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Abstract7

The behavioral variability in psychophysical experiments and the stochasticity of sen-8

sory neurons have revealed the inherent imprecision in the brain’s representations of9

environmental variables. Numerosity studies yield similar results, pointing to an impre-10

cise ‘number sense’ in the brain. If the imprecision in representations reflects an optimal11

allocation of limited cognitive resources, as suggested by efficient-coding models, then12

it should depend on the context in which representations are elicited. Through an esti-13

mation task and a discrimination task, both involving numerosities, we show that the14

scale of subjects’ imprecision increases, but sublinearly, with the width of the prior dis-15

tribution from which numbers are sampled. This sublinear relation is notably different16

in the two tasks. The double dependence of the imprecision — both on the prior and17

on the task — is consistent with the optimization of a tradeoff between the expected18

reward, different for each task, and a resource cost of the encoding neurons’ activity.19

Comparing the two tasks allows us to clarify the form of the resource constraint. Our20

results suggest that perceptual noise is endogenously determined, and that the preci-21

sion of percepts varies both with the context in which they are elicited, and with the22

observer’s objective.23

Significance statement24

Results in neuroscience and psychology have suggested that the precision with which we represent25

the important variables of our environment, including numbers, proceeds from an optimized tradeoff26

between the objective and the cost of our representations. But the nature of this objective and of27

this cost remain unclear. By comparing the behavioral variability obtained in two experiments, and28

using several different ranges of numbers, we show that human observers optimize the objective of29

their current task (instead of a general-purpose objective, as often assumed), under a resource cost30

of the encoding neurons. This results in sublinear scaling laws, obtained in data, relating the degree31

of imprecision of internal representations to the range of stimuli expected in a given context.32

1



33

Quartz wristwatches gain or lose about half a second every day. Still, they are useful for34

what one typically needs to know about the time, and they sell for as low as five dollars.35

The most recent atomic clocks carry an error of less than one second over the age of the36

Universe, and they are used to detect the effect of Einstein’s theory of general relativity at a37

millimeter scale1; but they are much more expensive. Precision comes at a cost, and the kind38

of cost that one is willing to bear depends on one’s objective. Here we argue that in order to39

make the many decisions that stipple our daily lives, the brain faces—and rationally solves—40

similar tradeoff problems, which we describe formally, between an objective that may vary41

with the context, and a cost on the precision of its internal representations about external42

information.43

As a considerable fraction of our decisions hinges on our appreciation of environmental44

variables, it is a matter of central interest to understand the brain’s internal representations45

of these variables—and the factors that determine their precision. An almost invariable46

behavioral pattern, in more than a century of studies in psychophysics, is that the responses47

of subjects exhibit variability across repeated trials. This variability has increasingly been48

thought to reflect the randomness in the brain’s representations of the magnitudes of the49

experimental stimuli2–4. Substantiating this view, studies in neuroscience exhibit how many50

of these representations seem to materialize in the activity of populations of neurons, whose51

patterns of firing of action potentials (electric signals) are well described by Poisson processes:52

typically, average firing rates are functions (‘tuning curves’) of the stimulus magnitude, which53

is therefore ‘encoded’ in an ensemble of action potentials, i.e., in a stochastic, and thus54

imprecise, fashion5–7. Similar results have been obtained in studies on the perception of55

numerical magnitudes. People are imprecise, when asked to estimate the ‘numerosity’ of an56

array of items, or in tasks involving Arabic numerals8,9; and the tuning curves of number-57

selective neurons in the brains of humans and monkeys have been exhibited10,11. These58

findings point to the existence of a ‘number sense’ that endows humans (and some animals)59
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with the ability to represent, imprecisely, numerical magnitudes12.60

The quality of neural representations depends on the number of neurons dedicated to61

the encoding, on the specifics of their tuning curves, and on the duration for which they62

are probed. Models of efficient coding propose, as a guiding principle, that the encoding63

optimizes some measure of the fidelity of the representation, under a constraint on the64

available encoding resources13–25. While they make several successful predictions (e.g., more65

frequent stimuli are encoded with higher precision16,19,20,25,26), including in the numerosity66

domain27,28, several aspects of these models remain subject to debate29,30, although they67

shape crucial features of the predicted representations. First, in many studies, the encoding68

is assumed to optimize the mutual information between the external stimulus and the internal69

representations18–20,22, but it is seldom the case that this is actually the objective that an70

observer needs to optimize. An alternative possibility is that the encoding optimizes the71

observer’s current objective, which may vary depending on the task at hand24,31. Second,72

the nature of the resource that constrains the encoding is also unclear, and several possible73

limiting quantities are suggested in the literature (e.g., the expected spike rate, the number74

of neurons16,17,20, or a functional on the Fisher information, a statistical measure of the75

encoding precision18,19,21,23,24). Third, most studies posit that the resource in question is76

costless, up to a certain bound beyond which the resource becomes depleted. Another77

possibility is that there is a cost that increases with increasing utilization of the resource78

(e.g., action potentials come with a metabolic cost32–34). Together, these aspects determine79

how the optimal encoding, and thus the resulting behavior, depend on the task and on the80

‘prior’ (the stimulus distribution).81

Hence we shed light on all three questions by manipulating, in experiments, the task and82

the prior. In an estimation task, subjects estimate the numbers of dots in briefly presented83

arrays. In a discrimination task, subjects see two series of numbers and are asked to choose84

the one with the highest average. In both tasks, experimental conditions differ by the size of85

the range of numbers that are presented to subjects (i.e., by the width of the prior). In each86
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case we examine closely the variability of the subjects’ responses. We find that it depends on87

both the task and the prior. The scale of the subjects’ imprecision increases sublinearly with88

the width of the prior, and this sublinear relation is different in the two tasks. We reject89

