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Abstract

In an experiment that elicits subjects’ willingness to pay (WTP) for the outcome of
a lottery, we document a systematic effect of stake sizes on the magnitude and sign of
the relative risk premium, and find that there is a log-linear relationship between the
monetary payoff of the lottery and WTP, conditional on the probability of the payoff
and its sign. We account quantitatively for this relationship, and the way in which it
varies with both the probability and sign of the lottery payoff, in a model in which all
departures from risk-neutral bidding are attributed to an optimal adaptation of bidding
behavior to the presence of cognitive noise. Moreover, the cognitive noise required by
our hypothesis is consistent with patterns of bias and variability in judgments about
numerical magnitudes and probabilities that have been observed in other contexts.
In addition to providing foundations for the kind of nonlinear distortions in lottery
valuation posited by prospect theory, our model explains why the degree of stake-
dependence should be greater for certainty-equivalents elicited by requiring subjects to
assign a dollar value to lotteries than for those implied by binary choices.
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One of the more puzzling features of decision making under risk in the laboratory is
the fact that the same experimental subjects can display either risk-averse or risk-seeking
behavior, depending on the nature of the choices presented to them (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992). Descriptive models of choice under risk, such as
prospect theory, are often understood (especially in the economics literature) as specifying
preferences over lottery outcomes, simply preferences that do not conform to the axioms of
expected-utility theory. But one cannot explain the differences in apparent risk attitudes
across situations in this way except on the hypothesis that what people value is the probability
distribution over prospective changes in their wealth from a given gamble, rather than
the probability distribution over final wealth levels if they take the gamble (Kahneman
and Tversky, 1979; Kahneman, 2002). Yet it remains unclear why evolution should have
given us a brain that assigns value to wealth changes as opposed to the state of having a
certain amount of wealth; such valuations are inconsistent with the principle that the value
attributed to receiving money should be derived from the value of what one can buy with it.

A recent literature proposes instead that apparent departures from risk-neutrality, at
least in laboratory experiments involving stakes that are small relative to a subject’s overall
budget, actually reflect an efficient adaptation of subjects’ decision rules to the presence of
cognitive noise.1 Analyses of this kind can explain significant departures from risk-neutral
choice even when gambles are small; a decision rule that is optimal in the sense of maximizing
the expected financial wealth of the decision maker (DM) — so that the criterion on the basis
of which decision rules are assumed to be selected respects the fact that small increments
to the DM’s overall wealth should have little effect on their marginal utility of wealth —
can nonetheless value a gamble, on the basis of a noisy internal representation of the data
defining the gamble, in a way that is not a linear function of the gamble’s expected value
(EV), even on average (Khaw et al., 2021). Choices are predicted to be made as if the DM
applies nonlinear transformations to the data defining individual potential increments and
decrements to their wealth, not because they actually care about anything but their overall
wealth from all sources, but because their information about these separate wealth increments
and decrements must be separately encoded with imperfect precision, owing to the way in
which choices are presented. Even an optimal decision rule can then not value alternative
courses of action purely on the basis of their respective implied probability distributions over
the DM’s overall wealth.

A model of this kind provides a simple explanation for the “fourfold pattern” of risk
attitudes predicted by prospect theory. Suppose that (as in the original experiments of
Tversky and Kahneman, 1992, or the more recent ones of Enke and Graeber, forthcoming)
subjects are presented with simple lotteries that offer a monetary payoff X (that may be

1See, for example, Barretto-Garćıa et al. (2023), Enke and Graeber (forthcoming), Enke and Shubatt
(2023), Frydman and Jin (2022, 2023), Khaw et al. (2021), Netzer et al. (2022), Oprea (forthcoming),
Steiner and Stewart (2016), Vieider (forthcoming) and Woodford (2012). This interpretation of measured
risk attitudes is consistent with an emerging literature in which behavioral anomalies that have often been
treated as reflecting non-standard preferences or sub-optimal heuristics are instead attributed to optimal
adaptation of decision rules to the presence of cognitive noise. See, for example, Augenblick et al. (2023),
Azeredo da Silveira et al. (2020), Bhui and Xiang (2022), Charles et al., (forthcoming), Enke and Graeber
(2021), Enke et al. (2023, 2024), Gabaix and Laibson (2022), Gershman and Bhui (2020), Natenzon (2019),
Vieider (2021) and Woodford (2003, 2020).
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either a gain or a loss) with probability p, and zero otherwise. On each trial, a certainty
equivalent amount C is elicited for the lottery (X; p) presented on that trial. Suppose
further that the DM’s decision rule must be based not on the exact value of p, but on a
noisy representation rp, a draw from a probability distribution f(rp |p). If we simplify the
discussion by assuming that the decision rule can be based on the exact value of X, then (if
the subject’s choice is appropriately incentivized2) then the optimal bid will be

C = E[pX |X, rp] = E[p |rp] ·X.

Under plausible assumptions about the conditional distributions f(rp |p) and the prior over
possible values of p for which the DM’s decision rule has been optimized,3 the median value
of E[p |rp], conditional on the actual p for a given lottery, will be larger than p for any positive
p below some critical value p̂, but smaller than p for p less than 1 that is greater than p̂.
The model then implies that the sign of the DM’s risk attitude (indicated by whether C is
more often greater or less than the expected value pX) should vary according to whether p
is large or small and according to whether X is a positive or negative increment to wealth,
in accordance with the “fourfold pattern” of Tversky and Kahneman.

Explaining the fourfold pattern in this way, rather than simply positing an inverse-S-
shaped probability weighting function, has a number of advantages. It explains why the
departures from risk-neutral valuations are greater (in all four quadrants of the pattern) on
trials where experimental subjects express greater uncertainty about the correct valuation,
as documented by Enke and Graeber (forthcoming). It also explains why these departures
can be made greater (again in all four quadrants) by presenting the information about
probabilities in a way that makes subjects less certain about the precise value of p, as also
shown by Enke and Graeber (forthcoming); and why the departures from risk neutrality
can instead be made smaller, by further clarifying the relative probability of the different
outcomes through allowing the subjects to observe several draws, as found by Oprea and
Vieider (2024). The noisy coding theory also explains why the pattern of bias in lottery
valuations is so similar to the patterns of bias observed in tasks requiring subjects to estimate
frequencies or relative proportions (e.g., Hollands and Dyre, 2000; Zhang and Maloney, 2012),
even though these tasks involve neither the assessment of risks or preferential choice. And
it explains why Oprea (forthcoming) finds a similar (even quantitatively similar!) fourfold
pattern of biases when subjects are asked to assign a dollar value to the opportunity to
obtain a fraction p of monetary payoff X with certainty (rather that getting all of X but
with probability p).

Here we consider whether a noisy coding explanation of risk attitudes can be extended to
account for stake-size effects on risk attitudes as well. While the fourfold pattern of Tversky
and Kahneman is much better-known and more extensively studied, a branch of the literature
has emphasized that way that the magnitude and even the sign of relative risk-premia change
with changes in the size of the stakes involved. Studies beginning with Markowitz (1952) and
Hershey and Schoemaker (1980) have argued that increasing stake sizes increase risk-aversion

2In the experimental study described below, subjects’ bids are incentivized through a BDM auction (see
Appendix section A). The optimal bid would be the same if, as in many studies, it were incentivized using
a multiple price list, with one of the binary choices chosen at random to be implemented.

3See Appendix section C, as well as treatments by Khaw et al. (2021), Frydman and Jin (2023), and
Enke and Graeber (forthcoming).
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(or reduce risk-seeking) in the case of lotteries involving random gains, and instead increase
risk-seeking (or reduce risk-aversion) in the case of lotteries involving random losses.4 As
shown most notably in the early papers (that could change stake sizes by several orders
of magnitude because the gambles were purely hypothetical), sufficiently large increases in
stakes can flip valuations from risk-seeking to risk-averse or vice versa, for a fixed value of
p.5

In the current paper, we report the results of a new experiment in which subjects bid
the amount that they are willing to pay (WTP) for the outcome of a lottery (X; p); the
sign of X, the magnitude of X, and the size of p each vary from trial to trial, and the
joint distribution of the three lottery characteristics is a product distribution, so that we
can separately measure the effect of each of these characteristics on relative risk premia,
defined as the log of WTP/EV . For each of the stake sizes |X| that we consider, we verify
the fourfold pattern of Tversky and Kahneman, with regard to the effects of varying p and
the sign of X. But we also find systematic stake-size effects, of the sign found in papers
in the tradition initiated by Markowitz (1952) and Hershey and Schoemaker (1980). We
further document a regularity that has not previously been discussed: we find that the
stake-size effects are roughly log-linear, i.e., that log(WTP/EV ) is to a good approximation
a decreasing affine function of log(|X|), for any value of p (and independently of the sign of
the payoffs).

We then show that we can quantitatively fit the effects of all three lottery characteristics
on average elicited certainty equivalents, using a noisy coding model in which the DM’s
decision rule is the one that maximizes their expected financial wealth. In particular, the
noisy coding model predicts precisely the kind of log-linear stake-size effects that we observe;
it also predicts (as we find experimentally) that for each value of p, the stake-size elasticity
of the relative risk premium should be between 0 and -1, and that it is most negative in the
case of the smallest values of p.

The existence of stake-size effects might seem problematic for a noisy-coding explanation
of variable risk attitudes, given that the model of Khaw et al. (2021), based on imprecise
representation of monetary payoffs rather than their probabilities, implies that risky choice
should be scale-invariant. In fact, the model proposed here to explain observed risk attitudes
in our current experiment is completely consistent with the explanation offered for scale-
invariant choice in our earlier paper. The model presented here assumes that decisions are
based on noisy representations of both the probability p and the magnitude of the monetary
payoff; and the model of the imprecise representation of monetary amounts is the same
logarithmic coding model as gives rise to the prediction of scale-invariance in the earlier
paper. That model, which implies that the degree to which the values of two alternative
monetary payoffs can be discriminated on the basis of their internal representations is a
function of their ratio (or percentage difference), is consistent with a good deal of evidence
regarding the nature of imprecision in human number processing,6 including studies of errors
in recalling monetary amounts (e.g., Dehaene and Marques, 2002). Moreover, Khaw et al.

4More recent examples include the studies of Kachelmeier and Shehata (1992), Fehr-Duda et al. (2010),
Scholten and Read (2014), and Bouchouicha and Vieider (2017).

5This possibility has been demonstrated only in the case of quite small values of p. We also find that
stake-size effects are largest when p is small, and provide an explanation for this.

6See references cited in Khaw et al. (2021).

3



(2021) find considerable conformity to the prediction of scale-invariant choice behavior in
their experimental dataset, a finding that has been replicated by other studies using a similar
experimental paradigm (Frydman and Jin, 2022; Barretto-Garćıa et al., 2023).

The noisy-coding model in this paper assumes exactly the same model of logarithmic
coding of monetary payoffs as in Khaw et al. (2021), and indeed the prediction of log-linear
stake-size effects depends on exactly this feature of our model. Instead, we obtain different
conclusions regarding scale-invariance in the current paper because we model a different kind
of choice problem. In the situation considered before, the DM makes a binary choice between
the risky lottery and a single monetary amount, proposed by the experimenter on that trial;
here instead the DM must the choose the certain amount that they are willing to pay for the
risky lottery, from among a broad range of alternatives, that does not change across trials.

Our model implies that the median certainty equivalent elicited using the second procedure
— the quantity C such that that DM’s expressed WTP should be greater than C exactly
as often as it is lower — will in general not be the same as the one elicited using the first
procedure, i.e., the quantity C such that in a binary choice between the risky lottery and C
for sure, the DMmakes each of the two choices equally often. This is true despite the fact that
in the case of either procedure, the DM decides in accordance with a rule that maximizes
their expected wealth. Moreover, we assume the same kind of noisy encoding of lottery
characteristics in both cases, and the same kind of prior over possible lottery characteristics.
But the conversion of a subjective sense of the value of a particular lottery (X; p) into
a judgment about whether the lottery is more or less valuable than a particular dollar
amount also depends on a DM’s imprecise sense of the value of the dollar amount. And the
information upon which the latter judgment is based is different under the two procedures,
according to our theory, because the binary decision is based on a noisy representation of the
value of the particular amount C that is offered as an alternative, while the bidding decision
involves consideration of noisy representations of the values of the entire range of possible
bids.

Thus the noisy-coding model does more than simply provide a cognitive foundation (and
functional justification) for the kind of nonlinear transducers posited by prospect theory
on purely descriptive grounds — it also predicts behavior that is inconsistent with prospect
theory, or any theory that assigns values to all risky and certain prospects independent of the
choice set in which they appear, and assumes that choices should always reflect the relative
ranking of the options on this value scale. This is in our view a strength of the noisy-coding
model, as it has been known for some time that the two elicitation procedures do not yield
consistent measures of risk attitudes, even within the same subject.7

Our analysis also sheds light on another important question about the noisy-coding
explanation for measured risk attitudes: at which stage in the decision process is cognitive
noise most important? In our sketch above of a cognitive-noise explanation for the results
of Enke and Graeber (forthcoming), we suppose that information about the probability
p is encoded (or retrieved) with noise, while the decision made on the basis of the noisy
representation rp is then perfectly precise. But in their experiments (and similarly the related

7See, for example, Lichtenstein and Slovic (1971), Goldstein and Einhorn (1987), Harbaugh et al. (2010),
Loomes and Progrebna (2014), Zhou and Hey (2018), Freeman and Mayraz (2019), Friedman et al. (2022),
and Bouchouicha et al. (2024).
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ones of Oprea, forthcoming), the magnitude |X| is the same on all trials; thus the variation
in p across trials is exactly proportional to the variation in EV. Thus all of the findings of
both Enke and Graeber (forthcoming) and Oprea (forthcoming) are equally consistent with
a model in which a DM forms a sense of the expected value of the lottery on the basis of
precise information about both p and X, but can then only retrieve the computed EV with
noise. An optimal decision rule based on the noisy reading of EV, together with a prior over
the values of EV used in the experiment, would lead to exactly the same fourfold pattern
of biases. The same model could also explain the results that Khaw et al. (2021) attribute
to noisy representation of monetary payoffs, since in their experiment p is the same on all
trials, and the variation in X across trials is exactly proportional to the variation in EV.

In the experiment reported here, the values of p and |X| both vary across trials, with the
two sources of variation completely uncorrelated; hence a model based on noisy coding
of the information presented about p and/or |X| no longer makes predictions that are
mathematically indistinguishable from those of a model based on noisy retrieval of the
computed EV. We show that a model based on noisy coding of the individual characteristics
of the lotteries fits our data much better. Moreover, we quantitatively assess the contribution
to the fit of our model from each of three independent types of cognitive noise: noisy encoding
of the value of p, noisy encoding of the value of |X|, and noisy recognition of the value of
points |C| on the response scale. We show that all three sources of noise contribute to the
fit of our model — enough so that the model incorporating all three sources is judged best
even according to a Bayes Information Criterion that penalizes additional free parameters.

The paper proceeds as follows. In section 1, we present the results of our new experiment.
Section 2 then presents and motivates the elements of our baseline model of optimal bidding
on the basis of noisy internal representations. Section 3 derives the predictions of the
theoretical model for the way in which departures from risk-neutral valuations should vary
with the sign of the lottery payoffs, the probability of a non-zero payoff, and the size of the
non-zero payoff. Section 4 then discusses the fit of these theoretical predictions with the data
moments reported in section 1, and compares the fit of our baseline model with that of a
variety of alternative specifications of the cognitive noise, as well as with stochastic versions
of prospect theory. Section 5 considers instead what optimal choice on the basis of noisy
internal representations implies in the case of a binary-choice task like the experiment of
Khaw et al. (2021), and shows why measured risk attitudes should differ depending on the
method of elicitation. Section 6 offers a concluding discussion.

1 The Instability of Risk Attitudes: New Experimental

Evidence

Here we provide additional evidence regarding the stake-dependence of risk attitudes through
a new experimental study. As in previous studies following Tversky and Kahneman (1992),
we elicit certainty-equivalent values for lotteries that are described to experimental subjects,
and map out out the complete fourfold pattern of risk attitudes by presenting lotteries
involving both gains and losses, and both large and small values of p. But we also consider
a range of different stake sizes |X| for each value of p, and vary the stake size from trial to
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trial in a way that is statistically independent of the choices for p and the sign of X. And
we use a larger number of stake sizes than most previous studies, allowing us to show not
only that stake-size effects exist, but that they are roughly log-linear.

Our study differs from most previous work in another important respect as well. Many
studies elicit only a single valuation from each subject for a given lottery; it is assumed that
a given lottery should have a well-defined value under a given person’s preferences, and that
one need only ask once to elicit it. Our theoretical framework assumes instead that responses
to a given decision problem should vary randomly from trial to trial, owing to noise in the
internal representation of the problem; and we are furthermore interested in measuring this
randomness, because our model of optimal adaptation to cognitive noise implies that biases
in the average valuation of a given lottery depend on the degree of noise in the internal
representation. To test such a theory, we need to fit the predictions of our model to data on
both average valuations and the degree of trial-to-trial variation in these valuations. Hence
(as in Khaw et al., 2021) we adopt an experimental procedure from studies of the accuracy of
perceptual judgments, in which a variety of items are presented to the subject for evaluation
in random order, with the same item (in our case, the same lottery) appearing multiple times
over the course of the experiment.8

1.1 Experimental Design

A total of 28 subjects9 participated in an experiment in which they were required to bid
dollar amounts that they were willing to pay to obtain the outcome of a lottery which would
pay an amount X with a probability p, and otherwise zero. The screen interface is shown
in Figure 1. On each trial, the lottery offered is visually represented by a two-color vertical
bar, the two segments of which represent the two possible outcomes. The probability of
each outcome is indicated by a two-digit number inside that segment of the bar (showing
the probability of that outcome in percent); the relative probabilities of the two outcomes
are also indicated visually by the relative lengths of the two differently-colored segments.
The monetary payoffs associated with each outcome (X and 0 respectively) are indicated
by numbers at the two ends of the bar. (Note that the probabilities of both outcomes are
displayed to the subject, with each given equal prominence, though to simplify notation we
refer to the probabilities in any given decision problem by specifying only the probability of
the non-zero payoff.)

A wide range of values of the probability p were used on different trials, corresponding
to the different columns in Figures 2 and 3.10 Five different values of the non-zero payoff
were used: $5.55, $7.85, $11.10, $15.70, and $22.20. (These values were chosen to be roughly
equal distances apart along a logarithmic scale; we did not use integer numbers of dollars,
so as not to encourage subjects to treat the problem as a test of arithmetic ability.) Each of

8An early example of the use of this method in the study of risk preferences is the work of Mosteller and
Nogee (1951).

9These were student subjects recruited at Columbia University, following procedures approved by the
Columbia Institutional Review Board under protocol IRB-AAAQ2255.

10Each subject faced at least 8 of these values of p, but not the complete set, so as to allow more repetitions
of the lotteries presented to a given subject. The particular values of p used with different groups of subjects
are explained in the Appendix, section A.3.
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Figure 1: Example of the screen seen by an experimental subject.

these payoffs could be either positive (a possible gain) or negative (a possible loss); thus on
a given trial, X could be either $22.20 or -$22.20 (as in the case shown in Figure 1). Each of
the possible values of p was paired with all ten of the possible values of X (both positive and
negative), and the same decision problem (X; p) was presented to any given subject 8 times
over the course of the experimental session, but with the problems randomly interleaved.

On each trial, after presentation of the lottery, the subject was required to indicate the
amount that they were willing to pay for the outcome of the lottery, by moving a slider in
a horizontal bar using the computer mouse. In the case of a lottery involving losses, the
subject had to indicate the amount that they were willing to pay to avoid having to pay the
outcome of the lottery. Thus in our discussion below, we refer to the subject’s bid as WTP,
their declared willingness-to-pay.11 As shown in Figure 1, the dollar bid implied by a given
slider position was shown on the screen. We used this method of elicitation of subjects’
valuations, rather than the commonly used multiple-price-list procedure, because it allowed
subjects to give a precise response rather than only indicating an interval. The fact that
subjects’ responses were not exactly the same on multiple repetitions of the same decision
problem is not a disadvantage of the procedure in our case; the variability of trial-by-trial
responses is actually one of the things that we wish to measure, rather than being regarded
as a nuisance. Subjects’ choices were incentivized by selecting one of their trials at random
at the end of the experiment to be the one that mattered, and then conducting a BDM
auction (Becker, DeGroot, and Marschak, 1964) in which the subject’s bid on that trial was
compared with a random bid chosen by the computer (independent of the subject’s bid).12

11In the case of a lottery involving losses, we define WTP as the negative of the amount indicated by the
subject’s slider, so that in all cases WTP represents an elicited certainty-equivalent value of the lottery.

12The incentives created by this procedure are discussed further in the Appendix, sections A.1 and A.2.
The importance of presenting choices involving real as opposed to merely hypothetical payoffs, especially for
the measurement of stake-size effects, is illustrated by Holt and Laury (2002, 2005).
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On some trials, subjects submit a bid of zero (the leftmost position of the slider).13 Since
a subject should never be genuinely indifferent between the lottery offered and zero for sure
(the lottery either clearly dominates zero, in the case of a random gain, or is clearly dominated
by zero, in the case of a random loss), we interpret these responses as a subject declining to
bid, rather than a considered bid that happens to be equal to zero. The trials on which the
subject declines to bid are discarded in the analysis below of subjects’ willingness-to-pay.
(See section 2.5 for our theoretical interpretation of the zero-bid trials.)

1.2 Results

Figures 2 and 3 present statistics regarding subjects’ reported willingness-to-pay (WTP ) for
each of 110 different lotteries: 11 different values of p (the eleven columns), and 5 different
values of |X| (the horizontal axis of each panel), in both the case of random gains (the top
panel of each column) and the case of random losses (the lower panel of each column). For
each lottery, subjects’ bids are described in terms of the implied value of log(WTP/EV ),
where the expected value of the lottery is given by EV = pX. This can be interpreted as
a measure of the relative risk premium in the case of lotteries involving random losses; the
negative of this quantity measures the relative risk premium in the case of lotteries involving
gains. Risk-neutral valuations (or perfectly accurate bidding, given the objective assumed
in equation (2.5) below) would correspond to a value of zero on every trial, for each lottery
(X; p). Thus the statistics presented in the figures measure the degree of discrepancy with
respect to this benchmark, for those trials on which the subject submits a (non-zero) bid.

In the case of each lottery, the dot indicates the median value (across the 28 subjects) of
the subject-level mean log(WTP/EV ). The vertical whiskers mark an interval ±s around
the mean, where s is the median value of the subject-level standard deviation of logWTP .14

Note that we follow authors like Tversky and Kahneman (1992) in stressing (and fitting our
models to) the subjects’ median behavior, without modeling the outliers.15 But unlike many
studies in that tradition, however, we are interested in the degree of subject-level response
variability, across repeated presentations of the same lottery to the same subject, which we
use to identify the degree of noise in the “average subject’s” cognitive processes.

The horizontal line in each panel indicates the prediction of an OLS regression model
(with separate coefficients for each panel), the “general affine model” discussed further below.
Figure 2 shows the distributions of bids in the case of lotteries with relatively low values of
p (between 0.05 and 0.40), while Figure 3 shows the corresponding distributions in the case
of larger values of p (between 0.50 and 0.95).

Several features of our data are immediately evident from these figures. First, we see
that our experiment confirms the fourfold pattern of risk attitudes documented by Tversky
and Kahneman (1992): subjects’ bids are for the most part risk-averse in the case of risky

13This occurs about 1.2 percent of the time overall, though more frequently when the EV of the lottery is
small. See the Appendix, section A.4, for more information about these bids.

14See Appendix section F.2 for further details of the computation of the data moments.
15Thus our hypothesis of optimal adaptation to the variance of cognitive noise should be understood to be a

hypothesis that the median responses are close to being optimal, rather than that every individual subject’s
responses must be. It is a “wisdom of the crowd” hypothesis, like Muth’s (1961) “rational expectations
hypothesis.”
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Figure 2: The distribution of values for WTP as a multiple of EV , for lotteries with different
values of p (the different columns) and |X| (the horizontal axis within each panel). The top
panel in each column refers to lotteries involving random gains (X > 0), and the bottom
panel to lotteries involving random losses (X < 0).

gains when p is 0.30 or larger (0 < WTP < EV ), and in the case of risky losses when p is
0.10 or less (WTP < EV < 0), but are instead mostly risk-seeking in the case of risky gains
when p is 0.10 or less (0 < EV < WTP ), and in the case of risky losses when p is 0.30 or
larger (EV < WTP < 0).

