price increase
 - Detrimental weather
 - Prolonged drought in Australia
 - Rising oil price
 - Increased demand for meat (China and India)
 - China: 33fold increase in per-capita meat consumption (1961-2006)
 - Meat requires 5-10 times the area per calorie
 - 20% reduction in U.S. meat consumption equivalent to switching from Camry to Prius

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• U.S. ethanol subsidies / mandate

Motivation ○○●○	Background	Methodology	Data	Results	Conclusions o
Setting the Stage					
Backgro	und - Eth	anol Mand	ate		

- Recent Report (February 4th)
 - Net CO₂ reduction
 - Advocates increased use of biofuels

• Driving forces behind analysis

- Increased yield per acre
- Little area expansion required

• Searchinger et al.

- Oritical of analysis
- Land expansion results in big CO₂ increase

・ コット (雪) (小田) (コット 日)

Motivation ○○●○	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Backgro	und - Eth	anol Mand	ate		

- Recent Report (February 4th)
 - Net CO₂ reduction
 - Advocates increased use of biofuels
- Driving forces behind analysis
 - Increased yield per acre
 - Little area expansion required
- Searchinger et al.
 - Critical of analysis
 - Land expansion results in big CO₂ increase

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation ○○●○	Background	Methodology	Data 0000000	Results	\circ
Setting the Stage					
Backgro	und - Eth	anol Mand	ate		

- Recent Report (February 4th)
 - Net CO₂ reduction
 - Advocates increased use of biofuels
- Driving forces behind analysis
 - Increased yield per acre
 - Little area expansion required

• Searchinger et al.

- Critical of analysis
- Land expansion results in big CO₂ increase

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation ○○●○	Background	Methodology	Data 0000000	Results	\circ
Setting the Stage					
Backgro	und - Eth	anol Mand	ate		

- Recent Report (February 4th)
 - Net CO₂ reduction
 - Advocates increased use of biofuels
- Driving forces behind analysis
 - Increased yield per acre
 - Little area expansion required
- Searchinger et al.
 - Critical of analysis
 - Land expansion results in big CO₂ increase

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation ○○○●	Background	Methodology	Data 0000000	Results	Conclusions ○
Setting the Stage					
Goal of t	his Paper				

• Estimate supply / demand for calories

- Calories: aggregate maize, wheat, rice, and soybeans
- Instrument: Yield Shock (deviations from trend)
- Identification of Demand
 - Current yield shock shifts supply-curve.
 - Used since RG. Wright introduced IV (1928)
- Identification of Supply
 - Past yield shocks shift expected price.
 - Instrument futures price in supply equation
 - New extension: Previous estimates find inelastic supply, years simulations use positive elasticity.

• Assess U.S. ethanol mandate

Motivation ○○○●	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Goal of	this Pape	r			

Motivation ○○○●	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Goal of	this Pape	r			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation ○○○●	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Goal of	this Pape	r			

Motivation ○○○●	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Goal of	this Pape	r			

Motivation ○○○●	Background	Methodology	Data	Results	Conclusions o
Setting the Stage					
Goal of	this Pape	r			

Motivation ○○○●	Background	Methodology	Data 0000000	Results	Conclusions ○
Setting the Stage					
Goal of t	his Papeı	•			

• Estimate supply / demand for calories

- Calories: aggregate maize, wheat, rice, and soybeans
- Instrument: Yield Shock (deviations from trend)
- Identification of Demand
 - Current yield shock shifts supply-curve
 - Used since P.G. Wright introduced IV (1928)
- Identification of Supply
 - Past yield shocks shift expected price
 - Instrument futures price in supply equation
 - New extension: Previous estimates find inelastic supply, yet simulations use positive elasticity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Assess U.S. ethanol mandate

Motivation ○○○●	Background	Methodology	Data 0000000	Results	Conclusions ○
Setting the Stage					
Goal of t	his Pape	r			

- Estimate supply / demand for calories
 - Calories: aggregate maize, wheat, rice, and soybeans
 - Instrument: Yield Shock (deviations from trend)
 - Identification of Demand
 - Current yield shock shifts supply-curve
 - Used since P.G. Wright introduced IV (1928)
 - Identification of Supply
 - Past yield shocks shift expected price
 - Instrument futures price in supply equation
 - New extension: Previous estimates find inelastic supply, yet simulations use positive elasticity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Assess U.S. ethanol mandate

Motivation ○○○●	Background	Methodology	Data 0000000	Results	Conclusions ○
Setting the Stage					
Goal of t	his Pape	r			

- Estimate supply / demand for calories
 - Calories: aggregate maize, wheat, rice, and soybeans
 - Instrument: Yield Shock (deviations from trend)
 - Identification of Demand
 - Current yield shock shifts supply-curve
 - Used since P.G. Wright introduced IV (1928)
 - Identification of Supply
 - Past yield shocks shift expected price
 - Instrument futures price in supply equation
 - New extension: Previous estimates find inelastic supply, yet simulations use positive elasticity.

Motivation ○○○●	Background	Methodology	Data 0000000	Results	Conclusions ○
Setting the Stage					
Goal of t	his Pape	r			

- Estimate supply / demand for calories
 - Calories: aggregate maize, wheat, rice, and soybeans
 - Instrument: Yield Shock (deviations from trend)
 - Identification of Demand
 - Current yield shock shifts supply-curve
 - Used since P.G. Wright introduced IV (1928)
 - Identification of Supply
 - Past yield shocks shift expected price
 - Instrument futures price in supply equation
 - New extension: Previous estimates find inelastic supply, yet simulations use positive elasticity.

(日) (日) (日) (日) (日) (日) (日)

Assess U.S. ethanol mandate

Motivation ○○○●	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Goal of	this Pape	r			

Motivation ○○○●	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Goal of	this Pape	r			

Motivation ○○○●	Background	Methodology	Data	Results	Conclusions ○
Setting the Stage					
Goal of	this Pape	r			

Motivation	Background	Methodology	Data 0000000	Results	Conclusions ○
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 2 Agriculture and Ethanol
 - 3 Methodology

4 Data

- 5 Empirical Results
- 6 Conclusions

Motivation	Background ●○○○○	Methodology	Data 0000000	Results	Conclusions ○
Background: Agri	cultural Production				

World Caloric Production and Prices

Commodity crops form basis of food chain

- Cassman (1999) attributes two thirds of caloric production to maize, wheat, and rice
- Adding in soybeans brings ratio to 75%
- Conversion of production quantities into calories
 Williamson and Williamson (1942)

Green revolution

Caloric Production (4 commodities): +249% (1961-2007).

・ コット (雪) (小田) (コット 日)

- Growth on intensive margin (output per area)
- Limited expansion in area

Motivation	Background ●○○○○	Methodology	Data 0000000	Results	Conclusions ○
Background: Age	ricultural Production				

World Caloric Production and Prices

- Commodity crops form basis of food chain
 - Cassman (1999) attributes two thirds of caloric production to maize, wheat, and rice
 - Adding in soybeans brings ratio to 75%
- Conversion of production quantities into calories
 - Williamson and Williamson (1942)
- Green revolution
 - Caloric Production (4 commodities): +249% (1961-2007).

・ コット (雪) (小田) (コット 日)

- Growth on intensive margin (output per area)
- Limited expansion in area

Motivation	Background ●○○○○	Methodology	Data 0000000	Results	Conclusions O
Background: Agr	ricultural Production				

World Caloric Production and Prices

- Commodity crops form basis of food chain
 - Cassman (1999) attributes two thirds of caloric production to maize, wheat, and rice
 - Adding in soybeans brings ratio to 75%
- Conversion of production quantities into calories
 - Williamson and Williamson (1942)
- Green revolution
 - Caloric Production (4 commodities): +249% (1961-2007).

(日) (日) (日) (日) (日) (日) (日)

- Growth on intensive margin (output per area)
- Limited expansion in area
 - Increase by 40%

Motivation	Background	Methodology	Data	Results	Conclusions
	00000				

World Caloric Production and Prices

200

Motivation	Background	Methodology	Data	Results	Conclusions
	00000				

World Caloric Production and Prices

୍ର୍ବ୍

Motivation	Background	Methodology	Data	Results	Conclusions
	0000				

U.S. Share of Caloric Production

Country	Market Share							
Maize								
United States of America	42.00							
China	15.66							
Brazil	5.21							
USSR	3.52							
Mexico	3.01							
Wheat								
USSR	21.23							
China	14.05							
United States of America	12.07							
India	8.53							
Russian Federation	6.86							
Soybeans								
United States of America	56.73							
Brazil	14.43							
China	13.05							
Argentina	6.62							
India	1.63							

Motivation	Background	Methodology	Data	Results	Conclusions
	00000				

U.S. Share of Caloric Production

200

Motivation	Background	Methodology	Data 0000000	Results	Conclusions O
Background: Agi	ricultural Production				
U.S. Ef	fect on Wo	orld Markets	S		

- U.S. market share
 - calories from maize, wheat, rice, soybeans
 - roughly 23 percent
- Any policy that changes U.S. production has potential to influence world prices

What is the influence of ethanol mandates?

