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We propose a model of optimal decision making subject to a mem-
ory constraint in the spirit of models of rational inattention; our
theory differs from that of Sims (2003) in not assuming costless
memory of past cognitive states. The model implies that both fore-
casts and actions will exhibit idiosyncratic random variation; that
average beliefs will exhibit a bias that fluctuates forever; and that
more recent news will be given disproportionate weight in forecasts.
The model provides a simple explanation for the over-reaction to
news observed in the laboratory by Afrouzi et al. (2023).
JEL: D84,D91,G41

The hypothesis of rational expectations (RE) proposes that decisions are based
on expectations that make use of all available information in an optimal way:
that is, those that would be derived by correct Bayesian inference from an objec-
tively correct prior and the data that has been observed to that date. Yet both
in surveys of individual forecasts of macroeconomic and financial variables and
in forecasts elicited in experimental settings, beliefs are more heterogeneous than
this hypothesis should allow, and forecast errors are predictable on the basis of
variables observable by the forecasters, contrary to this hypothesis. In particular,
a number of studies have argued that forecasts typically over-react to new real-
izations of the variable being forecasted. (See Bordalo et al., 2020, and Afrouzi
et al., 2023, for recent examples with extensive references to prior literature.)
A variety of models of expectation formation have been proposed that allow for

such over-reaction. The simplest type of model simply posits that the forecasted
future value of a variable is a particular linear function of the last few observa-
tions of the variable; with an appropriate choice of the coefficients (such as those
proposed by Metzler, 1941), a forecasting heuristic of this kind may imply that a
recent increase in the variable will be extrapolated into the future, so that further
increases are anticipated, regardless of whether the degree of serial correlation of
changes in the variable make this an optimal forecast. A classic critique of such
proposals, however, is that of Muth (1961): why should decision makers continue
to forecast in this way, if their forecasts are systematically biased, as repeated ob-
servations should eventually make clear? Moreover, a mechanical heuristic with
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fixed coefficients is unable to explain how the biases in observed forecasts change
depending on the persistence of the process that is forecasted (Afrouzi et al.,
2023).

Fuster et al. (2010, 2011) propose a more sophisticated model, in which decision
makers are assumed to forecast a time series by modeling it as a low-order autore-
gressive process, that may not capture the complexity of the actual dynamics of
the series. This approach, however, does not explain why only a particular subset
of lagged values of the series are considered as possible regressors in the forecast-
ing model. Moreover, the Fuster et al. explanation implies that over-reaction
should only be observed in the case of variables that are not well-described by
an AR(k) process of low enough order. Yet Afrouzi et al. (2023) find signifi-
cant over-reaction in an experiment in which the true data-generating process is
an AR(1) process; in fact, they find the most severe degree of over-reaction (as
discussed further below) when the process to be forecasted is white noise.

Here we offer a different explanation for the pervasiveness of over-reaction. We
consider a model in which a decision maker’s forecasts (or more generally, actions
with consequences that depend on the future realization of some variable) can
be based both on currently observable information and an imperfect memory of
past observations. Subject to this constraint on the information that the decision
rule can use, we assume that the rule is optimal. Moreover, rather than making
an arbitrary assumption about the kind of statistics about past experience that
can be recalled with greater or lesser precision, we allow the memory structure
to be specified in a flexible way, and assume that it is optimized for the partic-
ular decision problem, subject only to a constraint on the overall complexity of
the information that can be stored in (and retrieved from) memory — or more
generally, subject to a cost of using a more complex memory structure.

In the limiting case in which the cost of memory complexity is assumed to be
negligible, the predictions of our model coincide with those of the rational ex-
pectations hypothesis. But when the cost is larger (or the constraint on memory
complexity is tighter), our model predicts that forecasts should be both heteroge-
neous (even in the case of forecasters who observe identical data) and systemati-
cally biased. Moreover, the predicted biases include the type of over-reaction to
news documented in laboratory forecasting experiments by Afrouzi et al. (2023).
And unlike the model of Fuster et al. (2010, 2011), our model predicts that over-
reaction to news will be most severe in the case of time series exhibiting little
serial correlation.

In seeking to endogenize the information content of the noisy cognitive state
on the basis of which people must act, our theory is in the spirit of Sims’s (2003)
theory of “rational inattention”; and indeed, we follow Sims in modeling the com-
plexity constraint using information theory.1 There is nonetheless an important

1Our model of the constraint on the precision of memory as a mutual information constraint is similar
to the proposal of Fox and Tishby (2012), though we develop the analysis in a way that is fairly different
from theirs.
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difference between our theory and that of Sims (2003). Sims assumes a constraint
on the precision with which new observations of the world can reflect any current
or past conditions outside the head of the decision maker, but assumes perfectly
precise memory of all of the decision maker’s own past cognitive states, and also
assumes that past external states can be observed at any time with the same
precision as current conditions. We instead assume (for the sake of simplicity)
that the current external state can be observed with perfect precision, but that
memory of past cognitive states is subject to an information constraint; and we
further assume that the decision maker has no access to external states that oc-
curred in the past, except through (information-constrained) access to her own
memory of those past states. These differences are crucial for the ability of our
model to explain over-reaction to news.

We assume that in each period t, a decision maker’s [DM’s] only access to
the past is through a retrieved memory state mt, which provides a noisy record
of (aspects of) the DM’s cognitive state st−1 in the previous period. The DM’s
cognitive state st in period t, upon which period t actions are based, then consists
both of the information in mt and the current observation of the external state
yt. A noisy record of this cognitive state can then be retrieved in period t+1, and
so on. Our model differs from one of optimal Bayesian decision making only in
our assumption that the memory state mt is not perfectly informative about the
prior cognitive state st−1. The noise in the retrieved memory state is endogenized
subject to an assumed cost of memory precision.

The model describes a DM with no access to information about the past apart
from the imprecise summary that can be obtained by accessing their memory. It is
most plausibly applicable to the situation of a subject in a laboratory experiment;
we present a quantitative application to data of this kind below. But we believe
that the model can also reasonably be applied to situations of greater economic
consequence, in which people draw conclusions from their personal experience
without seeking other sources of information; for example, this would be the way
in which most households form expectations about their future income prospects
when making spending decisions.

The model as presented is less obviously applicable to the situations of profes-
sional forecasters, who can access extensive bodies of recorded data. Note that
in our model, the currently observable external state is assumed to be accessible
with perfect precision. This may be a reasonable approximation (and certainly
simplifies calculations) when, as assumed here, the observable external state is
a single number; it is less obviously plausible when the external data that can
in principle be observed are a high-dimensional vector, as in the situation of the
professional forecaster. In order to treat such a case, it is important to allow
for limits on the precision of access to currently observable information, along
with the memory limits that we emphasize here. Sung (2024) presents such an
extension of the model, and shows that the extended model can explain some of
the biases observed in professional forecasts.
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Other recent papers that explore the economic consequences of assuming that
memory allows only a noisy recollection of past observations include Neligh (2024)
and Afrouzi et al. (2023). While these authors also assume that some aspects of
memory structure are optimized for a particular decision problem, the classes of
memory structures that they consider are different than the one that we analyze
here, as discussed further in section 6.B.