‘normalization’ accounts of the behavioral variability, and in the estimation task we find no90

evidence of ‘scalar variability’, whereby the standard deviation of estimates for a number is91

proportional to the number, as sometimes reported in numerosity studies. The behavioral92

patterns we exhibit are predicted by a model in which the imprecision in representations is93

adapted to the observer’s current task, whose expected reward it optimizes under a resource94

cost on the activity of the encoding neurons. The subjects’ imprecision is thus endogenously95

determined, through the rational allocation of costly encoding resources.96

Our experimental results suggest, at least in the numerosity domain, a behavioral regu-97

larity — a task-dependent quantitative law of the scaling of the responses’ variability with98

the range of the prior — for which we provide a resource-rational account. Below, we present99

the results pertaining to the estimation task, followed by those of the discrimination task,100

before turning to our theoretical account of these experimental findings. The results we101

present here are obtained by pooling together the responses of the subjects; the analysis of102

individual data further substantiates our conclusions (see Methods).103

Estimation task104

In each trial of a numerosity estimation task, subjects are asked to provide their best estimate105

of the number of dots contained in an array of dots presented for 500ms on a computer screen106

(Fig. 1a). In all trials, the number of dots is randomly sampled from a uniform distribution,107

hereafter called ‘the prior’, but the width of the prior, w, is different in three experimental108

conditions. In the ‘Narrow’ condition, the range of the prior is [50, 70] (thus the width w109

is 20); in the ‘Medium’ condition, the range is [40, 80] (thus w = 40); and in the ‘Wide’110

condition, the range is [30, 90] (thus w = 60; Fig. 1b). In all three conditions the mean111

of the prior (which is the middle of the range) is 60. As an incentive, the subjects receive112
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for each trial a financial reward which decreases linearly with the square of their estimation113

error. Each condition comprises 120 trials, and thus often the same number is presented114

multiple times, but in these cases the subjects do not always provide the same estimates.115

We now examine this variability in subjects’ responses.116

Studies on numerosity estimation with similar stimuli sometimes report that the standard117

deviation of estimates increases proportionally to the estimated number. This property,118

dubbed ‘scalar variability’, has been seen as a signature of numerical-estimation tasks, and119

more generally, of the ‘number sense’35. However, looking at the standard deviation of120

estimates as a function of the presented number, we find that it is not well described by an121

increasing line. In the three conditions, the standard deviation seems to be maximal near122

the center of the range (60), and to slightly decrease for numbers closer to the boundaries123

of the prior (Fig. 1c). Dividing each prior range in five bins of similar sizes, we compute124

the variance of estimates in each bin (see Methods). In the three conditions, the variance125

in the middle (third) bin is greater than the variances in the fourth and fifth bins (which126

contain larger numbers). These differences are significative (p-values of Levene’s tests of127

equality of variances: third vs. fifth bin, largest p-v. across the three conditions: 5e-6; third128

vs. fourth bin, Narrow condition: 0.009, Medium condition: 1.2e-5) except between the third129

and fourth bin in the Wide condition (p-v.: 0.12). This substantiates the conclusion that the130

standard deviation of estimates is not an increasing linear function of the number. Moreover,131

a hallmark of scalar variability is that the ‘coefficient of variation’, defined as the ratio of132

the standard deviation of estimates to the mean estimate, is constant35. We find that in our133

experiment, it is decreasing for most of the numbers, in the three conditions (Fig. 1e); this134

is consistent with the results of Ref.36. We conclude that the scalar-variability property is135

not verified in our data.136

In fact, the most striking feature of the variability of estimates is not how it depends137

on the number, but how it strongly depends on the width of the prior, w (Fig. 1c,d). For138

instance, with the numerosity 60, the standard deviation of subjects’ estimates is 4.2 in the139
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Fig. 1. Estimation task: the scale of subjects’ imprecision increases sublinearly
with the prior width. a. Illustration of the estimation task: in each trial, a cloud of dots
is presented on screen for 500ms. Subjects are then asked to provide their best estimate of
the number of dots shown. b. Uniform prior distributions (from which the numbers of dots
are sampled) in the three conditions of the task. c. Standard deviation of the responses of
the subjects (solid lines) and of the best-fitting model (dotted lines), as a function of the
number of presented dots, in the three conditions. For each prior, five bins of approximately
equal sizes are defined; subjects’ responses to the numbers falling in each bin are pooled
together (thick lines) or not (thin lines). d. Variance of subjects’ responses, as a function of
the width of the prior (purple line) and of the squared width (grey line). Both lines show the
same data; only the x-axis scale has been changed. e. Subjects’ coefficients of variations,
defined as the ratio of the standard deviation of estimates over the mean estimate, as a
function of the presented number, in the three conditions. f. Absolute error (solid line),
defined as the absolute difference between a subject’s estimate and the correct number, and
relative error (dashed line), defined as the ratio of the absolute error to the prior width, as
a function of the prior width. In panels c-d, the responses of all the subjects are pooled
together; error bars show twice the standard errors.
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Narrow condition, 6.8 in the Medium condition, and 8.4 in the Wide condition, although140

these estimates were all obtained after the presentations of the same number of dots (60).141

Testing for the equality of the variances of estimates across the three conditions, for each142

number contained in all three priors (i.e., all the numbers in the Narrow range,) we find143

that the three variances are significantly different, for all the numbers (largest Levene’s test144

p-value, across the numbers: 1e-7, median: 2e-15).145

The variability of estimates increases with the width of the prior. This suggests that146

the imprecision in the internal representation of a number is larger when a larger range of147

numbers needs to be represented. This would be the case if internal representations relied148

on a mapping of the range of numbers to a normalized, bounded internal scale, and the149

estimate of a number resulted from a noisy readout (or a noisy storage) on this scale, as in150