Motivation	Background ○○●○○	Methodology 0000000	Data 0000000	Results	Conclusions ○					
Background: Agric	Background: Agricultural Production									
U.S. Eff	ect on Wo	rld Markets	S							

- U.S. market share
 - calories from maize, wheat, rice, soybeans
 - roughly 23 percent
- Any policy that changes U.S. production has potential to influence world prices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What is the influence of ethanol mandates?

Motivation	Background ○○○●○	Methodology	Data	Results	Conclusions o
Ethanol					
History	of Biofue	s			

• Long history of ethanol as fuel

- Ford's Model-T designed to run on ethanol
- Slow phase-out of ethanol as petroleum became cheaper

Renewed interest in ethanol to combat CO₂ emissions

- 2005 U.S. Energy Bill: 7.5 billion gallons by 2012
- 2007 U.S. Energy Bill: 36 billion gallons by 2022
- 2009 Renewable Fuels Standard: 11 billion gallons in 2009

・ コット (雪) (小田) (コット 日)

Gasoline use: 0.39 billion gallons per day

11 billion gallons: 28 days (8% of yearly demand).

Motivation	Background ○○○●○	Methodology	Data	Results	Conclusions o
Ethanol					
History	of Biofuel	s			

Long history of ethanol as fuel

- Ford's Model-T designed to run on ethanol
- Slow phase-out of ethanol as petroleum became cheaper

• Renewed interest in ethanol to combat CO₂ emissions

- 2005 U.S. Energy Bill: 7.5 billion gallons by 2012
- 2007 U.S. Energy Bill: 36 billion gallons by 2022
- 2009 Renewable Fuels Standard: 11 billion gallons in 2009

(日) (日) (日) (日) (日) (日) (日)

Gasoline use: 0.39 billion gallons per day

Motivation	Background ○○○●○	Methodology	Data 0000000	Results	Conclusions o
Ethanol					
History	of Biofue	ls			

~ ~ ~ ~ ~

Motivation	Background ○○○●○	Methodology	Data 0000000	Results	Conclusions o
Ethanol					
History	of Biofue	s			

Motivation	Background ○○○●○	Methodology	Data	Results	Conclusions o
Ethanol					
History	of Biofue	s			

Long history of ethanol as fuel

- Ford's Model-T designed to run on ethanol
- Slow phase-out of ethanol as petroleum became cheaper
- Renewed interest in ethanol to combat CO₂ emissions
 - 2005 U.S. Energy Bill: 7.5 billion gallons by 2012
 - 2007 U.S. Energy Bill: 36 billion gallons by 2022
 - 2009 Renewable Fuels Standard: 11 billion gallons in 2009
- Gasoline use: 0.39 billion gallons per day
 - 11 billion gallons: 28 days (8% of yearly demand)

Motivation	Background ○○○○●	Methodology 00000000	Data 0000000	Results	Conclusions O
Ethanol					

Implications for Commodity Markets

• U.S.: Ethanol predominantly produced from maize

- 11 billion gallons
- Require 4.23 billion bushels of corn
 - Using 2.6 gallons per bushel average conversion

- Total U.S. maize production
 13 billion bushels
- Ethanol Mandate
 - One third of U.S. corn production
 - 13 percent of world maize production
 - 5 percent of world caloric production

Motivation	Background ○○○○●	Methodology	Data 0000000	Results	Conclusions o
Ethanol					

Implications for Commodity Markets

U.S.: Ethanol predominantly produced from maize

- 11 billion gallons
- Require 4.23 billion bushels of corn
 - Using 2.6 gallons per bushel average conversion

- Total U.S. maize production
 - 13 billion bushels
- Ethanol Mandate
 - One third of U.S. corn production
 - 13 percent of world maize production
 - 5 percent of world caloric production

Motivation	Background ○○○○●	Methodology	Data 0000000	Results	Conclusions ○
Ethanol					

Implications for Commodity Markets

• U.S.: Ethanol predominantly produced from maize

- 11 billion gallons
- Require 4.23 billion bushels of corn
 - Using 2.6 gallons per bushel average conversion

- Total U.S. maize production
 - 13 billion bushels
- Ethanol Mandate
 - One third of U.S. corn production
 - 13 percent of world maize production
 - 5 percent of world caloric production

Motivation	Background	Methodology	Data 0000000	Results	Conclusions o
Outline					
1 Mo	otivation				
2 Ag	riculture and	Ethanol			
3 Me	ethodology				
4 Da	ta				
5 En	npirical Result	ts			
6 Co	onclusions				

・ロ・・雪・・ヨ・・目・・ロ・

Motivation	Background	Methodology ●○○○○○○	Data 0000000	Results	Conclusions ○
Theory					
Storage	Literature				

• Competitive agricultural producers make two decisions

Food availability is z_t

• How much to store *x*_t

Cost of storage φ(x) convex

• How much effort to put into new production λ_t

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cost of effort g(λ) convex

Production subject to random weather shock
 s_{t+1} = λ_tω_{t+1}

Equation of motion

Motivation	Background	Methodology ●○○○○○○	Data	Results	Conclusions o
Theory					
Storage	Literatur	9			

- Competitive agricultural producers make two decisions
- Food availability is *z*_t
 - How much to store x_t
 - Cost of storage $\phi(x)$ convex
 - How much effort to put into new production λ_t

Cost of effort g(λ) convex

Production subject to random weather shock
 s_{t+1} = λ_tω_{t+1}

Equation of motion

• $Z_{t+1} = X_t + \lambda_t \omega_{t+1}$

Motivation	Background	Methodology ●○○○○○○	Data 0000000	Results	Conclusions ○
Theory					
Storage	Literature)			

- Competitive agricultural producers make two decisions
- Food availability is *z*_t
 - How much to store x_t
 - Cost of storage φ(x) convex
 - How much effort to put into new production λ_t

(日) (日) (日) (日) (日) (日) (日)

- Cost of effort g(λ) convex
- Production subject to random weather shock
 - $s_{t+1} = \lambda_t \omega_{t+1}$
 - ω_{t+1} is random weather draw
- Equation of motion
 - $Z_{t+1} = X_t + \lambda_t \omega_{t+1}$

Motivation	Background	Methodology ●○○○○○○	Data 0000000	Results	Conclusions ○
Theory					
Storage	Literature)			

- Competitive agricultural producers make two decisions
- Food availability is *z*_t
 - How much to store x_t
 - Cost of storage φ(x) convex
 - How much effort to put into new production λ_t

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Cost of effort g(λ) convex
- Production subject to random weather shock

•
$$s_{t+1} = \lambda_t \omega_{t+1}$$

- ω_{t+1} is random weather draw
- Equation of motion

•
$$z_{t+1} = x_t + \lambda_t \omega_{t+1}$$

Motivation	Background	Methodology ○●○○○○○	Data	Results	Conclusions o
Theory					
Storag	e Literatur	е			

Bellman equation

$$v(z_t) = \max_{x_t \lambda_t} \{ u(z_t - x_t) - \phi(x_t) - g(\lambda_t) + \delta \mathbb{E} [v(z_{t+1})] \} \text{ subject to}$$
$$z_{t+1} = x_t + \lambda_t \omega_{t+1}$$
$$x_t \ge 0, \quad z_t - x_t \ge 0, \quad \lambda_t \ge 0$$

- Solved by Scheinkman and Schechtman (1983) and Bobenrieth et al. (2002)
 - (i) consumption $c_t = z_t x_t$ is strictly increasing in z_t
 - (ii) storage x_t is weakly increasing in z_t
 - (iii) effort λ_t is weakly decreasing in z_t

Motivation	Background	Methodology	Data	Results	Conclusions o				
Theory									
Implica	Implications of Storage Literature								

- Negative weather shock in current period
 - Reduces consumption c_t
 - Increases price pt
 - Increases price p_{t+1} (prices linked through storage)

• Increased effort in *t* + 1 (supply response)

Past yield shocks can be used to identify supply
 Storage links periods

Motivation	Background	Methodology	Data	Results	Conclusions o
Theory					
Implica	tions of St	torage Lite	rature		

- Negative weather shock in current period
 - Reduces consumption c_t
 - Increases price *p*_t
 - Increases price p_{t+1} (prices linked through storage)

- Increased effort in t + 1 (supply response)
- Past yield shocks can be used to identify supply
 - Storage links periods

Motivation	Background	Methodology ○○○●○○○○	Data 0000000	Results	$^{\circ}$
Empirical Implemen	tation				
Model					

Estimated equations

$$log(s_t) = \alpha_s + \beta_s log(\mathbb{E}[p_t|_{t-1}]) + \gamma_s \omega_t + f(t) + u_t$$

$$log(z_t - x_t) = \alpha_d + \beta_d log(p_t) + g(t) + v_t$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- st: production of calories at time t
- $z_t x_t$: demand for calories at time t
 - pt: price of calories at time t
- $log(\mathbb{E}(p_t|_{t-1}))$: futures price (delivery in t, traded in t 1)
 - ω_t : Yield shocks (weather induced) at time t
 - f(t), g(t): time trend (technological change, population growth)
 - u, v: error terms