We present the assumptions of our model and state the optimization problem
that we consider in section 1. Section 2 offers a characterization of the opti-
mal memory structure in our model, starting with a a simple environment that
yields a closed-form solution. We emphasize the failure of beliefs ever to converge
to those associated with a rational expectations equilibrium. Section 3 extends
the analysis in a more general set-up and derives the optimal dimension and the
structure of the memory state. Section 4 illustrates the model’s implications, dis-
cussing quantitative aspects of numerical solutions under two different examples
of memory costs. Section 5 presents the quantitative predictions of the model for
statistics of the kind reported by Afrouzi et al. (2023), showing not only that the
model can produce over-reaction to news, but that it can be parameterized so as
to predict roughly the degree of over-reaction measured by these authors. Finally,
section 6 discusses how our model compares to other related models. Section 7
concludes.

1. A Flexible Model of Imprecise Memory

Here we introduce the class of linear-quadratic-Gaussian decision problems that
we study, and specify the nature of a general constraint on the precision of mem-
ory. This gives rise to a dynamic optimization problem, the solution to which we
study in the following sections.

A. The decision-maker’s problem

In the kind of decision problem which we consider, a decision maker [DM]
observes the successive realizations of a univariate stochastic process yt (“the
external state”), which we assume to be a stationary AR(1) process. We write
the law of motion of this process in the form

(1.1) yt = µ + ρ(yt−1 − µ) + ϵyt,

where µ is the mean, ρ is the coefficient of serial correlation (with |ρ| < 1),
and {ϵyt} is an i.i.d. sequence, drawn each period from a Gaussian distribution
N(0, σ2ϵ ). The variance of the external state (conditional on the value of µ and
the other parameters) will therefore equal σ2y ≡ σ2ϵ /(1− ρ2).

The decision maker produces each period a vector of forecasts zt, so as to
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minimize the expected value of a discounted quadratic loss function

(1.2) E
∞∑
t=0

βt(zt − z̃t)
′W (zt − z̃t),

where W is a positive definite matrix specifying the relative importance of accu-
racy of the different dimensions of the vector of forecasts. The eventual outcomes
that the DM seeks to forecast (the elements of the vector z̃t) are each functions
of the future evolution of the external state,2

z̃i,t ≡
∞∑
j=0

aijyt+j ,

where the coefficients {aij} satisfy
∑

j |aij | < ∞ for each i, and the discount
factor satisfies 0 < β < 1. This formalism allows us to assume that the DM may
produce forecasts about the future state at multiple horizons (as is typically true
in surveys of forecasters, and also in the experiment of Afrouzi et al., 2023). It
also allows us to treat cases in which the DM may choose a vector of actions, the
rewards from which are a quadratic function of the action vector and the external
state in various periods; the problem of action choice to maximize expected reward
in such a case is equivalent to a problem of minimizing a quadratic function of the
DM’s error in forecasting certain linear combinations of the value of the external
state at various horizons.3

We suppose that DM produces estimates of z̃t without perfect knowledge of
the first moment of the stochastic process for the external state. Instead, the
parameter µ is assumed to be drawn from a prior distribution

µ ∼ N(0, Ω).

To simplify our discussion, we assume that the second moments of the stochastic
process for the external state are known (more precisely, that the DM’s decision
rule can be optimized for particular values of these parameters, that are assumed
to be the correct ones). Thus, the values of the parameters ρ and σ2ϵ are assumed
to be known, while µ is not. Conditional on the value of µ, the initial lagged state
y−1 is assumed to be drawn from the prior distribution N(µ, σ2y), the ergodic
distribution for the external state given a value for µ. When we consider the
optimality of a possible decision rule for the DM, we integrate over this prior
distribution of possible values for µ and y−1, assuming that the decision rule

2Note that the variables denoted z̃t are not quantities the value of which is determined at time t; the
subscript t is used to identify the time at which the DM must produce a forecast of the quantity, not
the time at which the outcome will be realized. Thus the best possible forecast of z̃t at time t, even with
full information, would be given by Etz̃t, which will generally not be the same as the realized value z̃t.

3For example, in a standard consumption-smoothing problem with quadratic consumption utility, the
DM’s level of expected utility depends on the accuracy with which “permanent income” is estimated at
each point in time. This requires the DM to forecast a single variable z̃t, for which the coefficient Aj is

proportional to βj for all j ≥ 0.
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must operate in the same way regardless of which values happen to be true in a
given environment.

Importantly, we suppose that DM does not have perfect access to the past
realizations of (y0, . . . , yt−1) at time t, though observing the current realization
yt without an error. The DM’s decision rule must then respond adaptively to
evidence about the unknown mean value based on a coarser information set, re-
gardless of the assumed memory limitations. Conditioning on the DM’s cognitive
state at time t (and noting that this includes precise awareness of the value of
yt), the optimal estimate of z̃t will be given by

(1.3)
∞∑
j=0

Aj [µ̂t + ρj(yt − µ̂t)],

where µ̂t is the DM’s estimate of the unknown mean µ at each date t, based on
the information available at the time that zt must be chosen, and Aj is the vector
with its ith element equal to ai,j .

Note that in the absence of any memory limitation — and given the assumption
of perfect observability of the realizations of yt — it should be possible eventually
for the DM to learn the value of µ to arbitrary precision, so that despite our
assumption that the value of µ must be learned, the optimal decision rule should
coincide asymptotically with the full-information rational-expectations predic-
tion. We show, however, that this is not true when the precision of memory is
bounded.

We show in the appendix that the DM’s expected loss is not reduced by re-
stricting attention to a class of decision rules of the form (1.3), under different
possible assumptions about how the estimate µ̂t is formed.4 In the case of any
forecasting rule of that kind, the loss function (1.2) is equal to

(1.4) α ·
∞∑
t=0

βtMSEt

plus a term that is independent of the DM’s forecasts, where

MSEt ≡ E [(µ̂t − µ)2]

is the mean squared error in estimating µ, and α > 0 is a constant that depends
on the coefficients {Aj} and W . Thus one can equivalently formulate the DM’s
problem as one of optimal choice of an estimate µ̂t each period, so as to minimize
the discounted sum of the current and future MSEt.