Yet in addition, we also see a consistent stake-size effect: in each of the 22 panels, the
geometric mean value of WTP/EV becomes smaller (or at least becomes no larger) the
larger the value of |X|. In the transitional case (with respect to the Tversky-Kahneman
pattern) where p = 0.2, this means that for small stake sizes we observe risk-seeking bidding
in the gain domain but risk-averse bidding in the loss domain, while for larger stake sizes we
instead observe risk-averse bidding in the gain domain and risk-seeking bidding in the loss
domain (the “alternative fourfold pattern” of Scholten and Read, 2014).16 But the sign of
the stake-size effect is the same (in both the gain and the loss domains) for all of the other
values of p as well, though stake-size effects are most dramatic in the case of the smallest
values of p (as is consistent with previous findings).

We also observe that the stake-size effects in each panel are approximately log-linear: the
mean value of log(WTP/EV ) for each lottery comes close to falling on the regression line for
that panel, meaning that (fixing p and the sign of X) mean log(WTP/EV ) is a decreasing
linear function of log |X|. Moreover, not only is the slope of this linear relationship negative
(or at least non-positive), it is never more negative than -1, so that increasing the stake size
(for given p) increases the mean log |WTP |, as one might expect.

16The same alternative fourfold pattern is observed, though in a less pronounced way, when p = 0.4, since
in this case the mean relative risk premium changes sign for the smallest value of |X|. We can also observe
the relative risk premium changing sign, in the direction predicted by the alternative fourfold pattern, for
the cases p = 0.1 and p = 0.25 in the data of Gonzalez and Wu (2022). See Figure 9 in Appendix section I.
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Figure 3: The same information as in Figure 2 (and using the same format), but now for
probabilities p ≥ 0.50.

Finally, we observe not only that subjects do not bid in accordance with risk-neutral
valuations on average; their bids for the same lottery vary from trial to trial. This within-
subject variability of responses is non-trivial in the case of all of the lotteries (at least for the
average subject), but it is especially notable when the probability p of the non-zero payoff is
small. This is worth noting, because stake-size effects are also largest when p is small; and
under the theory that we propose, it is not an accident that these two phenomena are most
visible in the same cases.

1.3 Log-Linear Stake-Size Effects

Visual inspection of Figures 2 and 3 suggests a downward-sloping log-linear relationship
betweenWTP/EV and the size of the monetary payoffX in each of the panels, and moreover
that this relationship is essentially the same regardless of the sign of X. Here we present
statistical evidence that this is indeed an accurate characterization of our average subject’s
responses. We distinguish between a series of progressively more restrictive statistical models
of our subjects’ behavior. In the most general (purely atheoretical) characterization of
the data, we suppose that for each lottery (X; p) there is a distribution of values for the
willingness-to-pay of the form

log
WTP

EV
∼ N(m(p,X), v(p,X)). (1.1)

In what we call our “unrestricted model,” there are thus two parameters, m(p,X) and
v(p,X), to be estimated for each lottery, with no restrictions linking the parameters for any
given lottery to those for any other lotteries. Our “symmetric model” instead imposes the
restrictionsm(p,X) = m(p,−X) and v(p,X) = v(p,−X), so that the distribution of values
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for WTP/EV depends only on p and |X|: it is the same for random losses as for random
gains.

Alternatively, we can restrict the general model by assuming that for any p and any sign
of X, m(p,X) be an affine function of log |X|. Our “general affine model” allows the slope
and intercept for each value of p differ depending whether gains or losses are involved; this
is the characterization of the data assumed in fitting the regression lines shown in each of
the panels of Figures 2 and 3. Our “symmetric affine model” imposes all of the restrictions
of both the symmetric model and the general affine model, so that

m(p,X) = αp + βp log |X|, (1.2)

regardless of the sign of |X|, for coefficients (αp, βp) that depend only on the value of p.
The “bounded symmetric affine model” imposes all of these restrictions, plus the further
restriction that −1 ≤ βp ≤ 0 for all p.

We also consider a family of models that impose even tighter restrictions on the values
of the {βp}. For each possible threshold p∗, we consider a model that imposes all of the
restrictions of the bounded symmetric affine model, and in addition requires that βp = 0 for
all p ≥ p∗. The most restrictive case is the “no stake effects” model that requires that βp = 0
for all p. Consideration of more restrictive models in which βp is required to equal zero for
all large enough p allows us to obtain quantitative measures of the importance of allowing
for stake effects in order to match our data.

Finally, we consider models in which m(p,X) is allowed to be a non-linear function of
log |X|, but still one with fewer free parameters than our (otherwise unrestricted) “symmetric
model.” Specifically, we consider special cases of the symmetric model in which m(p,X) is
a quadratic or cubic function of log |X|; these are the models called “symmetric quadratic”
and “symmetric cubic” in Table 1.17

Table 1 reports measures of the goodness of fit of each of these models to the data on
the distribution of bids of the average subject. Given that each of the models assumes a log-
normal distribution of responses (1.1), the likelihood of the data under any specification of
the model parameters is a function of 220 data moments: the quantities (m̂j, v̂j) for each of
the 110 possible lotteries (pj, Xj). Here for each lottery j, m̂j is the mean and v̂j the variance
of the sample distribution of values for log(WTP/EV ). The values of these moments that
we attribute to the average subject are the ones plotted in Figures 2 and 3. The likelihood
also depends on Nj, the number of trials on which lottery j is evaluated. (See the Appendix,
section F, for further details.) The parameters of each model are chosen to maximize the
likelihood of these data moments, subject to the restrictions specified above.

The first column of the table reports the maximized value of the log likelihood (LL)
for each model. As one would expect, each successive additional restriction on the model
reduces the optimized value of LL. The second column instead reports the value of the Bayes
Information Criterion (BIC) for each model, defined as BIC ≡ −2LL+

∑
k logNk, where for

each free parameter k of the model, Nk is the number of observations for which parameter k
is relevant.18 This is a measure of goodness of fit which (unlike LL alone) penalizes the use

17To reduce the size of the table, we do not also present statistics for the asymmetric variants of these
models, but only the ones that assume a common relationship in both gain and loss domains.

18See, for example, Burnham and Anderson (2002), p. 271.
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Model # params LL BIC K
unrestricted model 220 -1503.0 3334.7 1
symmetric model 110 -1525.5 3297.9 9.8× 107

symm. cubic 99 -1526.7 3347.6 0.0016
symm. quadratic 88 -1529.6 3312.3 73,000
general affine model 154 -1513.2 3331.0 6.4
symmetric affine model 77 -1531.7 3275.3 7.9× 1012

bounded symm. affine 76 -1531.8 3271.2 6.1× 1013

βp = 0 for p ≥ 0.5 71 -1534.0 3257.7 5.3× 1016

βp = 0 for p ≥ 0.3 69 -1537.0 3256.7 8.7× 1016

no stake effects 66 -1546.8 3264.5 1.8× 1015

cognitive noise model 3 -1602.5 3236.3 2.3× 1021

Table 1: Measures of the goodness of fit of alternative statistical models of the average
subject’s responses. For each model, the number of free parameters (# param), the log
likelihood (LL), and the Bayes Information Criterion (BIC) are reported, as well as the
Bayes factor K by which each model is preferred to the unrestricted model.

of additional free parameters, making it possible for a more restrictive model to be judged
better (as indicated by a lower BIC). The final column provides an interpretation of the BIC
differences between the different models, by reporting the implied Bayes factor K by which
the model in question should be preferred to the unrestricted model (used as the baseline).19

While the log likelihood is lower for more restrictive versions of the model, the BIC can
also be lower, if the greater parsimony of the more restrictive model outweighs the somewhat
poorer fit to the individual data moments. This is what we find when we move from the
unrestricted model to the bounded symmetric affine model: while LL is reduced (by 28.8
log points), the BIC nonetheless falls (by 63.5), corresponding to a Bayes factor in favor
of the more parsimonious model of more than 60 trillion. This is also a lower BIC (and
correspondingly a larger Bayes factor) than in the case of any of the less-restricted models,
such as the general symmetric model, or the quadratic or cubic models.20 Thus our data
are more consistent with a characterization of the form assumed by the bounded symmetric
affine model.

When we consider additional restrictions on the βp coefficients, we find that the BIC can
be further reduced (and the Bayes factor corresponding increased) by imposing the restriction
βp = 0 for all large enough values of p; this is illustrated in the table for the cases in which
the cutoff probability is either 0.3 or 0.5, and also for the case in which we require βp to be
zero for all p. The largest Bayes factor is obtained if we set βp = 0 for all p ≥ 0.3. The fact
that the Bayes factor is larger for this model that for the one with no stake-size effects (as
indeed would also be true in the case of a higher cutoff, such as 0.5) means that we do find
statistically significant stake-size effects, with the same sign as those reported by authors in

19The Bayes factor K in favor of model M2 over model M1 is given by logK = (1/2)[BIC(M1)−BIC(M2)].
See Burnham and Anderson (2002), p. 303.

20The cubic does not even have as low a BIC as the unrestricted model: though it is more parsimonious,
the reduction in the log-likelihood owing to the restrictions outweighs the reduction in the penalty for free
parameters. As a result, the Bayes factor in favor of the restricted model is less than 1 in this case.
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the tradition started by Markowitz (1952) — i.e., that WTP/EV is a decreasing function
of |X|, at least in the case of all small enough values of p.

Thus the best atheoretical characterization of our data, among those considered here, is
one in which WTP/EV is a log-linear decreasing function of |X|, with a slope that depends
on p and is most clearly negative in the case of low values of p. This relationship is essentially
the same regardless of whether the lotteries involve gains or losses, and the elasticity βp is
always between 0 and -1. We show below that all of these regularities are predictions of a
model of optimal bidding in the presence of cognitive noise.21

2 AModel of Endogenously Imprecise Lottery Valuation

We now show that the features of our data summarized above can be explained by a model
according to which subjects’ responses (on those trials in which they choose to bid) are
the ones that maximize the mathematical expectation of their financial wealth, under the
constraint that these responses must be based on an imprecise mental representation of the
properties of the lottery that they face on a given trial, rather than upon its actual (exact)
characteristics. We begin by explaining our assumptions about the nature of the imprecise
mental representation of the possible outcomes associated with a given lottery, and then
analyze the response rule that would be optimal under the constraint that it be based on a
representation of this kind.

2.1 Imprecise Coding of Monetary Amounts

In our experiment, the decision problem presented on a given trial is specified by two
numbers, the non-zero monetary outcome X and the probability p with which it will be
received. We assume that each of these two quantities has a separate mental representation;
the decision problem is mentally represented by two real numbers, rx and rp respectively,
with rx depending only on the value of X and rp depending only on the value of p. We
discuss first the encoding of the monetary amount, as this makes use of the same hypothesis
that is explored (and tested) in our previous paper.

In Khaw et al. (2021), we model only the noisy coding of the monetary amount X, as the
probability p is the same on all trials, and we treat the constant parameter p as understood
precisely. We assume also that no mistake is made about the sign of X — that is, that the
sign of X is encoded with perfect precision — but that the unsigned monetary amount |X| is
encoded probabilistically. Here we again make the same assumption, and as in the previous
paper, we assume that on each trial, the mental representation rx is an independent draw
from a Gaussian distribution

rx ∼ N(log |X|, ν2
x(rp)), (2.1)

where the variance ν2
x may depend on rp, the perception of how likely it is that the monetary

amount will be received (and thus, how much the monetary amount matters), but is assumed

21The log likelihood and corresponding BIC statistic for that structural model are also shown in Table 1,
on the bottom line. See further discussion below.
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to be independent of the magnitude |X|. In our previous paper, ν2
x was treated simply as a

parameter (possibly differing across subjects); but it should be recalled that in our previous
experiment, the probability p was the same on all trials. Since the probability varies (over a
considerable range) in the current experiment, we allow for the possibility that the precision
of encoding of the monetary amount may depend on it.22

The assumption that the mean of the distribution (2.1) grows in proportion to the
logarithm of |X|, while the variance is independent of |X|, implies that the degree to which
different monetary amounts can be accurately distinguished on the basis of this subjective
representation satisfies “Weber’s Law”: the probability that a (positive) quantity X2 would
be judged larger than a quantity X1 (also positive), on the basis of a comparison between the
noisy subjective representations of the two quantities, is an increasing function of their ratio
X2/X1, but independent of the absolute size of the two amounts.23 There is reason to believe
that the discriminability between nearby numbers decreases in approximately this way as
numbers become larger; the regularity is well-documented for numerosity perception in the
case of visual or auditory stimuli (for example, judgments as to whether one field of dots
contains more dots than another),24 and there is also evidence for a similar pattern in the
case of quick judgments about symbolically presented numbers, or symbolically presented
numbers that must be recalled after a time delay.25 For example, Dehaene and Marques
(2002) ask subjects to recall the prices of items that they have previously been told, and
find similar percentage errors in prices of higher- and lower-priced goods; this is consistent
with a model in which what is later retrieved is a noisy semantic representation of the
monetary amount that the subject had previously been told, with an error structure of the
kind specified in (2.1).

2.2 Imprecise Coding of Probabilities

In our experiment, the probability p also varies from trial to trial, and must be monitored
in order to decide how much to bid for a particular lottery. Hence it is natural to assume an
imprecise internal representation of this information as well. We suppose that on each trial,
the mental representation rp is an independent draw from a Gaussian distribution

rp ∼ N
(
log

p

1− p
, ν2

z

)
, (2.2)

where ν2
z is independent of p. The assumption that the mean of this distribution is given

by the log odds of the non-zero monetary outcome means that the mean might in principle
take any value on the entire real line, as in the case of our hypothesis (2.1), despite the fact
that p must belong to the interval [0, 1].

22In section 4.2, we consider a simpler model in which ν2x is exogenously fixed, regardless of the probability
that the lottery pays off. This variant model fits our data less well, as shown in Table 3 below.

23Note that (2.1) implies that the probability that rx2 > rx1 is an increasing function of logX2 − logX1.
This is essentially the interpretation of Weber’s Law (in other sensory domains) proposed by Fechner ([1860]
1966).

24See Krueger (1984), and other references cited in Khaw et al. (2021).
25See Moyer and Landauer (1967), and other references discussed in Dehaene (2011).
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There are a variety of reasons for choosing the specification (2.2) for the form of the
encoding noise, following a suggestion of Khaw et al. (2021).26 It implies that the degree
to which the relative odds of the two outcomes in two similar lotteries can be clearly
distinguished depends on how different the log odds ratio is in the two cases; thus people
should more accurately distinguish a 5 percent probability from a 10 percent probability
than they distinguish a 40 percent probability from a 45 percent probability (even though
there is a difference of 5 percent in each case). This assumption is consistent with the
finding of Frydman and Jin (2023) that people are more accurate at judging the relative
size of two small fractions (or two fractions near 1) than they are at judging the relative
size of two fractions that are both close to 1/2.27 Eckert et al. (2018) further find that the
discriminability of two different relative frequencies (p1/1−p1 versus p2/1−p2) is increasing
in the “ratio of ratios,” or equivalently, in the difference between the log odds in the two
cases, just as our model would predict.

Our specification is also consistent with the findings of Enke and Graeber (forthcoming),
who show that subjective uncertainty about the certainty-equivalent value of lotteries like
the ones in our experiment varies as an inverse-U-shaped function of the value of p (that
is, higher for intermediate values of p than for either very small or very large values). If we
interpret the subjective uncertainty about lottery values in their experiment as a consequence
of uncertainty about the value of p implied by a given noisy internal representation rp,

28 then
this result suggests that the way in which the conditional distribution of rp varies with p
makes nearby values of p more difficult to distinguish in the case of intermediate values of
p. This is in fact implied by (2.2), given the nature of the log odds transformation.

2.3 Imprecise Response Selection

Our baseline model allows for a further type of cognitive noise: rather than assuming that
the DM is able to optimally choose their expressed WTP as a function of the noisy internal
representations (rp, rx), we also allow for imprecision in the DM’s ability to recognize that
a particular monetary bid C corresponds to a particular subjective sense of the value
of the lottery. As with the “expression theory” of Goldstein and Einhorn (1987), our
theory of how a monetary value is assigned to a lottery involves three distinct cognitive
operations: (a) encoding of the stated lottery characteristics by an internal representation
r ≡ (rp, rx, sign(X)); (b) evaluation on the basis of the internal representation, producing
a subjective sense of the value of the lottery; and (c) expression of that valuation using a
particular response scale — here a monetary bid corresponding to a particular slider position.
It is the allowance for imprecision in stage (c) that results in the possibility that the certainty

26As discussed in Appendix section C, this model of imprecise representation of probabilities is consistent
with evidence that Zhang and Maloney (2012) review from perceptual studies. See also the arguments for
this model of imprecise coding of probabilities in Vieider (forthcoming).

27It is also consistent with the suggestion by Tversky and Kahneman (1992), that people exhibit
“diminishing marginal sensitivity” to information about probabilities as the probability moves farther from
either of two “reference points,” one at zero and the other at a probability of 1. Gonzalez and Wu (1999)
provide further discussion and experimental evidence.

28See the explanation in the Appendix, section C.2, of how our model can be used to explain the results
of Enke and Graeber.
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equivalents using different procedures may be inconsistent.29

We suppose that the DM associates their subjective evaluation of the lottery with a
particular overt response on the basis of an imprecise internal representation of the value
corresponding to each of the possible bids C. We suppose that for each potential bid
magnitude |C| > 0, the DM has a noisy representation rc of its value; the DM then chooses
the bid (slider position) corresponding to some value rc = f(rp, rx) that depends on the
internal representation of the lottery characteristics. (The sign of the bid is always the same
as the sign of X: this is enforced by our experimental protocol, and we assume no wish by
the DM to express anything else.)

While we assume a non-degenerate distribution of possible values of rc for any given bid
magnitude |C|, it makes sense to suppose that the DM is aware of the fact that the ordering
of positions on the slider corresponds to the ordering of the values associated with those
bids. A simple way of ensuring this is to suppose that

rc = log |C| + ϵ, ϵ ∼ N(0, ν2
c ), (2.3)

where the scalar quantity ϵ varies randomly from trial to trial, but is the same for all |C| on
a given trial. Note that (2.3) is the same kind of model of imprecision in the representation
of monetary amounts as we assume in the case of the lottery payoff magnitude |X|, and can
be justified on similar grounds. This implies that on any given trial, the DM’s response C is
a monetary amount with the same sign as X and a magnitude that is an independent draw
from a log-normal distribution,

log |C| ∼ N(f(rp, rx), ν
2
c ). (2.4)

Despite the unavoidable randomness of the response specified in (2.4), we assume that
the target f is optimal conditional on the internal representation r of the lottery currently
under consideration. This means that f is chosen so as to minimize the expected loss30

E[(C − pX)2 |r], (2.5)

when the joint distributions of p,X, r, and C are determined by prior distributions for p and
X (discussed below), and the conditional distributions specified in (2.1), (2.2), and (2.4).
Note that optimality implies that the target f (but not the DM’s actual bid C) should be a
deterministic function of r.

In the special case of zero response noise (νc = 0), the optimal bidding rule is simply

C = E[pX |r], (2.6)

as assumed in the simple example of a noisy-coding model discussed in the Introduction.
The DM’s response would be the mean of their posterior distribution over possible values
of EV , conditional on the internal representation r, as often assumed in Bayesian “ideal

29See further discussion in section 5 and in Appendix section E.2.
30We show in the Appendix, section A.2, that the incentives provided by the BDM auction at the end of

our experiment imply that the increase in the DM’s expected financial wealth from bidding on a lottery is
equal to a constant minus a positive multiple of the expression (2.5). Thus an assumption that the bidding
rule minimizes (2.5) is equivalent to assuming that it maximizes the DM’s expected financial wealth.

16



observer” models of perceptual estimates (e.g., Petzschner et al., 2015; Wei and Stocker,
2015, 2017). More generally, however, this will not be true. Note that we do not, as in some
models of response noise, assume that the DM chooses a target that would be optimal in the
absence of such noise, even though the actual response differs from the target owing to the
noise. We instead assume that the function f(rp, rx) is optimized for the particular degree
of cognitive noise to which the DM is subject — taking into account both the encoding noise
in the internal representations and the fact that the DM’s bid will involve response noise (if
νc > 0).

2.4 Endogenous Precision

In (2.1), we allow the precision ν−2
x of the internal representation of the monetary amount |X|

on a given trial to depend on rp, the internal representation of the probability of occurrence
of that nonzero outcome. The idea is that when the nonzero outcome is regarded as less
likely to occur (on the basis of what can be inferred about this likelihood from the internal
representation rp), there should be less reason to exert mental resources in representing the
nonzero outcome very precisely. The idea that encoding and/or retrieval of recently observed
information can be variable in precision in this way is illustrated by a study of visual working
memory by van den Berg and Ma (2018). These authors show that the accuracy with
which experimental subjects can answer questions about what they were shown at various
locations varies depending on the ex ante probability that the subject would be asked about a
particular location, and interpret their results as reflecting endogenous variation in precision
so as to economize on cognitive resources.

We now specify more precisely the nature of this dependence. We assume that greater
precision of the internal representation is possible at a cost; specifically, we assume a psychic
cost of representation of a monetary amount that is given by

κ(νx) = Ã · ν−2
x , (2.7)

where Ã > 0 is a parameter indexing the cost of greater precision, in the same units as the
losses (2.5) are expressed.31 The assumption of a cost that is linear in the precision follows
the model of endogenous precision in visual working memory that is fit to experimental data
by van den Berg and Ma (2018).32

Our complete hypothesis, then, is that a precision parameter νx(rp) is chosen for each
possible probability representation rp, and a subjective valuation f(r) is chosen for each
complete representation r of the presented lottery, so as to minimize total expected losses

E[(C − pX)2 + κ(νx(rp))], (2.8)

where C is an independent draw from the distribution (2.4), and the expectation is over the
joint distribution of p,X, rp, rx, and C, under the specified prior distributions.33

31The losses measured by (2.5) can in turn be converted into an average monetary loss in the way explained
in the Appendix, section A.2.

32The assumption of a cost of precision that is linear in precision is also often used by economic theorists
on the ground of its tractability; see, e.g., Myatt and Wallace (2012). We provide a possible cognitive process
interpretation of the cost function in the Appendix, section B.

33The problem can be separately defined for each of the possible values of sign(X). Under an optimal
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The model provides a complete specification of the predicted joint distribution of these
variables, as a function of four parameters (µz, σz, µx, σx) that specify the distribution of
possible lotteries, and three additional free parameters (Ã, νz, νc) that specify the degree of
imprecision in internal representations. (The latter three parameters specify the degree of
imprecision in the representation of the quantities |X|, p, and |C| respectively.) Since the
former set of parameters are required to fit the distribution of values of p and X used in the
experiment, only the latter three parameters are “free” parameters with which to explain
subjects’ responses, in the sense that we have no independent information about their values
apart from what we need to assume to rationalize subjects’ responses.

2.5 Declining to Bid

As already noted, on a few trials subjects submit bids of $0, which we interpret as declining
to bid on that lottery. We suppose that the DM’s decision actually has two stages: a first
decision whether to bid at all, followed by a second decision about which (non-zero) bid to
make, only in the case that the first decision was to bid. We further suppose that the decision
in each stage is optimized to serve the DM’s overall objective, subject to the constraint that
each decision must be made on the basis of an imprecise awareness of the precise decision
problem that is faced on that trial. In such a two-stage analysis, one of the benefits of
deciding in the first stage not to bid will be avoidance of the cognitive costs associated with
having to decide what bid to make in the second stage.34 The cognitive costs associated with
undertaking a second-stage decision should include the cost κ(νx) of encoding (or retrieving)
the magnitude of the monetary payoff with a certain degree of precision, but they could
include other costs as well, that have not been specified above because they do not affect
our calculation of the optimal second-stage bidding rule. One piece of evidence in support
of the view that a zero bid avoids cognitive costs is our observation that subjects respond
more quickly on average on the zero-bid trials.35

In this paper, we model only the “second-stage” problem, i.e., how the subjects bid
on those trials where they choose to make a non-zero bid. This is done taking as given
the probability that the DM will find themselves having to choose a non-zero bid in the
case of a particular lottery (X; p), as a consequence of the first-stage decision rule.36 The
prior distribution that is relevant for the “second-stage” problem modeled above (specified
mathematically by (2.2) and (2.1)) is not the frequency distribution with which the experimenters
present different lotteries (X; p), but rather the frequency distribution with which the
different lotteries become the object of a second-stage decision. This depends both on the
distribution of lotteries chosen by the experimenter and on the first-stage decision rule.
However, in our quantitative evaluation of the model below, we fit the parameters of the
assumed prior distribution to the empirical frequency with which non-zero bids are made

solution, as discussed further below, the functions νx(rp) and f(rp, rx) are both independent of sign(X); for
this reason, we have suppressed sign(X) as an argument of the function νx(rp).

34See Khaw et al. (2017) for an example of a complete model of a two-stage decision of this kind, in a
different context.

35The average response time (RT) on the 175 trials on which zero bids were submitted was 2.61 seconds,
while the average RT on the other trials was 3.83 seconds (nearly 50 percent longer).