Motivation	Background	Methodology ○○○●○○○	Data 0000000	Results	Conclusions O				
Empirical Implementation									
ldentifyi	ng Dema	nd							

- Yield shock ωt (rel. deviation from quadratic time trend)
 Interacted with inverse stock levels (percent of production)
- Likely due to weather shocks
 - No autocorrelation in time series
 - No correlation across space
- Ideal instrument
 - Exogenous supply shifter
 - No direct effect on demand (trade mitigates direct impact)

・ コット (雪) (小田) (コット 日)

Motivation	Background	Methodology ○○○○●○○○	Data	Results	Conclusions o				
Empirical Implementation									
Identify	ing Dema	nd							

- Yield shock ω_t (rel. deviation from quadratic time trend)
 - Interacted with inverse stock levels (percent of production)

Likely due to weather shocks

- No autocorrelation in time series
- No correlation across space
- Ideal instrument
 - Exogenous supply shifter
 - No direct effect on demand (trade mitigates direct impact)

Motivation	Background	Methodology ○○○○●○○○	Data	Results	Conclusions ○
Empirical Impleme	entation				
Identify	ing Dema	nd			

- Yield shock ω_t (rel. deviation from quadratic time trend)
 - Interacted with inverse stock levels (percent of production)
- Likely due to weather shocks
 - No autocorrelation in time series
 - No correlation across space
- Ideal instrument
 - Exogenous supply shifter
 - No direct effect on demand (trade mitigates direct impact)

Motivation	Background	Methodology ○○○○●○○	Data	Results	Conclusions ○				
Empirical Implementation									
Identify	ving Suppl	У							

- Futures price $log(\mathbb{E}[p_t|_{t-1}])$ impacted through yield shocks $\omega_{t-k,k>0}$
- Storage smoothes production shocks over time
 - Speculative storage
 - Deaton & Laroque (1992,1996), Williams & Wright (1991)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

- Bad weather shocks in past
 - Reduces inventory
 - Increases price.
 - Uncorrelated with current shock as weather is i.i.d.

Motivation	Background	Methodology ○○○○●○○	Data 0000000	Results	$_{\odot}$ Conclusions				
Empirical Implementation									
Identifyi	ng Suppl	у							

- Futures price $log(\mathbb{E}[p_t|_{t-1}])$ impacted through yield shocks $\omega_{t-k,k>0}$
- Storage smoothes production shocks over time
 - Speculative storage
 - Deaton & Laroque (1992,1996), Williams & Wright (1991)

- Bad weather shocks in past
 - Reduces inventory
 - Increases price
 - Uncorrelated with current shock as weather is i.i.d.

Motivation	Background	Methodology ○○○○○●○○	Data 0000000	Results	Conclusions o					
Empirical Implementation										
Identify	ing Suppl	у								

Motivation	Background	Methodology ○○○○●○○	Data 0000000	Results	$_{\odot}$ Conclusions					
Empirical Implement	Empirical Implementation									
Identifyi	ng Suppl	у								

- Futures price $log(\mathbb{E}[p_t|_{t-1}])$ impacted through yield shocks $\omega_{t-k,k>0}$
- Storage smoothes production shocks over time
 - Speculative storage
 - Deaton & Laroque (1992,1996), Williams & Wright (1991)

- Bad weather shocks in past
 - Reduces inventory
 - Increases price
 - Uncorrelated with current shock as weather is i.i.d.

Motivation	Background	Methodology ○○○○○●○○	Data	Results	Conclusions o
Empirical Implen	nentation				

Identifying Supply

~ ~ ~ ~ ~

Motivation	Background	Methodology ○○○○○●○	Data 0000000	Results	Conclusions o					
Empirical Implen	Empirical Implementation									
Differe	nce to Ear	lier Resear	ch							

- Aggregation of crops by caloric content
 - Don't confound own-price elasticity with cross-price elasticity
- Traditional Supply Estimation
 Nerlove (1958): Regress supply on expected price
 - Our concern: expected price is endogenous
 - Instrumenting futures prices with yield shock

Motivation	Background	Methodology ○○○○○●○	Data	Results	Conclusions o				
Empirical Implementation									
Differe	nce to Ear	lier Resear	ch						

- Aggregation of crops by caloric content
 - Don't confound own-price elasticity with cross-price elasticity
- Traditional Supply Estimation
 - Nerlove (1958): Regress supply on expected price
 - Function of lagged price and quantities
 - Our concern: expected price is endogenous
 Predictable supply shifts (area expansions)
 - Instrumenting futures prices with yield shock

we only use exogenous variation

Motivation	Background	Methodology ○○○○○●○	Data	Results	Conclusions o					
Empirical Impler	Empirical Implementation									
Differe	nce to Ear	lier Resear	ch							

- Aggregation of crops by caloric content
 - Don't confound own-price elasticity with cross-price elasticity
- Traditional Supply Estimation
 - Nerlove (1958): Regress supply on expected price
 - Function of lagged price and quantities
 - Our concern: expected price is endogenous
 - Predictable supply shifts (area expansions)

Instrumenting futures prices with yield shock
 we only use exogenous variation

Motivation	Background	Methodology ○○○○○●○	Data	Results	Conclusions o				
Empirical Implementation									
Differe	nce to Ear	lier Resear	ch						

- Aggregation of crops by caloric content
 - Don't confound own-price elasticity with cross-price elasticity
- Traditional Supply Estimation
 - Nerlove (1958): Regress supply on expected price
 - Function of lagged price and quantities
 - Our concern: expected price is endogenous
 - Predictable supply shifts (area expansions)
 - Instrumenting futures prices with yield shock
 - we only use exogenous variation

Motivation	Background	Methodology ○○○○○○●	Data 0000000	Results	Conclusions o
Empirical Implen	mentation				
Supply	/ Demand	System			

First-stage regressions:

$$log(p_t) = \pi_{d0} + \sum_{k=0}^{K} \mu_{dk} \omega_{t-k} + \sum_{i=1}^{I} \rho_{di} t^i + \epsilon_{dt}$$
$$log(\mathbb{E}[p_t|_{t-1}]) = \pi_{s0} + \sum_{k=0}^{K+1} \mu_{sk} \omega_{t-k} + \sum_{i=1}^{I} \rho_{si} t^i + \epsilon_{st}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation	Background	Methodology ○○○○○○●	Data 0000000	Results	Conclusions o
Empirical Impler	mentation				
Supply	/ Demand	System			

Second-stage supply:

$$\log(s_t) = \alpha_s + \beta_s \log\left(\widehat{\mathbb{E}[p_t]_{t-1}}\right) + \lambda_{s0}\omega_t + \underbrace{\sum_{i=1}^{l} \tau_{si} t^i}_{f(t)} + u_t$$

Stage-one variable excluded from the stage-two: $\omega_{t-k,k=1...K+1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation	Background	Methodology ○○○○○○●	Data	Results	Conclusions o					
Empirical Impler	mentation									
Supply	Supply / Demand System									

Second-stage demand:

$$log(s_t - \Delta x_t) = \alpha_d + \beta_d \widehat{log(P_t)} + \underbrace{\sum_{i=1}^{l} \tau_{di} t^i}_{g(t)} + v_t$$

Stage-one variable excluded from the stage-two: $\omega_{t-k,k=0...K}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation	Background	Methodology	Data 0000000	Results	Conclusions O
Outline)				
1 Mo	otivation				
2 Ag	riculture and	Ethanol			
3 Me	ethodology				
4 Da	ita				
5 En	npirical Resul	ts			

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

6 Conclusions

Motivation	Background	Methodology	Data ●○○○○○○	Results	$_{\odot}$ Conclusions
Agricultural Data					
Data So	urces				

FAO series (country-level)

- Crops used: maize, wheat, rice, and soybeans
 - Production, area, and yield (1961-2007)
 - Change in inventories (1961-2003)

Common unit: calories

Conversion using calories per unit of production.