‘range-normalization’ models37–42. Consider for instance the representation of a number x,151

obtained through its normalization onto the unit range [0, 1], and then read with noise, as152

r =
x− xmin

w
+ ε, (1)

where xmin is the lowest value of the prior, and ε a centered normal random variable with153

variance ν2. Suppose that the estimate, x̂, is obtained by rescaling the noisy representation154

back to the original range, i.e., x̂ = xmin + rw (we make this assumption for the sake of155

simplicity, but the argument we develop here is equally relevant for the more elaborate,156

Bayesian model we present below). The scale of the noise, given by ν, is constant in the157

normalized scale; thus in the space of estimates the noise scales with the prior width, w. If158

we allow, in addition to the noise in estimates, for some amount of independent motor noise159

of variance σ2
0 in the responses actually chosen by the subject, we obtain a model in which160

the variance of responses is σ2
0 + ν2w2, i.e., an affine function of the square of the width of161

the prior.162

With the numerosity 60, the variance of subjects’ estimates is 4.22 = 17.64 in the Narrow163
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condition (w = 20), and 6.82 = 46.24 in the Medium condition (w = 40): given these two164

values, the affine relation just mentioned predicts that in the Wide condition (w = 60) the165

variance should be 9.72 = 93.91. We find instead that it is 8.42 = 70.56, i.e., about 25%166

lower than predicted, suggesting a sublinear relation between the variance and the square167

of the prior width. Indeed the variance of estimates does not seem to be an affine function168

of the square of the prior width (Fig. 1d, grey line and grey abscissa). Our investigations169

reveal that instead, the variance is significantly better captured by an affine function of the170

width — and not of the squared width (Fig. 1d, purple line and purple abscissa).171

As an additional illustration of this result, for each of the five bins mentioned above and172

defined for the three priors, we compute the predicted variance of estimates in the Wide173

condition on the basis of the variances in the Narrow and Medium conditions, and resulting174

either from the hypothesis of an affine function of the squared width, σ2
0 + ν2w2, or from175

the hypothesis of an affine function of the width, σ2
0 + ν2w. The variances predicted with176

the former hypothesis all overestimate the variances of subjects’ responses (Fig. 1c, orange177

crosses), but the predictions of the latter hypothesis appear consistent with the behavioral178

data (Fig. 1c, orange circles).179

We further investigate how the imprecision in internal representations depends on the180

width of the prior through a behavioral model in which responses results from a stochastic181

encoding of the numerosity, followed by a Bayesian decoding step. Specifically, the pre-182

sentation of a number x results in an internal representation, r, drawn from a Gaussian183

distribution with mean x and whose standard deviation, νwα, is proportional to the prior184

width raised to the power α; i.e., r|x ∼ N(x, ν2w2α), where ν is a positive parameter that185

determines the baseline degree of imprecision in the representation, and α is a non-negative186

exponent that governs the dependence of the imprecision on the width of the prior. The187

observer derives, from the internal representation r, the mean of the Bayesian posterior over188

x, x∗(r) ≡ E[x|r]. We note that this estimate minimizes the squared-error loss, and thus189

maximizes the expected reward in the task. The selection of a response includes an amount190

8



of motor noise: the response, x̂, is drawn from a Gaussian distribution centered on the191

Bayesian estimate, x∗(r), with variance σ2
0, truncated to the prior range, and rounded to the192

nearest integer. This model has three parameters (σ0, ν, and α).193

The likelihood of the model is maximized for α = 0.48, a value close to 1/2 (and less close194

to 1), suggesting that the standard deviation is approximately a linear function of
√
w (and195

the variance a linear function of w). The nested model obtained by fixing α = 1/2 yields a196

slightly poorer fit (which is expected for a nested model), but the difference in log-likelihood197

is small (0.38), and the Bayesian Information Criterion (BIC), a measure of fit that penalizes198

larger numbers of parameters43, is lower (i.e., better) by 8.70 for the constrained model with199

α = 1/2. This indicates that setting α = 1/2 provides a parsimonious fit to the data that is200

not significantly improved by allowing α to differ from 1/2. A different specification, α = 1,201

corresponds to a normalization model similar to the one described above, but here with a202

Bayesian decoding of the internal representation. The BIC of this model is higher by 244203

than that with α = 1/2, indicating a much worse fit to the data. (Throughout, we report204

the models’ BICs even if they have the same number of parameters, so as to compare the205

values of a single metric). We emphasize that this large difference in BIC implies that the206

hypothesis α = 1 can be confidently rejected, in favor of the hypothesis α = 1/2 (in informal207

terms, it is not the case that the grey line in Fig. 1d, showing the variance vs. the squared208

width, only appears curved because of some sampling noise, in fact it is indeed not a straight209

line; while it is substantially more probable that the purple one, showing the variance vs.210

the width, corresponds indeed to a straight line).211

The standard deviation of representations thus seems to increase linearly with the square212

root of the prior width,
√
w. The positive dependence results in larger errors when the prior213

is wider (Fig. 1f, solid line). But the sublinear relation implies that the subjects in fact make214

smaller relative errors (relatively to the width of the prior), when the prior is wider. In the215

Narrow condition, the ratio of the average absolute error to the width of the prior, |x̂−x|
w

,216

is 19.7%, i.e., the size of errors is about one fifth of the prior width. This ratio decreases217
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substantially, to 14.5% and 11.6% in the Medium and Wide conditions, respectively, i.e., the218

size of errors is about one ninth of the prior width in the Wide condition (Fig. 1f, dashed219

line). In other words, while the size of the prior is multiplied by 3, the relative size of errors220

is multiplied by 5
9
≃ 0.56, and thus the absolute size of errors is multiplied by 3 · 5