4See Appendix .A for details of the argument.
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B. A model of imprecise memory

Feasible memory structures

We assume that the memory carried into each period t ≥ 0 can be summarized
by a vector. We denote this memory state as a vector mt of dimension dt. We
further assume that it is only through this memory state that DM can access
information about past states. Thus, given the realized mt, the action chosen in
period t (i.e., the choice of µ̂t) must be a function of the cognitive state specified
by st = (mt, yt). As noted above, we assume that current external state yt is
perfectly observable.5

We suppose that the future memory state evolves from the current cognitive
state according to a linear law of motion of the form

(1.5) mt+1 = Λt st + ωt+1, ωt+1 ∼ N(0, Σω,t+1),

starting from an initial condition of dimension d0 = 0 (that is, s0 consists only of
y0). Note that information about past states can be stored for future use through
memory states. In other words, information in st not stored in mt+1 will not
be accessible in periods following t + 1. Furthermore, the noise ωt+1 prevents
the future memory state mt+1 from accurately reproducing the cognitive state st.
Given this core structure, the proposed memory evolution is quite flexible. The
dimension of the memory state is assumed only to be finite and is not required to
be the same for all t. And the elements of the matrices Λt and Σω,t+1 are allowed
to be arbitrary; we require only that Σω,t+1 must be positive semi-definite (though
it need not be of full rank).

The linear-Gaussian memory evolution proposed in (1.5) nests a large class of
memory structures proposed in the literature. The case of perfect memory can
be accommodated by our notation, by assuming that Λt is a t× t identity matrix
and Σω,t+1 = O so that dt = t and the elements of the vector mt correspond
to the values (y0, y1, . . . , yt−1). Another type of memory that we can consider is
one in which only the n most recent past observations of the external state can
be recalled, though these are recalled with perfect precision. The requirement
that forecasts be functions of the cognitive state would then require them to
be functions of (yt, yt−1, . . . , yt−n) for some finite n, as under the hypothesis of
“natural expectations” proposed by Fuster, Hébert, and Laibson (2011). This case
would correspond to a specification in which dt = n for all t; Λt is an n× (n+ 1)
matrix, the right n×n block of which is an identity matrix, and the first column
of which consists entirely of zeroes; and Σω,t+1 = O. In section 6.B, we discuss
other proposals for memory structure that our formalism allows to consider, such
as an “episodic” memory of the kind assumed by Neligh (2024). However, none
of those specifications turns out to be optimal.

5The case in which the current state is observable only imprecisely is discussed in Sung (2024).
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Imprecision of memory

We limit the precision of memory by further assuming that there is a cost of
storing and/or accessing the memory state. Since the memory statemt+1 provides
information about the cognitive state st, we suppose that the cost is an increasing
and convex function of the Shannon mutual information between the two random
variables.6 Thus, denoting It to be the mutual information between mt+1 and st,
the memory cost in period t , c (It), is increasing and convex in It.7

Such limitation in the memory system can be viewed either as a cost of storing
information in memory or retrieving information from memory. In the first in-
terpretation, only the information content It (about the period t cognitive state)
is recorded in memory, which is available with perfect precision in the follow-
ing period. In the second interpretation, the period t cognitive state is perfectly
recorded in memory, but only the information content It is retrieved in the fol-
lowing period. In our proposed memory evolution (1.5), these two formulations
are identical. This is because of our assumption that only the signal mt+1 that is
retrieved in period t+ 1 can be stored for future use; thus only the fidelity with
which the retrieved memory mt+1 reproduces the cognitive state st matters. 8

We can now formulate the dynamic optimization problem with which we are
concerned. We suppose that the optimal memory structure (1.5), together with
the rule for choosing an estimate µ̂t as a function of each period’s cognitive state,
minimizes the total discounted costs

(1.6)

∞∑
t=0

βt [α ·MSEt + c (It), ]

This objective takes into account the cost of less accurate forecasts (1.4) and the
cost of greater memory precision. Note that no expectation is needed in (1.6),
since both MSEt and It are functions of the entire joint probability distribution
of possible values for µ, mt, yt, µ̂t and mt+1.

6Mutual information is a non-negative scalar quantity that can be defined for any joint distribution
for (st,mt+1), that measures the degree to which the realized value of either random variable provides
information about the value of the other (Cover and Thomas, 2006). This measure is used to determine
the relative cost of different information structures in the rational inattention theory of Sims (2003);
properties of this measure as an information cost function are discussed in Caplin, Dean and Leahy
(2022). Our use of it to measure the cost of more precise memory follows Fox and Tishby (2012).

7We assume that the cost of memory precision is additively separable across periods; this facilitates
our use of dynamic programming methods. Fox and Tishby (2012) instead assume a finite upper bound
on

∑
t It (in a finite-horizon problem). This is related (though not identical) to the case c (It) = It

in our formalism (treated below), which also implies perfect substitutability of precision costs between
periods.

8Under the retrieval-cost interpretation, our model remains importantly different from the one pro-
posed by Afrouzi et al. (2023). The recursive nature of the memory states in our model is crucial in
predicting the “recency bias”. See section 6.B for further discussion.
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Implications of the linear-Gaussian memory structure

For any memory state mt that can be retrieved from the law of motion (1.5),
the posterior distribution over possible values of (µ, y−1, y0, . . . , yt−1) implied by
mt will be a multivariate Gaussian distribution. Thus, a finite set of first and
second moments fully characterize the posterior associated with the memory state.
Importantly, the particular memory statemt at a given date t can be identified by
the associated vector of first moments. This is because the second moments of the
posterior are the same for any possible memory state at any time t: they depend
on the matrices {Λτ ,Σω,τ+1} for τ < t, but not on the history of the external
state, or on the history of realizations of the memory noise {ωt+1}. It follows that
we can label memory states using the vector of first moments associated with that
memory state; we use this notation in writing explicit dynamics for the memory
state in the following sections.
Among the state variables about which the memory state may convey informa-

tion, we are particularly interested in what the memory state implies about the
value of µ. As mentioned above, the posterior distribution for the parameter µ
implied by any realized mt will be a Gaussian distribution. Furthermore, follow-
ing an observation of yt, the posterior distribution for µ implied by the cognitive
state st again will be a Gaussian distribution. We introduce the notation

(1.7) µ |st ∼ N(µ̂t, σ̂
2
t ).

Note that σ̂2t is necessarily positive (complete certainty about the value of µ
cannot be achieved in finite time, even in the case of perfect memory), and must
satisfy the upper bound

(1.8) σ̂2t ≤ σ̂20 ≡
Ωσ2y

Ω+ σ2y
,

where σ̂20 corresponds to the degree of uncertainty about µ after observing the
external state once in the case of no informative memory whatsoever (the DM’s
situation in period t = 0).
From (1.7), we observe that the DM’s optimal decision rule will be µ̂t each

period, and that the minimum achievable value for the loss function (1.4), given
the memory structure, will be

∑∞
t=0 β

t [α ·σ̂2t ]. It follows that the optimal memory
structure will be the one that minimizes the implied value of

(1.9)
∞∑
t=0

βt
[
α · σ̂2t + c (It)

]
,

The role of sequential updating in our model

We study the imprecision of memory in a situation where observations arrive
sequentially and new forecasts are produced after each observation. When mak-
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ing forecasts, we assume that the DM accesses past observations only through
memory. Our model’s prediction for the DM’s forecasts after observing the data
{y0, y1, . . . yt} would be quite different if one supposed that these data were all
presented simultaneously at the time when the DM must produce a forecast. In
the latter case, in the absence of any imprecision in the observation of current
data, the DM’s forecast should correspond to the ideal Bayesian forecast (RE
forecast). If instead we were to assume a cost of precise observation of the data,
but a mutual information cost of the kind hypothesized by Sims (2003), then the
model would predict insensitivity of the DM’s forecast to the data (relative to
the RE forecast), but equal insensitivity to each of the observations: there would
be no “recency effect” of the kind predicted by our model, as discussed in section
2.D below.