USDA

Inventory levels (1961): corn, wheat, and rice

Motivation	Background	Methodology	Data ●○○○○○○	Results	$_{\odot}$ Conclusions
Agricultural Data					
Data So	urces				

- FAO series (country-level)
 - Crops used: maize, wheat, rice, and soybeans
 - Production, area, and yield (1961-2007)
 - Change in inventories (1961-2003)
- Common unit: calories
 - Conversion using calories per unit of production

• USDA

Inventory levels (1961): corn, wheat, and rice

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation	Background	Methodology	Data ●○○○○○○	Results	$_{\odot}$ Conclusions
Agricultural Data					
Data So	urces				

- FAO series (country-level)
 - Crops used: maize, wheat, rice, and soybeans
 - Production, area, and yield (1961-2007)
 - Change in inventories (1961-2003)
- Common unit: calories
 - Conversion using calories per unit of production
- USDA
 - Inventory levels (1961): corn, wheat, and rice

Motivation	Background	Methodology	Data ○●○○○○○	Results	Conclusions O
Yield Shocks					

Data Sources - Caloric Yield Shocks

Yield shocks

 Baseline model: country-specific deviations from quadratic yield trends for each crop

Countries used

Countries with more than 1% of world production of crop
 Remaining countries lumped together as "Rest of World"

・ コット (雪) (小田) (コット 日)

Caloric Shock

- Sum of country and crop-specific shocks
- Normalized by quadratic production trend

Motivation	Background	Methodology 0000000	Data ○●○○○○○	Results	Conclusions O
Yield Shocks					

Data Sources - Caloric Yield Shocks

Yield shocks

- Baseline model: country-specific deviations from quadratic yield trends for each crop
- Countries used
 - Countries with more than 1% of world production of crop
 - Remaining countries lumped together as "Rest of World"

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Caloric Shock

- Sum of country and crop-specific shocks
- Normalized by quadratic production trend

Motivation	Background	Methodology 0000000	Data ○●○○○○○	Results	Conclusions O
Yield Shocks					

Data Sources - Caloric Yield Shocks

Yield shocks

- Baseline model: country-specific deviations from quadratic yield trends for each crop
- Countries used
 - Countries with more than 1% of world production of crop
 - Remaining countries lumped together as "Rest of World"

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Caloric Shock
 - Sum of country and crop-specific shocks
 - Normalized by quadratic production trend

Motivation	Background	Methodology	Data ○O●○○○○	Results	Conclusions o
Yield Shocks					

Jackknifed Residuals

200

Motivation	Background	Methodology	Data ○o●○○○○	Results	Conclusions O
Yield Shocks					

Jackknifed Residuals

200

Motivation	Background	Methodology	Data ○○○●○○○	Results	Conclusions o
Weather Data					

Potential concern

- Are yields endogenous to price?
 - Higher price could lead to higher sowing density
 - Higher price could imply shift to marginal land
- Lack of autocorrelation in yields suggests no
- Lack of correlation between years suggests no

Sensitivity check

Country-and-crop specific yield regressions

- US data (Schlenker and Roberts, 2009)
- World data: NCC (6-hour time step of 1 degree grid).

• Caloric Shock

Attributable to deviations from average weather

Motivation	Background	Methodology	Data ○○○●○○○	Results	Conclusions O
Weather Data					

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Motivation	Background	Methodology	Data	Results	Conclusions o
Weather Data					

- Potential concern
 - Are yields endogenous to price?
 - Higher price could lead to higher sowing density
 - Higher price could imply shift to marginal land
 - · Lack of autocorrelation in yields suggests no
 - Lack of correlation between years suggests no
- Sensitivity check
 - Country-and-crop specific yield regressions
 - US data (Schlenker and Roberts, 2009)
 - World data: NCC (6-hour time step of 1 degree grid)
 - Average over agricultural area
- Caloric Shock

Attributable to deviations from average weather

Motivation	Background	Methodology	Data ○○○●○○○	Results	Conclusions o
Weather Data					

- Potential concern
 - Are yields endogenous to price?
 - Higher price could lead to higher sowing density
 - Higher price could imply shift to marginal land
 - · Lack of autocorrelation in yields suggests no
 - Lack of correlation between years suggests no
- Sensitivity check
 - Country-and-crop specific yield regressions
 - US data (Schlenker and Roberts, 2009)
 - World data: NCC (6-hour time step of 1 degree grid)
 - Average over agricultural area
- Caloric Shock
 - Attributable to deviations from average weather

Motivation	Background	Methodology	Data ○○○○●○○	Results	$^{\circ}$
Weather Data					
Growing	Areas				

NCC grid system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Motivation	Background	Methodology	Data ○○○○●○○	Results	Conclusions o
Weather Data					
Growin	g Areas				

Maize: Growing Area (Fraction of Grid)

Maize

Motivation	Background	Methodology	Data ○○○○●○○	Results	Conclusions o
Weather Data					
Growing	g Areas				

Wheat: Growing Area (Fraction of Grid)

Wheat

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Motivation	Background	Methodology	Data ○○○○●○○	Results	Conclusions o
Weather Data					
Growing	g Areas				

Rice: Growing Area (Fraction of Grid)

Rice

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Soybeans: Growing Area (Fraction of Grid)

Soybean

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Motivation	Background	Methodology	Data ○○○○●○	Results	Conclusions o	
Price Data						
Data Sources - Prices						

Long time series

- Crop prices in US in December of each year
 - 1915-2008

Futures prices

- Chicago Board of trade: September delivery
- *p_t*: average price in September of delivery
- log (𝔅[𝑘_t|_{t-1}]): average price in October of previous year

Only available for maize, soybeans, and wheat

• Price per calory

- Converted using calory per unit of production
- Deflated using CPI

Motivation	Background	Methodology	Data ○○○○●○	Results	Conclusions ○		
Price Data							
Data Sources - Prices							

- Long time series
 - Crop prices in US in December of each year
 - 1915-2008
- Futures prices
 - Chicago Board of trade: September delivery
 - *p_t*: average price in September of delivery
 - $log(\mathbb{E}[p_t|_{t-1}])$: average price in October of previous year

(日) (日) (日) (日) (日) (日) (日)

- Only available for maize, soybeans, and wheat
- Price per calory
 - Converted using calory per unit of production
 - Deflated using CPI

Motivation	Background	Methodology	Data ○○○○●○	Results	Conclusions ○		
Price Data							
Data Sources - Prices							

- Long time series
 - Crop prices in US in December of each year
 - 1915-2008
- Futures prices
 - Chicago Board of trade: September delivery
 - *p_t*: average price in September of delivery
 - $log(\mathbb{E}[p_t|_{t-1}])$: average price in October of previous year
 - Only available for maize, soybeans, and wheat
- Price per calory
 - Converted using calory per unit of production
 - Deflated using CPI

Motivation	Background	Methodology	Data ○○○○○●	Results	Conclusions O
Price Data					

Descriptive Statistics

Variable	Unit	Mean	Std. Dev.	Min	Max
Year		1982	12.56	1961	2003
Caloric Production	billion people	4.32	1.34	2.08	6.35
Caloric Storage	million people	15.9	118	-317	210
Caloric Stock	million people	982	339	445	1564
Caloric Shock (Linear Trend)	million people	2.97	104	-226	175
Caloric Shock (Quadratic Trend)	million people	4.67	107	-240	159
Caloric Shock (Weather Linear)	million people	-2.22	90	-310	128
Caloric Shock (Weather Quadratic)	million people	2.47	64	-162	94
Caloric Price (Futures Delivery)	US\$2007 per year	89.57	43.28	33.88	217.28
Caloric Price (Futures Prev. Year)	US\$2007 per year	89.13	39.34	37.96	208.15
Caloric Price (Dec. USDA Prices)	US\$2007 per year	117.29	60.95	36.85	305.76

Motivation	Background	Methodology	Data 0000000	Results	Conclusions O
Outline)				
1 Ma	otivation				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 2 Agriculture and Ethanol
- 3 Methodology
- 4 Data
- **5** Empirical Results
- 6 Conclusions

Motivation	Background	Methodology	Data	Results ●○○○○○○○	Conclusions o
Supply - Demand	l Model				
Regres	sion Resu	ilts - Dema	and		
			Model		
	2SLS	3SLS		LS 2SLS	3SLS
Demano (s.e.)	l Elas0.0473*** (0.0176)				
Supply	Elas.				
(s.e.) Price In	2				
95% l					

		Demand
Price <i>p</i> _t	-4.73e-02*** (1.76e-02)	
Time Trend	4.26e-02*** (9.02e-04)	
Time Trend ²	-4.17e-04*** (2.40e-05)	
Time Trend ³	()	
Observations	41	
Time Trend I	2	
Shock Lags K	1	

Motivation	Background	Methodology	Data 0000000	Results ●○○○○○○	Conclusions O		
Supply - Demand	d Model						
Regression Results - Demand							

			Мо	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
Demand Elas.	-0.0473***	-0.0449***				
(s.e.)	(0.0176)	(0.0165)				
Supply Elas.						
(s.e.)						
Price Inc.						
95% Int.						
			Demand			
Price pt	-4.73e-02***	-4.49e-02***				
/- ((1.76e-02)	(1.65e-02)				
Time Trend	4.26e-02***	4.26e-02***				
	(9.02e-04)	(9.39e-04)				
Time Trend ²	-4.17e-04***	-4.15e-04***				
	(2.40e-05)	(2.42e-05)				
Time Trend ³	. ,	. ,				
Observations	41	41				
Time Trend I	2	2				
Shock Lags K	1	1				

Motivation	Background	Methodology	Data	Results ●○○○○○○	Conclusions ○			
Supply - Demand	Supply - Demand Model							
Regres	sion Resu	Its - Dema	nd					

			Mo	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***		
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)		
Supply Elas.						
(s.e.)						
Price Inc.						
95% Int.						
			Demand			
Price pt	-4.73e-02***	-4.49e-02***	-6.35e-02***	-5.95e-02***		
11111	(1.76e-02)	(1.65e-02)	(2.31e-02)	(2.17e-02)		
Time Trend	4.26e-02***	4.26e-02***	4.65e-02***			
	(9.02e-04)	(9.39e-04)	(2.97e-03)	(3.35e-03)		
Time Trend ²	-4.17e-04***	-4.15e-04***	-6.51e-04***	-6.73e-04***		
	(2.40e-05)	(2.42e-05)	(1.72e-04)	(1.87e-04)		
Time Trend ³	· ·	· · ·	3.44e-06	3.75e-06		
			(2.50e-06)	(2.66e-06)		
Observations	41	41	41	41		
Time Trend I	2	2	3	3		
Shock Lags K	1	1	1	1		