9
≃ 1.67. If221

subjects had the same relative sizes of errors in both the Narrow and the Wide conditions,222

their absolute error would be multiplied by 3; conversely the absolute error would be the223

same in the two conditions if the relative error was divided by 3. The behavior of subjects224

falls in between these two scenarios: they adopt smaller relative errors in the Wide condition,225

although not so much so as to reach the same absolute error as in the Narrow condition.226

Below, we show how this behavior is accounted for by a tradeoff between the performance227

in the task and a resource cost on the activity of the mobilized neurons. But first, we ask228

whether subjects exhibit, in a discrimination task, the same sublinear relation between the229

imprecision of representations and the width of the prior.230

Discrimination task231

In many decision situations, instead of providing an estimate, one is required to select the232

better of two options. We thus investigate experimentally the behavior of subjects in a233

discrimination task. In each trial, subjects are presented with two interleaved series of234

numbers, five red and five blue numbers, after which they are asked to choose the series235

that had the higher average (Fig. 2a). Each number is shown for 500ms. Two experimental236

conditions differ by the width of the uniform prior from which the numbers (both blue and237

red) are sampled: in the Narrow condition the range of the prior is [35, 65] (the width of238

the prior is thus w = 30) and in the Wide condition the range is [10, 90] (the width is thus239

w = 80; Fig. 2b). After each decision, subjects receive a number of points equal to the240

average that they chose. At the end of the experiment, the total sum of their points is241

converted to a financial reward (through an increasing affine function).242

Subjects in this experiment sometimes make incorrect choices (i.e., they choose the color243
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whose numbers had the lower average), but they make less incorrect choices when the dif-244

ference between the two averages is larger, and the proportion of trials in which they choose245

‘red’ is a sigmoid function of the difference between the average of the red numbers, xR,246

and the average of the blue numbers, xB (Fig. 2c). In the Narrow condition, this proportion247

reaches 60% when the difference in the averages is 1, and 90% when the difference is 7. In248

the Wide condition, we find that the slope of this psychometric curve is less steep: subjects249

reach the same two proportions for differences of about 2.4 and 12.6, respectively.250

In the Wide condition, it thus requires a larger difference between the red and blue aver-251

ages for the subjects to reach the same discrimination threshold; put another way, the same252

difference in the averages results in more incorrect choices in the Wide condition than in the253

Narrow condition. As with the estimation task, this suggests that the degree of imprecision254

in representations is larger when the range of numbers that must be represented is larger.255

To estimate this quantitatively, we turn to the predictions of the model presented above,256

here considered in the context of the discrimination task: in this model, the average xC ,257

where C is ‘blue’ or ‘red’ (denoted by B and R, respectively), results in an internal repre-258

sentation, rC , drawn from a Gaussian distribution with mean xC and whose variance, ν2w2α,259

is proportional to the prior width raised to the exponent 2α, i.e., rC |xC ∼ N (xC , ν
2w2α).260

Given the (independent) representations rB and rR, the subject, optimally, compares the261

Bayesian estimates for each quantity, x∗(rB) and x∗(rR), and chooses the greater one. As262

the Bayesian estimate is an increasing function of the representation, the probability that263

the subject choose ‘red’, conditional on two averages xB and xR, is the probability that rR264

be larger than rB, i.e.,265

P (‘red’|xB, xR) = P (rR > rB|xB, xR) = Φ

(
xR − xB√

2νwα

)
, (2)

where Φ is the cumulative distribution function of the standard normal distribution.266

The choice probability is thus predicted to be a function of the ratio xR−xB

wα of the dif-267
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Fig. 2. Discrimination task: the scale of subjects’ imprecision increases with
the prior width; the relation is sublinear, but different than in the estimation
task. a. Illustration of the discrimination task: in each trial, subjects are shown five
blue numbers and five red numbers, alternating in color, each for 500ms, after which they
are asked to choose the color whose numbers have the higher average. b. Uniform prior
distributions (from which the numbers of dots are sampled) in the two conditions of the
task. c. Proportion of choices ‘red’ in the responses of the subjects (solid lines) and of the
best-fitting model (dotted lines), as a function of the difference between the two averages,
in the two conditions. d. Proportion of correct choices in subjects’ responses as a function
of the absolute difference between the two averages divided by the square root of the prior
width (left), by the prior width raised to the power 3/4 (middle), and by the prior width
(right). The three subpanels are different representations of the same data. In panels c and
d, the responses of all the subjects are pooled together; error bars show the 95% confidence
intervals.
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ference between the two averages over the width of the prior raised to the power α, and268

therefore the same choice probability should be obtained across conditions as long as this269

ratio is the same. In Figure 2d, we show for different values of α the subjects’ proportions270

of correct responses as a function of the absolute value of this ratio, so as to be able to ex-271

amine closely the difference between the resulting choice curves in the two conditions. The272

case α = 1 corresponds, as above, to the hypothesis that the standard deviation of internal273

representations is a linear function of the width, w, i.e., a normalization of the numbers by274

the width of the prior. But we find that the proportion of correct choices as a function of the275

ratio |xR − xB| /w is greater in the Wide condition than in the Narrow condition (Fig. 2d,276

last panel). In other words, in the Wide condition the subjects are more sensitive to the277

normalized difference than in the Narrow condition. This suggests that between the Narrow278

and the Wide conditions, the imprecision in representations does not change in the same279

proportions as does the prior width; specifically, it suggests a sublinear relation between the280