36See the Appendix, section A.4, for further discussion.
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on different lotteries (X; p), and not to the frequency distribution of lotteries chosen by the
experimenters. Given this, it is not necessary for us to model the DM’s first-stage decision
in order to derive quantitative predictions from our model of the second-stage decision.

2.6 Priors for the Optimal Adaptation Problem

The objective (2.8) that the DM’s cognitive processing is assumed to minimize depends on
the prior distributions from which the parameters (X; p) specifying the decision problem are
expected to be drawn. In our numerical work here, we assume that regardless of the sign of
X, the prior distribution for possible values of |X| is of the form

log |X| ∼ N(µx, σ
2
x), (2.9)

for some parameters µx, σx. Apart from being mathematically convenient and parsimoniously
parameterized, a prior of this form is found to fit the behavior of most subjects fairly well
in Khaw et al. (2021).37

The prior distribution for p is assumed instead to be of the form

log
p

1− p
∼ Uniform [µz −

√
3σz, µz +

√
3σz], (2.10)

for some parameters µz, σz, which again indicate the mean and standard deviation of the
prior.38 Also, under the prior p and |X| are distributed independently of one another (as is
true in our experiment); and the joint distribution of (p, |X|) is the same regardless of the
sign of X (as is also true in our experiment).39

Note that in our theoretical analysis below, this assumed to be the joint distribution
from which (p, |X|) are drawn conditional on the DM having decided to bid. Because the
probability of subjects’ declining to bid is not independent of the values of p and X on
that trial, the prior under which (2.8) is hypothesized to be minimized is the distribution
of lottery characteristics conditional on the DM bidding, rather than the distribution of
lotteries presented by the experimenter. In our numerical analysis of the model’s predictions,
we estimate the values of the parameters (µx, σx, µz, σz) for the set of lotteries on which non-
zero bids are made, rather than using the parameters for the distribution from which the
lotteries in the experiment were drawn.

3 Consequences of Optimal Adaptation to Cognitive

Noise

Here we derive the predictions of the model in section 2 for the data moments displayed in
Figures 2 and 3. Note that we are interested simultaneously in explaining the observed biases

37See also the replication of that work by Barretto-Garćıa et al. (2023).
38A truncated uniform distribution better fits the set of values for the odds ratio used in our experiment

than a Gaussian distribution would. Note, however, that we do not literally sample the values used from a
uniform distribution; only a discrete set of values of p are used, as shown in Figures 2 and 3.

39We need not specify a prior probability of encountering one sign of X or the other, since this variable is
assumed to be known with perfect precision, and no issue of Bayesian decoding of an imprecise representation
arises.
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(systematic differences between average WTP and the actual EV of the lottery) and the
variability of the valuations of a given lottery. According to our theory, these two aspects of
the data should be intimately connected; in the absence of random noise (the case in which
Ã = νz = νc = 0), our model predicts that we should observe WTP = EV on each trial.
Hence the same small set of parameters must explain both features of the data.

3.1 Implications of Logarithmic Encoding of Monetary Payoffs

We begin with a set of predictions that follow from the specification (2.1) for the noisy
internal representation of monetary payoffs, the specification (2.4) for the errors in response
selection, and the specification (2.9) for the distribution of payoff values under the prior for
which the DM’s bidding rule f(r) is optimized. These predictions are independent of what
we assume about the internal representation of probabilities, the prior over probabilities, or
the way in which the precision with which monetary payoffs are encoded may depend on
rp. They do, however, depend on our also assuming that the bidding rule is optimized to
minimize mean squared error under the prior.

Under these assumptions, the posterior distribution for |X| conditional on the internal
representation r will be log-normal, and the joint distribution of (log |X|, log |C|) conditional
on r will be bivariate normal. The algebra of log-normal distributions allows us to show that
the Bayesian posterior mean estimate of the magnitude |X| will be of the form

E[|X| |r] = exp((1− γx(rp))µ̄x + γx(rp) · rx), (3.1)

where

γx(rp) ≡ σ2
x

σ2
x + ν2

x(rp)
(3.2)

is a quantity satisfying 0 < γx(rp) < 1, that depends on the degree of precision with which
|X| is encoded in the case of that value of rp, and

µ̄x ≡ µx +
1

2
σ2
x

is the logarithm of the prior mean of |X|. In the case of perfectly precise encoding, γx = 1,
and the mean estimate of |X| is exactly the true value of |X|; in the limit of extremely
imprecise encoding (ν2

x → ∞), γx → 0, and the mean estimate approaches the the prior
mean exp(µ̄x), regardless of the noisy internal representation rx.

The optimal bidding rule can then be shown to be40

f(r) = log E[p |rp] + (1− γx(rp))µ̄x + γx(rp)rx − 3

2
ν2
c . (3.3)

This has a fairly simple interpretation. In the absence of response noise, the optimal Bayesian
decision rule would be f = log E[pX |r], and the latter quantity can be written as the sum
of the logarithm of the posterior mean estimate of p (given rp) and the logarithm of the
posterior mean estimate of |X|, given by (3.1). In the case of response noise, the median bid

40See the Appendix, section D.2, for details of the calculation.
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is shaded downward (in absolute size) by a constant percentage that depends on the value
of ν2

c , to take account of the multiplicative error in bidding.
This rule, together with (D.3), and the encoding rules that specify the distribution of

r for a given lottery, can then be used to predict the distribution of values for the ratio
WTP/EV for each lottery. Note in particular that regardless of what we assume about the
internal representation of the probability p, and about the way in which ν2

x depends on rp,
the model implies that

E[log(WTP/EV ) |p,X] = αp + βp log |X|, (3.4)

for some coefficients αp, βp that can depend on p. These coefficients should be the same
regardless of the sign of |X|, so that the plots in the upper and lower rows of Figures 2 and
3 should look the same, as to a large extent they do.41

The model also implies that the mean value of log(WTP/EV ) should be an affine function
of log |X|, with a negative slope, satisfying the bounds −1 < βp < 0. Specifically, the
predicted slope is given by

βp = −(1− γp), (3.5)

where γp is the mean value of γx(rp), averaging over the distribution of internal representations
rp associated with a particular true probability p.) This negative (but boundedly negative)
slope is also what we observe in Figures 2 and 3, for all values of p.

Finally, the model implies that the log-linear relationship (3.4) should hold no matter
how large the variations in log |X| may be. In our experiment, |X| varies only by a factor
of 4 between the smallest and largest values used in the experiment; as a result, the sign
of the mean relative risk premium is independent of |X|, in each of the panels of Figures 2
and 3. However, our theoretical model implies that if a wider range of values of |X| were
used, the sign of the relative risk premium should be different for very small |X| and very
large |X|. This should be true in principle for all values of p, but it should be particularly
easy to observe the sign change in the case of small p (since these are the cases in which
βp is most negative, for reasons discussed below). Thus our model also predicts that in
the case of lotteries in which the probability of a non-zero outcome is small, if X is varied
over a wide enough range, one should observe a positive relative risk premium (risk-averse
valuations) in the case of a large enough potential gain, or a small enough potential loss,
but should observe a negative relative risk premium (risk-seeking valuations) in the case of
a small enough gain or a large enough loss. Thus our model predicts the alternative fourfold
pattern of Markowitz (1952) and Hershey and Schoemaker (1980).

3.2 The Optimal Precision of Magnitude Encoding

We have derived above the optimal log-normal distribution of bids C in the case of internal
representations (rp, rx), in the case of any given assumption about the precision of encoding
of information about both p and |X|, including an arbitrary assumption about how ν2

x may
depend on rp. We now consider how an efficient coding system, subject to a linear cost
of precision of the kind proposed above, would actually require the precision of magnitude

41It is not only the coefficients αp and βp that should be the same; the model implies that the entire
distribution of WTP/EV should be the same function of p and |X|, regardless of the sign of X.
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encoding to vary with rp. This allows us to determine how the coefficients (αp, βp) in (3.4)
should depend on p.

Under any assumption about the function ν2
x(rp), we can compute the Bayesian posterior

over possible decision problems (X; p) conditional on a given internal representation (rp, rx).
Given this together with the distribution of bids implied by (3.3), we obtain a joint distribution
for (p,X,C) conditional on the internal representation, and hence a conditional distribution
for the value of the quadratic loss (C − pX)2. This allows us to compute the conditional
expectation (2.5).

Integrating this over possible realizations of rx (for a given value of rp), we obtain an
expression of the form42

E[(C − pX)2 |rp] = Z(rp) − Γφ(rp) · exp(γx(rp)σ2
x), (3.6)

where Γ > 0 is a constant; the functions Z(rp), φ(rp) are each positive-valued, and defined
independently of the choice of ν2

x(rp); and the function γx(rp) depends on ν2
x(rp) in the way

indicated in (3.2). Thus equation (3.6) makes explicit the way in which the expected loss
conditional on a given value of rp depends on the choice of ν2

x(rp). We see that the expected
loss is a decreasing function of γx(rp), and hence an increasing function of the choice of
ν2
x(rp). If there were no cost of precision, it would be optimal to choose ν2

x(rp) as small as
possible, for each value of rp.

Taking into account the cost of precision (2.7), we instead want to choose ν2
x(rp) to

minimize the total loss
E[(C − pX)2 |rp] + κ(νx(rp)) (3.7)

associated with the internal representation rp. (The objective (2.8) stated above is just the
expectation of this over all possible values of rp.) Since γx(rp) is a monotonic function of
ν2
x(rp), we can alternatively write the objective (3.7) as a function of γx(rp); let this function
be denoted F (γx(rp); rp).We can then express our problem as the choice of γx(rp) to minimize
F (γx(rp); rp).

We show in the Appendix, section D.3, that under the assumption that σ2
x ≤ 2,43 the

solution to this optimization problem can be simply characterized. If

φ(rp) ≤ A ≡ Ã

σ4
x

exp(ν2
c ),

then the solution is γx(rp) = 0,meaning zero-precision representation of the payoff magnitudes.
(In this case the optimal decision rule is based on the prior distribution from which |X| is
expected to be drawn, but no information about the value of |X| on an individual trial.) If
instead φ(rp) > A, the optimal γx is given by the unique solution to the first-order condition

A

(1− γx)2
= φ(rp) exp(γxσ

2
x). (3.8)

42See the Appendix, section D.3, for details of the derivation.
43This is the case of interest in our application. In our experiment, the variance of log |X| is approximately

0.26; thus a prior roughly consistent with the actual distribution of magnitudes used in the experiment would
have to have a value of σ2

x much less than 2.
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Equation (3.8) has a unique solution 0 < γx(rp) < 1 for any rp such that φ(rp) > A; and
this solution depends only on the value of φ(rp). We further show that γx(rp) is an increasing
function of φ(rp), so that the implied value of ν2

x(rp) is a monotonically decreasing function
of φ(rp), with ν2

x(rp) → 0 as φ(rp) is made unboundedly large, and ν2
x(rp) → ∞ as φ(rp) → A

from above.
These results make use of a specific assumption (2.7) about the cost of precision in

magnitude encoding, but are independent of any special assumption about the way in which
information about relative probabilities is encoded. Let us further suppose that the prior over
relative probabilities and the conditional distributions rp|p satisfy the following conditions:
(i) the median of the distribution rp|p is an increasing function of p; and (ii) the posterior
mean E[p |rp] is an increasing function of rp. Then since φ(rp) ≡ E[p |rp]2, the median value
of φ(rp) will be an increasing function of p. It then follows from our results above that the
median value of γx(rp) will be a non-decreasing function of p, and strictly increasing for p in
the range for which the median value of rp satisfies E[p |rp] >

√
A.

This in turn means that the median value of ν2
x(rp) will be a decreasing function of p,

for all p large enough for the median optimal ν2
x(rp) to remain finite.44 Thus the model

predicts that the precision of encoding of the monetary payoff magnitude should be less, on
average, the smaller the probability p that the lottery’s non-zero payoff would be received.
Essentially, the increasing cost of greater precision implies that it is not worthwhile to encode
(or retrieve) the value of |X| with the same degree of precision when the probability of that
outcome being the relevant one is smaller.

This dependence of the precision of magnitude encoding on the value of p has implications
for the predicted degree of trial-to-trial variability in subjects’ bids for different values of p;
but it also has implications for the degree of bias in their mean or median valuations of a
given lottery. It follows from (3.5) that if γx is lower on average for smaller values of p, then
βp should be more negative the smaller is p. Hence stake-size effects should be strongest in
the case of the smallest values of p, as found in our experiment and the other studies cited
in the introduction.

The model also makes quantitative predictions about the way in which the intercepts of
the regression lines shown in the various panels of Figures 2 and 3 should vary with p. If we
measure the intercept by the predicted height of the regression line at a value of |X| equal
to its prior mean, we obtain

αp + βp log E[|X|] = E
[
log E[p |rp]− log p |p

]
− 3

2
ν2
c . (3.9)

In general, this will vary with p, though the way in which the intercept depends on p depends
only on the joint distribution of (p, rp) — thus on the prior over p and the conditional
distributions rp|p — and not on any aspects of the way in which |X| is encoded. In the
absence of any noise in the encoding of p (though an arbitrary degree of imprecision in the
internal representation of |X|), (3.9) implies that the intercept will be a constant, the same
for all p.45 When p is instead encoded with noise, the posterior mean estimate E[p |rp] will
be subject to “regression bias,” as a result of which the posterior mean estimate will mostly

44In the estimated numerical model discussed below, this is true for all of the values p ≥ 0.05 used in our
experiment.

45This constant would furthermore be zero in the absence of response noise.
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Figure 4: The same data as in Figure 2, but now compared with the predictions of the
optimal bidding model with maximum-likelihood parameter estimates. (Blue: data for the
average subject. Red: theoretical predictions.)

be larger than the true p when p is low, and smaller than the true p when p is high.46 It then
follows that when |X| = E[|X|], the sign of the intercept (3.9) should vary with p in the way
required for the “fourfold pattern” of risk attitudes of Tversky and Kahneman (1992).

Our model therefore explains the existence of Tversky and Kahneman’s fourfold pattern,
if we vary p and the sign of X while maintaining a value of |X| equal to the prior mean.
At the same time, our model also predicts the existence of stake-size effects (βp < 0). This
means that for any value of p and either sign of X, varying |X| over a sufficiently large range
should allow one to flip the sign of the DM’s relative risk premium, in a way consistent with
the alternative fourfold pattern of Scholten and Read (2014). (This should be most easily
visible when p is small.) Thus our model is (at least qualitiatively) consistent with both of
the patterns documented in the previous literature.

4 Assessing the Quantitative Fit of the Cognitive Noise

Model

We have already discussed above the statistical evidence in favor of some of the key predictions
of the cognitive noise model: the prediction that the mean value of log(WTP/EV ) should be
an affine function of log |X| for any value of p (and the same function for lotteries involving
either gains and losses), with a slope between 0 and -1. We show in Table 1 that an otherwise
unrestricted “bounded symmetric affine model” provides a superior characterization of the
bids of our average subject, if we assess the fit of alternative models on the basis of a BIC
statistic that penalizes additional free parameters. We now consider the conformity of our

46See the Appendix, section C.2, for further discussion of these predicted biases in probability estimation.
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Figure 5: Continuation of Figure 4 for probabilities p ≥ 0.50.

average-subject data with the more detailed quantitative predictions of the model.
We test the complete set of predictions of the model set out above by finding the values

of the three free parameters A, νz, and νc that maximize the likelihood of the data moments.
As in our atheoretical modeling of the data in section 1, we express the likelihood of
the experimental data as a function of the mean m(pj, Xj) and variance v(pj, Xj) of the
distribution of bids for each lottery j specified by characteristics (pj, Xj), and the number of
trials Nj on which that lottery is evaluated. This amounts to approximating the predicted
distribution of bids for any lottery, as a function of the model parameters, by a log-normal
distribution.47

The theoretical data moments predicted by our model depend not only on the parameters
(A, νz, νc) specifying the degree of cognitive imprecision on the part of the DM,48 but also on
the parameters (µz, σz, µx, σx) specifying the prior distribution over possible lotteries. Thus
we estimate values for all seven parameters, so as to maximize a complete likelihood function
of the data, taking into account both the likelihood of the lottery characteristics presented
on the different trials (under a given parameterization of the prior) and the likelihood of the
subjects’ bids on those trials (given our model of noisy internal representations and optimal
bidding).

Figures 4 and 5 (presented using the same format as in Figures 2 and 3) show to what
extent the predicted moments match the “average subject” moments when the parameters
are chosen to maximize the (approximate) likelihood function.49 The fit is not as good as

47We assumed such a log-normal distribution (1.1) in the case of our atheoretical data characterizations.
This must be regarded as only an approximation in the case of our model of optimal bidding subject to
cognitive noise; see further discussion in Appendix section F.1.

48Note that the composite parameter A, rather than the quantity Ã appearing in (2.7), is the measure of
the cost of precision in the encoding of numerical magnitudes that can be inferred from our behavioral data.

49The maximum-likelihood parameter estimates for the cognitive noise parameters are shown on the first
line of Table 5 in the Appendix.
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Stochastic Prospect Theory
value function prob. weighting LL BIC LL(o.o.s.)
power law linear -1878.3 3775.4 -2189.4
power law TK92 -1653.9 3332.9 -1965.1
power law Prelec -1627.1 3285.4 -1941.2
logarithmic TK92 -1654.3 3333.6 -1965.5
logarithmic Prelec -1626.1 3283.5 -1940.4

Cognitive Noise Model
baseline model -1602.5 3236.3 -1917.6

Table 2: Model comparison statistics for the fit of several stochastic versions of prospect
theory to the distributions of bids of our average subject. The final column gives the log-
likelihood of the data under an out-of-sample prediction exercise. The bottom line presents
the corresponding statistics for our baseline model, for comparison.

that of the best-fitting affine model, shown in Figures 2 and 3; the maximized log-likelihood
is a good deal lower, as shown on the bottom line of Table 1. However, the optimizing model
has many fewer free parameters than the atheoretical affine model, and the BIC associated
with the optimizing model is much lower than that of the affine model, as is also shown on
the bottom line of Table 1. In fact, the BIC of the optimizing model is well below that of
the best-fitting of the atheoretical models discussed above, namely the restricted version of
the bounded symmetric affine model (with βp = 0 for all p ≥ 0.3). The Bayes factor for the
optimizing model is correspondingly larger (indeed, larger by a factor greater than 1021).

4.1 Comparison with the Fit of Prospect Theory

As a benchmark for judging the degree of fit of our cognitive noise model, it is useful to
compare the fit to our data of another kind of parametric model (albeit without a foundation
in optimization), namely prospect theory (PT). As is well known, PT provides an explanation
for the fourfold pattern of risk attitudes documented by Kahneman and Tversky, and it
can be specified so as to allow for stake-size effects as well. Like our baseline model, some
quantitative versions of PT involve as few as three free parameters: one to specify the degree
of nonlinearity of the “value function” applied to gains or losses, one to specify the degree
of nonlinearity of the “weighting function” that modifies the probabilities of the different
outcomes, and one to specify the degree of random error in subjects’ individual responses
(Stott, 2006).

Table 2 reports the log likelihood of the average-subject data, and the corresponding BIC
statistic, for several possible stochastic versions of PT, using parametric specifications of the
value function and weighting function that have been popular in the empirical literature.50 In
each case, we make PT stochastic (allowing us to calculate a likelihood for our experimental
data) by assuming a multiplicative response error (2.4), just as in our baseline model; but
now the bidding intention f(r) is replaced by the valuation of the lottery (X; p) implied by

50The details of each of these specifications, and the best-fitting parameter values in each case, are explained
in the Appendix, section H.
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a deterministic version of PT. In all of the versions of PT considered in Table 2, we assume
(for the sake of parsimony) that the same value function and weighting function apply in
both the gain and loss domains.51

We consider two possible specifications of the value function: the “power law” specification
used by Tversky and Kahneman (1992), also extensively used in the subsequent literature,
and a “logarithmic” specification advocated by authors such as Bouchouicha and Vieider
(2017) as a way of matching empirically observed stake-size effects. We consider three
possible specifications of the weighting function. Our “linear” specification (in which the
weight w(p) is simply equal to p, corresponds to expected utility and has no free parameters.
We also consider the one-parameter family of nonlinear weighting functions proposed by
Tversky and Kahneman (1992), called “TK92” in the table, and a two-parameter family of
functions subsequently proposed by Prelec (1998).

Comparison of the second line of Table 2 with the first shows that allowing for nonlinear
probability weighting of the kind proposed by Tversky and Kahneman (1992) improves the
fit of the model enough to more than offset the penalty for the additional free parameter.
The predictions of the best-fitting model using the functional forms proposed by Tversky and
Kahneman (1992) are illustrated in row (a) of Figure 6.52 The model predicts no stake-size
effects of the kind observed in our data, though the nonlinear weighting function allows the
model to capture the fact that log(WTP/EV ) is on average higher in the case of lower values
of p. Comparison of the third line of Table 2 with the second shows that the more complex
Prelec specification of the weighting function fits even better, again even allowing for the
penalty for additional free parameters. Using a logarithmic value function instead of the
power law does not improve the fit when combined with the TK92 weighting function. But
when combined with the Prelec weighting function, the logarithmic value function does fit
better, and in fact, the version of PT that combines a logarithmic value function with Prelec’s
weighting function fits our data best, according to the BIC criterion. (The predictions of this
version of PT are illustrated in row (b) of Figure 6.) Finally, the bottom line of the table
shows that the cognitive noise model fits better than any of the versions of PT considered
here. Indeed, the difference in BIC statistics between even the best-fitting version of PT
and the cognitive noise model implies a Bayes factor larger than 17 billion in favor of the
cognitive noise model.

The final column of the table instead presents an out-of-sample measure of the ability of
each of the models to predict the distributions of bids of our average subject, based on five-
fold cross-validation.53 In this case we can compare the success of alternative models simply
by comparing the out-of-sample log likelihoods, with no need to penalize additional free
parameters. The out-of-sample comparisons lead to similar conclusions as model selection
on the basis of the BIC: the best-fitting PT variant is the one that combines the logarithmic
value function with the Prelec weighting function, but the baseline cognitive noise model still
fits better than the best of the PT variants. Even for the best PT variant, the out-of-sample

51Tversky and Kahneman (1992) instead estimate separate parameters for lotteries involving gains or
losses. But as shown in Appendix section H.4, allowing separate parameters for gains and losses does not
change our conclusion that all of the versions of PT considered fit less well than the cognitive noise model.

52In Figure 6, we show only one row for each model, as we consider here only symmetric models, in which
the predictions are identical for lotteries involving gains or losses.

53This measure is explained in Appendix section H.3.
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LLs imply a likelihood ratio of 8 billion in favor of the cognitive noise model.
Thus the fit of the cognitive noise model to our data is at least comparable to that of

common variants of PT. But perhaps more importantly, the model helps to explain why the
kind of biases summarized by PT should be robust features of human decision making, by
providing a functional explanation for them. It also offers the prospect of increased accuracy
in empirical applications, by providing insight into the circumstances under which the biases
captured by PT should be most important (i.e., ones where one should expect greater noise
in internal representations), and into the way in which the value function and weighting
function of PT might be expected not to remain stable across environments.54

4.2 Comparing Alternative Models of Cognitive Noise

We have focused thus far on global measures of fit for our complete model, taken as a package.
Here we consider the contribution that particular features of the baseline model make to its
empirical success. This allows us to address a question posed in the introduction: which
kinds of cognitive noise are most important for explaining the variability of apparent risk
attitudes?

Table 3 reports model comparison statistics for a variety of models, in each of which
subjects’ bidding rules are assumed to be optimally adapted so as to minimize the objective
(2.8); but the models differ in their specification of cognitive noise. The top line recalls the
log likelihood and BIC statistic for our baseline model, with three types of cognitive noise and
endogenous imprecision in the representation of the monetary payoff. (These numbers are
the same as those reported in Table 1 and again in Table 2.) The next line instead considers
an asymmetric version of the model, in which the three noise parameters are allowed to be
different in the case of lotteries involving losses rather than gains. While the log likelihood
is necessarily slightly higher in the case, it is not enough higher to outweigh the penalty for
the additional free parameters in the asymmetric case; the BIC is higher, implying a Bayes
factor of 18 in favor of the symmetry assumption in our baseline model.55

The “exogenous precision” model instead assumes that νx is a fixed parameter for all
lotteries, rather than varying with rp as in the baseline model; the numerical value of νx
is then a parameter to be estimated (instead of the cost function parameter A). This
alternative, which requires stake-size effects to be of the same size for all p (since γx must be
independent of rp), reduces the likelihood of the data modestly, but does not dramatically
worsen the fit of the model. (Row (e) of Figure 6 illustrates the extent to which the
predictions of this model remain similar to those of the baseline model, even though it
fails to capture the fact that βp is more negative for the low values of p.)