Motivation	Background	Methodology	Data 0000000	Results ●○○○○○○	Conclusions ○
Supply - Demand	d Model				
Regres	sion Resu	Its - Dema	nd		

			Mo	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
Demand Elas. (s.e.) Supply Elas. (s.e.) Price Inc.	-0.0473*** (0.0176)	-0.0449*** (0.0165)	-0.0635*** (0.0231)	-0.0595*** (0.0217)	-0.0624*** (0.0233)	-0.0654** (0.0234)
95% Int.						
			Demand			
Price pt	-4.73e-02*** (1.76e-02)	-4.49e-02*** (1.65e-02)	-6.35e-02*** (2.31e-02)	-5.95e-02*** (2.17e-02)	-6.24e-02*** (2.33e-02)	-6.54e-02* (2.34e-02
Time Trend	4.26e-02*** (9.02e-04)	4.26e-02*** (9.39e-04)	4.65e-02*** (2.97e-03)	4.71e-02*** (3.35e-03)	4.74e-02*** (3.59e-03)	4.91e-02* (4.24e-03
Time Trend ²	-4.17e-04*** (2.40e-05)	-4.15e-04*** (2.42e-05)	-6.51e-04*** (1.72e-04)	-6.73e-04*** (1.87e-04)	-6.89e-04*** (2.00e-04)	-7.72e-04* (2.28e-04
Time Trend ³	(2.406-00)	(2.426-00)	3.44e-06 (2.50e-06)	3.75e-06 (2.66e-06)	3.96e-06 (2.85e-06)	5.06e-06 (3.18e-06
Observations	41	41	41	41	40	40
Time Trend I	2	2	3	3	3	3
Shock Lags K	1	1	1	1	2	2

Motivation	Background	Methodology	Data	Results ○●○○○○○○	Conclusions ○
Supply - Demand	I Model				
Regres	sion Resu	Its - Supply	у		

			Mo	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654***
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)
Supply Elas.	0.1157***					
(s.e.)	(0.0220)					
Price Inc.						
95% Int.						
			Supply			
$\mathbb{E}[p_t _{t-1}]$	1.16e-01***		,			
0 111 11	(2.20e-02)					
Shock ω_t	2.59e-01***					
	(2.95e-02)					
Time Trend	4.34e-02***					
	(8.87e-04)					
Time Trend ²	-3.31e-04***					
	(2.53e-05)					
Time Trend ³	, ,					
Observations	41					
Time Trend I	2					
Shock Lags K	1					

Motivation	Background	Methodology	Data 0000000	Results ○●○○○○○○	Conclusions ○
Supply - Demand	Model				
Regres	sion Resu	Its - Supply	У		

			Mo	odel		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654***
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)
Supply Elas.	0.1157***					
(s.e.)	(0.0220)					
Price Inc.	31.69					
95% Int.	(22.90,46.41)					
			Supply			
$\mathbb{E}[p_t _{t-1}]$	1.16e-01***					
0-111-11	(2.20e-02)					
Shock ω_t	2.59e-01***					
·	(2.95e-02)					
Time Trend	4.34e-02***					
	(8.87e-04)					
Time Trend ²	-3.31e-04***					
	(2.53e-05)					
Time Trend ³	(2.000 00)					
Observations	41					
Time Trend I	2					
Shock Lags K	1					

Motivation	Background	Methodology	Data 0000000	Results ○●○○○○○○	Conclusions o
Supply - Demand	l Model				

Regression Results - Supply

			Мо	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654**
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)
Supply Elas.	0.1157***	0.1160***				
(s.e.)	(0.0220)	(0.0200)				
Price Inc.	31.69	31.89				
95% Int.	(22.90,46.41)	(23.82,44.67)				
			Supply			
$\mathbb{E}[p_t _{t-1}]$	1.16e-01***	1.16e-01***	,			
5	(2.20e-02)	(2.00e-02)				
Shock ω_t	2.59e-01***	2.58e-01***				
	(2.95e-02)	(2.69e-02)				
Time Trend	4.34e-02***	4.34e-02***				
	(8.87e-04)	(8.31e-04)				
Time Trend ²	-3.31e-04***	-3.30e-04***				
	(2.53e-05)	(2.34e-05)				
Time Trend ³	,					
Observations	41	41				
Time Trend I	2	2				
Shock Lags K	1	1				

Motivation	Background	Methodology	Data	Results	Conclusions
				0000000	

Regression Results - Supply

			Мо	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654**
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)
Supply Elas.	0.1157***	0.1160***	0.0864***	0.0881***		
(s.e.)	(0.0220)	(0.0200)	(0.0183)	(0.0167)		
Price Inc.	31.69	31.89	34.82	35.18		
95% Int.	(22.90,46.41)	(23.82,44.67)	(24.07,54.24)	(24.87,53.10)		
			Supply			
$\mathbb{E}[p_t _{t-1}]$	1.16e-01***	1.16e-01***	8.64e-02***	8.81e-02***		
0-111-11	(2.20e-02)	(2.00e-02)	(1.83e-02)	(1.67e-02)		
Shock ω_t	2.59e-01***	2.58e-01***	2.67e-01***	2.67e-01***		
ĩ	(2.95e-02)	(2.69e-02)	(2.41e-02)	(2.22e-02)		
Time Trend	4.34e-02***	4.34e-02***	5.27e-02***	5.27e-02***		
	(8.87e-04)	(8.31e-04)	(2.23e-03)	(2.06e-03)		
Time Trend ²	-3.31e-04***	-3.30e-04***	-8.59e-04***	-8.54e-04***		
	(2.53e-05)	(2.34e-05)	(1.20e-04)	(1.11e-04)		
Time Trend ³	,,	,,	7.64e-06***	7.59e-06***		
			(1.74e-06)	(1.61e-06)		
Observations	41	41	41	41		
Time Trend I	2	2	3	3		
Shock Lags K	1	1	1	1		

Motivation	Background	Methodology	Data	Results	Conclusions
				0000000	

Regression Results - Supply

			Mo	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654**
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)
Supply Elas.	0.1157***	0.1160***	0.0864***	0.0881***	0.0871***	0.0864**
(s.e.)	(0.0220)	(0.0200)	(0.0183)	(0.0167)	(0.0185)	(0.0171)
Price Inc.	31.69	31.89	34.82	35.18	34.99	34.27
95% Int.	(22.90,46.41)	(23.82,44.67)	(24.07,54.24)	(24.87,53.10)	(24.04,54.95)	(24.02,52.3
			Supply			
$\mathbb{E}[p_t _{t-1}]$	1.16e-01***	1.16e-01***	8.64e-02***	8.81e-02***	8.71e-02***	8.64e-02*
0.11.11	(2.20e-02)	(2.00e-02)	(1.83e-02)	(1.67e-02)	(1.85e-02)	(1.71e-02
Shock ω_t	2.59e-01***	2.58e-01***	2.67e-01***	2.67e-01***	2.68e-01***	2.68e-01*
	(2.95e-02)	(2.69e-02)	(2.41e-02)	(2.22e-02)	(2.41e-02)	(2.22e-02
Time Trend	4.34e-02***	4.34e-02***	5.27e-02***	5.27e-02***	5.32e-02****	5.33e-02*
	(8.87e-04)	(8.31e-04)	(2.23e-03)	(2.06e-03)	(2.70e-03)	(2.49e-03
Time Trend ²	-3.31e-04***	-3.30e-04***	-8.59e-04***	-8.54e-04***	-8.81e-04***	-8.82e-04*
	(2.53e-05)	(2.34e-05)	(1.20e-04)	(1.11e-04)	(1.41e-04)	(1.30e-04
Time Trend ³	,,	,,	7.64e-06***	7.59e-06***	7.95e-06***	7.96e-06*
			(1.74e-06)	(1.61e-06)	(1.99e-06)	(1.84e-06
Observations	41	41	41	41	40	40
Time Trend I	2	2	3	3	3	3
Shock Lags K	1	1	1	1	2	2