scale of the imprecision and the width of the prior.281

As seen in the previous section, the behavioral data in the estimation task precisely282

suggest such a sublinear relation, and more precisely point to the exponent α = 1/2, i.e., to283

a linear relation between the standard deviation and the square-root of the width,
√
w. But284

the proportion of correct choices as a function of the corresponding ratio, |xR − xB| /
√
w,285

is greater in the Narrow condition than in the Wide condition (Fig. 2d, first panel). The286

sublinear relation, thus, is not the same in the two tasks; and the data suggest in the case of287

the discrimination task an exponent α greater than 1/2, but lower than 1. Indeed, we find288

that the choice curves in the two conditions match very well with α = 3/4 (Fig. 2d, middle289

panel).290

Model fitting substantiates this result. We add to our model (in which the probability of291

choosing ‘red’ is given by Eq. 2) the possibility of ‘lapse’ events, in which either response is292

chosen with probability 50%; an additional parameter, η, governs the probability of lapses.293

(We reach the same conclusions with a model with no lapse, but this model with lapses yields294
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a better fit; see Methods.) The BIC of this model with α = 3/4 is lower (i.e., better) by295

44.1 than that with α = 1/2, and by 18.3 than that with α = 1, indicating strong evidence296

rejecting the hypotheses α = 1/2 and α = 1, in favor instead of the hypothesis of an exponent297

α equal to 3/4. Notwithstanding the theoretical reasons, presented below, that motivate our298

focus on this specific value of the exponent in addition to the good fit to the data, we can299

let α be a free parameter, in which case its best-fitting value is 0.80 (and thus close to 3/4).300

This model’s BIC is however higher (i.e., worse) by 7.9 than that of the model with α fixed301

at 3/4, which indicates strong evidence44 in favor of the equality α = 3/4. In sum, our302

best-fitting model is one in which the standard deviation of the internal representations is a303

linear function of the prior width raised to the power 3/4. As with the estimation task, this304

sublinear relation implies that subjects are relatively more precise when the prior is wider.305

This allows them to achieve a significantly better performance in the Wide condition than306

in the Narrow condition (with 80.2% and 77.4% of correct responses, respectively; p-value307

of Fisher’s exact test of equality of the proportions: 9.5e-5).308

Task-optimal endogenous precision309

The subjects’ behavioral patterns in the estimation task and in the discrimination task310

suggest that the scale of the imprecision in their internal representations increases sublinearly311

with the range of numerosities used in a given experimental condition. Specifically, the scale312

of the imprecision seems to be a linear function of the prior width raised to the power 1/2,313

in the estimation task, and raised to the power 3/4, in the discrimination task. We now314

show that these two exponents, 1/2 and 3/4, arise naturally if one assumes that the observer315

optimizes the expected reward in each task, while incurring a cost on the activity of the316

neurons that encode the numerosities.317

Inspired by models of perception in neuroscience16–18,20–25,45–47, we consider a two-stage,318

encoding-decoding model of an observer’s numerosity representation. In the encoding stage,319

a numerosity x elicits in the brain of the observer an imprecise, stochastic representation,320
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r, while the decoding stage yields the mean of the Bayesian posterior, which is the optimal321

decoder in both tasks. The model of Gaussian representations that we use throughout the322

text is one example of such an encoding-decoding model.323

The encoding mechanism is characterized by its Fisher information, I(x), which reflects324

the sensitivity of the representation’s probability distribution to changes in the stimulus x.325

The inverse of the square-root of the Fisher information, 1/
√

I(x), can be understood as326

the scale of the imprecision of the representation about a numerosity x. More precisely,327

it is approximately — when I(x) is large — the standard deviation of the Bayesian-mean328

estimate of x derived from the encoded representation. (For smaller I(x), the standard329

deviation of the Bayesian-mean estimate increasingly depends on the shape of the prior; with330

a uniform prior, it decreases near the boundaries.) The variability in subjects’ responses in331

the estimation task, and their choice probabilities in the discrimination task, reported above,332

are thus indirect measures of the Fisher information of their encoding process.333

Moreover, the expected squared error of the Bayesian-mean estimate of x is approximately334

the inverse of the Fisher information, 1/I(x). We thus consider the generalized loss function335

La[I] =

∫
π(x)a

I(x)
dx, (3)

where π(x) is the prior distribution from which x is sampled. With a = 1, this quantity ap-336

proximates the expected quadratic loss that subjects in the estimation task should minimize337

in order to maximize their reward. And with a = 2, minimizing this loss is approximately338

equivalent to maximizing the reward in the discrimination task24. (The squared prior, in339

the expression of L2[I], corresponds to the probability of the co-occurrence of two presented340

numerosities that are close to each other, which is the kind of event most likely to result in341

errors in discrimination.)342

In both cases, a more precise encoding, i.e., a greater Fisher information, results in a343

smaller loss. This precision, however, comes with a cost. We assume that the encoding344

15



results from an accumulation of signals, each entailing an identical cost (e.g., the energy345

resources consumed by action potentials32–34.) The more signals the observer collects, the346

greater the precision; but also the greater the cost, which is proportional to the number of347

signals. Formally, we consider a continuum-limit model, in which a representation proceeds348

from a Wiener process (Brownian motion) with infinitesimal variance s2, observed for a349

duration T (the continuum equivalent of the number of collected signals). The drift of350

the process, m(x), encodes the number: it can be, for instance, some normalized value351

of x; but here we only assume that the function m(x) is increasing and bounded. The352

resulting representation, r, is normally distributed, as r|x ∼ N(m(x)T, s2T ), and its Fisher353

information is T (m′(x))2/s2 and thus it is proportional to T . The bound on m(x) puts a354

constraint on the Fisher information: specifically, it implies that the quantity355