This aspect of our model’s predictions is in line with experimental literature
showing that inferences from a series of observations are indeed different depend-
ing whether the data are presented simultaneously or sequentially (e.g., Shanteau,
1970). Recency effects are particularly prevalent in studies in which data are pre-
sented sequentially with an updated estimate elicited after each additional piece
of information (“step-by-step” responses), as opposed to studies in which an esti-
mate is elicited only after the complete sequence of evidence has been presented
(“end-of-sequence” responses); see Hogarth and Einhorn (1992). 9

2. The Optimal Memory Structure: A Simple Example

We first suppose that the external state yt an independent draw each period
from a Gaussian distribution, yt ∼ N(µ, σ2y); that is, ρ = 0 in (1.1). We provide
analytical results about the optimal dimension and structure of the memory sys-
tem and the kind of conclusions that follow from it. In the succeeding sections, we
show that results from this section remain qualitatively similar in a more general
setup.

A. Integrating memory with new observations

For any memory state mt realized in period t, we first introduce the notation

µ |mt ∼ N(m̄t, Σt)

for the conditional distribution for µ implied by mt. After the value of yt is
observed, these beliefs are updated to a posterior of the form (1.7), whose first

9We do not here present a model of the type of decision problem in which no response is required
until the end of a sequence of observations. The differing attentional biases reported in this case may
indicate that the cost of accessing the contents of a cognitive state at some date t at a later date t + j
depends on the number of occasions during the interim in which the information has had to be retrieved
and integrated with other (newer) information before being stored again, rather than simply reflecting
the passage of time. We leave this further complication for analysis elsewhere.
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moment is characterized as

(2.1) µ̂t = m̄t + γt (yt − m̄t),

using the notation

(2.2) γt =
Σt

Σt + σ2y

for the “Kalman gain,” and the second moment is

(2.3) σ̂2t =
Σtσ

2
y

Σt + σ2y
.

In the case of perfect memory, the DM’s forecast zt can be a function of the com-
plete sequence of observations (y0, . . . , yt) from some initial period zero onwards.
Then, the computation of the MMSE estimate of µ is a standard Kalman-filtering
problem. Since we can identify (m̄t, Σt) with (µ̂t−1, σ̂

2
t−1), the equations (2.1-2.3)

can be solved recursively to determine µ̂t and σ̂2t for all t (given a sequence of
realizations of the state), starting from initial conditions µ̂−1 = 0, σ̂2−1 = Ω.

These equations imply that the precision σ̂−2
t grows linearly with the number of

observations, and hence that σ̂2t → 0 as t → ∞, regardless of the sequence of
observations. Eventually, the correct value of µ is learned to arbitrary precision,
and new observations cease to affect the estimate of µ (γt → 0), and consequently
cease to affect the DM’s forecast. Thus forecasts are eventually the same as under
an assumption of (full-information) rational expectations. We wish to examine
how these conclusions change in the case of imperfect memory.

B. Optimal memory structure

In the simple case considered in this section, the only aspect of the cognitive
state st that is worth remembering later is what was known at t about the value
of µ. This is because when {yt} is an i.i.d. random variable, the only possible
relevance of memory for decisions in periods t + 1 or later is the evidence that
memory can provide about the value of the parameter µ.10 The parameters of
the distribution (1.7) capture this information. Furthermore, we can see that the
first moment of this distribution, µ̂t, is the only aspect of the cognitive state that
needs to be remembered. This is because the second moment σ̂2t is independent
of the history of realizations of the external state and hence the same in all pos-
sible cognitive states st, following the linear-Gaussian dynamics in our model.11

Importantly, any other aspect of st that is not correlated with µ̂t is information
that is not needed but is costly to remember. In other words, any such aspect of

10We generalize the argument to the case of a persistent process in section 3.
11It depends on t, which is to say the number of observations that have occurred; but this is assumed

to be available as an input to the decision rule, rather than something that has to be remembered using
costly memory.
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st is of no relevance to the estimates of µ, but a memory state mt+1 that is infor-
mative about it requires a higher value of It without increasing the information
provided about the value of µ. Thus an optimal memory structure will make the
distribution of the random variable mt+1 |st a function only of µ̂t.

Moreover, the information about past knowledge that the memory state needs
to convey can be completely summarized by the implied value of m̄t. It follows
that we can label the memory state carried into any period t using the implied
value of m̄t, and from here on we use the notation m̄t to refer to the memory
state.12 It follows that the optimal memory state is one-dimensional, and the
dynamic evolution of this state can furthermore be given a representation of the
form

(2.4) m̄t+1 = λt µ̂t + ω̄t+1

where λt is a scalar between [0, 1] and ω̄t+1 is a scalar random variable that is
independently drawn from N(0, σ2ω̄,t+1), a distribution with the variance σ2ω̄,t+1 =

λt(1− λt)(Ω− σ̂2t ). This memory structure implies that the DM’s prior about µ
at the start of period t+ 1 is

µ|mt+1 ∼ N(m̄t+1,Σt+1)(2.5)

where m̄t+1 is given by (2.4) and the prior uncertainty Σt+1 is given by

Σt+1 = (1− λt) Ω + λt σ̂
2
t .(2.6)

Thus the precision of the DM’s memory and of the knowledge of µ at each point
in time is fully captured by a sequence {λt}.
The representation above clarifies the role of imprecise memory in shifting the

DM’s memory-based prior beliefs about µ away from its perfect-memory coun-
terpart. In particular, we can see how the beginning-of-period prior µ|mt+1 is
different from µ|st, which would have been the DM’s prior under the perfect
memory assumption. From (2.4), we can see that the prior mean m̄t+1 shrinks
toward the unconditional prior mean (which is assumed to be zero) and contains
“memory noise” ω̄t+1 that is uncorrelated with st. From (2.6), we also see that
the prior uncertainty Σt+1 is bigger than the posterior uncertainty of the previous
period σ̂2t . Note also that in the limit as λt → 1, we approach the case of a perfect
memory, in which µ|mt+1 is identical µ|st.
Finally, in order for the quantity m̄t+1 specified by (2.4) to correspond to the

conditional expectation E [µ|mt+1], it is necessary that

σ2ω̄,t+1 = λt(1− λt) var[µ̂t] = λt(1− λt) [Ω− σ̂2t ].