Motivation	Background	Methodology	Data	Results	Conclusions
				0000000	

Regression Results - First Stage

			Мс	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SL
			Demand			
Shock ω_t	-1.02e+00***	-1.15e+00***	-1.01e+00***	-1.09e+00***	-1.03e+00***	-1.01e+(
	(2.84e-01)	(2.48e-01)	(3.10e-01)	(2.62e-01)	(3.14e-01)	(2.67e
Shock ω_{t-1}	-5.57e-01*	-4.39e-01*	-5.48e-01*	-4.25e-01*	-5.24e-01*	-4.04e
	(2.89e-01)	(2.26e-01)	(3.07e-01)	(2.20e-01)	(3.14e-01)	(2.23e
Shock ω_{t-2}	. ,	. ,	. ,	, ,	1.60e-01	-1.076
					(3.16e-01)	(1.99e
Time Trend	-9.97e-03	-4.86e-03	-6.76e-03	1.39e-02	1.86e-02	3.04e
	(1.10e-02)	(1.11e-02)	(3.35e-02)	(3.47e-02)	(3.96e-02)	(4.01e
Time Trend ²	-5.04e-04**	-6.04e-04**	-6.85e-04	-1.63e-03	-1.85e-03	-2.396
inite itelia	(2.49e-04)	(2.45e-04)	(1.80e-03)	(1.81e-03)	(2.04e-03)	(2.02e
Time Trend ³	((2.75e-06	1.55e-05	1.83e-05	2.59e
Time frend			(2.71e-05)	(2.68e-05)	(3.01e-05)	(2.94e
Observations	41	41	41	41	40	40
Time Trend I	2	2	3	3	3	40
Shock Lags K	2	2	3	3	2	2
SHOCK Lags K					2	2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation	Background	Methodology	Data	Results	Conclusions
				0000000	

Regression Results - First Stage

	Model					
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
			Supply			
Shock ω_{t-1}	-8.93e-01***	-8.45e-01***	-9.31e-01***	-9.56e-01***	-9.26e-01***	-9.37e-01*
	(2.16e-01)	(1.97e-01)	(2.28e-01)	(2.04e-01)	(2.34e-01)	(2.07e-01
Shock ω_{t-2}	-3.13e-01	-3.81e-01*	-3.38e-01	-2.70e-01	-3.05e-01	-2.82e-01
	(2.23e-01)	(1.97e-01)	(2.29e-01)	(1.93e-01)	(2.36e-01)	(2.06e-01
Shock ω_{t-3}					-7.35e-02	-7.68e-02
					(2.37e-01)	(1.98e-01
Shock ω_t	-6.18e-01***	-6.22e-01***	-6.58e-01***	-6.76e-01***	-6.33e-01**	-6.42e-01*
	(2.15e-01)	(1.98e-01)	(2.28e-01)	(2.07e-01)	(2.39e-01)	(2.12e-01
Time Trend	-7.13e-03	-7.59e-03	-2.27e-02	-2.18e-02	-9.08e-03	-9.19e-03
	(8.95e-03)	(8.25e-03)	(2.87e-02)	(2.61e-02)	(3.51e-02)	(3.12e-02
Time Trend ²	-5.04e-04**	-4.92e-04***	3.37e-04	3.06e-04	-2.85e-04	-2.75e-04
	(2.00e-04)	(1.84e-04)	(1.48e-03)	(1.35e-03)	(1.75e-03)	(1.56e-03
Time Trend ³	, ,	. ,	-1.25e-05	-1.22e-05	-4.07e-06	-4.26e-06
			(2.18e-05)	(1.98e-05)	(2.51e-05)	(2.24e-05
Observations	41	41	41	41	40	40
Time Trend I	2	2	3	3	3	3
Shock Lags K	1	1	1	1	2	2

Motivation	Background	Methodology	Data 0000000	Results ○○●●○○○○	Conclusions ○
Sensitivity Checks					
Sensitivi	tv Check	- Yield De	viations		

- Jackknifed Yield Residuals
 - Check: Linear instead of quadratic trend
- Production trend
 - Check: Linear instead of quadratic trend

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation	Background	Methodology	Data	Results	Conclusions
				00000000	

Sensitivity Checks

Sensitivity Check - Yield Deviations

			Мо	del		
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
			Panel A: Baseline			
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654***
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)
Supply Elas.	0.1157***	0.1160***	0.0864***	0.0881***	0.0871***	0.0864***
(s.e.)	(0.0220)	(0.0200)	(0.0183)	(0.0167)	(0.0185)	(0.0171)
Price Inc.	31.69	31.89	34.82	35.18	34.99	34.27
95% Int.	(22.90,46.41)	(23.82,44.67)	(24.07,54.24)	(24.87,53.10)	(24.04,54.95)	(24.02,52.35)
	Pan	el B: Caloric Sho	ock Derived using	Linear Time Tre	nd	
Demand Elas.	-0.0461**	-0.0424**	-0.0585**	-0.0533**	-0.0573**	-0.0626***
(s.e.)	(0.0177)	(0.0166)	(0.0224)	(0.0210)	(0.0228)	(0.0232)
Supply Elas.	0.1080***	0.1085***	0.0908***	0.0929***	0.0905***	0.0899***
(s.e.)	(0.0213)	(0.0191)	(0.0202)	(0.0182)	(0.0206)	(0.0189)
Price Inc.	33.60	34.09	35.06	35.57	35.56	34.16
95% Int.	(23.97,50.10)	(25.20,48.41)	(23.99,55.41)	(24.99,54.19)	(24.04,57.13)	(23.81,52.59)
Observations	41	41	41	41	40	40
Time Trend I	2	2	3	3	3	3
Shock Lags K	1	1	1	1	2	2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Motivation	Background	Methodology	Data 0000000	Results ○○●○○○○	Conclusions ○
Sensitivity Chec	cks				
Sensiti	ivity Check	- Yield De	viations		

- Caloric shock is product of
 - Jackknifed yield residuals
 - Area harvested
 - Caloric conversion (calories per unit of output)
- Oheck:
 - Predicted area (quadratic trend) instead of actual

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation	Background	Methodology	Data	Results	Conclusions
				00000000	

Sensitivity Checks

Sensitivity Check - Yield Deviations

	Model					
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS
			Panel A: Baseline			
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654***
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)
Supply Elas.	0.1157***	0.1160***	0.0864***	0.0881***	0.0871***	0.0864***
(s.e.)	(0.0220)	(0.0200)	(0.0183)	(0.0167)	(0.0185)	(0.0171)
Price Inc.	31.69	31.89	34.82	35.18	34.99	34.27
95% Int.	(22.90,46.41)	(23.82,44.67)	(24.07,54.24)	(24.87,53.10)	(24.04,54.95)	(24.02,52.35)
	Panel	I C: Caloric Shoc	k Derived using (Quadratic Area Tr	rend	
Demand Elas.	-0.0459***	-0.0429***	-0.0610***	-0.0557***	-0.0593**	-0.0627***
(s.e.)	(0.0174)	(0.0161)	(0.0224)	(0.0208)	(0.0225)	(0.0226)
Supply Elas.	0.1159***	0.1158***	0.0892***	0.0908***	0.0897***	0.0892***
(s.e.)	(0.0211)	(0.0190)	(0.0176)	(0.0160)	(0.0178)	(0.0163)
Price Inc.	31.88	32.27	34.65	35.32	34.99	34.09
95% Int.	(23.21,46.21)	(24.31,44.71)	(24.26,53.01)	(25.34,52.25)	(24.36,53.95)	(24.32,50.83)
Observations	41	41	41	41	40	40
Time Trend I	2	2	3	3	3	3
Shock Lags K	1	1	1	1	2	2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Motivation	Background	Methodology	Data 0000000	Results ○○●○○○○	Conclusions o
Sensitivity Chec	ks				
Sensiti	ivity Check	- Yield De	viations		

- Caloric conversion factors
 - Given in Williamson and Williamson (1942)
- Check:
 - Ratio of caloric conversion factors equals ratio of averages prices

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Motivation	Background	Methodology	Data 0000000	Results ○○○●○○○○	Conclusions O
Sensitivity Checks					

Sensitivity Check - Yield Deviations

Motivation	Background	Methodology	Data 0000000	Results ○○○●○○○○	Conclusions O
Sensitivity Checks					

Sensitivity Check - Yield Deviations

Motivation	Background	Methodology	Data	Results	Conclusions
				00000000	

Sensitivity Check - Yield Deviations

		Model							
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS			
			anel A: Baseline						
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654***			
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)			
Supply Elas.	0.1157***	0.1160***	0.0864***	0.0881***	0.0871***	0.0864***			
(s.e.)	(0.0220)	(0.0200)	(0.0183)	(0.0167)	(0.0185)	(0.0171)			
Price Inc.	31.69	31.89	34.82	35.18	34.99	34.27			
95% Int.	(22.90,46.41)	(23.82,44.67)	(24.07,54.24)	(24.87,53.10)	(24.04,54.95)	(24.02,52.35)			
	Panel D: Res	scaled Caloric Co	nversion Factors	to Equalize Ave	rage Prices				
Demand Elas.	-0.0517***	-0.0536***	-0.0613***	-0.0592***	-0.0601***	-0.0744***			
(s.e.)	(0.0165)	(0.0156)	(0.0194)	(0.0190)	(0.0203)	(0.0200)			
Supply Elas.	0.1213***	0.1175***	0.0750***	0.0740***	0.0788***	0.0764***			
(s.e.)	(0.0279)	(0.0256)	(0.0139)	(0.0126)	(0.0145)	(0.0133)			
Price Inc.	30.04	30.23	37.93	38.73	37.28	34.05			
95% Int.	(21.13,45.64)	(21.73,44.57)	(27.30,55.87)	(28.17,56.22)	(26.60,55.55)	(25.30,48.05)			
Observations	41	41	41	41	40	40			
Time Trend I	2	2	3	3	3	3			
Shock Lags K	1	1	1	1	2	2			