C[I] =

(∫ √
I(x)dx

)2

(4)

is bounded by a quantity proportional to the duration, i.e., C[I] ≤ KT , where K > 0. Other356

studies18,21,24 have posited a bound on the quantity C[I], but here we emphasize that the357

bound is a linear function of the duration of observation, and we assume, crucially, that the358

observer can choose this duration, T , but at the expense of a cost that is proportional to T .359

Specifically, we assume that the observer chooses the function I(.) and the duration T360

that solve the minimization problem361

min
I(.),T

La[I] + λT subject to C[I] ≤ KT, (5)

where λ > 0. In this problem, any increase of the Fisher information, within the bound,362

improves the objective function; and thus the solution saturates the bound, i.e., C[I] = KT .363

Hence the problem reduces to that of choosing the function I(.) that solves the minimization364

problem365

min
I(.)

La[I] + θC[I], (6)
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where θ = λ/K. The solution is366

I(x) =
π(x)2a/3√

θ
∫
π(x̃)a/3dx̃

. (7)

This implies that the optimal Fisher information vanishes outside of the support of the prior;367

and in the case of a uniform prior of width w, I(x) is constant, as368

I(x) =
1√
θw

for the estimation task,

and I(x) =
1√
θw3/2

for the discrimination task,
(8)

for any x such that π(x) ̸= 0.369

The scale of the imprecision of internal representations, 1/
√
I(x), is thus predicted to be370

proportional to the prior width raised to the power 1/2, in the estimation task, and raised371

to the power 3/4, in the discrimination task. As shown above, we find indeed that in these372

tasks, the imprecision of representations not only increases with the prior width, but it does373

so in a way that is quantitatively consistent with these two exponents. As for the model of374

Gaussian representations that we have considered throughout the text, it is in fact equivalent375

to the model just presented, up to a linear transformation of the representation that does376

not impact its Fisher information (nor the resulting estimates). Its Fisher information is the377

inverse of the variance, i.e., 1/ (ν2w2α), and thus Eq. 8 implies α = 1/2 for the estimation378

task, and α = 3/4 for the discrimination task, i.e., the two values that indeed best fit the379

data.380

Many efficient-coding models in the literature feature a different objective, the maxi-381

mization of the mutual information18–20; but a single objective cannot explain our different382

findings in the two tasks (namely, the different dependence on the prior width). Many mod-383

els also feature a different kind of constraint: a fixed bound on the quantity in Eq. 4, or on384

a generalization of this quantity18,19,21,23. But here also, as this bound is usually saturated,385
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the optimal Fisher information, which is constant, here, due to the uniform prior, is entirely386

determined by the constraint—irrespective of the objective of the task. This hypothesis thus387

cannot account either for the difference that we find between the two tasks. By contrast,388

we assume that it is the task’s expected reward that is maximized, and that the amount389

of utilized encoding resources can be endogenously determined: our model is thus able to390

predict not only that the behavior should depend on the prior, but also that this dependence391

should change with the task; and it makes quantitative predictions that coincide with our392

experimental findings.393

We compare the responses of the subjects and of the Gaussian-representation model, with394

α = 1/2 in the estimation task and α = 3/4 in the discrimination task. In both cases, the395

parameter ν governs the imprecision in the internal representation, and a second parameter396

corresponds to additional response noise: the motor noise, parameterized by σ2
0, in the397

estimation task, and the lapse probability, η, in the discrimination task. The behavior of the398

model, across the two tasks and the different priors, reproduces that of the subjects (Figs. 1c399

and 2c, dotted lines). In the estimation task, the standard deviation of estimates increases400

as a function of the prior width, as it does in subjects’ responses. The Fisher information in401

this model is constant with respect to x, and thus the variance of the internal representation,402

r, is also constant; but the Bayesian estimate, x∗(r), depends on the prior, and its variability403

decreases for numerosities closer to the edges of the uniform prior. Hence the standard404

deviation of the model’s estimates adopts an inverted U-shape similar to that of the subjects405

(Fig. 1c). In the discrimination task, the model’s choice-probability curve is steeper in the406

Narrow condition than in the Wide condition, and the two predicted curves are close to407

the subjects’ choice probabilities (Fig. 2c). We emphasize that how the internal imprecision408

scales with the prior width is entirely determined by our theoretical predictions (Eq. 8);409

these quantitative predictions allow our model to capture the subjects’ imprecise responses410

simultaneously across different priors.411
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Discussion412

In this study, we examine the variability in subjects’ responses in two different tasks and413

with different priors. We find that the precision of their responses depends both on the task414

and on the prior. The scale of their imprecision about the presented numbers increases sub-415

linearly with the width of the prior, and this sublinear relation is different in each task. The416

two sublinear relations are predicted by a resource-rational account, whereby the allocation417

of encoding resources optimizes a tradeoff, maximizing each task’s expected reward while418

incurring a cost on the activity of the encoding neurons. Different formalizations of this419

tradeoff suggested in several other studies cannot reproduce our experimental findings.420

The model and the data suggest a scaling law relating the size of the representations’421

imprecision to the width of the prior, with an exponent that depends on the task at hand.422

An important implication is that the relative precision with which people represent external423

information can be modulated by their objective and by the manner and the context in which424

the representations are elicited. In the model, the scaling law results from the solution425

to the encoding allocation problem (Eq. 6) in the special case of a uniform prior, and in426

the contexts of estimation and discrimination tasks. We surmise that with non-uniform427

priors and with other tasks (that imply different expected-reward functions), the behavior428

of subjects should be consistent with the optimal solution to the corresponding resource-429

allocation problem, provided that subjects are able to learn these other priors and objectives.430