Thus the complete dynamics (2.4) of the memory state are specified by giving a

12Here we refer only to our analysis of the simple case treated in this section. The notation used below
for the case with ρ ̸= 0 is slightly different.
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numerical value for the scalar λt. Since σ2ω̄,t+1 should be a non-negative scalar
for a memory structure to be feasible, λt must be a quantity between 0 and 1. It
then remains only to show how this quantity is determined.

C. Determination of the sequence {λt}

The memory cost at time t depends on It, the mutual information betweenmt+1

and st. According to the optimal memory structure in (2.4), it is straightforward
to see that the only information about st contained in mt+1 is the information
about the value of µ̂t. Hence, the value of It will be the mutual information
between the random variables µ̂t and m̄t+1. It follows that

It = −1

2
ln(1− λt)

which is an increasing function of λt. The optimal value of λt is then determined
by a trade-off between the memory cost c (It), which is increasing in λt, and the
losses resulting from entering period t + 1 with a greater degree of uncertainty
Σt+1, which is decreasing in λt as a result of (2.6).

In this section, we consider a specific functional form for c (It) such that for a
given scalar I, memory cost takes the following form.

c (It) =
{
0 if It ≤ I
∞ otherwise

In other words, we assume that there is a finite upper bound I on the rate
of information transmission, so that feasible memory structures must satisfy the
constraint It ≤ I.13 Because It is an increasing function of λt, this constraint can
alternatively be expressed as a constraint λt ≤ λ̄, where 0 < λ̄ < 1. (The limiting
case in which λ̄ = 1 corresponds to no upper bound on the mutual information,
and hence perfect memory.) We can further show that the uncertainty about the
value of µ in all periods τ > t is minimized (and hence the loss function (1.9)
is minimized) by setting λt as large as possible, consistent with the constraint.
Hence in each period the upper bound constraint will bind, and the optimal
memory structure will satisfy

λt = λ̄, ∀t(2.7)

Equations (2.1)–(2.3),(2.4)–(2.6) and (2.7) then constitute a complete system of
equations to recursively determine the evolution of the variables {m̄t,Σt, µ̂t, σ̂

2
t }

for all t ≥ 0 given the sequence of observations {yt}, starting from initial condi-
tions (corresponding to the unconditional prior) m̄0 = 0,Σ0 = Ω. This generalizes
the standard Kalman-filter dynamics to allow for noisy memory.

13In section 3, we generalize this assumption to allow It to be increased at a finite marginal cost.
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D. Characteristics of the forecast dynamics

In the simple problem considered here, the optimal forecast each period is given
by zt = µ̂t; the predictable part of the forecast error (if any) will simply be the
predictable error (if any) in µ̂t as an estimate of µ; and the mean squared error
of the forecast will equal σ̂2t + σ2y , where σ̂

2
t is the mean squared error of the

estimate of µ. Thus we need only analyze the dynamics of the estimate µ̂t and
the estimation error that this reflects.
An important implication of noisy memory is that the estimation error σ̂2t is not

fully eliminated even after an arbitrarily long period of learning. This prediction
holds even though the coefficients of the data-generating process are assumed not
to change. From equations (2.3) and (2.6), we can see that σ̂2t does not converge
to zero as long as λ̄ < 1 and instead converges to a positive number and that this
long-run limiting value depends on the unconditional prior variance Ω. This is in
contrast to the perfect memory case, where the value of µ is correctly learned to
arbitrary precision, regardless of the size of Ω.
Because our model implies that a DM does not learn the true value of µ with

certainty even in the long run, it follows that the DM’s forecasts can be quite
different from rational-expectations forecasts — that is, the forecasts of an ideal
statistician who knows the true coefficient values. From the standpoint of an
observer who is able to determine the true process, the forecasts of the DM with
limited memory will appear to be systematically biased. The biases in the DM’s
forecasts will furthermore fluctuate over time, in response both to variations in
the external state (to which the DM reacts differently than someone with rational
expectations would) and to noise in the evolution of the memory state.
Below we discuss two notable characteristics of the forecast dynamics. The

conclusions that we draw remain qualitatively similar in the more general case
considered in the next section, though the calculations required are more complex
in that case.

Stationary fluctuations in the long run

We obtain a particularly simple characterization of the systematic pattern of
forecast biases if we consider the long run. The predictions of the equations (2.2),
(2.3), (2.6) and (2.7) for very large values of t imply that Σt, σ̂

2
t and γt all converge

to constant values. In particular, we use a notation γ∞ < 1 to denote the long-run
limit of the Kalman gain (that remains positive for any λ̄ < 1).14 In this case,
our model, like the model of “natural expectations” of Fuster et al. (2010, 2011),
predicts a stationary pattern of forecast biases that are not a result of incomplete
learning.
In the long run, equations (2.1), (2.4) and (2.7) imply that the memory state

14We give a closed-form solution for the value of γ∞ as a function of the exogenous model parameters
in Appendix .F.
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mt evolves according to an AR(1) process with Gaussian innovations

mt+1 = ρmmt + λ̄ γ∞ yt + ω̄t+1(2.8)

where the constant coefficient ρm ≡ λ̄ (1− γ∞) measures the intrinsic persistence
of the memory state. For any bound λ̄ < 1, we necessarily have 0 < ρm < 1
and σ2ω̄ > 0, so that (2.8) describes a stationary autoregressive process for beliefs.
The two independent exogenous sources of variation in these dynamics are the
innovations in yt and the memory noise ω̄t+1.

The DM’s optimal estimate µ̂t at each point in time will then be a linear func-
tion of mt and yt, with coefficients that are also time-invariant. This allows us
to analyze not only the extent to which the DM’s forecasts should differ from
rational-expectations forecasts, but the correlation that one should observe be-
tween the bias in the DM’s forecasts and other observable variables. In particular,
the biases in the DM’s forecasts will be correlated with the evolution of the exter-
nal state. An unexpectedly high observed value for yt will be interpreted (because
of the DM’s uncertainty about µ) as implying a higher estimate of µ, and this in-
crease in the DM’s estimate of µ will furthermore persist, decaying only gradually
in subsequent periods.

“Recency bias” in expectation formation

One type of systematic difference between observed expectations and those of
a perfect Bayesian decision maker that has often been reported is “recency bias”
(e.g., Malmendier et al., 2017) — a tendency for expectations to be influenced
more by more recent observations, even when in principle, observations of a given
time series at earlier dates should be equally relevant as a basis for inference. Our
model predicts that such a bias should exist, as a consequence of optimal adap-
tation to limited memory precision (or to the cost of maintaining a more precise
memory). Observations of the external state farther in the past are recalled with
more noise, and as a consequence are given less weight in estimating parameters
of the data generating process than would be optimal in the case of a perfect
memory of past data.