Motivation	Background	Methodology	Data	Results ○○○●○○○○	Conclusions ○
Sensitivity Chec	ks				
Sensiti	ivity Check	- Yield De	viations		

- Shock ω_t
 - Ratio of relative caloric shock to relative inventory level

- Check:
 - Do not normalize by inventory level

Motivation	Background	Methodology	Data	Results	Conclusions
				00000000	

Sensitivity Check - Yield Deviations

	Model							
	2SLS	3SLS	2SLS	3SLS	2SLS	3SLS		
			anel A: Baseline					
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***	-0.0654***		
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)	(0.0234)		
Supply Elas.	0.1157***	0.1160***	0.0864***	0.0881***	0.0871***	0.0864***		
(s.e.)	(0.0220)	(0.0200)	(0.0183)	(0.0167)	(0.0185)	(0.0171)		
Price Inc.	31.69	31.89	34.82	35.18	34.99	34.27		
95% Int.	(22.90,46.41)	(23.82,44.67)	(24.07,54.24)	(24.87,53.10)	(24.04,54.95)	(24.02,52.35)		
		Panel E: Caloric	Shock not Divide	ed by Inventory				
Demand Elas.	-0.0400**	-0.0381**	-0.0534**	-0.0494**	-0.0529**	-0.0533**		
(s.e.)	(0.0165)	(0.0154)	(0.0208)	(0.0196)	(0.0211)	(0.0209)		
Supply Elas.	0.1195***	0.1193***	0.0913***	0.0941***	0.0932***	0.0918***		
(s.e.)	(0.0211)	(0.0183)	(0.0173)	(0.0151)	(0.0175)	(0.0156)		
Price Inc.	32.31	32.45	35.92	35.89	35.59	35.58		
95% Int.	(23.57,46.71)	(24.86,43.99)	(25.28,54.58)	(26.32,51.56)	(25.02,54.14)	(25.82,51.83)		
Observations	41	41	41	41	40	40		
Time Trend I	2	2	3	3	3	3		
Shock Lags K	1	1	1	1	2	2		

Motivation	Background	Methodology	Data 0000000	Results ○○○○●○○○	Conclusions ○
Sensitivity Chec	ks				
Sensiti	vitv Check	- Weather	Shocks		

- Caloric shocks
 - Deviations from yield trend
- Check
 - Yield shocks that are attributable to weather shocks

Motivation	Background	Methodology	Data	Results	Conclusions
				00000000	

Sensitivity Check - Weather Shocks

		Model						
	2SLS	3SLS	2SLS	3SLS	2SLS			
			Panel A: Baseline)				
Demand Elas.	-0.0473***	-0.0449***	-0.0635***	-0.0595***	-0.0624***			
(s.e.)	(0.0176)	(0.0165)	(0.0231)	(0.0217)	(0.0233)			
Supply Elas.	0.1157***	0.1160***	0.0864***	0.0881***	0.0871***			
(s.e.)	(0.0220)	(0.0200)	(0.0183)	(0.0167)	(0.0185)			
Price Inc.	31.69	31.89	34.82	35.18	34.99			
95% Int.	(22.90,46.41)	(23.82,44.67)	(24.07,54.24)	(24.87,53.10)	(24.04,54.95)			
		Panel B: Productio	n Shock Derived us	ing Observed Weath	er			
Demand Elas.	-0.1658	-0.0274	-0.0598	-0.0201	-0.0191			
(s.e.)	(0.4156)	(0.0349)	(0.1815)	(0.0320)	(0.0343)			
Supply Elas.	0.1477	0.3320	-0.0453	-0.0236	-0.0391			
(s.e.)	(0.3425)	(0.2592)	(0.2054)	(0.1879)	(0.0791)			
Price Inc.	-2.99	`30.12´	-16.48	69.75 [′]	23.61			
95% Int.	(-123.27,128.89)	(-95.68,124.45)	(-291.44,290.35)	(-431.72,434.53)	(-905.27,891.40)			
Observations	38	38	38	38	37			
Time Trend I	2	2	3	3	3			
Shock Lags K	1	1	1	1	2			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Motivation	Background	Methodology	Data 0000000	Results ○○○●○○○	Conclusions o
Sensitivity Chec	cks				
Sensit	ivity Check	- Weather	Shocks		

Weak instruments and decrease significance levels

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Likely due to data problems
- Correlation between two yield shocks
 - Deviations from trend
 - Attributable to weather
- US (good daily data): 0.71
- Rest of world not as good

Motivation	Background	Methodology	Data 0000000	Results ○○○●○○○	Conclusions ○
Sonsitivity Chooks					

Sensitivity Check - Weather Shocks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへで

Motivation	Background	Methodology	Data 0000000	Results ○○○●○○○	Conclusions O
Sanaitivity Chaoka					

Sensitivity Check - Weather Shocks

Motivation	Background	Methodology	Data 0000000	Results ○○○●○○○	Conclusions O
Sanaitivity Chaoka					

Sensitivity Check - Weather Shocks

Motivation	Background	Methodology	Data	Results ○○○○●○○	Conclusions ○						
Contrast to Othe	Contrast to Other Approaches										
Contra	Contrast to Other Approaches										

	SUR - Price N	ot Instrumented	Demand Instrumented / Supply Not Instrumented
	(1)	(2)	
Demand Elas.	-0.0166*	-0.0177*	
(s.e.)	(0.0091)	(0.0095)	
Supply Elas.	0.0155	0.0140	
(s.e.)	(0.0172)	(0.0152)	
Price Inc.	168.77	82.84	
95% Conf. Int.	(-654,1151)	(-531,1109)	
Time Trend /	2	3	
Shocks K	n.A.	n.A.	
Supply Lags	n.A.	n.A.	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Motivation	Background	Methodology	Data 0000000	Results ○○○○○●○○	Conclusions ○
Contrast to Other A	pproaches				
Contras	t to Other	• Approach	es		

	SUR - Price Not Instrumented		Demand Instrumented / Supply Not Instrumente			bly Not Instrumented
	(1)	(2)	(3)	(4)	(5)	(6)
Demand Elas.	-0.0166*	-0.0177*	-0.0473***			
(s.e.)	(0.0091)	(0.0095)	(0.0176)			
Supply Elas.	0.0155	0.0140	0.0289			
(s.e.)	(0.0172)	(0.0152)	(0.0225)			
Price Inc.	168.77	82.84	81.09			
95% Int.	(-654,1151)	(-531,1109)	(37,229)			
Time Trend /	2	3	2			
Shocks K	n.A.	n.A.	1			
Supply Lags	n.A.	n.A.	none			

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Motivation	Background	Methodology	Data	Results ○○○○●○○	\circ
Contrast to Other	Approaches				
Contras	t to Other	^r Approach	es		

	SUR - Price Not Instrumented		Demand Instrumented / Supply Not Instrumented			
	(1)	(2)	(3)	(4)	(5)	(6)
Demand Elas.	-0.0166*	-0.0177*	-0.0473***	-0.0473***		
(s.e.)	(0.0091)	(0.0095)	(0.0176)	(0.0176)		
Supply Elas.	0.0155	0.0140	0.0289	0.0311		
(s.e.)	(0.0172)	(0.0152)	(0.0225)	(0.0236)		
Price Inc.	168.77	82.84	81.09	73.82		
95% Int.	(-654,1151)	(-531,1109)	(37,229)	(36,223)		
Time Trend I	2	3	2	2	2	
Shocks K	n.A.	n.A.	1	1	1	
Supply Lags	n.A.	n.A.	0	1	2	

Motivation	Background	Methodology	Data	Results ○○○○●○○	\circ
Contrast to Other	Approaches				
Contras	t to Other	^r Approach	es		

	SUR - Price Not Instrumented		Demand	Demand Instrumented / Supply Not Instrumented			
	(1)	(2)	(3)	(4)	(5)	(6)	
Demand Elas.	-0.0166*	-0.0177*	-0.0473***	-0.0473***	-0.0473***	-0.0624***	
(s.e.)	(0.0091)	(0.0095)	(0.0176)	(0.0176)	(0.0176)	(0.0233)	
Supply Elas.	0.0155	0.0140	0.0289	0.0311	0.0310	0.0289	
(s.e.)	(0.0172)	(0.0152)	(0.0225)	(0.0236)	(0.0256)	(0.0225)	
Price Inc.	168.77	82.84	81.09	73.82	45.68	73.08	
95% Int.	(-654,1151)	(-531,1109)	(37,229)	(36,223)	(35,247)	(32,173)	
Time Trend I	2	3	2	2	2	3	
Shocks K	n.A.	n.A.	1	1	1	2	
Supply Lags	n.A.	n.A.	0	1	2	0	

Motivation	Background	Methodology	Data 0000000	Results ○○○○○●○	Conclusions ○
Area Responses					
Explaini	ing World	Productio	n Area		