The next set of alternatives each shut off one of the types of cognitive noise in the
baseline model. The model with “no payoff noise” assumes that the value of X is encoded
and retrieved with perfect precision; this corresponds to a limiting case of the exogenous
noise model in which νx = 0 (or of the baseline model in which A = 0). The model with “no
probability noise” instead assumes that the value of p is encoded and retrieved with perfect
precision (i.e., that νz = 0), but still allows for noisy coding of the monetary payoff (with νx

54For further discussion, see section 6.
55The remaining theoretical models in the table continue to assume the same noise parameters in the case

of both gains and losses.
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Figure 6: Predictions of alternative stochastic models of lottery valuation, using the same
format as in Figures 4-5 (but only for selected values of p). Each row shows the predictions
of the baseline model (in red) and one alternative model (in black).



model #params LL BIC K
baseline model 3 -1602.5 3236.3 1
asymmetric 6 -1598.1 3242.1 18
exogenous precision 3 -1604.7 3240.7 9.0
no payoff noise 2 -1608.7 3242.4 21
no probability noise 2 -1990.0 4005.0 8.3× 10166

no response noise 2 -1646.1 3317.2 3.7× 1017

noisy retrieval of EV 2 -1966.4 3957.9 4.9× 10156

Table 3: Model comparison statistics for alternative specifications of the cognitive noise
model.

optimally determined as a function of p) as well as response noise. And finally, the model
with “no response noise” assumes that νc, so that the DM’s bid is optimally chosen as a
function of the internal representation r; the noisy internal representations of p and |X| are
specified as in the baseline model.

We find that any of these more restrictive models fits noticeably worse than the model
with all three kinds of cognitive noise. Among the three, however, the assumption of noisy
coding and retrieval of the payoff values is least crucial for the model’s fit; while assuming
perfect retrieval of the value of X reduces the likelihood of the data by more than 6 log
points, once one penalizes the more flexible model for its additional free parameter, the
Bayes factor56 in favor of the baseline model relative to this alternative is only around 21.
Eliminating response noise (while keeping both kinds of noise in the internal representation)
reduces the likelihood (and so raises the BIC) a good deal more. Most important of all is the
noisy coding of probabilities: assuming that νz = 0 lowers the likelihood of the data to such
an extent that even allowing for both noisy coding of payoffs (with a precision that depends
on the value of p) and response noise, the Bayes factor in favor of the full model against this
alternative is larger than 10166.

The problem with this model is illustrated in row (d) of Figure 6: the model predicts that
when |X| = X̄, the prior mean value for |X|, the conditional mean E[log(WTP/EV ) |p, X̄]
should be the same for all p — the value of p affects only the slope of the line passing
through that point.57 This means that for values of X near its prior mean, such a model
cannot account for the effects of changes in p on subjects’ apparent risk attitude — the
“fourfold pattern” of Kahneman and Tversky. Since many of the monetary payoffs used in
the experiment are smaller than X̄,58 the pattern is to some extent captured by exaggerating
the degree to which βp is negative for small p; hence the best-fitting model of this type
exaggerates the stake-size effects for small p, as shown in the figure.

56Note that in Table 3, the value of K indicates the factor by which each model is inferior to the baseline
model. This convention is opposite to the one used in Table 1, where K indicates the factor by which each
model is superior to the reference model (the unrestricted model, in that table).

57See the Appendix, section D.4, for the derivation of this prediction. The point at which the prediction
is insensitive to the value of p corresponds to a value of log |X| slightly greater than 3 on the horizontal axis
of the panels in row (d) of Figure 6.

58The skewness of the log-normal prior distribution implies that the prior mean is larger than the median
payoff magnitude in the experiment.
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The final line of the Table 3 considers an alternative model in which it is assumed the
process of expected value computation has access to the precise values of p andX specified by
the experimenter, but that the result of this computation is a noisy reading of the lottery’s
true EV (i.e., the quantity pX). While the sign of the EV is assumed to be recognized
without error, the DM’s bid is assumed to be based on a noisy semantic representation of
the magnitude |EV |, drawn from a distribution

rev ∼ N(log |EV |, ν2
ev),

by analogy with our model (2.1) of the noisy internal representation of monetary payoffs.
The DM’s bid is drawn from a distribution (2.4), where the function f(rev) is optimally
chosen to minimize the objective (2.8) as in our other models. This is a model with only
two kinds of cognitive noise — noise in correctly retrieving the correct EV , and response
noise given the DM’s subjective sense of the lottery’s value — and correspondingly two free
parameters (νev and νc). The predictions of this model, illustrated in row (c) of Figure 6,
fit the bidding of the average subject considerably worse than those of our baseline model.
The model implies the same stake-size effects for all p; but worse, it ties the strength of
stake-size effects to the size of the effect of reductions in p on the relative risk premium,
resulting in both an exaggeration of the predicted stake-size effects and an underestimation
of the predicted effects of changes in p. Note that we are able to strongly reject this model
only because our dataset includes separate variation in both p and |X|; we would not be
able to discriminate between our baseline model and a model of noisy EV retrieval if we
considered only a set of lotteries in which the payoff size varies with no variation in p (as in
Khaw et al., 2021) or a set of lotteries in which the probability varies but with no variation
in the monetary payoff (as in Enke and Graeber, forthcoming).

4.3 Dependence of Model Parameters on the Number of Trials

Thus far we have fit the parameters of our cognitive noise models to the data moments for an
average subject, but the moments of the bids of each individual subject are not identical to
those of the “average subject.” A notable way in which the moments differ across subjects is a
visible difference between the behavior of the 13 subjects who each evaluated 400 lotteries and
the 15 subjects who each evaluated 640 lotteries.59 In the Appendix, we report the outcome
of an exercise in which separate versions of our baseline model are fit to the data of two
different “average subjects,” one representing average behavior of the 400-trial subjects and
the other average behavior of the 640-trial subjects. We show (on the basis of a comparison
of BIC statistics that penalize the additional parameters when allowing the two average
subjects to differ) that the data are better fit by a model allowing the parameters to differ
for the two average subjects than one that fits a common set of parameters to the moments
of both average subjects.

Thus we can improve the fit of the model, relative to what is indicated by the fits shown
in Figures 4 and 5, by allowing separate parameters for the two groups of subjects. When

59See Appendix section A.3 for the set of lotteries evaluated by each of the several groups of subjects,
and Appendix section G for comparison of the bidding behavior of individual subjects when classified by the
number of trials that they complete.
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we do so, we find that the 640-trial average subject has a much larger cost of precision in
magnitude representation (and hence less precise representations of the monetary payoffs),
and noisier internal representations of the probabilities as well, though the degree of noise
in the representation of the response scale is similar for both.60

This difference in the parameter values for the two groups of subjects may reflect greater
mental fatigue or loss of concentration that one might expect in the case of the subjects
who were required to complete a substantially longer series of trials. Requiring more trials
appears to reduce the precision of the internal representation of both the probabilities and
the monetary payoffs, but with a more dramatic effect on the representation of the monetary
payoffs. Heterogeneity of this kind in our dataset is quite consistent with our interpretation
of departures from risk-neutral bidding as an adaptation to cognitive noise. It is instead
less obvious, in the context of a purely descriptive model such as prospect theory, why the
parameters of the model should vary systematically between the subjects selected to face
different numbers of and distributions of lotteries.

5 Dependence of Measured Risk Attitude on the Elicitation

Method

As noted in the Introduction, the evidence that we provide here for stake-dependent risk
attitudes appears to be inconsistent with the Khaw et al. (2021) finding of scale-invariant
risk preferences. In the earlier study, subjects faced a choice on each trial between a risky
lottery (X; p) and a particular amount of money C for sure; the probability of choosing the
risky lottery was shown to depend only on the ratio X/C, regardless of the absolute size of
the monetary payoffs.

The finding of scale-invariance in the earlier study is not inconsistent with the model of
choice under risk proposed here, once one understands that in the case of a simple binary
choice of the kind presented to subjects in the earlier study, a DM need not first assign
a dollar value to the risky lottery (of the kind that they would express using the slider
in the experiment reported here), and then compare this to the amount C offered by the
experimenter on that trial. Instead, as proposed by Goldstein and Einhorn (1987), in the
case of a binary choice it is possible for subjects to directly compare the relative strength
of their subjective senses of the values of the two options offered them, without having to
quantify either of these subjective senses of value (in a way that is unavoidable when instead
the subject is required to announce a dollar bid). It is well-known in the case of sensory
magnitudes (e.g., the pitch of a tone), that experimental subjects find it much easier to
announce which of two stimuli is greater than the other on some dimension than to assign
numerical ratings to either of the individual stimuli on that dimension (Laming, 2011, chap.
2). Expression theory proposes that it is similarly simpler to judge which of two simple
gambles is more desirable than to assign dollar values to each.

Suppose that in a task of the kind presented in the experiment of Khaw et al. (2021), the
features of the risky lottery (X; p) are encoded by a two-dimensional noisy representation
(rp, rx), according to the model proposed in section 2; and suppose that the magnitude |C| of

60See the parameter estimates reported in Table 6 in Appendix section G.2.
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the certain option is similarly encoded by a noisy representation rc, drawn from a distribution

rc ∼ N(log |C|, ν2
c ). (5.1)

(There is assumed to be no imprecision in the DM’s awareness of the sign of C, nor in their
awareness that the amount C would be received with certainty if that option is chosen.)

Note that these assumptions about the imprecise representation of the certain option
are consistent with our assumptions about how a risky lottery is represented, in the limit
as p → 1 (except that here we treat νc as a given parameter, rather than endogenizing it
as in our discussion of νx in section 2.4). They are also consistent with our assumptions in
section 2.3 above about how the value of a given overt response C in our lottery valuation
task is represented; note that (5.1) is equivalent to the specification (2.3) for the case of the
particular monetary amount C. For the sake of simplicity,61 we suppose that the features
of the two alternatives are encoded independently of one another: the features (X; p) are
encoded in the way described in section 2, regardless of the value of C, and the certain payoff
C is encoded by a draw from (5.1), independently of the values (X; p).

We then suppose that a DM asked to choose between the risky lottery and the certain
amount does so on the basis of the noisy representations (rp, rx, rc), using a decision rule
that (as in the theory of lottery valuation in section 2) is optimized so as to maximize the
DM’s expected financial wealth. Let us suppose further that the decision rule is optimized
for a prior according to which the characteristics of the risky lottery are drawn from the
prior assumed above, independently of the value of C, and that the magnitude |C| is drawn
from a log-normal prior distribution

log |C| ∼ N(µc, σ
2
c ), (5.2)

by analogy with (2.9). Then the optimal decision rule will be one that chooses the risky
lottery if and only if

E[pX |rrisk] > E[C |rcert], (5.3)

where rrisk, rcert are the vectors of representations of the characteristics of the risky and
certain alternatives respectively.

It follows from our discussion above that

E[pX |rrisk] = sign(X) · exp
(
f(rp, rx) +

3

2
ν2
c

)
,

where f(rp, rx) is again the function defined in (3.3); and using the same kind of calculation
as in the derivation of (3.1), we obtain

E[|C| |rc] = exp((1− γc)µ̄c + γc · rc), (5.4)

where

γc ≡ σ2
c

σ2
c + ν2

c

< 1, µ̄c ≡ µc +
1

2
σ2
c .

61This assumption of independent encoding is not a necessary feature of a noisy coding model, but simplifies
our comparison of a model of binary choice with the lottery valuation model. For an alternative model in
which it is instead the relative payoffs associated with the two choice options that are encoded, see Vieider
(forthcoming).
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The DM should then be precisely indifferent between the two alternatives if and only if

f(rp, rx) = (1− γc)µ̄c + γc · rc − 3

2
ν2
c . (5.5)

If instead f is greater than the right-hand side of (5.5), the DM should choose the risky
alternative in the case of gains, or the certain alternative in the case of losses; and vice-versa
if the inequality is reversed.

If the independent choices made in a collection of binary-choice problems are used to
infer “certainty-equivalent values” for risky lotteries, the conclusions will not be the same as
those obtained by observing bids made in accordance with the model elaborated in section
2. Suppose that for any given lottery (X; p), we define Cindiff as the value of |C| that would
result in a zero value on average for the logarithm of the ratio of the two sides of (5.3);
this is related to (though not quite the same as) the certain amount that would result in
the DM choosing the risky lottery exactly half the time.62 And let us define Cbid as the
geometric mean of the distribution of (unsigned) values for WTP according to the model
in section 2. Then in the case that the internal representation of |C| is perfectly precise
(νc = 0, implying γc = 1), the quantities Cindiff and Cbid should be identical for all lotteries
— so that measured risk attitudes should be the same using either procedure.

If instead νc > 0, the theory proposed here implies that63

logCbid = (1− γc)µ̄c + γc logC
indiff − 3

2
ν2
c . (5.6)

Thus the relative risk premium (RRP) inferred by measuring log(Cbid/pX) using an experimental
protocol like the one in this paper should generally differ from the one inferred by measuring
log(Cindiff/pX) using an experimental protocol like that of Khaw et al. (2021). In particular,
in each case, the RRP should be an affine function of log |X|, as in (3.4), for any value of
p; but (5.6) implies that the slope coefficients βp in the case of the two alternative ways of
measuring the RRP should satisfy

βbid
p = γcβ

indiff
p − (1− γc). (5.7)

Thus even if the certainty-equivalents inferred from the binary-choice protocol are scale-
invariant (βindiff

p = 0), measuring risk attitudes in the way that we do in the experiment
reported here should result in stake-size effects of the kind that we document (βbid

p < 0).
Under particular assumptions (explained in Appendix section E.3), that are arguably

relevant to the experiment of Khaw et al. (2021), the model of binary choice proposed
here would indeed imply scale-invariant choice. This need not be true, however, of all
binary-choice settings; as explained in the Appendix, one should often observe stake-size
effects (of the same qualitative character as those documented in this paper) in binary-choice

62The two quantities would be identical if the internal representation of p were perfectly precise, or more
generally, if the distribution of values for log E[p |rp] conditional on the value of p were precisely symmetric
around its mean. This definition of the “indifference value” allows us to obtain (5.6) as an exact relationship;
alternatively, we could define it as the certain amount that will be accepted exactly half the time, and obtain
(5.6) as an approximate relationship.

63See Appendix section E.2 for details.
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experiments as well. However, (5.6) implies that in the case that there should be stronger
stake-size effects in the case of certainty-equivalents elicited using the WTP protocol.64 Since
as shown in section 3, −1 < βbid

p < 0, result (5.7) implies that

1 + βbid
p = γc (1 + βindiff

p ) < 1 + βindiff
p ,

so that |βbid
p | > |βindiff

p |.
How can measured risk attitudes be different using the two approaches, if in each case

the DM is assumed to use an decision rule, given the nature of the noise in the imprecise
representation of lottery characteristics? If a given lottery (X; p) has an imprecise representation
(rp, rx), and the certain amount C = pX has an imprecise representation rc, in both cases,
how can it be that in one environment an optimal Bayesian decision would conclude that rc
is too low to be equivalent in value to the risky lottery (so that the DM prefers the risky
lottery in a binary choice, and appears to be risk-seeking), while in the other environment
an equally optimal Bayesian decision would conclude that rc is too high (so that the DM
chooses a bid that is smaller than the EV, and appears to be risk-averse)?

The difference does not relate to the inference that should be made about the EV of the
lottery on the basis of its noisy representation; note that the same function f(rp, rx) plays
a similar role both in (2.4) and in (5.5). However, the inference that should be made about
the value of the certain amount corresponding to the internal representation rc is different
in the two cases, even if we assume that the conditional distribution (5.1) is the same in
both cases. For in the binary-choice case, when the DM decides whether rc is better or
worse than their subjective evaluation of the risky lottery, they interpret the representation
rc on the understanding that this is the representation produced by the particular alternative
presented by the experimenter on the current trial; their prior (5.2) regarding the distribution
of magnitudes |C| used in choice problems of this kind then influences the optimal decoding.
In the WTP-elicitation case, instead, the fact that one of the possible responses has an
internal representation rc tells the DM nothing about whether ϵ is likely to be large or small
on that trial — there will always be some possible response C > 0 with a representation
equal to that value of rc, regardless of the size or sign of ϵ.

Thus whereas in the binary-choice case, a DM that chooses a certain option with noisy
representation rc should expect on average to obtain a monetary reward of the magnitude
given by (5.4), in the WTP-elicitation case, a DM that chooses a response (bid) with that
same noisy representation should expect the monetary amount bid to be a draw from the
log-normal distribution

log |C| ∼ N(rc, ν
2
c ).

In the latter case, the mean value of |C| grows in proportion to exp(rc), while in the former,
the mean value of |C| has only an elasticity of γc < 1 with respect to the value of rc. This
accounts for the difference in the coefficients on logCbid and logCindiff respectively in (5.6).

Our model’s differing predictions under the two approaches to measurement of risk
attitudes may also explain why the phenomenon of risk-seeking valuations for low-probability

64It is thus perhaps not accidental that the incentivized experimental studies that document stake-size
effects (Kachelmeier and Shehata,1992; Fehr-Duda et al., 2010; Bouchouicha and Vieider, 2017) have typically
been based on eliciting certainty-equivalent values for lotteries described to the subjects, rather than on
binary choice problems.
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gains, predicted by prospect theory, is more often found in studies based on elicitation of
certainty equivalents than ones based on binary choices between a low-probability risky
lottery and a certain amount (Freeman and Mayraz, 2019; Bouchouicha et al., 2024).65

Equation (5.6) implies that Cbid should be greater than Cindiff whenever Cindiff for the
particular lottery is a small enough fraction of exp(µ̄c), the prior mean for the value of C
that is expected to be offered in binary-choice problems. In a binary-choice experiment where
both low-p and higher-p lotteries are used, while the monetary payoffs X are of similar size
for both kinds of lotteries, the EV of the low-p lotteries will be low relative to the average
EV of lotteries used in the experiment, and it is likely that Cindiff will similarly be low for
these lotteries relative to the complete range of values for C used in the experiment. If so,
the value of Cindiff for low-p lotteries could easily be substantially lower than the value of
Cbid that would be obtained for these same lotteries; and so one might find Cindiff < EV
(implying risk aversion) for low-p lotteries even though the alternative procedure would find
that Cbid > EV (implying risk seeking) for these same lotteries.

6 Discussion

We have shown that a model in which subjects’ bids are hypothesized to be optimal — in
the sense of maximizing the DM’s expected financial wealth, rather than any objective that
involves true preferences with regard to risk, and without introducing any free parameters
representing such DM preferences — can account well for both the systematic biases and
the degree of trial-to-trial variability in our subjects’ data, once we introduce the hypothesis
of unavoidable cognitive noise in their decision process. The model can simultaneously
account for the fourfold pattern of risk attitudes predicted by prospect theory (Tversky
and Kahneman, 1992), relating to the effects of varying payoff probabilities and the sign
of the payoffs, and the alternative fourfold pattern of Markowitz (1952) and Hershey and
Schoemaker (1980), relating to the effects of varying payoff magnitudes and the sign of the
payoffs. The effects on the sign of the relative risk premium of varying the terms of a simple
lottery along each of these three dimensions can be explained by a single theory, which
attributes departures from risk neutrality in either direction to the way in which bids should
be shaded in order to take account of cognitive noise.

There are a number of further reasons to believe that many aspects of the apparent
risk attitudes measured in laboratory experiments reflect an adaptation to the presence of
cognitive noise, rather than considered preferences with regard to risk. Notably, measured
risk attitudes are correlated with a variety of quantitative indicators of cognitive imprecision.
One such measure is the degree to which the same subject is observed to give variable
responses on repeated presentations of the same data. Khaw et al. (2021) show that across
their subjects, there is a significant positive correlation between an estimated subject-level
index of risk aversion in binary choices between lotteries and a subject-level index of the
stochasticity of choice, exactly as the cognitive noise model would predict if the difference in

65Bouchouicha et al. (2024) also propose that this may be a consequence of optimal adaptation to cognitive
noise producing different biases under the two procedures. Their preferred model of cognitive noise is
somewhat different from the one presented here, however. In particular, they assume that the data specifying
the risky lottery are encoded in a different way by subjects facing the two different experimental procedures.
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subjects’ choice behavior is due mainly to subject-level differences in the amount of cognitive
noise; see Barretto-Garćıa et al. (2023) for a replication.

Another possible indicator of the degree of cognitive noise, that does not require repeated
presentations of the same decision problem, is a subject’s reported degree of uncertainty
about the correct response to give on a single trial. Enke and Graeber (forthcoming) show
that prospect-theoretic deviations from risk-neutral valuation (in each of the four quadrants
of the Kahneman-Tversky “fourfold pattern”) are stronger for those subjects who express
greater uncertainty. As discussed further in the Appendix, section C.2, the association that
they find between subjective uncertainty and the size of the departure from risk-neutral
valuation is the one that our model would predict, if subjects differ in the value of νz and
have some degree of access to the size of their personal noise parameter.

Oprea (forthcoming) similarly finds that subjects’ degree of departure from risk-neutral
valuation is positively correlated with their self-reported degree of inattention to the data
on payoffs and probabilities that they have been shown, and their self-assessment of the
degree to which they have “guessed” rather than making a “precise (exact) decision.”
It is also negatively correlated with the average time that a subject takes to respond,
which can be taken as an indicator of the amount of cognitive effort expended on ensuring
accuracy (Rubinstein, 2013);66 and positively correlated with the number of errors that
a subject makes on a cognitive reflection test, which can also be taken as a measure of
cognitive imprecision. Note that under an interpretation of prospect-theoretic biases as
simply reflecting non-standard preferences, there would be no reason to expect any of these
correlations with indicators of cognitive imprecision.

Another telling source of evidence that apparent risk preferences may reflect cognitive
imprecision is the observation that they are unstable, changing with experience and feedback.
According to the “discovered preference hypothesis” of Plott (1996), subjects in laboratory
experiments can only be expected to consistently choose in accordance with their actual,
considered preferences after sufficient experience with the form of task used in the experiment,
involving feedback as to the consequences of their choices; and indeed, a number of authors
have found that the apparent risk preferences that are expressed in relatively novel choice
problems are unstable in this way (the so-called “description-experience gap”: Hertwig and
Erev, 2009). Perhaps the most celebrated finding of this kind is the observation that the
tendency of subjects to overweight small-probability extreme outcomes, as predicted by
prospect theory, occurs when lotteries involving such extreme outcomes are described to
subjects (as in the experiment of Tversky and Kahneman, 1992), but disappears when
subjects learn about the outcomes from repeated choices with feedback as to the consequences
of choosing the lottery or not on each occasion (Hertwig et al., 2004).67 Many other authors

66In some cases, however, a longer average response time is taken to indicate a more difficult decision, and is
expected to be associated with more random choices (e.g., Alós-Ferrer et al., 2021). The correlation found by
Oprea (forthcoming) can be interpreted as indicating that the main reason for differences in subjects’ average
response times is subject-level differences in the amount of concern for precision, rather than differences in
the intrinsic difficulty of the problems faced by different subjects.

67Hertwig et al. (2004) find that when subjects must learn about the distribution of possible outcomes
purely from experience, the typical result is under-weighting of low-probability extreme outcomes, rather
than perfectly risk-neutral choice. This bias can be explained, however, as reflecting the fact that in a small
sample of experience the low-probability extreme outcome will often happen not to have been observed.
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have subsequently found that sufficient experience and feedback greatly reduce measured
departures from risk-neutrality.68

The studies just mentioned show that it is possible to reduce the imprecision of internal
representations through proper experimental design; but it is equally possible to design
experimental treatments that should predictably increase cognitive imprecision, and this
possibility is of particular interest as a test of our theory. For example, Enke and Graeber
(forthcoming) show that increasing the complexity of the way in which information about
the probability p is presented to their subjects increases the strength of prospect-theoretic
biases in subjects’ lottery valuations, in exactly the way that our model would imply in
the case of an increase in the imprecision of the internal representation of probabilities.69

Subjects have similarly been shown to depart farther from risk-neutral choice as a result of
increased time pressure (Choi et al., 2022; Kirchler et al., 2017, Young et al., 2012), increased
cognitive load (Benjamin et al., 2013; Deck and Jahedi, 2015; Gerhardt et al., 2016), or acute
stress (Porcelli and Delgado, 2009). These are all plausibly conditions that can be expected
to reduce the precision of mental processing, perhaps in ways that can be captured by an
increase in the noise parameters in our model;70 if so, the model implies that we should
expect larger departures from risk-neutrality in exactly the directions that are observed.

We have also shown that a hypothesis of optimal adaptation to cognitive imprecision
— in the sense of imprecision in the representation of the value of the certain amounts to
which a risky lottery is compared — can explain why different certainty-equivalent values
are inferred for given lotteries, depending on the method of elicitation used. This again is a
phenomenon which would have no reason to be observed if departures of certainty equivalents
from expected values are attributed to risk preferences (prospect-theoretic or otherwise), but
which follows naturally from the same theory of the consequences of cognitive imprecsion
as we use here to explain all departures from risk-neutral valuations in the case of lotteries
with small stakes.