The law of motion of the memory state (2.8) implies that, in the case that data
have been generated in accordance with this law of motion for a sufficiently long
time, we can express the value of the memory state mt+1 as a function of the
sequence of external states {yτ} and the sequence of memory noise realizations
{ω̄τ+1} for τ ≤ t:

mt+1 = λ̄ γ∞

∞∑
j=0

(ρm)j yt−j + ω̄sum
t+1(2.9)

where ω̄sum
t+1 ≡ ∑∞

j=0 (ρm)j ω̄t+1−j is a serially correlated Gaussian noise term,

independent of the history of observations {yt−j}. The DM’s estimate of the
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mean µ can then be written in the form

µ̂t =
∞∑
j=0

αj yt−j + (1− γ∞) ω̄sum
t(2.10)

where αj = γ∞ (ρm)j . Because the limiting coefficients αj are positive, the es-
timate µ̂t (and hence the DM’s forecast zt) continues to be influenced by recent
observations yt−j even when t is large — unlike the rational-expectations forecast,
which would be µ̂t = µ. Thus the DM’s forecast is predicted to “over-react” to
news about recent observations.15 Furthermore, our model predicts decreasing
weights on observations made farther in the past. This is a notable difference
between our model and the one proposed by Afrouzi et al. (2023).
Note also that the forecasts specified by (2.10) are similar to those implied

by the constant-gain variant model of least-squares learning about an unknown
mean (Evans and Honkapohja, 2001). We provide, however, a justification for the
declining weight on observations farther in the past, as a consequence of optimal
forecasting based on an imperfect memory, and furthermore endogenize the value
of the “gain parameter.” We discuss the similarities and differences between our
model and the constant-gain learning in more detail in section 6.

3. Generalizing the Analysis

We now consider a more general class of linear-quadratic decision problems,
allowing for persistent dynamics in the external state {yt} and for a more general
specification of the cost of memory precision.
Note first that forecasting future values yt+h requires more information about

past observations than simply the information they convey about the value of µ,
when yt is a persistent process: the DM further needs an estimate of the previous
realization yt−1. This change has consequences for the information content of the
optimal memory system. It is useful to introduce the notation

xt ≡ (µ, yt−1)
′

to refer to the relevant state vector for forecasting at time t. As before, the
memory statemt+1 conveys information about what the cognitive state st revealed
about the external state vector xt; but now xt does not consist solely of the mean
µ.
As discussed in section 1, any memory state mt realized from the law of motion

(1.5) implies that xt|mt is described as a multivariate Gaussian distribution. We
can generalize the notation used in the i.i.d. case and write

xt|mt ∼ N(m̄t,Σt).

15We compare the predictions of our model to the measures of over-reaction reported by Afrouzi et
al. (2023) in section 5.
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Note that now m̄t is a vector with two elements, and is not just the posterior
mean estimate of µ. The posterior mean and variance for µ after observing yt will
then be given by the usual Kalman filter formulas,

(3.1) µ̂t = e′1m̄t + γ1t [yt − c′m̄t],

(3.2) σ̂2t = e′1Σte1 − γ21t[c
′Σtc + σ2ϵ ],

where the vectors are defined as e′1 ≡ [1 0] and c′ ≡ [1− ρ ρ].16 The Kalman
gain is equal to17

(3.3) γ1t =
e′1Σtc

c′Σtc + σ2ϵ
.

As in the previous section, we label the memory state carried into any period
t using the implied value of m̄t and refer to it as the memory state. Below we
discuss how m̄t and Σt are determined under the optimal memory system.

A. Optimal memory structure

We derive the optimal evolution of the memory state, given the linear law of
motion of the memory state (1.5) and the associated memory costs c (It) presented
in section 1. We present our results in the main text and leave the detailed
derivations in Appendix .C.
When the external state vector xt consists more than the mean µ, we show that

the optimal memory state evolves according to the following representation.

m̄t+1 = Λ̄t E [xt+1|st]︸ ︷︷ ︸
≡s̄t

+ ω̄t+1(3.4)

where E [xt+1|st] = (µ̂t, yt)
′, which we denote with a notation s̄t. As the memory

state encodes information about a vector s̄t (instead of just µ̂t as in the i.i.d. case),
the loading Λ̄t is now a 2× 2 matrix. Likewise, the memory noise ω̄t+1 is now a
2 × 1 random vector drawn from N (O,Σω̄,t+1), a distribution with the variance
Σω̄,t+1 = (I − Λ̄t) var[s̄t] Λ̄

′
t where I is a 2 × 2 identity matrix. This memory

structure will imply that conditional on the realized memory state, DM’s belief
about next-period state vector is

xt+1|mt+1 ∼ N(m̄t+1,Σt+1)(3.5)

where m̄t+1 is given by (3.4) and Σt+1 is given by

Σt+1 = (I − Λ̄t) Σ0 + Λ̄t var[xt+1|st](3.6)

16Here the vector e′1 selects µ from xt, and c′ allows us to write yt = c′ xt + ϵyt.
17We use a 1 subscript in the notation for this variable because it is the first element of a vector of

Kalman gains, defined in the more general formula given in Appendix .B.
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where Σ0 is the prior uncertainty about xt in the case of no informative memory.

Note that DM’s posterior uncertainty about µ fully describes the 2× 2 matrix
var[xt+1|st]: σ̂2t is on the (1,1) element and all the other elements are zero (as DM
observes the realized yt without an error). Thus, we can define L(σ̂2t ) to be the set
of feasible Λ̄t so that the resulting Σt+1 is a proper variance-covariance matrix (i.e.,
symmetric and p.s.d). A sequence of {Λ̄t} satisfying this feasibility condition fully
describes how precise DM’s memory of xt is at all t. This conclusion is analogous
to the i.i.d. case where a sequence of a scalar loading λt ∈ [0, 1] determines the
precision of the DM’s memory of µ.

According to (3.4)-(3.6), the value of σ̂2t in any period t is implied by the choice
of memory structure for the periods prior to t, and the value of σ̂2t+1 is uniquely
determined by Λ̄t ∈ L(σ̂2t ). We denote this function as

σ̂2t+1 = f (σ̂2t , Λ̄t)

for any non-negative σ̂2t satisfying the bound (1.8) and any Λ̄t ∈ L(σ̂2t ). Then
given that we start from an initial degree of uncertainty σ̂20 at time t = 0 defined
by (1.8), we can define the class of sequences {Λ̄t} for all t ≥ 0 with the property
that Λ̄t ∈ L(σ̂2t ) for all t ≥ 0; let us call this class Lseq.Moreover, for any sequence
of transition matrices in Lseq, we can uniquely define the sequence of values {σ̂2t }
for all t ≥ 0 implied by it. Thus given any sequence {Λ̄t} ∈ Lseq, we can calculate
the implied sequence of losses {MSEt} from forecast inaccuracy.