World

	(1)	(2)	(3)	(4)	(5)	(6)
Shock ω_{t-1}	-0.0599*** (0.0147)	-0.0620*** (0.0186)				
$\mathbb{E}[p_t _{t-1}]$	(0.0117)	(0.0100)				
Observation	42	42				
Time Trend I	2	3				
Shock Lags K	n.a.	n.a.				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Motivation	Background	Methodology	Data 0000000	Results ○○○○○●○	Conclusions O
Area Responses					
Explain	ing World	Productio	n Area		

World

	(1)	(2)	(3)	(4)	(5)	(6)
Shock ω_{t-1}	-0.0599*** (0.0147)	-0.0620*** (0.0186)				
$\mathbb{E}[p_t _{t-1}]$			0.0603*** (0.0131)	0.0446*** (0.0128)	0.0645*** (0.0123)	0.0568*** (0.0126)
Observation	42	42	42	42	41	41
Time Trend I Shock Lags K	2 n.a.	3 n.a.	2 1	3 1	2 2	3 2

Motivation	Background	Methodology	Data 0000000	Results ○○○○○●○	Conclusions ○
Area Responses					
Explain	ing World	Productio	n Area		

United States

	(1)	(2)	(3)	(4)	(5)	(6)
Shock ω_{t-1}	-0.2642*** (0.0654)	-0.2512*** (0.0826)				
$\mathbb{E}[p_t _{t-1}]$			0.2767*** (0.0516)	0.1906*** (0.0514)	0.2936*** (0.0482)	0.2302*** (0.0498)
Observation	42	42	42	42	41	41
Time Trend I Shock Lags K	2 n.a.	3 n.a.	2 1	3 1	2 2	3 2

Motivation	Background	Methodology	Data 0000000	Results ○○○○○●○	Conclusions O
Area Responses					
Explair	ning World	Productio	n Area		

-	••
Bro-	711
DIaz	<u>' 11</u>

	(1)	(2)	(3)	(4)	(5)	(6)
Shock ω_{t-1}	-0.3111*** (0.0731)	-0.2304** (0.0897)				
$\mathbb{E}[p_t _{t-1}]$			0.3832***	0.2509***	0.3694***	0.2367***
			(0.1040)	(0.0836)	(0.0972)	(0.0833)
Observation	42	42	42	42	41	41
Time Trend I	2	3	2	3	2	3
Shock Lags K	n.a.	n.a.	1	1	2	2

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Motivation	Background	Methodology	Data 0000000	Results ○○○○○●○	Conclusions O
Area Responses					
Explair	ning World	Productio	n Area		

China

	(1)	(2)	(3)	(4)	(5)	(6)
Shock ω_{t-1}	-0.0256 (0.0272)	-0.0424 (0.0340)				
$\mathbb{E}[p_t _{t-1}]$. ,	. ,	0.0313 (0.0278)	0.0459* (0.0270)	0.0331 (0.0259)	0.0672** (0.0259)
Observation	42	42	42	42	41	41
Time Trend I	2	3	2	3	2	3
Shock Lags K	n.a.	n.a.	1	1	2	2

Motivation	Background	Methodology	Data 0000000	Results ○○○○○○●	Conclusions ○
Area Responses					
Implicati	ons				

Ethanol mandate: 5% of world caloric production
 Food prices increase 33 percent

Loss in consumer surplus: 170 billion annually
 But: offsetting increase in producer surplus
 Potential consumer surplus from lower fuel prices

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Elastic supply

Motivation	Background	Methodology	Data	Results ○○○○○○●	Conclusions O
Area Responses					
Implicat	ions				

Motivation	Background	Methodology	Data 0000000	Results ○○○○○○●	Conclusions ○
Area Responses					
Implicati	ions				

- Ethanol mandate: 5% of world caloric production
 - Food prices increase 33 percent
- Loss in consumer surplus: 170 billion annually
 - But: offsetting increase in producer surplus
 - Potential consumer surplus from lower fuel prices
 - Rajagopal (2007)
 - Need demand / supply elasticity of fuels
 - Elastic supply
 - Lower price increase
 - Larger expansion in area / yield
 - 2percent increase or 30 million acres
 - Land use constitutes 20% of CO₂ emissions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation	Background	Methodology	Data 0000000	Results ○○○○○○●	Conclusions ○
Area Responses					
Implicati	ions				

- Ethanol mandate: 5% of world caloric production
 - Food prices increase 33 percent
- Loss in consumer surplus: 170 billion annually
 - But: offsetting increase in producer surplus
 - Potential consumer surplus from lower fuel prices
 - Rajagopal (2007)
 - Need demand / supply elasticity of fuels
 - Elastic supply
 - Lower price increase
 - Larger expansion in area / yield
 - 2percent increase or 30 million acres
 - Land use constitutes 20% of CO₂ emissions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivation	Background 00000	Methodology 0000000	Data 0000000	Results	Conclusions o
Outline					

Motivation

2 Agriculture and Ethanol

3 Methodology

4 Data

5 Empirical Results

Motivation	Background	Methodology	Data 0000000	Results	Conclusions •
Summary Conclus	sions				

- Demand and supply model of commodity calories
- What's new?
 - Aggregation of crops by caloric content
 - New supply instrument (instrumented lagged price)

Major results

- Significant supply and demand elasticities
- Previous literature found insignificant supply elasticities
- Implications for U.S. ethanol mandate
 - Predicted to raise world prices by 33 percent.
 - Loss of consumer surplus 170 billion annually
 - Expansion in area by 2 percent (30 million acres).

イロト 不良 とくほ とくほう 二日

Motivation	Background	Methodology	Data 0000000	Results	Conclusions •
Summary					
Conclus	ions				

- Demand and supply model of commodity calories
- What's new?
 - Aggregation of crops by caloric content
 - New supply instrument (instrumented lagged price)

Major results

- Significant supply and demand elasticities
- Previous literature found insignificant supply elasticities
- Implications for U.S. ethanol mandate
 - Predicted to raise world prices by 33 percent
 - Loss of consumer surplus 170 billion annually
 - Expansion in area by 2 percent (30 million acres)

・ロット (雪) ・ (日) ・ (日)

Motivation	Background	Methodology	Data 0000000	Results	Conclusions •
Summary					
Conclus	ions				

- Demand and supply model of commodity calories
- What's new?
 - Aggregation of crops by caloric content
 - New supply instrument (instrumented lagged price)
- Major results
 - Significant supply and demand elasticities
 - Previous literature found insignificant supply elasticities

・ コット (雪) (小田) (コット 日)

- Implications for U.S. ethanol mandate
 - Predicted to raise world prices by 33 percent.
 - Loss of consumer surplus 170 billion annually
 - Expansion in area by 2 percent (30 million acres)

Motivation	Background	Methodology	Data 0000000	Results	Conclusions •
Summary					
Conclus	ions				

- Demand and supply model of commodity calories
- What's new?
 - Aggregation of crops by caloric content
 - New supply instrument (instrumented lagged price)
- Major results
 - Significant supply and demand elasticities
 - Previous literature found insignificant supply elasticities
- Implications for U.S. ethanol mandate
 - Predicted to raise world prices by 33 percent
 - Loss of consumer surplus 170 billion annually
 - Expansion in area by 2 percent (30 million acres)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Outline

Major Agricultural Producers

Maize: Production Share greater than 1 Percent

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへ⊙

Major Agricultural Producers

Wheat: Production Share greater than 1 Percent

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Major Agricultural Producers

Rice: Production Share greater than 1 Percent

Major Agricultural Producers

Soybeans: Production Share greater than 1 Percent

▲□▶▲圖▶▲≣▶▲≣▶ ▲国 ● ● ●

Production Shares

Country	Share	Country	Share
Wheat		Maize	
USSR	21.23	United States of America	42.00
China	14.05	China	15.66
United States of America	12.07	Brazil	5.21
India	8.53	USSR	3.52
Russian Federation	6.86	Mexico	3.01
France	5.33	Yugoslav SFR	2.47
Canada	4.81	Argentina	2.35
Turkey	3.48	France	2.32
Australia	3.13	Romania	2.15
Germany	2.89	South Africa	2.01
Ukraine	2.69	India	1.91
Pakistan	2.49	Italy	1.54
Argentina	2.23	Hungary	1.41
Italy	2.06	Indonesia	1.26
United Kingdom	2.01	Canada	1.15
Kazakhstan	1.87	Rest of World	14.07
Iran, Islamic Republic of	1.54		
Poland	1.38		
Yugoslav SFR	1.29		
Romania	1.27		
Spain	1.16		
Czechoslovakia	1.05		
Rest of World	12.12		

Data ○●○

Top Producers

Production Shares

Country	Share	Country	Share
Rice		Soybeans	
China	34.44	United States of America	56.73
India	20.64	Brazil	14.43
Indonesia	7.50	China	13.05
Bangladesh	5.48	Argentina	6.62
Thailand	4.27	India	1.63
Vietnam	3.97	Canada	1.04
Japan	3.67	Rest of World	6.49
Myanmar	3.12		
Brazil	2.08		
Philippines	1.87		
Korea, Republic of	1.59		
United States of America	1.44		
Pakistan	1.07		
Rest of World	8.86		

Jackknifed Residuals

Jackknifed Residuals