Further investigations of this conjecture will be crucial in order to understand the extent431

to which the formalism of optimal resource-allocation that we present here might form a432

fundamental component in a comprehensive theory of the brain’s internal representations of433

magnitudes.434
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Methods552

Estimation task553

Task and subjects 36 subjects (20 female, 15 male, 1 non-binary) participated in the554

estimation-task experiment (average age: 21.4, standard deviation: 2.8). The experiment555

took place at Columbia University, and complied with the relevant ethical regulations; it was556

approved by the university’s Institutional Review Board (protocol number: IRB-AAAS8409).557

All subjects experienced the three conditions.558

In the experiment, subjects provide their responses using a slider (Fig. 1a), whose size559

on screen is proportional to the width of the prior. Each condition comprises three different560

phases. In all the trials of all three phases the numerosities are randomly sampled from561

the prior corresponding to the current condition. This prior is explicitly told to the subject562

when the condition starts. In each of the 15 trials of the first, ‘learning’ phase, the subject563

is shown a cloud of dots together with the number of dots it contains (i.e., its numerosity564

represented with Arabic numerals). These elements stay on screen until the subject chooses565

to move on to the next trial. No response is required from the subject in this phase. Then566

follow the 30 trials of the ‘feedback’ phase, in which clouds of dots are shown for 500ms567

without any other information on their numerosities. The subject is then asked to provide568

an estimate of the numerosity. Once the estimate is submitted, the correct number is shown569

on screen. The third and last phase is the ‘no-feedback’ phase, which is identical to the570
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‘feedback’ phase, except that no feedback is provided. In both the ‘feedback’ phase and the571

‘no-feedback’ phase, subjects respond at their own pace. All the analyses presented here use572

the data of the ‘no-feedback’ phase, which comprises 120 trials.573

At the end of the experiment, subjects receive a financial reward equal to the sum of a574

$5 show-up fee (USD) and of a performance bonus. After each submission of an estimate,575

an amount equal to 0.10− (x̂− x)2/600, where x is the correct number and x̂ the estimate,576

is added to the performance bonus. If at the end of the experiment the performance bonus577

is negative, it is set to zero. The average reward was $11.80 (standard deviation: 6.98).578

Bins defined over the priors, and calculation of the variance The ranges of the579

three priors (50-70, 40-80 and 30-90), contain 21, 41, and 61 integers, respectively, and thus580

none of them can be split in five bins containing the same number of integers. Hence the581

ranges defining each of the five bins were chosen such that the third bin contains an odd582

number of integers, with at its middle the middle number of the prior (60 in each case), and583

such that the second and fourth bins contain the same number of integers as the third one;584

the first and last bins then contain the remaining integers. In the Narrow condition, the585

ranges of the five bins are: 50-52, 53-57, 58-62, 63-67, and 68-70. In the Medium condition,586

the ranges of the five bins are: 40-46, 47-55, 56-64, 65-73, and 74-80. In the Wide condition,587

the ranges of the five bins are: 30-40, 41-53, 54-66, 67-79, and 80-90.588

In our calculation of the variance of estimates, when pooling responses by bins of pre-589

sented numbers, we do not wish to include the variability stemming from the diversity of590

numbers in each bin. Thus we subtract from each estimate x̂ of a number the average of all591

the estimates obtained with the same number, ⟨x̂⟩. The calculation of the variance for a bin592

then makes use of these ‘excursions’ from the mean estimates, x̂− ⟨x̂⟩.593

Model fitting and individual subjects analysis The Gaussian-representation model594

used throughout the text has three parameters: α, ν, and σ0. We fit these parameters to595

the subjects’ data by maximizing the model’s likelihood. For each parameter, we can either596
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α ν σ0 Num. param. BIC
Fixed α = 1 Shared Shared 2 81762.79

Fixed α = 1/2 Shared Shared 2 *81519.07
Shared (α = .48) Shared Shared 3 81527.78

Fixed α = 1 Indiv. Shared 37 81729.64
Fixed α = 1 Shared Indiv. 37 81746.34
Fixed α = 1 Indiv. Indiv. 72 81657.67

Fixed α = 1/2 Indiv. Shared 37 81427.11
Fixed α = 1/2 Shared Indiv. 37 81467.71
Fixed α = 1/2 Indiv. Indiv. 72 *81346.37

Shared (α = .43) Indiv. Shared 38 81437.93
Shared (α = .45) Shared Indiv. 38 81472.85
Shared (α = .44) Indiv. Indiv. 73 81350.90

Indiv. Shared Shared 38 81444.60
Indiv. Indiv. Shared 73 81571.48
Indiv. Shared Indiv. 73 81366.40
Indiv. Indiv. Indiv. 108 81453.52

Table 1. Estimation task: model fitting supports the hypothesis α = 1/2, both
with pooled and individual responses. Number of parameters (second-to-last column)
and BIC (last column) of the Gaussian-representation model under different specifications
regarding whether all subjects share the same values of the three parameters α, ν, and σ0

(first three columns). ‘Shared’ indicates that the responses of all the subjects are modeled
with the same value of the parameter. ‘Indiv.’ indicates that different values of the parameter
are allowed for different subjects. For the parameter α, ‘Fixed’ indicates that the value of
α is fixed (thus it is not a free parameter); when the parameter α is ‘Shared’, it is a free
parameter, and we indicate its best-fitting value in parentheses. In the first three lines of
the table, all three parameters are shared across the subjects (the three lines differ only by
the specification of α); while in the remaining lines at least one parameter is individually
fit. In both cases the lowest BIC (indicated by a star) is obtained for a model with a fixed
parameter α = 1/2.