Finally, there is evidence that the valuation biases observed in experiments like ours also
occur in problems that have nothing to do with risk. Oprea (forthcoming) finds closely
parallel biases in a lottery-valuation task (where bias means certain equivalents greater
or smaller than the EV of the lottery) and in “deterministic mirrors” of the same choice
problems (where bias means over- or under-estimating the value of receiving a fraction p of
a monetary amount X for sure). In both cases, the subject would maximize their expected
financial reward by making choices consistent with an indifference value of pX; but the
second kind of problem involves no risk. Oprea shows that elicited indifference values differ
from pX in exactly the same way in both kinds of problems, and even to a quantitatively
similar extent. Vieider (2023) finds similarly parallel biases in a comparison of binary choices
between lotteries and corresponding “deterministic mirror” problems. And Enke and Shubatt

68See, for example, Van de Kuilen and Wakker (2006); Van de Kuilen (2009); Ert and Haruvy (2017); Ert
and Haruvy (2017); Charness et al. (2023); and Oprea and Vieider (2024).

69See the Appendix, section C.2. In a different type of decision problem, Charles et al. (forthcoming) also
find that the strength of a cognitive bias (imperfect pass-through from beliefs to actions) can be changed by
manipulating the complexity of the information upon which subjects’ beliefs should be based.

70Our finding in this paper that both prospect-theoretic valuation biases and stake-size effects are stronger
for the subjects who completed a larger number of trials (see the Appendix, section G) suggests that fatigue
may have a similar effect.
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(2023) show that differences in the degree to which people make errors in judging the expected
value of a lottery (when rewarded for their answer to this arithmetic problem, and not
required to accept any risk) can be used to predict the degree to which they make choices
inconsistent with EV maximization when asked to choose between lotteries. This close
parallelism between errors in arithmetic problems that involve no risk and apparent “risk
attitudes” in choices involving lotteries is exactly what our model of lottery valuation would
imply, if one assumes that the quantities p and X defining the “deterministic mirror” of a
lottery are encoded and decoded in a similar way as the quantities defining a lottery, given
that we posit a decision rule that minimizes the mean squared error (2.5).

The explanation that we offer for departures from risk-neutral valuations is not entirely
different than the one proposed by prospect theory: Tversky and Kahneman (1992) themselves
explain the nonlinear transformations of the objective payoffs and probabilities posited by
prospect theory as consequences of “diminishing sensitivity” to changes in the data of the
kind that are well-documented in psychophysical studies of many different sensory domains.
But deriving insensitivity to objective conditions from the nature of optimal decision making
in the presence of cognitive noise, rather than simply positing nonlinear transducers, has
several advantages.

First, interpreting the nonlinear distortions posited by prospect theory as consequences
of optimal adaptation to cognitive noise helps to explain the observed instability of prospect-
theoretic parameters across settings, as reviewed above. Our interpretation offers the prospect
of a more general theory that can explain when and to what degree one should expect
prospect-theoretic parameters measured under one condition to predict behavior under other
conditions. In this way, one can hope to use prospect theory more accurately as a predictive
tool, somewhat in the spirit of the “Lucas critique” (Lucas, 1976; Sargent, 1987) of the naive
use of econometric relationships for policy evaluation.

And second, our interpretation cautions against the use of estimated prospect-theoretic
“preferences” as a basis for welfare evaluation. To the extent that the parameters of prospect-
theoretic transducers are found to change with experience and feedback, as discussed above,
one should doubt that the apparent preferences estimated in situations where there has been
little experience or feedback really represent considered preferences. Our analysis provides
further grounds for such skepticism by showing that, even when behavior is only observed in
novel situations where feedback is not given, there is good reason to regard the anomalous
patterns of behavior summarized by prospect theory as reflecting errors due to cognitive
noise. And our theory provides an alternative basis for welfare judgments, even if subjects’
choices under ideal conditions of extensive experience and feedback cannot be observed. To
the extent that one can show that peoples’ choices appear to have been optimized to achieve
a particular objective (here, the objective of maximization of expected financial wealth), one
might plausibly regard that objective as reflecting their “true” preferences. This would still
provide a basis for welfare judgments that is individualistic, in the sense that what is good
for a person is inferred from what their observed behavior apparently aims to achieve, rather
than reflecting what someone else wants for them (Woodford, 2018).

These cautions about the uses of prospect theory in policy design hardly imply that the
departures from normative behavior documented by authors like Kahneman and Tversky
are of no importance for policy analysis. The claim that people would behave in closer
conformity with normative decision theory with sufficient experience and feedback should
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no more justify assuming that one can always assume such behavior when designing policies
than the assertion that wages and prices will adjust “in the long run” so as to make real
quantities independent of monetary variables would justify indifference to the extent to which
different monetary policies stabilize aggregate nominal spending. We expect that the design
of economic policies can be improved by taking into account the ways in which people are
prone to misunderstand the circumstances under which they act. But the realization of this
promise will require further progress in understanding the nature of cognitive noise and the
way in which people adapt their behavior to deal with it.
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ONLINE APPENDIX

Khaw, Li, and Woodford,
“Cognitive Imprecision and

Stake-Dependent Risk Attitudes”

A Details of the Experimental Design

Here we further discuss the exact protocol used in the experiment, and the incentives that
it created, to the extent that the protocol was correctly understood by our subjects.

A.1 Bidding and Incentives

Each subject began with an endowment of US$30, that they could use to bid in any of the
rounds. Any part of the endowment that was not spent, plus any gains or losses from the
outcome of the lottery, would be taken home by the subject as payment for their participation
in the experiment. While each subject bid on many successive lotteries (either 400 or 640, as
explained further below), only one of these (randomly selected at the end of the experiment)
would be used as the basis for their payment.

In the case of a “gain trial” (one with X > 0), the slider position indicated a bid C ≥ 0
that the subject was willing to pay to receive the outcome of the lottery; the slider allowed
arbitrary bids between zero and a maximum of $30 (i.e., all of their endowment). In the event
that this trial was selected for payment, a computer bid B was generated as an independent
draw from a uniform distribution on the interval [0, 30]. The “winner” of the BDM auction
was then determined by which of the bids was higher. If the subject “won” (i.e., if C > B),
then the subject would pay B (as in a second-price auction) and also receive the outcome
of the lottery (an addition to their payment of X > 0 with probability p, but an addition
of zero with probability 1− p). Hence they would either take home a payment of 30−B or
30−B+X; in either case, the payment would be positive, since B < 30 with probability 1. If
instead the subject “lost” (because C < B), they would simply take home their endowment
of $30.

In the case of a “loss trial” (one with X < 0), instead, the slider position |C| indicated
the magnitude of the subject’s negative bid (C = −|C|). A bid |C| meant that the subject
was willing to pay |C| in order to avoid suffering the loss specified by the outcome of the
lottery. In the event that this trial was selected for payment, a computer bid B was again
generated as an independent draw from the uniform distribution on [0, 30], and the “winner”
was again determined by whether B or |C| was larger. If the subject “won” (|C| > B), then
they would pay B, but avoid having to accept the outcome of the lottery; thus their payment
in this case would be 30−B. If they “lost” (|C| < B), they would suffer the loss determined
by the lottery, so that their payment would be 30 +X = 30− |X| with probability p, and
$30 with probability 1 − p. Since |X| was always less than $30 (never larger than $22.20),
and B was less than $30 with probability 1, this would again necessarily result in a positive
payment for participation in the experiment.
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A.2 Losses from Inaccurate Bidding

We can now explain why minimization of the expected loss (2.5) corresponds to maximization
of the DM’s expected financial wealth, given the financial incentives provided in our experiment.
Consider first the case of a “gain trial” in which X > 0. Conditional on this trial being the
one on which payment is based, the subject’s expected71 net addition to their payment
(i.e., their expected net payment in excess of the $30 endowment) from bidding an amount
0 ≤ C ≤ 30 will equal

1

30

∫ C

0

(pX −B) dB =
1

30

[
pX · C − 1

2
C2

]
.

The maximum achievable value of this quantity (under full-information optimal bidding) is
(pX)2/60. The amount by which the maximum achievable expected payment exceeds the
expected payment obtained by bidding C is thus equal to L(C; pX), where we define

L(C; V ) ≡ 1

60
(C − V )2. (A.1)

Now consider instead the case of a “loss trial” in which X < 0. Conditional on this
trial being the one on which payment is based, the subject’s expected net addition to their
payment from a bid 0 ≤ |C| ≤ 30 will be

1

30

∫ |C|

0

(−B) dB +
1

30

∫ 30

|C|
pX · dB =

1

30

[
pX · (30− |C|) − 1

2
|C|2

]
.

The maximum achievable value of this quantity is pX + (pX)2/60. The amount by which the
maximum achievable expected payment exceeds the expected payment obtained by bidding
C is thus equal to

1

30

[1
2
(|C| + pX)2

]
.

But since we define this as a negative bid (C = −|C|), the loss from bidding C is again
equal to L(C; pX), using the definition (A.1). (In this case, both the bid C and the correct
valuation V are negative.)

Thus an optimal bidding rule (neglecting any cognitive costs of producing the internal
representation) is one that chooses a bid C (or a probability distribution for such bids), given
the internal representation r of the decision situation, so as to minimize the expected loss

E[L(C; pX) |r]. (A.2)

And minimization of (A.2) is equivalent to minimization of the objective (2.5) assumed in
the main text. (Our omission of the prefactor 1/60, to simplify the notation, only affects
the units in which the precision cost parameter A is expressed.)

71Here we mean the mathematical expectation of this quantity under our experimental protocol, which
need not correspond to the subjective expectation of a subject. It is this mathematical expectation that
we use to determine that a particular bidding rule would be optimal for a DM facing the decision problem
posed in our experiment.
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group members number of trials values of p
1 1-6 400 0.1, 0.4, 0.6, 0.8, 0.9
2 13-15 400 0.1, 0.3, 0.5, 0.7, 0.9
3 16 400 0.05, 0.1, 0.5, 0.9, 0.95
4 17-19 400 0.05, 0.3, 0.5, 0.7, 0.95
5 7-12, 20-28 640 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95

Table 4: Number of trials and values of p used for different groups of subjects.

A.3 Probabilities Used in the Lotteries

As explained in the main text, each subject was asked to evaluate a set of lotteries (X; p),
where both p and X are drawn from a finite set of possibilities. Each of the finite set of
values for p (for that subject) was paired with each of the finite set of values for X, and each
of the pairs (X; p) that occurred for a given subject were presented equally often (8 times
over the course of the session). The different lotteries (X; p) were presented in a random
order.

However, the finite set of values p that were used was different for different groups of
subjects, as indicated in Table 4. The full set of 11 different probabilities were not used with
any of the subjects; this allowed us to have multiple repetitions of the same problem for each
of the subjects, in order to obtain a clear measure of trial-to-trial variability in the subject’s
response to each problem, without requiring excessively long experimental sessions.

The subjects are classified in the table as members of one or another of five groups,
according to the set of lotteries presented to them. (One group, group 3, consists of only
a single subject, subject 16.) In section 4.3 of the main text (and in more detail below, in
Appendix section G), we classify subjects into two larger groups, the 400-trial subjects (the
union of groups 1-4 in Table 4) and the 640-trial subjects (group 5). Note that while the
640-trial subjects all faced the same set of lotteries, the 400-trial subjects did not; each of
these evaluated a set of lotteries using only five values of p, but the values of p used were
different across the four groups of 400-trial subjects. We do not, however, estimate separate
model parameters for the individual groups of 400-trial subjects, given that (at least in the
case of groups 2, 3, and 4) there are only a few subjects in each group.

A.4 Zero Bids

When fitting our theoretical model to the experimental data, we exclude the bids which
are equal to zero (the leftmost possible position of the slider), since, as explained in the
main text, we regard this as declining to bid on that lottery. Here we provide additional
information about the occurrence of these zero bids. Zero bids were more common among
the subjects in the 640-trial group (who, as discussed further in Appendix section G, also
displayed more signs of inattentiveness in other respects). The 12 non-excluded 640-trial
subjects submitted zero bids on a total of 160 trials, or about 1.7 percent of all trials. Zero
bids were instead relatively rare for the 400-trial subjects, who submitted only 15 such bids
(less than 0.3 percent of their trials).

Zero bids also occurred much more frequently for some lotteries than for others, as shown
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by the “heat map” in Figure 7. Zero bids are most likely to occur when p or X (or both)
are small. As the figure illustrates, most of the zero bids were submitted for lotteries with
an EV of less than 3 dollars (in absolute value), meaning that the optimal bid would have
been in the left-most 10 percent of the range of the slider. Many are in cases where the
EV is not much more than a dollar (in absolute value). Zero bids were also somewhat more
common in the case of lotteries involving losses: 60 percent of the zero bids occur in these
cases, even though an equal number of lotteries involving losses and gains were presented to
the subjects.72 Zero bids were especially common in the case of lotteries involving losses and
only a small probability (p = 0.05) of a non-zero loss; in this case, zero bids were submitted
on 6.8 percent of all trials.

We assume that the decision whether to bother to submit a (non-zero) bid is based on
a cursory inspection of the terms of the lottery (X; p). This can be modeled as a decision
rule conditioned on some noisy internal representation of the information (X; p), though the
information used for this first-stage decision need not be the same internal representations
(rp, rx) that are used to choose a non-zero bid in the second stage (when it is reached).
After all, we suppose that declining to submit a bid allows a saving of cognitive effort of
some kind; this might mean not having to retrieve the noisy representations (rp, rx) that are
instead needed if the DM chooses to submit a bid.73

Given the first-stage noisy internal representation and the first-stage decision rule, a DM
has some probability s(p,X) of choosing to submit a non-zero bid on a trial when the lottery
is (X; p).74 The DM’s prior in the second stage (when it is reached) should then depend
on this selection effect. If π(p,X) represents the distribution from which the experimenter
draws values of (X; p), then the DM’s second-stage prior should be given by

π̃(p,X) =
π(p,X)s(p,X)

Eπ[s]
.

However, we simply take the second-stage prior π̃(p,X) as given in our analysis of the
second-stage problem. We estimate the parameters of the second-stage prior so as to fit
as well as possible the empirically observed frequency distribution of lotteries (X; p) that
reach the second stage. Thus the observed pattern of selection of the lotteries for which the
second stage is reached is taken into account, but we have no need (for our purposes here)
to estimate a model of the first-stage decision. This is left for future study.

72This represents a departure from the symmetry of behavior in the gain and loss domains to which
our data on non-zero bids by the non-excluded subjects largely conform. For example, we have shown in
Table 1 that if the BIC is used as a basis for model comparison, the symmetric model is preferred to the
unrestricted model, and the symmetric affine model is similarly preferred to the general affine model. But
another suggestion that lotteries involving losses are more difficult to value, at least for some subjects, is
the fact that three experimental subjects (subjects 9, 11 and 19) all seemed to have considerable difficulty
understanding how to bid in the case of lotteries involving losses (their bids failed to increase monotonically
with either p or |X| to any appreciable degree), while only one of these (subject 11) had similar difficulty
making minimally sensible bids in the case of lotteries involving gains. (The peculiarity of the bids of these
subjects is discussed further in the September 2022 draft of NBER Working Paper no. 30417, Appendix,
section D.2.)

73Similarly, we assume two distinct information structures (internal representations), each with a separate
information cost, for the two stages of the decision problem in Khaw et al. (2017).

74An empirical measure of this probability is given by one minus the fraction shown in Figure 7 for each
lottery (X; p).
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Figure 7: The fraction of zero bids for each of the lotteries (X; p) that are presented to
subjects. (Color code is explained by the scale at the right.)

B The Cognitive Cost of Precision in the Representation

of Monetary Amounts

Our baseline model assumes that is possible to vary the precision with which monetary
amounts are represented, subject to a cost of the form (2.7). This specification of the
cost function has a simple interpretation. Suppose that the magnitude |X| is internally
represented by a random quantity that evolves according to a Brownian motion, with a drift
equal to log |X| and an instantaneous variance σ2 > 0 that is independent of |X|. (It suffices
for our argument that the drift be an affine function of log |X|, but the calculations are
simplified by assuming that the drift is simply equal to log |X|. The assumption that y0 = 0
is also purely to simplify the algebra.) This process yt is allowed to evolve for some length of
time τ > 0, starting from an initial value y0 = 0; the final value yτ constitutes the internal
representation. Diffusion processes of this kind are often used to model the randomness in
sensory perception and memory retrieval.75

Equivalently, we may treat the value rx ≡ yτ/τ as the internal representation, as this
variable contains the same information as yτ .Under this assumption, the internal representation
has the distribution specified in (2.1), where ν2

x = σ2/τ. Note that the precision of such a
representation can be varied by varying τ, the length of time for which the process yt is
allowed to evolve. Moreover, successive increments of the Brownian motion are independent
random variables (with a common distribution that depends on the magnitude |X|); these

75See Gold and Heekeren (2014) for a review. Heng et al. (2023) use a process of this kind to model
the internal representation of positive numbers presented as arrays of dots, and show that the assumption
of precision increasing linearly with time fits well the way that the distribution of errors in numerosity
estimation varies with viewing time.
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can be thought of as repeated noisy “readings” of the value of |X|.76 If we suppose that each
repeated “reading” has a separate (and identical) psychic cost, then the total cost should
be linear in τ (and so proportional to the total number of independent “readings”). This
implies a cost of precision of the form (2.7).

C The Log-Odds Model of Noisy Coding of Probabilities

Here we provide further justification for our interest in the model (2.2) for the noisy internal
representation of the relative probability of the two possible outcomes of a lottery.

C.1 Consistency with the Logarithmic Model of Encoding of Positive
Magnitudes

We first note that our model (2.2) of the imprecise representation of probability information
is closely related to the way in which we model the imprecise representation of numbers, in
our discussion of the internal representation of the monetary payoffs offered by a lottery.

Suppose that the relative probability of the two possible outcomes is displayed to a
subject by the relative size of two magnitudes, X1 and X2, proportional to the probabilities
of the two outcomes. (In the case of our experiment, X1 and X2 could be the lengths of
the two bars corresponding to the probabilities of the two outcomes, as shown in Figure 1.)
And suppose that each of these magnitudes is independently encoded by a noisy internal
representation, where

rj ∼ N(logXj, ν
2
p), j = 1, 2,

as specified for the monetary amounts in (2.1). (Note that this would also be a common
model of imprecision in visual perception of length.) Finally, suppose that judgments about
the relative probability of the two outcomes are based purely on the difference between
these two internal representations, rp ≡ r1 − r2. In this case, the conditional distribution
of the internal representation rp of the relative odds will be of the form (2.2), where p in
this expression means the probability of outcome 1, and ν2

z = 2ν2
p . Note, however, that our

conclusions in our baseline of model of lottery valuation depend only on assuming (2.2), and
not on this particular interpretation of how the internal representation of the relative odds
may be constructed.

Another reason for proposing (2.2) as a model of imprecision in the internal representation
of probability information is the usefulness of a model of this kind in accounting for measured
imprecision of people’s judgments about probabilities, relative frequencies, and proportions,
when these are presented visually or through a sample of instances (rather than with number
symbols as in our experiment). The idea is parallel to our hypothesis about the encoding
of numerical magnitudes: that the imprecision in the internal representation of numbers is
the same when numbers are presented symbolically (as in our experiment) as in the better-
studied case of judgments about numbers presented visually (numbers represented by the
length of a bar, or the number of items in an array).

76Gold and Heekeren (2014) discuss the neural mechanisms that could implement such a process.
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For example, Eckert et al. (2018) present evidence for a similar model of the discriminability
of different relative frequencies of occurrence of two possible outcomes. They experimentally
test the ability of both humans and chimpanzees to distinguish between two urns, one with
a ratio a1 : a2 of outcomes of type 1 rather than of type 2, and another with a ratio b1 : b2
of the two possible outcomes, and find that the probability of correctly recognizing which
offers the higher probability of outcome 1 is an increasing function of the “ratio of ratios”
(a1/a2)/(b1/b2). Equivalently, it is an increasing function of the difference in the log odds
associated with the two urns,

log
a1
a2

− log
b1
b2
.

This is exactly the prediction of our model, if each relative frequency pi : (1 − pi) is
encoded by a noisy internal representation rpi drawn from the distribution (2.2), and the
DM’s judgment is based on the relative size of rp1 and rp2. Note also that Eckert et al.
conclude from their findings “that intuitive statistical reasoning relies on the same cognitive
mechanism that is used for comparing absolute quantities, namely the analogue magnitude
system.” Here by “the analogue magnitude system” they mean a system of imprecise
semantic representation of natural numbers, with the property that “discriminability of two
sets varies as a function of the ratio of the set sizes to be compared, independent of their
absolute numerosity,”77 as would be implied if the two numerical magnitudes are encoded
logarithmically as specified in (2.1).

C.2 An Optimizing Model of Bias in the Estimation of Probabilities
or Relative Frequencies

Additional (though slightly less direct) evidence in favor of a model of noisy internal representation
of probabilities like (2.2) comes from studies in which subjects must produce an estimate of
some probability or proportion, rather judging which of two probabilities is greater. While
studies of biases in estimation (as opposed to discriminability) provide less direct evidence
about the precision of the internal representations on which the estimates are based, they
are arguably of more direct relevance to the cognitive task in our experiment (i.e., producing
an estimate of the value of a lottery).

Studies of bias in the estimation of probabilities, relative frequencies, and proportions find
that people’s estimates are typically most accurate for probabilities near 0 or 1, but much
less accurate for intermediate probabilities (Hollands and Dyre, 2000; Zhang and Maloney,
2012). Moreover, at least in cases where there are only two possible outcomes, and the
distribution of values for the probability of the first outcome is symmetric around 0.5, the
degree of estimation error is typically found to be symmetric around 0.5, as the specification
(2.2) together with a hypothesis of Bayesian decoding would imply. In fact, Zhang and
Maloney (2012) review a wide range of previous experiments requiring subjects to judge the
relative frequency with which two outcomes occur — either when presented simultaneously
(say, a visual image containing many randomly arranged dots of two different colors) or in
sequence (say, a succession of letters that are either of one type or the other). They show

77See Eckert et al. (2018, abstract and p. 100).
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that characteristically, the median estimate p̄ is a function of the true probability (or relative
frequency) p of the form

log
p̄

1− p̄
= γ log

p

1− p
+ (1− γ) log

p0
1− p0

, (C.1)

for some “anchor” or reference probability p0 and an adjustment coefficient that in most
cases satisfies 0 < γ < 1. The reference probability p0 is different in different experiments,
but Zhang and Maloney note that it is typically close to the average of the true values p
used in the experimental trials. Here we show how such a pattern of bias can result from
optimal Bayesian decoding of a noisy internal representation of the kind specified by (2.2).78

Bayesian decoding of the noisy internal representation can only be defined relative to a
prior distribution of true values of p for which the subject’s decision rule has been optimized.
A hypothesis that is convenient for such calculations (and that delivers a linear-in-log-odds
relationship, at least approximately) is to assume a logit-normal prior,

z ∼ N(µz, σ
2
z), (C.2)

where we introduce the notation z ≡ log(p/1 − p) for the log odds. In the case of such a
prior, the posterior distribution for the log odds, conditional on the representation rp, will
be a Gaussian distribution

z ∼ N(µ̂z(rp), σ̂
2
z), (C.3)

where

µ̂z(rp) = µz +

(
σ2
z

σ2
z + ν2

z

)
(rp − µz), σ̂−2

z = σ−2
z + ν−2

z . (C.4)

It is not entirely clear what objective should be maximized by subjects’ responses in the
experiments reviewed by Zhang and Maloney (2012), since the experiments are typically not
incentivized (and of course, one might assume in any event that there should be important
“psychic” benefits from accuracy in addition to any monetary rewards). One simple hypothesis
might be that the subject’s estimate p̂ is the one implied by the maximum a posteriori
(MAP) estimate of the log odds of the event conditional on an internal representation rp
with statistics of the kind proposed above.79 In this case, the model predicts an estimate

p̂(rp) =
eẑ(rp)

1 + eẑ(rp)
, (C.5)

where the estimated log odds are given by ẑ(rp) = µ̂z(rp), the function defined in (C.4). We
obtain the same prediction if instead we suppose that a subject computes an estimate of

78Zhang et al. (2020) propose a related model, and fit it to a variety of experimental datasets, though
their model of the noisy coding of probability information is more complex, and their model of estimation
on the basis of the noisy internal representation is not fully Bayesian.

79This hypothesis is discussed mainly because it allows us a simple closed-form solution. However, in at
least some experimental studies of probability estimation, subjects report their probability estimate in terms
of log odds; see Phillips and Edwards (1966). And Zhang and Maloney (2012) argue that there is reason
to believe that the brain represents probabilities in terms of log odds, so that probability estimates can be
understood as resulting from intuitive calculations in terms of log odds.
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the log odds given by the posterior mean value of z, and then converts this into an implied
estimate for p using (C.5).