B. Determination of {Λ̄t}

As we discuss in Appendix .D, the evolution of the memory state (3.4)-(3.6)
implies that the mutual information between mt+1 and st is given by

It = I (Λ̄t) = −1

2
log det(I − Λ̄t),(3.7)

and the feasibility condition Λ̄t ∈ L(σ̂2t ) ensures that det(I − Λ̄t) ∈ (0, 1]. Thus,
the mutual information It is well-defined and necessarily non-negative. As the
elements of Λ̄t are made small, so that memory ceases to be very informative
about the prior cognitive state, I − Λ̄t approaches the identity matrix, and It
approaches zero. If Λ̄t is varied in such a way as to make one of its eigenvalues
approach 1, I − Λ̄t approaches a singular matrix, and Σω̂,t+1 must approach a
singular matrix as well; this means that in the limit, some linear combination of
the elements of s̄t is a random variable with positive variance that comes to be
recalled with perfect precision. In this case, det(I − Λ̄t) approaches zero, so that
It grows without bound.
Thus a given sequence of transition matrices {Λ̄t} uniquely determines se-

quences {MSEt, It}, allowing the value of the objective (1.6) to be calculated.
The problem of optimal design of a memory structure can then be reduced to the
choice of a sequence {Λ̄t} ∈ Lseq so as to minimize (1.6). This objective is neces-
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sarily well-defined for any such sequence, since each of the terms is non-negative;
the infinite sum will either converge to a finite value, or will diverge, in which
case the sequence in question cannot be optimal.18

A recursive formulation

We now observe that if for any point in time t, we know the value of σ̂2t (which
depends on the choices made regarding memory structure in periods τ < t), the
set of admissible transition matrices {Λ̄τ} for τ ≥ t specifying the memory struc-
ture from that time onward will depend only on the value of σ̂2t , and not any
other aspect of choices made about the earlier periods. Moreover, any admissi-
ble continuation sequence {Λ̄τ} for τ ≥ t implies unique continuation sequences
{MSEτ , Iτ} for τ ≥ t, so that the value of the continuation objective

(3.8)
∞∑
τ=t

βτ−t [α ·MSEτ + c (Iτ )]

will be well-defined.19

We can then consider the problem of choosing an admissible continuation plan
{Λ̄τ} for τ ≥ t so as to minimize (3.8), given an initial condition for σ̂2t . (This is
simply a more general form of our original problem choosing memory structures
for all t ≥ 0 to minimize (1.6), given the initial condition for σ̂20 specified in (1.8).)
Let V (σ̂2t ) be the lowest achievable value for (3.8), as a function of the initial
condition σ̂2t ; this function is defined for any value of σ̂2t satisfying the bound
(1.8), and is independent of the date t from which we consider the continuation
problem. Note that the lower bound necessarily lies in the interval

(3.9) ασ̂2t ≤ V (σ̂2t ) ≤ α

[
σ̂2t +

β

1− β
σ̂20

]
.

(The lower bound follows from the fact that MSEt = σ̂2t , and all other terms in
(3.8) must be non-negative; the upper bound is the value of (3.8) if one chooses
Λ̄τ = 0 for all τ ≥ t, which is among the admissible continuation plans.)
This value function also necessarily satisfies a Bellman equation of the form

(3.10) V (σ̂2t ) = min
Λ̄t∈L(σ̂2

t )
[ασ̂2t + c (I (Λ̄t)) + βV (f(σ̂2t , Λ̄t))],

where I (Λ̄t) is the function defined in (3.7). Thus once we know how to compute
the value function for arbitrary values of σ̂2t+1, the problem of the optimal choice of
a memory structure in any period t can be reduced to the one-period optimization

18Note that it is clearly possible to choose memory structures for which the infinite sum converges. For
example, if one chooses Λ̄t = 0 for all t ≥ 0 (perfectly uninformative memory at all times), MSEt = σ̂2

0

and It = 0 each period, and (1.6) will equal the finite quantity (α σ̂2
0)/(1− β).

19Since a finite value for the continuation objective is always possible (see (3.9) below), it is clear that
plans that make (3.8) a divergent series cannot be optimal, and can be excluded from consideration.
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problem stated on the right-hand side of (3.10). This indicates how the memory
structure for period t must be chosen to trade off the cost c (It) of retaining a
more precise memory against the continuation loss V (σ̂2t+1) from having access
to a less precise memory in period t+ 1.
Let F be the class of continuous functions V (σ̂2t ), defined for values of σ̂2t

consistent with (1.8), and consistent with the bounds (3.9) everywhere on this
domain. Then (3.10) defines a mapping Φ : F → F : given any conjectured
function V (σ̂2t+1) ∈ F that is used to evaluate the right-hand side for any value
of σ̂2t , the minimized value of the problem on the right-hand side defines a new
function Ṽ (σ̂2t ) that must also belong to F . Condition (3.10) states that the value
function that defines the minimum achievable continuation loss must be a fixed
point of this mapping: a function such that V = ϕ (V ).
We can further show that for any function V ∈ F , the function ϕ (V ) defined by

the right-hand side of (3.10) is necessarily a monotonically increasing function.20

It follows that the fixed point V (σ̂2t ) must be a monotonically increasing function.
Moreover, we can restrict the domain of the mapping Φ to the subset F∗ of
increasing functions.
This then provides us with an approach to computing the optimal memory

structure for a given parameterization of our model. First, we find the value
function V (σ̂2t ) ∈ F∗ that is a fixed point of the mapping Φ, by iterating Φ
to convergence. Then, given the value function, we can numerically solve the
minimization problem on the right-hand side of (3.10) to determine the optimal
transition matrix Λ̄t in any period, once we know the value of σ̂2t for that period.
Solution of this problem also allows us to determine the value of σ̂2t+1 = f(σ̂2t , Λ̄t),
so that the entire sequence of values {σ̂2τ} for all τ ≥ t can be determined once
we know σ̂2t . Finally, we recall that for the initial period t = 0, the value of σ̂20
is given by (1.8); we can thus solve for the entire sequence {σ̂2t } for all t ≥ 0 by
integrating forward from this initial condition.
Once we have determined the sequence of values {σ̂2t } implied by an optimal

memory structure for each period, we can determine the sequence of {γ1,t,Σt},
using (3.3) and (3.6). This in turn allows us to calculate the DM’s optimal
estimate µ̂t each period, as a function of the history of realizations {yτ} of the
external state for all 0 ≤ τ ≤ t and the history of realizations of the DM’s memory
noise {ω̃τ+1} for all 0 ≤ τ ≤ t − 1, using (3.1) and (3.4). The DM’s complete
vector of forecasts zt each period is then given by (1.3).