allow for ‘individual’ values of the parameter that may be different for different subjects, or597

we can fit the responses of all the subjects with the same, ‘shared’ value of the parameter.598

In the main text we discuss the model with ‘shared’ parameters; the corresponding BICs599

are shown in the first three lines of Table 1. The other lines of the Table correspond to600

specifications of the model in which at least one parameter is allowed to take ‘individual’601

values. In both cases the lowest BIC is obtained for models with a fixed exponent α = 1/2,602

common to all the subjects, consistently with our prediction (Eq. 8). Overall, the best-fitting603
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model allows for ‘individual’ values of the parameters ν and σ0, and a fixed, shared value604

for α. This suggests that the parameters ν and σ0, which govern, respectively, the degrees605

of “internal” and “external” (motor) imprecision, capture individual traits characteristic of606

each subject, while the exponent α reflects the solution to the optimization problem posed607

by the task, which is the same for all the subjects.608

Discrimination task609

Task and subjects 111 subjects (61 male, 50 female) participated in the discrimination-610

task experiment (average age: 31.4, standard deviation: 10.2). Due to the COVID crisis, the611

experiment was run online, and each subject experienced only one condition. 31 subjects612

participated in the Narrow condition, and 32 subjects participated in the Wide condition.613

This experiment was approved by Columbia University’s Internal Review Board (protocol614

number: IRB-AAAR9375).615

In this experiment, each condition starts with 20 practice trials. In each of these trials,616

five red numbers and five blue numbers are shown to the subject, each for 500ms. In the617

first 10 practice trials, no response is asked from the subject. In the following 10 practice618

trials, the subject is asked to choose a color; choices in these trials do not impact the reward.619

Then follow 200 ‘real’ trials in which the averages chosen by the subject are added to a score.620

At the end of the experiment, the subject receives a financial reward that is the sum of a621

$1.50 fixed fee (USD) and of a non-negative variable bonus. The variable bonus is equal to622

max(0, 1.6(AverageScore−50)), where AverageScore is the score divided by 200. The average623

reward was $6.80 (standard deviation: 2.15).624

Individual subjects analysis In the Gaussian-representation model, a numerosity x625

yields a representation that is normally-distributed, as r|x ∼ N(x, ν2w2α). Fitting the model626

to the pooled data collected in the two conditions has enabled us to identify separately the627

two parameters ν and α. But fitting to the responses of individual subjects, who experienced628

26



10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
Em

pi
ric

al
 C

DF

Narrow
Wide

1 2 3 4
/ w

0.5 1.0
/w3/4

0.1 0.2 0.3 0.4
/w

Fig. 3. Discrimination task: empirical across-subjects distribution of scaled best-
fitting standard-deviation parameter. The first panel shows the empirical cumulative
distribution function (CDF) of the fitted parameter ν̃, unscaled. The second, third, and
fourth panels show the empirical CDF of ν̃ divided by wα, with α = 1/2, 3/4, and 1,
respectively.

only one of the two conditions, only allows to identify the variance ν̃2 ≡ ν2w2α, and not ν629

and α separately. However, an important difference between these two parameters is that630

the baseline variance ν2 is idiosyncratic to each subject (and thus we expect inter-subject631

variability for this parameter), while the exponent α, in our theory, is determined by the632

specifics of the task, and thus it should be the same for all the subjects; in particular, we633

predict α = 3/4. Therefore, as subjects were randomly assigned to one of the two conditions,634

we expect the distribution of ν = ν̃/wα to be identical across the two conditions. We thus635

look at the empirical distributions of this quantity, with different values of α, in the two636

conditions. We find that the distributions of ν̃, ν̃/
√
w, and ν̃/w, in the two conditions, do637

not match well; but the distributions of ν̃/w3/4 in the two conditions are close to each other638

(Fig. 3). In each of these four cases, we run a Kolmogorov-Smirnov test of the equality of the639

underlying distributions. With ν̃, ν̃/
√
w, and ν̃/w, the null hypothesis is rejected (p-values:640

1e-10, 0.008, and 0.001, respectively), while with ν̃/w3/4 the hypothesis (of equality of the641

distributions in the two conditions) is not rejected (p-value: 0.79). Thus this analysis, based642

on the individual model-fitting of the subjects, substantiates our conclusions.643

27



Models’ BICs We fit the Gaussian-representation model, with or without lapses, to the644

subjects’ responses in the discrimination task. In the main text we discuss the model-fitting645

results of the model with lapses. The corresponding BICs are reported in the last four lines of646

Table 2, while the first four lines report the BICs of the model with no lapses. Table 2 shows647

that including lapses in the model yields lower BICs, but also that in both cases (with or648

without lapses), the lowest BIC is obtained with the model with a fixed parameter α = 3/4,649

consistently with our theoretical prediction (Eq. 8).650

α Lapses Num. param. BIC
Fixed α = 1 No 1 11737.03

Fixed α = 3/4 No 1 *11721.22
Fixed α = 1/2 No 1 11815.86
Free (α = .84) No 2 11723.22
Fixed α = 1 Yes 2 11635.59

Fixed α = 3/4 Yes 2 *11617.24
Fixed α = 1/2 Yes 2 11661.35
Free (α = .80) Yes 3 11625.14

Table 2. Discrimination task: model fitting supports the hypothesis α = 3/4.
Number of parameters (second-to-last column) and BIC (last column) of the Gaussian-
representation model under different specifications regarding the parameter α (first column)
and the absence or presence of lapses (second column). In the bottom four lines the model
features lapses, while it does not in the top four lines; in both cases the lowest BIC (indicated
with a star) is obtained with the specification α = 3/4.
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