Then since µ̂z(rp) is a monotonic function, and the estimate for p specified in (C.5) is
also a monotonic function of the estimate for z, the median estimate of p is predicted to be

p̄ = p̂(z) =
eµ̂z(z)

1 + eµ̂z(z)
.

This implies that

log
p̄

1− p̄
= µ̂z(z),

which is a relation of the form (C.1), in which

γ = γ̂ ≡ σ2
z

σ2
z + ν2

z

, log
p0

1− p0
= µz. (C.6)

The average estimated log odds would thus be an increasing function of the true log odds,
with a slope less than one, implying a conservative bias. Moreover, the cross-over value is
predicted to be the probability corresponding to log odds of z = µz: the mean of the possible
log odds under the prior. Hence this kind of Bayesian model provides a potential explanation
for the results summarized in Zhang and Maloney (2012).

An alternative behavioral model would assume that subjects’ estimates of p correspond
to the posterior mean value of p (rather than the value of p implied by the posterior mean
value of z); that is, that p̂ = E[p |rp]. In this case, we cannot give an explicit analytical
solution for p̂(rp), but Daunizeau (2017) offers a “semi-analytical” solution which he shows
numerically is quite accurate over a wide range of parameter values. Using this result, the
posterior expected value p̂ can be approximated by the value such that

log
p̂

1− p̂
= αµ̂z(rp), (C.7)

where
α = [1 + aσ̂2

z ]
−1/2 < 1

and a is a constant equal to about 0.368. The median estimate of p should then satisfy

log
p̄

1− p̄
= αµ̂z(z), (C.8)

which is again a relation of the form (C.1), but now with

γ = αγ̂, log
p0

1− p0
=

(
α(1− γ̂)

1− αγ̂

)
µz,

where γ̂ is again defined as in (C.6).
Again we find (to an excellent degree of approximation) that the relationship between p

and the median estimate p̄ should be of the linear-in-log-odds form assumed in the regressions
of Zhang and Maloney (2012). Again the average estimated log odds would thus be an
increasing function of the true log odds, with a slope less than one, implying a conservative
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bias; and again the value of the log odds at which the cross-over from over-estimation
to under-estimation should occur is an increasing function of µz (though deviating from
even odds slightly less than does µz). The consistency of these results with the empirical
evidence in Zhang and Maloney (2012) suggests that the model (2.2) of imprecise encoding
of probability information is a realistic one.

Note that in an experiment like that of Enke and Graeber (forthcoming), in which the
magnitude |X| is the same on all trials (with only p and the sign of X differing across trials),
a model of bias in the estimation of probabilities directly implies a model of bias in lottery
valuations. If |X| is the same on all trials, and we assume a decision rule that is optimized
for the distribution of lotteries actually encountered in the experiment, then there can be no
posterior uncertainty about the value of |X|. Then if we ignore the issue of response error
(analyzed in section D.2), the bidding rule that would maximize the DM’s expected financial
wealth will simply be

C = E[p |rp] ·X,

so that our model predicts

log
WTP

EV
= log E[p |rp] − log p. (C.9)

Thus the relative risk premium implied by subjects’ bids should (according to our model) be
purely a function of the bias in the optimal Bayesian estimate of p conditional on the noisy
internal representation rp of the relative probabilities.

In the case of a symmetric prior distribution (one in which the relative probabilities
(1 − p, p) are exactly as likely as (p, 1 − p) for all p), we should have µz = 0. Our results
above then imply that p0 should equal 0.5, and that we should observe that subjects’ median
bids should satisfy |WTP | > |EV | for lotteries with p < 0.5 and |WTP | < |EV | for lotteries
with p > 0.5, in either the gain or loss domain, as Enke and Graeber (forthcoming) find.80

Moreover, fixing the prior distribution of the probabilities, the size of these biases (i.e.,
the systematic departures from risk-neutral bidding) should depend only on σ2

z , the degree
of imprecision in the internal representation of probabilities. A larger value of σ2

z should
increase σ̂2

z , and as a consequence should lower the value of α. It should also make µ̂z(z)
closer to zero, for any value of z. Hence for both reasons, the median value p̄ of the posterior
mean estimate of p given by (C.8) should be closer to 0.5, for any true p, the larger is
σ2
z . This in turn means that for any p ̸= 0.5, the size of the departure from risk-neutral

bidding implied by (C.9) should be an increasing function of σ2
z . This prediction is consistent

both with the results of Enke and Graeber that show that subjects with higher reported
cognitive uncertainty exhibit larger departures from risk-neutrality (in all four quadrants of
the Tversky-Kahneman “fourfold pattern”), and with their demonstration that interventions
that ought to reduce the precision of subjects’ awareness of the value of p cause them to
exhibit larger departures from risk-neutrality (again in all four quadrants).

We show how these predictions can be extended to the more general case in which there
is cognitive uncertainty about the magnitude |X| of the monetary payoff as well, and also

80The findings of Enke and Graeber, of course, are equally consistent with a model in which it is EV
(rather than p) that is represented (or retrieved) with noise. But as discussed in section 4.2 of the main text,
that alternative type of model of optimal adaptation to cognitive noise is much less successful at explaining
the pattern of apparent risk attitudes in our experimental data.
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derive the consequences of taking into account unavoidable response error, in the section
that follows.

D Noisy Coding and Lottery Valuation: Derivations

Here we explain the details of the derivation of the theoretical model sketched in the main
text. We begin with a complete derivation of the quantitative predictions of our baseline
model, and then briefly discuss the predictions of the alternative models of noisy coding that
are compared in Table 3.

D.1 Optimal Decoding of the Imprecise Representation of the
Monetary Payoff

The optimal bid based on a given noisy representation of the decision problem depends on
the posterior distribution over possible decision problems implied by that representation. We
begin by discussing optimal (Bayesian) inference about the magnitude |X| of the monetary
payoff promised by the lottery. The quantities (X; p) that specify the decision problem on a
given trial have noisy internal representations (rp, rx), the conditional distributions of which
are given by

rp|p ∼ N(log(p/1− p), ν2
z ), rx|(rp, X) ∼ N(logX, ν2

x(rp)),

where the function ν2
x(rp) is to be optimized (but is taken as given in this section). Note that

the conditional distribution of rp is independent of the size of |X|, and that the conditional
distribution of rx depends on the value of p only through its internal representation rp. We
can view rp as being determined first, in a way that depends only on the value of p; the
internal representation rx is then determined by |X|, but in a way that can depend on the
already encoded value rp.

The DM is assumed to correctly recognize the sign of X on a given trial, but will have a
non-degenerate posterior distribution over possible exact values of the lottery characteristics.
The Bayesian posterior conditional on a particular imprecise internal representation (rp, rx)
depends on the prior distribution from which the true values (X; p) are expected to have
been drawn. We suppose that p and |X| are independent random variables, with a prior
distribution for |X| given by

log |X| ∼ N(µx, σ
2
x).

(The conclusions in this section are independent of what we assume about the prior distribution
for p, other than that the two variables are distributed independently of one another.)

Under the assumption of a log-normal prior for |X|, the posterior for |X| is also log-
normal. It follows that

E[|X| |rp, rx] = exp[(1− γx(rp))µx + γx(rp)rx +
1

2
(1− γx(rp))σ

2
x], (D.1)

where

γx(rp) ≡ σ2
x

σ2
x + ν2

x(rp)

11



is a quantity satisfying 0 < γx(rp) < 1 that can be different for each rp. It similarly follows
that

E[X2 |rp, rx] = exp[2(1− γx(rp))µx + 2γx(rp)rx + 2(1− γx(rp))σ
2
x].

D.2 Implications of Cognitive Noise for Optimal Bidding

If C could be chosen with precision, given an internal representation (rp, rx), the solution
to this problem would be to choose the bid specified in (2.6). That is, the optimal bid
would simply be the mean of the Bayesian posterior distribution for the true EV of the
lottery, conditional on the imprecise internal representation of the problem. It follows from
our results above that in the case of a “gain trial” with X > 0, the optimal bid will be a
quantity C > 0 such that

logC = log E[p |rp] + log E[X |rp, rx]

= log E[p |rp] + (1− γx(rp))µx + γx(rp)rx +
1

2
(1− γx(rp))σ

2
x. (D.2)

However, because of the presence of unavoidable response error, it is only the mean of the
distribution (2.4) that can be chosen as a function of r, and not the value of C that will be
bid on any given trial. If response error were assumed to be additive, i.e., if instead of (2.4)
we were to assume that

C ∼ N(f(rp, rx), ν
2
c ),

a “certainty equivalence” result would obtain: the right-hand side of (D.2) would still be the
log of the optimal choice for the “target” (or intended bid) f , though the actual bid would
equal this plus a mean-zero noise term. But because we have (more accurately, in our view)
specified a multiplicative response error in (2.4), the optimal solution is more complex.

As explained in the main text, our model of imprecise response selection implies that the
DM’s (unsigned) bid |C| will be given by

log |C| = f(rp, rx) − ϵc, (D.3)

where
ϵc ∼ N(0, ν2

c )

is distributed independently of rp and rx. We now consider the optimal choice of the “target”
function f .

For each possible internal representation (rp, rx), we can write a separate optimization
problem: choose f(rp, rx) to minimize the expected loss

E[(C − pX)2 |rp, rx] = E[C2 |rp, rx] − 2E[CpX |rp, rx] + E[p2X2 |rp, rx]
= E[exp(2ϵc)] · exp(2f(rp, rx))

− 2E[exp(ϵc)] · exp(f(rp, rx)) · E[p |rp] · E[X |rp, rx]
+ E[p2 |rp] · E[X2 |rp, rx],

where we have used (D.3) to substitute for C as a function of rp, rx, and ϵc.
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This is a quadratic function of exp(f(rp, rx)). Moreover, since

E[exp(2ϵc)] = exp(2ν2
c ) > 0,

the expected loss is a strictly convex function, with a unique minimum when

E[exp(2ϵc)] exp(f(rp, rx)) = E[exp(ϵc)] · E[p |rp] · E[X |rp, rx].

Using the fact that both X and ϵc are log-normally distributed (conditional on rp, rx), we
can express the optimal choice of f as

f(rp, rx) = log E[p |rp] + (1− γx(rp))[µx +
1

2
σ2
x] + γx(rp)rx − 3

2
ν2
c .

When f is chosen in this way, the minimized value of the expected loss is

E[(C − pX)2 |rp, rx] = exp(2(1− γx(rp))[µx +
1

2
σ2
x] + 2γx(rp)rx) ·{

exp((1− γx(rp))σ
2
x)E[p

2 |rp] − exp(−ν2
c )E[p |rp]2

}
. (D.4)

Substitution of this solution into (D.3) implies that the equation

logC − log(pX) =
(
log E[p |rp]− log p

)
+ (1− γx(rp))[µx +

1

2
σ2
x − logX]

+ γx(rp)[rx − logX] − 3

2
ν2
c + ϵc

gives the predicted value of log(WTP/EV ) in the case of any given lottery (X; p), any given
internal representation (rp, rx), and any given realization of the response noise ϵc. Integrating
over the conditional distributions of the random variables (rp, rx, ϵc) in the case of a given
lottery (X; p), we obtain the prediction that

E[log(C/pX) |p,X] = αp + βp logX, (D.5)

where the coefficients

αp ≡ E
[
log E[p |rp]− log p |p

]
+ (1− γp)[µx +

1

2
σ2
x] −

3

2
ν2
c , (D.6)

βp ≡ −(1− γp),

γp ≡ E[γx(rp) |p]

all depend on the value of p but are independent of X. (Note that, among other things, this
solution implies equation (3.9) in the main text.)

Since 0 < γx(rp) < 1 for each possible value of rp, it follows that 0 < γp < 1 for each value
of p, and hence that −1 < βp < 0 for each p. We thus conclude that for any lottery (X; p),
the predicted distribution of values for WTP (i.e., the distribution of the random variable
C in (D.5)) is such that the mean value of log(WTP/EV ) should be an affine function of
logX, with a slope and intercept that can vary with p. Furthermore, for each value of p, the
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slope must satisfy −1 < βp < 0. These predictions are tested in the way discussed in section
1.3 of the main text.

In the case that X is negative (the lottery offers a random loss rather than a random
gain), we suppose that p and the magnitude |X| are encoded with noise in the same way
(and with the same parameters) as is specified above in the case that X is positive. The
optimal bid in this case will obviously be negative; we assume that in the case of a negative
bid C, the absolute value |C| will again be given by the right-hand side of (D.3), just as in
the case of a positive bid. The optimal function f(rp, rx) will then be exactly the same as in
the derivation above. We conclude that the distribution of values for C/pX will be exactly
the same function of p and |X| as in the case where X is positive. In particular, (D.5) will
again hold, except with logX replaced by log |X| on the right-hand side; the coefficients
αp, βp will be the same functions of p as in the case of random gains. This prediction is also
tested in the way discussed in the main text.

D.3 Endogenous Encoding Precision

We turn now to the way in which the coefficients αp, βp are predicted to vary with p. This
depends on what we assume about the noisy encoding of p, and about the prior over values of
p for which the decision rule is optimized; but it also depends on what we assume about how
ν2
x(rp) varies with rp. We suppose that the latter function is endogenously determined, so as
to maximize the accuracy of bidding subject to a cost of encoding precision, as discussed in
the main text.

Note that our model of noisy coding implies that conditional on the value of rp, the
distribution of rx is

rx|rp ∼ N(µx, σ
2
x + ν2

x(rp)), (D.7)

from which it follows that

2γx(rp)rx|rp ∼ N(2γx(rp)µx, 4γx(rp)σ
2
x).

Thus exponentiation of this variable results in a log-normal random variable, with mean

E[exp(2γx(rp)rx) |rp] = exp(2γx(rp)µx + 2γx(rp)σ
2
x).

Using this result, we can then integrate (D.4) over the distribution (D.7) for rx to obtain

E[(C − pX)2 |rp] = exp(2(µx +
1

2
σ2
x)) ·

{
exp(σ2

x)E[p
2 |rp] − exp(γx(rp)σ

2
x − ν2

c )E[p |rp]2
}
.

Thus we can write

E[(C − pX)2 |rp] = Z(rp) − Γφ(rp) · exp(γx(rp)σ2
x), (D.8)

where

Γ ≡ exp(2(µx +
1

2
σ2
x) − ν2

c ) > 0, φ(rp) ≡ E[p |rp]2 > 0,

and Z(rp) is a term that is independent of the choice of ν2
x(rp). We thus observe that for any

rp, the expected loss conditional on rp is a monotonically decreasing function of γx(rp), and
hence a monotonically increasing function of ν2

x(rp).
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If the cost of greater precision in the encoding of X, in the same units as those in which
L(C; pX) is measured, is given by

κ(ν2
x) =

Ã

ν2
x

=
Ã

σ2
x

( γx
1− γx

)
,

then minimization of total costs (counting the cost of precision) requires that for each rp,
the value of γx(rp) be the solution to the problem

min
γx

F (γx; rp) ≡ Ã

σ2
x

( γx
1− γx

)
− Γφ(rp) · exp(γxσ2

x). (D.9)

We further observe that

∂F

∂γx
=

Ã

σ2
x

1

(1− γx)2
− Γφ(rp)σ

2
x · exp(γxσ2

x),

an expression that has a positive sign if and only if

A

(1− γx)2
> φ(rp) exp(γxσ

2
x), (D.10)

where we now use

A ≡ Ã

Γσ4
x

> 0

as an alternative parameterization of the size of the cost of precision. Taking the logarithm
of both sides of the inequality (D.10), we see that

∂F

∂γx
> 0 ⇔ G(γx; rp) > 0,

where we define

G(γx; rp) ≡ logA − logφ(rp) − 2 log(1− γx) − γxσ
2
x. (D.11)

We see from this that F (γx; rp) is a decreasing function of γx at γx = 0 if and only if

A < φ(rp), (D.12)

so that G(0; rp) < 0. We also note that F (γx; rp) is an increasing function of γx as γ → 1
(indeed, increasing without bound). Hence (D.12) is a sufficient condition for the existence
of an interior solution to the problem (D.9) at some 0 < γx < 1. Moreover, the function
defined in (D.11) is a strictly convex function of γx; hence its graph can cross the line G = 0
for at most two values of γx, and then only if G > 0 at both extremes.

Thus if (D.12) holds, there must be exactly one solution to the first-order condition

G(γx; rp) = 0, (D.13)

an equivalent way of writing condition (3.8) stated in the main text. (Condition (3.8) in the
main text is just the requirement that (D.10) hold as an equality.) In addition, we must
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have G < 0 for all smaller values of γx, while G > 0 for all greater values of γx. From this
it follows that the solution to the FOC must be the global minimum of the function F , and
hence the solution to problem (D.9).

We also observe that the value of rp affects this solution only through its effect on the
value of φ(rp); thus we can solve for the optimal γx as a function of the value of φ(rp). When
φ(rp) satisfies (D.12), so that we have an interior solution to the FOC, we can compute the
derivative of γx with respect to changes in the value of φ(rp) through total differentiation of
the FOC. It follows from (D.11) that

∂G

∂φ
= − 1

φ
< 0,

∂G

∂γx
=

2

1− γx
− σ2

x > 0,

if σ2
x ≤ 2 as assumed in the main text. Then total differentiation of the FOC (D.13) implies

that
dγx

dφ(rp)
= − ∂G/∂φ

∂G/∂γx
> 0.

It follows that the optimal solution for γx will be a monotonically increasing function of
φ(rp), with γx → 0 as φ → A and γx → 1 as φ → ∞. Or equivalently, the optimal solution
for ν2

x will be a monotonically decreasing function of φ(rp), with ν2
x → ∞ as φ → A and

ν2
x → 0 as φ → ∞.
Let us now consider the alternative case in which φ(rp) ≤ A. In this case G ≥ 0 when

γx = 0, and since ∂G/∂γx > 0 (again assuming that σ2
x ≤ 2), it follows that G > 0 for all

γx > 0. This implies that ∂F/∂γx > 0 for all γx > 0, so that the solution to the problem
(D.9) must be γx = 0 in all such cases. Thus we obtain a unique optimal solution for γx
(and hence for ν2

x) for any value of φ(rp). The optimal γx is a non-decreasing function of
φ(rp): constant (and equal to zero) for all 0 ≤ φ(rp) ≤ A, and increasing for all φ(rp) > A.

D.4 Alternative Models of Noisy Coding

In section 4.2 of the main text, we consider a variety of alternatives to the baseline cognitive
noise model analyzed above. Here we briefly discuss how the quantitative predictions of each
of these models are derived.

Exogenous precision. This model assumes as a constraint that νx(rp) = νx for all rp,
where νx is now a constant to be estimated. In this case, the expressions derived above
continue to apply, but γx is now a quantity (between 0 and 1) independent of rp. As a result,
γp takes the same value (equal to γx) for all p, and its value can be calculated from the values
of parameters σx and νx, independently of assumptions about the encoding and decoding of
the probabilities. An important implication is that βp = −(1−γp) will be the same negative
quantity for all values of p; thus stake-size effects are predicted to be the same for all values
of p (contrary to what we, and others, find empirically).

Noiseless retrieval of monetary payoffs. This model assumes that νx = 0; it is thus a
special case of the exogenous noise model, in which νx is no longer a free parameter. In this
special case, we have the stronger result that γx = 1 (again regardless of the value of rp),
and hence that βp = 0 for all p. Thus this model implies that there should be no stake-size
effects.
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Noiseless retrieval of probabilities. This model assumes that νz = 0, so that rp can be
identified with the value of p itself. In this case, condition (3.8) reduces to the equation

A

(1− γp)2
= p2 · exp(γpσ2

x).

This is an equation that implicitly defines the value of γp (and hence the value of βp) for any
value of p; it is no longer necessary to solve for γx(rp) for each of the possible rp associated
with a given probability p, and then numerically integrate over the distribution of such
solutions in order to obtain a prediction for γp. Condition (D.6) yields an expression for αp

that can be solved in closed form, and that is the same for all p. And finally, we obtain a
closed-form solution for the variance of the distribution of log(WTP ) as well, namely

var(log(WTP ) |p,X) = γ2
pν

2 + ν2
c = γp(1− γp)σ

2
x + ν2

c .

Thus obtaining accurate numerical predictions for the distribution of bids is much simpler
in this case than in the case of the baseline model.

Among the implications that follow in this special case: for all values of p, one obtains
the prediction that

E[log(WTP/EV ) |p,X] = −3

2
ν2
c

when X is equal to its prior mean. This means that when X is equal to its prior mean,
varying p cannot change the mean log(WTP ); and since (2.4) implies that log(WTP ) is
necessarily a Gaussian distribution with variance ν2

c , it follows that the entire distribution
of values for log(WTP/EV ) must be independent of p. Thus the sign of the relative risk
premium cannot change as we vary p (as asserted by the fourfold pattern of risk attitudes
of Kahneman and Tversky), and indeed not even its magnitude can change. It is for this
reason that this case is quite inconsistent with our data.

No response noise. This model assumes that νc = 0, so that the DM can directly (and
optimally) choose their bid C as a function of the noisy internal representation r. In this
case, the optimal bidding rule is simply C = E[pX |r], as assumed in the discussion in the
introduction. The formulas stated above continue to hold, but with the simplification that
terms involving νc can be omitted.

Noisy encoding and retrieval ofEV . In this model, we assume (by analogy with (refrxdist))
that the internal representation of |EV | is drawn from a distribution

rev ∼ N(log |EV |, ν2
ev),

where the variance ν2
ev is independent of the lottery’s EV . The DM’s bid is then assumed to

have the sign of the EV (which is recognized with perfect accuracy), and a magnitude that
is drawn from a distribution

log |C| ∼ N(f(rev), ν
2
c ), (D.14)

by analogy with (2.4). The bidding function f(rev) is again determined so as to minimize
the objective (2.5). Computing the value of this objective requires that we specify a prior
regarding the true values of the lotteries with which the DM may be presented. We suppose
that the DM bidding rule is optimized for a log-normal prior,

log |EV | ∼ N(µev, σ
2
ev),
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where (just as in the case of our other cognitive noise models) the parameters (µev, σev) of
the prior are the ones that maximize the likelihood of the values of EV actually used in the
experiment.

For the same reason as in our derivation for the baseline model, the optimal bidding
function will be of the form

f(rev) = log E[|EV | |rev] −
3

2
ν2
c . (D.15)

And as above, we can use the algebra of log-normal distributions to show that under these
assumptions, the posterior mean will be given by

E
[
|EV | |rev

]
= exp

(
(1− γev)µ̄ev + γev · rev

)
, (D.16)

where we define

γev ≡ σ2
ev

σ2
ev + ν2

ev

< 1, µ̄ev ≡ µev +
1

2
σ2
ev.

Equations (D.14)–(D.16) then completely specify the predicted log-normal distribution of
bids implied by any internal representation rev.

From this, we obtain the prediction that m(p,X) should be a log-linear function of the
form (1.2), with

αp = (1− γev)[µ̄ev − log p] − 3

2
ν2
c , βp = −(1− γev),

and that
v(p,X) = γ2

evν
2
ev + ν2

c

for all (X; p). Thus this model, like the baseline model, predicts that m(p,X) should be an
affine function of log |X|, with a slope between 0 and -1, that is independent of the sign of X.
It also predicts that αp should be monotonically decreasing as a function of p, rising sharply
for the smallest values of p, in qualitative accordance with our estimated coefficients for the
atheoretical bounded symmetric affine model. However, like the model with exogenous noise
(or the model with noiseless retrieval of monetary payoffs), it predicts that βp should be the
same for all p, rather than becoming more negative for small values of p, as in our data. And
it predicts a sharper rate of increase in αp for small values of p than does the baseline model:
this model predicts that αp should equal a constant minus log p, while the baseline predicts
that it should equal a constant plus E[log E[p|rp] |p] minus log p. Finally, this model predicts
that the trial-to-trial variability of bids (in percentage terms) should be independent of both
p and |X|; this means that (unlike the baseline model) it fails to capture the way in which
bids are more variable for low values of p.

The best-fitting (maximum-likelihood) parameter estimates for each of the alternative
models, when fitted to the moments of the bidding behavior of the average subject reported
in Figures 2-3, are given in Table 5. (The method of parameter estimation is discussed below
in Appendix section F.) The degree to which the model fits in each case is indicated by the
log-likelihoods and BIC statistics reported in Table 3 of the main text. The table also repeats
the parameter estimates for the baseline model (with all three types of cognitive noise, and
endogenous precision of encoding of monetary payoffs), for purposes of comparison with the
other models.
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Variants of the Baseline Model
model A νz νc
baseline model 0.002 1.60 0.24
no payoff noise 0 1.61 0.25
no probability noise 0.019 0 0.50
no response noise 0.004 1.75 0

Model with Exogenous Precision
νx νz νc
0.16 1.61 0.24

Model with Noisy Retrieval of EV
νev νc
0.95 0.24

Table 5: Parameter estimates for the alternative cognitive noise models, for which model
comparison statistics are given in Table 3 of the main text.

E Binary Choice Problems

In this section, we explain further details of the calculations reported in section 5 for a
decision problem in which a DM chooses between a risky lottery (X; p) and a particular
certain amount C, as in the experiment of Khaw et al. (2021). We assume the same kind
of noisy coding of the features of the risky lottery as in section 2, and use the notation rrisk

for the vector with elements rp, rx, and sign(X). The magnitude of the certain amount is
encoded by noisy representation rc drawn from (5.1); we use the notation rcert for the vector
with elements rc and sign(C).

E.1 The Optimal Decision Rule

As explained in the main text, the way in which decisions are incentivized in the experiment
of Khaw et al. (2021) implies that the DM’s expected financial wealth is maximized if
and only if the alternative is selected that has the higher expected value conditional on the
information available to the decision rule. Under the assumption of independent encoding of
the features of the two alternatives, the distributions for the noisy internal representations,
conditional on the precise decision problem presented, are of the form

(rrisk, rcert) |(X, p, C) = rrisk |(X, p) × rcert |C;

and under the independence assumption for the prior over the features of the two alternatives,
the prior is of the form

π(X, p, C) = π(X, p) · π(C).

It then follows that

E[pX − C | rrisk, rcert] = E[pX | rrisk] − E[C | rcert].

Hence the DM’s expected financial wealth will be maximized if they choose the risky lottery
when (5.3) holds, and the certain amount when the inequality is reversed.

19



Because the joint distribution for the variables (p, rp, X, rx) is the same as the one assumed
in section D.2, we conclude as in that section that

E[pX |rrisk] = sign(X) · E[p |rp] · E[|X| |rp, rx],

where E[|X| |rp, rx] is given by (D.1). Hence we can write

E[pX |rrisk] = sign(X) · E[|EV | |rp, rx],

and

log E[|EV | |rp, rx] = f(rp, rx) +
3

2
ν2
c , (E.1)

where f(rp, rx) is again the function defined in (3.3), and we use the notation EV = pX for
the expected value of the risky lottery.

Our assumptions similarly imply that

E[C | rcert] = sign(C) · E[|C| |rc].

Moreover, the joint distribution for the variables (|C|, rc) implied by the assumptions stated
in section 5 is of the same form as the joint distribution for the variables (|X|, rx) conditional
on a particular noisy representation rp of the probability (so that the value of ν2

x is known).
Then the same calculations as are used to derive (D.1) imply that

log E[|C| |rc] = (1− γc)µ̄c + γc · rc, (E.2)

where

µ̄c ≡ µc +
1

2
σ2
c

is the log of the mean value of |C| under the prior, and

γc ≡ σ2
c

σ2
c + ν2

c

< 1

is the theoretical regression coefficient for a regression of log |C| on rc (under the joint
distribution for these two variables).

Using these results to substitute for the terms in (5.3), we conclude that under the optimal
decision rule, the DM should choose the risky lottery if

f(rp, rx) > (1− γc)µ̄c + γc · rc − 3

2
ν2
c , (E.3)

and should choose the certain amount if this inequality is reversed. Thus the DM should
be precisely indifferent between the two alternatives if and only if condition (5.5) holds, as
stated in the main text.
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E.2 Alternative Definitions of the “Certainty-Equivalent” Value
of a Lottery

For any given lottery (X; p), we define Cindiff as the value of |C| that would result in a zero
value on average for the logarithm of the ratio of the two sides of (5.3), or alternatively, for
the difference between the quantities (E.1) and (E.2). The latter difference is equal to

f(rp, rx) +
3

2
ν2
c − (1− γc)µ̄c − γc · rc, (E.4)

which will equal zero on average if and only if

(1− γc)µ̄c + γc logC
indiff = E[f(rp, rx) |X, p] +

3

2
ν2
c , (E.5)

given (5.1). Thus equation (E.5) implicitly defines Cindiff .
The quantity Cindiff is closely related to (though in general not precisely equal to) the

monetary amount Cexact such that in a binary choice between the risky lottery and Cexact

for sure, the risky lottery will be chosen exactly half the time. This latter quantity is the
value of C such that the expression (E.4) will have a median value of zero, whereas we have
defined Cindiff as the value of C such that (E.4) has a mean value of zero. In the case that
p is encoded with perfect precision (νz = 0), the quantity (E.4) will be normally distributed
(an affine function of the normally distributed random variables rx and rc), so that its mean
and median will be the same; it follows that in this case, Cindiff and Cexact are identical
quantities. But even when p is encoded imprecisely, the mean and median will not be very
different, as long as the random quantity E[p |rp] has a relatively symmetrical distribution

around its mean value E
[
E[p |rp] |p

]
. Hence Cindiff can be regarded as an approximation to

the value of Cexact, as remarked in the main text.
Alternatively, a WTP−elicitation procedure like the one in our experiment can be used

to measure the certainty-equivalent value of a lottery. If we define Cbid as the geometric
mean of the subject’s bids for a given lottery (X; p), then (2.4) implies that

logCbid = E[logC |X, p] = E[f(rp, rx) |X, p]. (E.6)

Comparison of (E.6) with (E.5) indicates that Cbid and Cindiff will generally be different
quantities, and that they are linked through expression (5.6) given in the main text.

The definition (3.3) implies that

E[f(rp, rx) |X, p] = log p + αp + γp log |X|,

where αp and γp are the coefficients defined in (D.6). It then follows that for a fixed value
of p,

Cbid ∼ |X|γp , (E.7)

whereas
Cindiff ∼ |X|γp/γc . (E.8)

Since γc < 1 (in the case of imprecise coding of the certain amount in the binary-choice
problem), our theory implies that the elasticity with which Cindiff grows with increases in
the stakes |X| should be greater than the elasticity with which Cbid grows.
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E.3 Scale-Invariant Binary Choice

Under certain further assumptions, the theory predicts that we should observe scale-invariance
in an experiment like that of Khaw et al. (2021). In the experiment reported there, p is the
same on all trials, as a result of which it is assumed that the DM’s decision rule can make use
of the exact value of p (the νz → 0 limit of the model presented here). In this case, ν2

x should
be a positive constant, the same on all trials. In the experiment of Khaw et al. (2021), the
percentage variability of |X| across trials is identical to the percentage variability of |C|; to
the extent that subjects notice this (or expect it, given that p is the same on all trials), it
makes sense to assume a prior with σc = σx. If in addition we suppose that the precision
of encoding of the two monetary amounts is the same (νc = νx ≡ ν), then we should have
γc = γp = γx ≡ γ.

In this case, the condition (E.3) becomes

log p + (1− γ)µ̄x + γ · (log |X|+ ϵx) > (1− γ)µ̄c + γ · (log |C|+ ϵc),

using the notation

ϵx ≡ rx − log |X| ∼ N(0, ν2),

ϵc ≡ rc − log |C| ∼ N(0, ν2).

It follows that the probability of choosing the risky lottery — which is just the probability
that the random term ϵx− ϵc will be large enough for the above inequality to hold — should
depend only on the ratio X/C, and not on the absolute magnitudes of |X| or |C|.

In terms of the definitions used in the previous subsection, we find that in this special
case,

Cindiff = Cexact ∼ |X|,
while

Cbid ∼ |X|γ,
with γ < 1.

While our theory is therefore consistent with the finding of scale-invariance under the
particular protocol used in Khaw et al. (2021), it does not imply that one should observe
scale-invariance in all binary-choice experiments. In the case of a binary-choice experiment
with different values of p on different trials, one might well expect (as in the model fit to our
data here) that the precision of encoding of the payoff |X| should differ across lotteries with
different values of p, so that the value of γp should differ depending on the value of p. Thus
it should not be possible to have γp = γc for all p, as would be necessary for scale-invariance
given (E.8).

The model of endogenous determination of ν2
x proposed here (section D.3 above) implies

that γp should be smaller for lower values of p. Since the payoff C is received with probability
1 if that alternative is chosen, it would make sense to suppose that

γc = lim
p→1

γp,

and hence that γc < γp for all p < 1 (though the difference might be significant only for
relatively small values of p). Result (E.8) then implies that, at least in the case of small
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values of p, one should expect to see stake-size effects under a binary-choice paradigm as
well. Qualitatively, these stake-size effects should be of the kind observed in the experiment
in this paper: greater risk-aversion (or less risk-seeking) when stakes are larger in the case of
random gains, but the reverse in the case of random losses. (These conclusions follow from
the fact that the exponent in (E.8) should be less than 1.)

However, even when this is true, the exponent in (E.7) should be even smaller, given that
γc < 1. Hence our theory implies that stake-size effects should be stronger when a WTP-
elicitation procedure is used to measure risk attitudes. It is thus perhaps not an accident
that the incentivized experimental studies that document stake-size effects have typically
been based on eliciting certainty-equivalent values for lotteries described to the subjects,
rather than on binary choice problems. Kachelmeier and Shehata (1992), Fehr-Duda et al.
(2010), and Bouchouicha and Vieider (2017) all elicit certainty-equivalents from the subjects,
though in the latter two papers this is done by presenting the subject with an ordered list
of binary choices involving progressively higher certain amounts C while the terms of the
risky lottery remain fixed. Since the fact that the series of choices are closely related is made
evident to the subjects,81 it is reasonable to suppose that the subjects approach the list of
problems as a single choice problem in which they decide at which monetary value C they
will switch their declared preference. This makes the problem faced by subjects in these
studies similar to the one that we model in section 2; the only difference is that the response
must be selected from a discrete set of possible responses.82

F Maximum Likelihood Parameter Estimation

F.1 Likelihood of the Individual-Trial Data

Let yi be the observed value on any trial i of the variable log(WTP/EV ). The log-likelihood
of the data {pi, Xi, yi} can be expressed in the form

LL =
∑
i

[L1(pi, Xi) + L2(yi |pi, Xi)], (F.1)

where the sum is over the trials in the data set, indexed by i. For each trial, the contribution
L1(pi, Xi) is the log of the likelihood of the subject’s being presented with lottery (pi, Xi)
according to the prior; and L2(yi |pi, Xi) is the log of the conditional likelihood of the (scaled)
response yi, given lottery (pi, Xi), under a given parametric model of bidding behavior. In our
atheoretical models, the parts L1 and L2 are each functions of different sets of parameters:

81Indeed, subjects who fail to recognize that they should switch from picking the risky alternative to the
safe one at exactly one point in the list are typically excluded from the study as not understanding the
problem presented to them; but this would not have to be true if subjects approached each of the binary
choices in the list as an independent problem to be considered afresh.

82The experiment in which Holt and Laury (2002) find a stake-size effect also required subjects to
simultaneously consider a list of closely related binary choices; but instead of choosing the value of C
that is just large enough for them to switch between the safe and risky alternatives, they are required to
choose the value of p that leads them to switch. We omit analysis of this alternative protocol here; but
again, the risk attitudes revealed by such a procedure should not be expected to be the same as those that
would be reflected in a collection of independent binary choices.
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the parameters of the priors matter only for L1, while the behavioral parameters matter
only for L2. But in our optimal bidding model, instead, the conditional likelihoods L2 also
involve the parameters of the prior, in the way explained in Appendix section D. (In the
case of the comparisons between alternative atheoretical models in Table 1, the addition of
the L1 term to our definition of LL has no effect on our model comparisons, since it simply
adds the same constant to the value of LL on each line.)

We can write (F.1) in the form

LL =
∑
j

NjLj, (F.2)

where the sum is over the different lotteries (indexed by j) used in the experiment, Nj is the
number of trials involving lottery j, and Lj is the average contribution to the log likelihood
from the trials involving that lottery. Each term Lj depends only on the data for trials
i ∈ Ij, the set of trials on which (pi, Xi) = (pj, Xj). Thus Lj depends only on pj, Xj, and the
bids {WTPi} for trials i ∈ Ij. We can also further decompose each of the terms LLj in the
same way as in (F.1), writing

Lj = L1(pj, Xj) + L2,j, (F.3)

where

L2,j =
1

Nj

∑
i∈Ij

L2(yi |pj, Xj).

The L1 terms are the same for all of the models that we consider in this paper. Our
specifications (2.9) and (2.10) for the prior imply that

L1(pj, Xj) = −1

2

(
log |Xj| − µx

σx

)2

− log(
√
2πσx) − log(2

√
3σz), (F.4)

for any pj such that

µz −
√
3σz ≤ log

pj
1− pj

≤ µz +
√
3σz. (F.5)

(Here we have omitted certain additive terms in (F.4) that are independent of the assumed
parameter values; these terms have no effect on our judgments about the relative value of LL
under different parameter values, and hence no effect on our maximum-likelihood parameter
estimates or our model-comparison statistics.)

If pj instead falls outside the interval (F.5), i.e., outside the support of the prior (2.10),
given the assumed parameter values, then the prior probability of such an observation is
zero, and L1(pj, Xj) = −∞. Hence in our search for maximum-likelihood parameter values,
we can impose as a constraint that the parameters of the prior must satisfy

µz −
√
3σz ≤ min

j
log

pj
1− pj

, µz +
√
3σz ≥ max

j
log

pj
1− pj

,

where the minimum and maximum are over the set of probabilities used in the experiment.83

Subject to these constraints, we find values of the parameters that maximize the function
LL, using expression (F.4) for the L1 terms.

83As shown in Appendix section E.1, these minimum and maximum probabilities are 0.05 and 0.95
respectively.
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F.2 The Likelihood Expressed in Terms of First and SecondMoments
of the Distributions of Bids

In each of the atheoretical characterizations of the data considered in Table 1, we assume a
distribution of bids for the lottery (pj, Xj) of the form

yi ∼ N(mj, vj) (F.6)

on each trial i ∈ Ij; the models differ only in the restrictions that they place on the possible
values of the parameters {mj, vj}. In the case of any model of this kind, the average
contribution of each trial involving lottery j to the conditional log-likelihood of the data
is then given by

L2j = − 1

2vj

[
v̂j + (m̂j −mj)

2
]
− 1

2
log(2πvj), (F.7)

where we define the sample mean and variance of the data as

m̂j ≡ 1

Nj

∑
i∈Ij

yi, v̂j ≡ 1

Nj

∑
i∈Ij

(yi − m̂j)
2.

Note that in (F.7), the quantities mj, vj are parameters of the model (the values of which are
estimated to fit the data), while the quantities m̂j, v̂j are data moments. Given the data, the
MLE estimates for the parameters (in the absence of any further restrictions) will depend
only on these moments of the data, and are equal to84

mj = m̂j, vj = v̂j.

Thus in the case of any model parameters {mj, vj}, the value of the log-likelihood LL can
be computed from the data moments {m̂j, v̂j}, using equations (F.2) – (F.4) and (F.7).

In the results reported in Table 1, the parameters of each of the various atheoretical
statistical models are fit to the data moments of a fictitious “average subject.” For each
lottery j, we define m̂avg

j as the median value of m̂j across the various subjects who bid on
lottery j, and v̂avgj as the median value of v̂j across these same subjects. (These are the
data moments plotted in Figures 2 and 3.) In order to compute the log likelihood for any
model parameters {mj, vj} using equations (F.2) – (F.4) and (F.7), using {m̂avg

j , v̂avgj } for
the data moments in (F.7). For the quantity Nj in (F.2), we use Navg

j , the effective number
of observations of bids on lottery j by the average subject. This is defined as

Navg
j ≡ 1

Hj

∑
h

Nh
j ,

where Hj is the number of subjects bidding on lottery j.85

The MLE estimates of the parameters of the cognitive noise models are chosen in a
similar way, to maximize the log likelihood of the average-subject data. The exact solution

84This explains our notation for the data moments: m̂j is the MLE estimate of the parameter mj , and v̂j
is the MLE estimate of the parameter vj .

85Note that this is not the same for all lotteries j. The value of Hj varies between 5 (in the case of lotteries
with p = 0.3 or 0.7) and 22 (in the case of lotteries with p = 0.1 or 0.9); see Table 4 above.
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to the optimal bidding model does not imply that a DM’s bids on a given lottery should
be drawn from a log-normal distribution, as specified in (F.6); while (D.3) implies a log-
normal distribution of bids conditional on the internal representation r, when we condition
on the true lottery characteristics (as in our computation of the data moments) rather
than on the unobserved internal representation, the predicted distribution should instead
be a mixture of log-normal distributions. For purposes of model fitting, however, we use
a Gaussian approximation to the model predictions, according to which yi should have a
log-normal distribution as specified in (F.6), the parameters of which are given by the mean
and variance of log yi predicted by the optimizing model. Using this approximation, we can
compute an approximate likelihood of the data under any assumed model parameters, simply
on the basis of data for the first and second moments {m̂avg

j , v̂avgj }.86
The MLE estimates of the parameters of our various theoretical models are also obtained

by maximizing an approximate likelihood function calculated in this way. The reported
values of LL and BIC are then based on the maximized value of the approximate likelihood
function. Finally, the value of LL/N reported in Table 6 for the cognitive noise model with
a single average subject actually divides LL by Navg = N/H, the average number of bids per
subject, where N is the total number of trials on which non-zero bids are submitted and H
is the number of subjects in the group from which we select the median moments.

G Heterogeneity of Subject Responses

In the main text, we characterize the responses of an “average subject,” and compare these to
the predictions of a variety of cognitive noise models. Here we provide additional information
about the heterogeneity of individual subjects’ responses.

G.1 Heterogeneous Stake-Size Effects

In section 1 of the main text, we have described only the behavior of an average subject, by
presenting for each lottery the median values of the individual subjects’ mean logWTP and
s.d.[logWTP ]. It is worth noting, however, that the bidding of the many of the individual
subjects is at least qualitatively similar to the patterns shown in Figures 2 and 3.

We can reduce the number of statistics required to summarize the behavior of each of
our subjects if, for each value of p faced by that subject, we report the coefficients (αp, βp) of
a linear regression of the form (1.2). That is, we fit a symmetric affine model to the data for
each of our 28 subjects, but allow the coefficients {αp, βp} and the residual variance vj for
each lottery to differ for each subject. The estimated regression coefficients for the different
subjects are then plotted as functions of p in Figure 6. (Dashed lines connect the points
corresponding to the coefficients for a given subject but for different values of p.)

While there is clearly variation in lottery valuations across subjects, we note that the
general patterns of behavior identified in the data for the average subject hold also at the
individual level, in most cases. In particular, we find stake-size effects (βp ̸= 0) in the case

86Use of this approximation is desirable, not simply as a way of simplifying our numerical solution for the
likelihood, but because we have only defined the first and second moments of the “average subject data” —
we don’t have a complete sample of bids by the fictitious “average subject.”
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Figure 8: The coefficients {αp, βp} of the best-fitting symmetric affine model, estimated
separately for each of our 28 subjects, and plotted as a function of p for each subject. The
heavy curves indicate the median coefficients for each of two groups of subjects: the 13 who
each completed 400 trials, and the 15 who each completed 640 trials.

of the majority of our subjects, and in most cases we find that −1 ≤ βp ≤ 0 holds (or is not
clearly rejected) for all p. This is especially true in the case of the subjects who undertook
640 trials over the session; in this group βp remains well below zero for the majority of
subjects over the entire range of values for p.

We also observe a fairly consistent pattern across subjects in how both coefficients vary
with p: αp is larger (meaning a greater tendency toward risk-seeking in the gain domain and
risk-aversion in the loss domain) for smaller values of p, and βp is more negative (meaning
more pronounced stake-size effects) for smaller values of p. In the main text, we explain why
these are implications of our baseline cognitive noise model.

Finally, we note a consistent pattern in the difference between the responses of subjects
who evaluated different numbers of lotteries.87 For all values of p, αp tends to be larger, and
βp more negative, in the case of the subjects who undertook 640 trials relative to those who
undertook only 400 trials. This suggests a possible effect of time pressure or fatigue, not
simply on the variability of responses, but on a subject’s average valuations. Such an effect
is puzzling, if we think that subjects are reporting (though perhaps with error) valuations
about which they are clear, given the specified features of the lottery; it instead has a natural
explanation if we suppose that subjects’ decision rules adapt in a value-maximizing way to
the presence of cognitive noise.

87As explained in the Appendix, section A.3, the two groups do not differ only in the number of questions
that they were required to answer (which might have resulted in differences in the degree of fatigue or
concentration). The groups also differ in the values of p used in the lotteries that they evaluated, though
both groups faced both small and large values of p.
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Parameter Estimates: Baseline Cognitive Noise Model
data A νz νc LL LL/N
400-trial avg. subject 0.000004 1.19 0.29 -1202.6 -3.015
640-trial avg. subject 0.0078 2.28 0.28 -1995.8 -3.171
both average subjects 0.0021 1.75 0.27 -3249.8 -3.161
single average subject 0.0017 1.60 0.24 -1602.5 -3.068

Alternative Models of Both Average Subjects
model LL BIC K
common parameters -3249.8 6534.2 1
separate parameters -3198.4 6459.0 2.1× 1016

Table 6: Alternative estimates of the cognitive noise parameters for the baseline model,
depending which average subjects’ bidding behavior the model is required to explain. The
upper part of the table presents the parameter estimates and a measure of the model’s
ability to fit each set of behavioral moments. The bottom part of the table compares two
alternative uses of the model to explain the joint behavior of the 400-trial and 640-trial
average subjects: one in which separate parameters are estimated for each average subject,
and another in which the parameters are constrained to be the same for both.

G.2 Dependence of Model Parameters on the Number of Trials

In the main text, we have fit the parameters of our cognitive noise models to the data
moments for an “average subject,” but we have seen from Figure 6 that there is heterogeneity
in subjects’ bidding behavior. Such heterogeneity is not necessarily inconsistent with the
hypothesis of an optimal bidding rule, however, if we suppose that the cognitive noise
parameters need not be identical for all subjects. As an illustration of this, we estimate
the parameters of our baseline cognitive noise model separately for two different “average
subjects,” one based on the 13 subjects who each evaluated 400 lotteries, and the other based
on the 15 subjects who each evaluated 640 lotteries.

The upper part of Table 6 shows how the estimated cognitive noise parameters differ
across four possible versions of our model: a model fit only to the data of the 400-trial
“average subject”; a model fit only to the data of the 640-trial “average subject”; a model
fit to the data moments of the two “average subjects” together, but with a single set of
parameters required to explain the behavior of both; and a model fit to the data moments
of a single overall “average subject” (the baseline model in Table 3). For each of these
estimation exercises, the maximized LL of the data moments is reported. The final entry in
each row reports the value of LL divided by N , the number of observations in that dataset.
This allows us a measure of the degree to which the optimizing model is able to fit the
average subjects’ behavior that is comparable across the different cases, despite the differing
number of observations that are used to compute LL in the different cases.

The same method as explained in section F is used in Table 6 to compute MLE parameter
estimates (and values for LL and BIC) based on the data for these alternative “average
subjects.” For example, in the case of the 640-trial average subject, the lotteries j for which
the moments are computed are only the 80 lotteries used for subjects in group 5 (the 640-
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trial subjects), and the sums are only over the subjects h that belong to group 5.88 In (F.2),
Nj is now understood to mean

∑
hN

h
j , where the sum is only over the subjects in group

5. Finally, in calculating Navg
j , we use the number of subjects in the 640-trial group for the

value of Hj;
89 and in computing LL/N , we use a value Navg that divides the total number

of trials by the 640-trial subjects by the number of such subjects.90

In the case of the 400-trial average subject, we similarly compute moments only for the
100 lotteries that are evaluated by at least some of the subjects in groups 1-4 (the 400-trial
subjects), and for each lottery j of this kind, we sum only over the subjects h in the groups
that evaluate lottery j. For each lottery j in this set of 100 lotteries, Hj is the number of
400-trial subjects who evaluate lottery j (which varies across lotteries). And in computing
LL/N , we use a value Navg that divides the total number of non-zero bids by the 400-trial
subjects by the number of such subjects.91

We observe that the parameter values that best fit the behavior of the 640-trial average
subject are fairly different from those that best fit the behavior of the 400-trial average
subject. As mentioned in the main text, the 640-trial average subject has a much larger
cost of precision in magnitude representation (and hence less precise representations of the
monetary payoffs), and noisier internal representations of the probabilities as well, though
the degree of response noise is similar for both. Moreover, the best-fitting parameters for
either of the two groups are fairly different from those estimated when we require a single
set of parameters to fit both average subjects (third line of the table), or when we fit the
model to an average subject that pools the data from both groups of subjects (the bottom
line). The cognitive noise model fits better (in the sense of achieving a high value of LL/N)
to moments of the 400-trial average subject than to the data moments of the average subject
when all 28 subjects were considered as a single group.

The bottom part of Table 6 demonstrates the value of allowing for heterogeneity in the
parameters of the two groups through a formal model comparison. We consider two possible
quantitative models of the 260 data moments consisting of the 100 data moments of the 400-
trial average subject and the 160 moments of the 640-trial average subject. In one model (the
“separate parameters” model), we fit the model separately to the moments of each of the
two average subjects; the best-fitting parameter values for each subject are the ones shown
on the first two lines of the upper part of the table. The LL for this model is just the sum of
the LLs shown on those two lines. In the other model (the “common parameters” model),
we instead require the values of the parameters to be the same for both average subjects; the
best-fitting parameter values for this exercise are shown on the third line of the upper part
of the table. The LL for this model is also taken from the third line in the upper part of the
table. Since the two models involve different numbers of free parameters, we compare their

88For the different groups of subjects, and the lotteries evaluated by each group, see Appendix section A.3
above.

89Thus Hj = 12 in the case of the 640-trial average subject, for each of the lotteries on which group 5 bid.
90Note that the number of bids Navg by the 640-trial average subject is not 640, because of the trials on

which subjects in group 5 decline to bid. For the 640-trial average subject, Navg is actually only equal to
629.33. This is why in Table 6, the number given for LL/N is not equal to the number given for LL divided
by 640.

91Because the fraction of zero bids is smaller in the case of the 400-trial subjects, as discussed below, this
results in Navg = 398.85, a number only slightly less than 400.
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degree of fit using the BIC rather than the LL alone. Because the “common parameters”
model is more parsimonious, the difference in the BICs of the two models is not as great
as twice the difference in their LLs. Nonetheless, the “separate parameters” model fits the
data better, even using the BICs as the basis for our judgment. The implied Bayes factor in
favor of the “separate parameters” model is greater than 1016.

H Stochastic Versions of Prospect Theory

In section 4.1 of the main text, we discuss the degree to which the bids of our average subject
can be fit by a stochastic version of prospect theory. Note that a likelihood-based model
comparison exercise of the kind that we undetake is possible only by augmenting prospect
theory, as originally described by Kahneman and Tversky (1979) and Tversky and Kahneman
(1992) with a model of random response errors, as in the empirical implementations of
prospect theory reviewed by Stott (2006).

H.1 Alternative Functional Forms

In all of the versions of prospect theory (PT) that we discuss, we assume that bids are
drawn from the distribution (2.4), except that now f is a function of the objective data
(p,X) rather than of a noisy internal representation. Here f(p,X) is the logarithm of the
absolute value of the bid C̄ implied by deterministic PT; thus we modify PT by multiplying
the deterministic prediction C̄(p,X) by a log-normally distributed response error.92 The
deterministic prediction is the monetary amount C̄ such that

V (C̄; 1) = V (X; p), (H.1)

where PT assigns a value (in non-monetary units) of

V (X; p) ≡ w(p) · v(X)

to a random prospect offering the monetary amountX with probability p (and zero otherwise).
Thus C̄ is the amount of money such that, according to (deterministic) prospect theory, a DM
should be indifferent between receiving C̄ with certainty and receiving X with probability p.

We consider a variety of different specifications for the value function v(X) and the
probability weighting function w(p), each of which has been popular in the empirical literature.
In the symmetric versions of PT that we consider, we impose the restriction that v(−X) =
−v(X), in which case PT (like our noisy coding model) predicts that (except for the sign of
the bids) the distribution of bids for any values of p and |X| are the same in the case of both
lotteries involving gains and lotteries involving losses. More generally, one might allow the
function to be asymmetric. In the empirical fits reported in Tversky and Kahneman (1992),

92As reviewed in Stott (2006), empirical implementations of PT often make the theory stochastic by adding
a random term to C̄ rather than assuming a multiplicative valuation error. However, the studies reviewed
there generally model choices between pairs of lotteries, rather than elicited certainty equivalent values,
as here. The use of a multiplicative response error specification makes the stochastic PT models that we
consider more comparable to the variants of our cognitive noise model.
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an asymmetric power law function is assumed: for values of X with either sign, it is assumed
that

v(X) = sign(X) · |X|α (H.2)

for some 0 < α ≤ 1, with the value of α allowed to differ depending on the sign of X.93 The
cases called “power law” in Table 2 assume a symmetric power law function: a function of
the form (H.2), with the same value of α regardless of the sign of X.94

The “power law” specification (H.2) has been very popular in empirical implementations
of PT, as discussed by Stott (2006). But in the case of a power-law value function, equation
(H.1) reduces to

C̄ =
(w(p)
w(1)

) 1
α
X,

which implies that the median value of WTP/EV (i.e., C̄/pX) should be a function of p,
independent of the value of X. Thus there should be no stake-size effects under this version
of prospect theory. Other choices of value function can instead allow for stake-size effects, as
discussed by Scholten and Read (2014). The most popular choice in the empirical literature
focusing on stake-size effects has been the logarithmic specification advocated for example
by Bouchouicha and Vieider (2017),

v(X) = sign(X) · log(1 + αX) (H.3)

for some α > 0. The cases called “logarithmic” in Table 2 assume a function of this kind
with the same value of α for both gains and losses. We consider this specification in order
to give PT as good a chance as possible to fit the stake-size effects that we find.

For the weighting function w(p), the simplest case that we consider (called “linear” in
Table 2) assumes that w(p) = p; in this case, PT is equivalent to a version of expected utility
maximization, in which however the nonlinear utility function is applied to the change in
wealth from an individual gamble rather than to the DM’s overall wealth. (This version
of expected utility theory does not correspond to the original proposal of Bernoulli, 1954
[1738], but is one that is commonly used in experimental studies of decision making under
risk.) Tversky and Kahneman (1992) instead consider a one-parameter family of nonlinear
weighting functions,

w(p) =
pγ

[pγ + (1− p)γ]1/γ
, (H.4)

for some 0 < γ ≤ 1. (Note that in the limiting case γ = 1, this reduces to the linear

93Tversky and Kahneman also allow for a positive multiplicative factor different from 1, that can differ
depending on the sign of X. (They argue for a larger multiplicative factor in the case of losses, reflecting loss
aversion.) However, such a multiplicative factor has no consequences for the predicted valuations of prospects
that involve payoffs that are all of the same sign, as in the case of the lotteries used in our experiment. Hence
we can without loss of generality assume a multiplicative factor of 1, in the case of either gains or losses. We
can instead separately identify the value of α for the cases of gains and losses respectively.

94We have also estimated variant models in which α is allowed to differ for gains and losses (results not
reported here), but do not find an improvement in fit (increase of LL) sufficient to justify the additional free
parameter, if the BIC is used to judge model fit. Hence we only report results for symmetric models here.
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value function prob. weighting #params α γ δ νc
power law linear 1 1 0.55
power law TK92 2 1 0.540 0.23
power law Prelec 4 0.849 0.519 0.838 0.21
logarithmic TK92 3 0.001 0.542 0.23
logarithmic Prelec 4 0.043 0.520 0.839 0.21

Table 7: Maximum-likelihood parameter estimates for the five stochastic versions of prospect
theory referred to in Table 2 of the main text. The column “#params” indicates the number
of free parameters penalized when computing the BIC statistics reported in Table 2.

specification.95 For values 0 < γ < 1, the value function has an “inverse S shape” of the kind
hypothesized by Kahneman and Tversky with limiting values w(0) = 0 and w(1) = 1.) As in
the case of the value function, Tversky and Kahneman allow the parameter γ to be different
for gains and losses; the “TK92” weighting function referred to in Table 2 in the main text
is instead the symmetric case in which (H.4) holds with the same value of γ regardless of
the sign of X.

A variety of other nonlinear probability weighting functions have been proposed in the
literature, as reviewed by Stott (2006). Among these, the simple family (family of functions
with two free parameters or fewer) that fits our data best is the two-parameter family
proposed by Prelec (1998), in which

w(p) = exp(−δ(− log p)γ), (H.5)

for parameter values 0 < γ, δ ≤ 1. (This family also nests the linear specification in the case
that γ = δ = 1, while it implies an “inverse S shape” if γ and δ are both less than 1. Prelec
derives this family of functions from an attractive set of axioms.) We present results for this
alternative (called “Prelec” in Table 2) in order to show the case (among those that we have
investigated) in which a stochastic version of PT is most successful in fitting our data.

H.2 Maximum-Likelihood Estimates and In-Sample Model Comparisons

The parameter values that best fit the data from our average subject are shown in Table
7, for each of several versions of PT. These parameter values are then used to compute the
log-likelihood of the data, and the implied BIC statistic, reported in the columns labeled
“LL” and “BIC” in Table 2.

For each combination of functional forms for the value function and probability weighting
function, Table 7 shows the best-fitting parameter values when the same functions are used
for both lotteries involving gains and those involving losses. In the case that the power
law value function (H.2) is combined with either a linear probability weighting function
(the expected utility case) or the TK92 weighting function, we find that the best-fitting

95We nonetheless consider the linear case separately in Table 2, because assuming linearity a priori reduces
the number of free parameters of the model. It would thus be possible for the model that imposes w(p) = p to
fit better, according to the BIC criterion, than the best-fitting member of the family of models that assume
(H.4).
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parameter value, subject to the constraint that α ≤ 1, is α = 1 (a linear value function).
This means that the model on the first line of Table 7 is one in which both the value
function and weighting function are linear; this corresponds to EV maximization, but with
a (multiplicative) random response error. The single free parameter to estimate in this case
is the value of νc. In the model on the second line, the constraint also binds, so that the
predicted mean value of log(WTP/EV ) for each value of p is due solely to the nonlinearity
of the probability weighting function; the best-fitting value of γ is the one that best fits the
implied function w(p) to a graph of WTP/X as a function of p, as in the figures shown
in Tversky and Kahneman (1992). This model has two free parameters to estimate: the
weighting-function curvature parameter γ and the response noise parameter νc. When we
instead allow the more flexible Prelec two-parameter family of weighting functions (H.5), the
best-fitting value of α is somewhat less than 1, though the curvature of the best-fitting value
function is still not severe.

If we instead assume the logarithmic family (H.3) of value functions, our conclusions
about the best-fitting probability weighting functions are not much affected. (Compare the
estimated values for γ on lines 2 and 4, or the estimated values for the Prelec parameters
(γ, δ) on lines 3 and 5.) In fact, when we pair the logarithmic value function with the TK92
weighting function, the best-fitting value of α is near zero, meaning that the value function is
estimated to be essentially linear (just as on line 2). When we instead pair this value function
with the Prelec weighting function, the optimal value function again has more curvature;
and the value function implied by the parameter value on line 5 is not shaped quite the same
way as the one implied by the parameter value on line 3. The difference matters for the
predicted stake-size effects; but it does not much affect the best-fitting parameter values for
the probability weighting function. The consequences for in-sample model fit are shown in
Table 2 in the main text.

H.3 Out-of-Sample Model Comparisons: Cross-Validation

We can alternatively compare the fit of alternative models on the basis of a measure of out-
of-sample predictive accuracy, using a cross-validation approach. We split our data into five
sub-samples, each of which contains bids on lotteries with a single value of |X|, but includes
data about lotteries with all 11 of the possible values of p, and lotteries involving both gains
and losses. We then independently estimate the parameters of each of our theoretical models
(cognitive noise models or stochastic variants of PT) five different times, using the method
explained in Appendix section F; each time, the data for a different one of the values of
|X| are “held out” to be used as the test of out-of-sample predictive accuracy. Thus in the
first such exercise, we estimate model parameters to fit a “calibration sample” in which the
value of |X| takes any of the four largest values; the model with these parameters is then
used to compute the log-likelihood (LL) of the “validation sample” corresponding to the
lotteries in which |X| takes the smallest value. As discussed in section F, the parameters
are chosen to maximize the LL of the moments of our “average subject,” for lotteries of the
kind included in the calibration sample; the out-of-sample LL computed for the validation
sample is similarly computed on the basis of the held-out moments of the bids of the average
subject.

We then repeat the same exercise using the moments of bids on all lotteries except those
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with the second-lowest value of |X| as the “calibration sample,” and the moments of bids
on lotteries with the second-lowest |X| as the “validation sample”; and so on. In this way,
we obtain an out-of-sample LL for each of the five subsamples. We add these five quantities
to obtain an out-of-sample LL for the complete set of moments of the average subject (the
ones used for the in-sample LL measures shown in the column “LL” in Table 2). These
out-of-sample measures of the log-likelihood are shown in the column of Table 2 labeled “LL
(o.o.s.).” By construction, the out-of-sample LL for each model is lower than the in-sample
LL.

The relative size of the out-of-sample LL for different models can be used as an alternative
basis for model comparisons. A higher value of the out-of-sample LL indicates that a model
is more consistent with our data; and if two models have respective out-of-sample LLs of
LL1 and LL2, where LL1 > LL2, then the likelihood ratio

LR ≡ exp(LL1 − LL2) > 1

provides a measure of the factor by which one’s posterior should favor model 1 over model
2, if the two models were assigned an equal prior probability of being correct. Thus the
measure LR can be used in a similar way as the Bayes factor K reported in Table 1 (based
on in-sample model fit).

Note that there is no need to correct for the different numbers of free parameters in our
alternative models in the case of these out-of-sample comparisons: we can simply compare
the values of LL for the different models, without making a correction of the kind involved
in the computation of the BIC. The reason is that in each of our out-of-sample prediction
exercises, none of the model’s free parameters can be adjusted so as to be better fit any of the
moments in the validation sample — that is, the set of moments for which the out-of-sample
LL is reported. “Over-fitting” of the data in the calibration sample should be penalized by
poorer out-of-sample predictive accuracy in the validation sample, without any need for an
additional penalty.96

H.4 Asymmetric Variants of Prospect Theory

The variants of PT considered in Tables 2 and 7 all assume that the same parameters specify
the value function, the probability weighting function, and the amount of multiplicative
response noise in the case of lotteries involving either gains or losses. However, many authors
fitting empirical versions of PT to experimental data follow Tversky and Kahneman (1992) in
fitting separate parameters to the data for lotteries involving gains and the data for lotteries
involving losses. Here we consider the fit of these less-parsimoniously parameterized variants
of PT as well.

Table 8 reports the same statistics as in Table 2 in the main text, but for both symmetric
and asymmetric variants of the models considered. (In each case, the “symmetric” model
imposes the constraint that parameters are the same for either gains or losses, while the

96This possibility is illustrated by the comparison in Table 8 below between the two variants of the “TK92”
model. The asymmetric variant is a more flexibly parameterized version of the symmetric model, and as
such must achieve a higher in-sample LL, though the BIC is higher (owing to the penalty for the additional
free parameters). But the out-of-sample LL is lower in the case of the more flexibly-specified model.
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Stochastic Prospect Theory
model symmetry? LL BIC LL(o.o.s.)
TK92 symm. -1653.9 3332.9 -1965.1
TK92 asymm. -1653.1 3341.0 -1965.5
log-Prelec symm. -1626.1 3283.5 -1940.4
log-Prelec asymm. -1620.4 3292.2 -1937.6

Cognitive Noise Model
baseline symm. -1602.5 3236.3 -1917.6
baseline asymm. -1598.1 3242.1 -1912.9

Table 8: Model comparison statistics for both symmetric and asymmetric versions of some
of the models whose symmetric versions are compared in Table 2 in the main text. The
statistics reported in the three rightmost columns are the same as in Table 2.

“asymmetric” model has separate parameters for gains and for losses. Thus in each case, the
number of free parameters is twice as large in the case of the asymmetric model.) To keep
the size of the table manageable, we report statistics for symmetric and asymmetric variants
of only three of the types of models considered in Table 2: the model with the functional
forms proposed in Tversky and Kahneman (1992), corresponding to the second line of Table
2, and here called “TK92”; the model that combines a logarithmic value function with the
probability weighting function of Prelec (1998), corresponding to the fifth line of Table 2, and
here called “log-Prelec”; and the cognitive noise model presented in section 2, corresponding
to the bottom line of Table 2. Among the PT models proposed since the work of Tversky
and Kahneman (1992), we present statistics here only for the “log-Prelec” model, because
this is the one that fits our data best, on any of the four criteria (in-sample or out-of-sample,
and imposing symmetry or not).

We see that allowing the parameters to vary between the gain and loss domains increases
the log-likelihood at least slightly, for each type of model; but the increase in LL is not large
enough to offset the penalty for the additional free parameters, and the BIC statistic is worse
in each case for the asymmetric version of the model. (This is also true for the other models
considered in Table 2, and is why we do not present statistics for the asymmetric versions
of these models in the main text.) Thus from the point of view of in-sample fit, we would
conclude that there is no advantage in allowing the parameters to vary between the gain and
loss domains.

The conclusion is more nuanced if we instead consider out-of-sample prediction. In the
case of the TK92 specification, we also find that the out-of-sample log-likelihood is lower
when we estimate different parameters for gain and loss lotteries, as Tversky and Kahneman
(1992) do; even though the in-sample LL is improved (necessarily), the out-of-sample LL falls,
suggesting that the apparent improvement in LL in the first column reflects over-fitting to
the particular dataset that is used. However, in the case of both the log-Prelec model and
the baseline cognitive noise model, we find that the asymmetric versions of these models have
higher log-likelihoods even out-of-sample, suggesting that there are at least small differences
in the way that subjects value lotteries involving losses rather than gains.

Nonetheless, considering the asymmetric variants of these two models (or of other variants
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of PT) would not change the basic message of Table 2. While the log-Prelec model fits better
(also out-of-sample) than the other variants of PT considered in Table 2, it does not fit as
well as the cognitive-noise model, either in-sample or out-of-sample. If we use out-of-sample
prediction as the basis for model comparison, we might prefer to compare the accuracy of
the asymmetric versions of the two models rather than their symmetric versions. But also in
this case, we would conclude that the out-of-sample LL of the baseline cognitive noise model
is higher by 24.7 log points, implying a likelihood ratio greater than 50 billion in favor of the
cognitive noise model. (The conclusion would thus be even stronger than when we compare
the symmetric versions of the two models, as in the main text.)

I Log-Linear Stake-Size Effects in the Data of Gonzalez

and Wu (2022)

Among other studies of the valuation of simple lotteries, the study of Gonzalez andWu (2022)
is of particular interest for our purposes because, like us, they elicit certainty-equivalent
values for lotteries that involve both a wide range of values of p and a wide range of monetary
payoffs X. While their study also involves lotteries with more than one non-zero payoff, they
consider a fairly large number of lotteries with only one non-zero payoff, like the ones used
in our study; their results are directly comparable with ours on these trials. The lotteries
of this kind that they use involve 8 different values of X (rather than only five, as in our
study), and each of the 8 different values of X is paired with each of the 11 different values
of p that they use. The probabilities that they consider also span a wider range, including
values of p as small as 0.01 and as large as 0.99. The inclusion of a very small value of p is
of particular interest, since we (like previous authors) find especially pronounced stake-size
effects when p is small, and our theoretical model also implies that they should be especially
extreme as p approaches zero.

Gonzalez and Wu (2022) also have a larger number of subjects than in our study: 47
subjects, each of whom is asked to value the same set of 165 different lotteries. There are
however two disadvantages of their study relative to ours: First, they consider only lotteries
involving potential gains, not lotteries involving potential losses as well. And second, they
have each experimental subject value each lottery only once; thus they do not collect data
on the amount of trial-to-trial variability in subjects’ valuations of a given lottery.

It is nonetheless of interest to ask how the relative risk premia indicated by their data vary
with p and X. We plot the median bid of their subjects for each lottery in Figure 9, using the
same format as in the top row of Figures 2 and 3 of our paper.97 As indicated by the linear
regression lines included with the log-log plot in each panel, the slope of log(WTP/EV )
as a function of log |X| is essentially zero for the highest values of p (all p ≥ 0.90), but
the relationship is downward-sloping for all lower values of p. Just as in our Figure 2, the
most strongly negative-sloping relationships are observed for probabilities p ≤ 0.25. The
relationships are also approximately log-linear, as shown by the degree of fit of the linear
regression lines.

97In Figure 9, there are no intervals around the median bids shown, because we have no data on trial-to-trial
variation, which is what the whiskers in Figures 2 and 3 indicate.
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Figure 9: The value of WTP as a multiple of EV , for the median subject in the study of
Gonzalez and Wu (2022). The format is the same as in the top rows of Figures 2 and 3 (here
the data all refer to lotteries involving gains).

Thus, to the extent that the data of Gonzalez and Wu (2022) can be used to address the
same issues as our data, they confirm the regularities that we have noted in section 1 of the
main text.98 Indeed, they provide even stronger evidence for the effects that we document,
in two important respects. First, Gonzalez and Wu consider a wider range of values for the
stake size |X|: their largest monetary payoff (800) is 32 times as large as the smallest (25),
whereas our largest payoff is only 4 times the size of our smallest; it is thus even more notable
that WTP/EV appears to be a log-linear function of stake size in their data. And second,
they consider a much smaller value of p (namely, 0.01) than our smallest value (0.05). They
find that WTP/EV has a more strongly negative elasticity with respect to stake size when
p = 0.01 than when p = 0.05 or 0.10; this is an even stronger confirmation of our conclusion
that the slope becomes particularly negative for low values of p.

We can also test the fit of our baseline model to the bids of the average subject of Gonzalez
and Wu. Here we treat the single value of yj ≡ log(WTPj/EVj) elicited (from the median
subject) for each lottery (pj, Xj) as a single draw from the predicted distribution N(mj, vj),
where mj and vj depend on the values of pj and Xj (and model parameters) in the same
way as has been explained above. For any hypothesized model parameters, the log likelihood
of the data is then given by LL =

∑
j Lj, where for each of the 88 single-nonzero-outcome

lotteries j, we can again write Lj as the sum of two terms, as in (F.3). Here the expression

98This is reassuring, especially in light of the many differences in their experimental procedure: the values
of X that they use are all round numbers, their subjects are not required to value as large a number of
lotteries over the course of the session as ours are, certainty-equivalents are elicited using a multiple-price
list in their case, etc.
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Figure 10: Fit of our baseline noisy coding model to the median bids in the study of Gonzalez
and Wu (2022), treated as the bids of an average subject. The data (showing the bids) are
the same as in Figure 9; the red lines show the predictions of the noisy coding model. The
format is the same as in the top rows of Figures 4 and 5.

L1(pj, Xj) is again defined as in (F.4), while L2j is now defined more simply as

L2j = − 1

2vj
(yj −mj)

2 − 1

2
log(2πvj),

instead of as in (F.7). We can then estimate our model parameters so as to maximize LL.
The fit of the resulting model predictions to the data plotted in Figure 9 is displayed

visually in Figure 10. The dots represent the same data (the bids of the average subject)
as in Figure 9, but instead of the atheoretical linear regression lines of the earlier figure,
the red lines in Figure 10 plot the theoretical predictions yj = αp + βp logXj in each panel
(corresponding to a different value of p). We find that our theoretical model is broadly
consistent with the data of Gonzalez andWu (2022) as well, though the best-fitting parameter
values are different than in the case of our subjects.99

The log likelihood of the data when the parameters of the cognitive noise model are
optimized is indicated in Table 9. For purpose of comparison, the table also shows the
corresponding values for the log likelihood LL and the BIC statistic for five stochastic

99The maximum likelihood parameter estimates using the Gonzalez-Wu data are A = 0.0004, νz = 0.84,
νc = 0.000037. Thus all three noise parameters are smaller when the model is fit to the bids of the average
subject of Gonzalez and Wu. At least part of the difference probably reflects the fact that Gonzalez and Wu
consider only lotteries involving gains; also in the case of our subjects, if we fit the model separately to the
bids on lotteries involving only gains, we obtain somewhat smaller noise parameters than the ones reported
in Table 5 for our baseline model: A = 0.0008, νz = 1.50, and νc = 0.28. Some of the difference may also
reflect the fact that the subjects of Gonzalez and Wu do not have to value as large a number of lotteries,
and thus may be less affected by time pressure or fatigue; recall that in Table 6 we also obtain smaller noise
parameter estimates in the case of the subjects who value only 400 lotteries.
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Cognitive Noise Models
model LL BIC

baseline model -320.6 663.5
Stochastic Prospect Theory

value function prob. weighting
power law linear -408.5 830.3
power law TK -334.2 690.7
power law Prelec -323.8 674.3
logarithmic TK -328.5 674.8
logarithmic Prelec -316.6 655.5

Table 9: Model comparison statistics for the fit of several stochastic models of lottery
valuation to the median bids reported by Gonzalez and Wu (2022), treated as the bids
of an average subject.

variants of prospect theory (the same five as are compared to our model in Table 2 of the
main text). We see that the fit of our model to the data of Gonzalez and Wu (2022) is better
than that of a number of common quantitative specifications of prospect theory, though there
is at least one version of prospect theory that fits somewhat better than our baseline cognitive
noise model: this is a model that combines the logarithmic value function of Bouchouicha
and Vieieder (2017) with the probability weighting function proposed by Prelec (1998), and
adds a log-normal multiplicative response error to the DM’s bid. It is also worth noting that
the best-fitting version of prospect assumes much larger random response errors (νc = 0.058)
than does our baseline model. This is because in the case of prospect theory, any failure
of the median bid to precisely fit the value implied by deterministic prospect theory must
be attributed to response error; in the noisy coding model, instead, responses would be
predicted to be random even in the absence of response errors (i.e., if we set νc equal to
zero).
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