The optimality of a one-dimensional memory state

We can show further that the optimal memory state must have a one-dimensional
representation. This simplifies the computational formulation of the optimization
problem on the right-hand side of (3.10), and provides further insight into the na-
ture of an optimally imprecise memory. Although the information contained in

20See Appendix .E for a proof.
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the cognitive state st that is relevant for predicting (at time t) what actions will
be desirable for the DM in later periods is two-dimensional (both elements of s̄t
matter, if ρ > 0, and except when memory is completely uninformative, these are
not perfectly correlated with each other), we find that it is optimal for the DM’s
memory to include only a noisy record of a single linear combination of the two
variables. Moreover, this is true regardless of how small memory costs may be.
The details of the argument are in Appendix .E.
For m̄t to have one-dimensional representation, it must be that the loading

matrix Λ̄t is not full-rank. Specifically, we show that the optimal Λ̄t at each t
takes the following particular form

Λ̄t = λt var[s̄t] vt v
′
t(3.11)

where λt is a scalar between [0, 1] and vt is a vector normalized to satisfy v′t var[s̄t] vt =
1. Accordingly, the optimal memory state in (3.4) is represented as

m̄t+1 = var[s̄t] vt m̃t+1(3.12)

where the scalar quantity m̃t+1 is defined as

m̃t+1 = λt v
′
t s̄t + ω̃t+1, ω̃t+1 ∼ N(0, λt (1− λt))(3.13)

Thus, the optimal memory state m̄t+1 is spanned from a uni-variate memory
variable m̃t+1. The choice of memory structure can then be reduced to a problem
of choosing a scalar quantity λt and the direction of a vector vt in each period t.
There is in fact a fairly simple intuition for this result. Note that in any period

t, the optimal estimate of the unknown value of µ will be linear in the elements
of mt, as shown in (3.1). In other words, the only information in the memory
state mt that matters for the estimate µ̂t is the particular linear combination of
mt (that is determined by the Kalman filter). This single quantity sufficiently
captures the information memory reveals for DM’s estimation task.
In addition, we show that the choice of memory structure can be further reduced

to a problem of only choosing λt. We show that there is a uniquely optimal vt
for any given values 0 ≤ σ̂2t ≤ σ20 and 0 < λt ≤ 121. This is because of the
monotonicity of the value function V (σ̂2t+1); the optimal weight vector vt in any
period must be the one that minimizes the resulting σ̂2t+1 for a given pair of σ̂2t
and λt. Given the explicit solution for the optimal vt in Appendix .E, we can
write the law of motion

σ̂2t+1 = f̄ (σ̂2t , λt)

starting from the initial condition σ̂20 defined in (1.8). (The function is well-
defined when λt = 0 since f̄ (σ̂2t , 0) = σ̂20.) Thus, we can solve for the dynamics
of {σ̂2t } implied by any sequence {λt}. Moreover, it follows from (3.7) that the
mutual information associated with the period t memory structure will be given

21Note that no solution is needed in the case that λt = 0, since in this case vt is undefined.
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by

(3.14) It = −1

2
log(1− λt),

just as in the i.i.d. case discussed in section 2. The Bellman equation (3.10) can
therefore be written in the simpler form

(3.15) V (σ̂2t ) = min
0≤λt≤1

[α σ̂2t + c (−1

2
log(1− λt)) + β V (f̄ (σ̂2t , λt))].

Thus, the dynamic optimization problem reduces to finding an optimal value for
a scalar variable λt ∈ [0, 1] for a given state variable σ̂2t . A more precise memory,
captured by a higher λt, yields lower continuation loss at t + 1 at the expense
of higher cost at t. We turn now to the features of the model solution to the
dynamic optimization problem just posed.

4. Features of the Model Solution

Here we provide numerical examples of solutions for an optimal memory struc-
ture, under alternative assumptions about both the degree of persistence of the
process that must be forecasted and the nature of the memory cost function. In
particular, we consider two functional forms for the memory cost. The first kind
is introduced in section 2, in which we suppose that the capacity of information
flow between two consecutive time periods is given. In this case, the accuracy
of the memory system is exogenously fixed. In the other case, we suppose that
the amount of information stored in memory can be increased at a cost. Thus,
the memory cost linearly increases with the accuracy of the memory system. We
discuss how the model solutions vary with with the severity of the memory cost,
using these two functional forms for the memory cost.
In reporting our results, it is useful to describe the model solution in terms of

scale-invariant quantities — that is, ones that are independent of the value of
σy, indicating the amplitude of the transitory fluctuations in the external state
around its mean. Thus we parameterize the degree of prior uncertainty about
µ not in terms of a value for Ω (the variance of the prior distribution for µ),
but rather by a value for K ≡ Ω/σ2y (the variance of the prior distribution for
µ/σy). We similarly measure the degree of uncertainty about µ conditional on the
cognitive state at a given point in time (i.e., after a given amount of experience)
not in terms of the value of σ̂2t , but rather by the scaled uncertainty measure
ηt ≡ σ̂2t /σ

2
y . In terms of this scaled uncertainty measure, an optimal memory

structure minimizes the value of

∞∑
t=0

βt [ηt + c̃ (It)],

a scaled version of (1.6), where the scaled cost function is defined as c̃ (It) ≡
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c (It)/(ασ2y).22
Our scale-invariant model is then completely specified by values for the param-

eters ρ, β,K and the scaled cost function c̃ (It). In our quantitative analysis, we
assume that each “period” of our discrete-time model corresponds to a quarter
of a year (the variable to be forecasted is a quarterly time series), and hence
set β = 0.99 (implying a discount rate of 4 percent per annum). We consider a
variety of values 0 ≤ ρ < 1 for the assumed degree of serial correlation of the ex-
ternal state, and explore the effects of different assumptions regarding the degree
of prior uncertainty and the size of information costs.

A. The case of a fixed per-period bound on mutual information

We begin by considering the case in which c̃ (It) = 0 for all It ≤ I, but values of
It greater than I are infeasible, as assumed in section 2. Solution for the optimal
memory structure is particularly simple in this case. Because of (3.14), the per-
period bound on mutual information can equivalently be written as an upper
bound λt ≤ λ̄, just as in section 2. The optimal memory structure in period t is
then characterized by the λt that minimizes f̄(σ̂2t , λt) subject to this constraint.
We show in the appendix23 that the minimizing value of λt is necessarily the
largest feasible value; hence in the solution to this problem, λt = λ̄, the value
determined by the per-period information bound.
The dynamics of the uncertainty measure are then given by σ̂2t+1 = f̄(σ̂2t , λ̄). In

terms of the rescaled variables, the law of motion can be written as

(4.1) ηt+1 = ϕ (ηt; λ̄),

where ϕ (η; λ̄) is a function that is independent of the scale factor σy.
24 For any

value of λ̄ indicating the tightness of the constraint on the complexity of memory,
equation (4.1) indicates how the DM’s degree of uncertainty about µ evolves as
additional observations of the external state are made. Starting from the initial
condition η0 = K/(K+1) implied by (1.8), the law of motion (4.1) can be iterated
to obtain a unique solution for the complete sequence of values {ηt} for all t ≥ 0.
In the limiting case λ̄ = 1 (unlimited memory), the law of motion (4.1) takes the
especially simple form

(4.2)
1

ηt+1
=

1

ηt
+

1− ρ

1 + ρ
.

This is simply the standard result for the linear growth in posterior precision under
Bayesian updating as additional observations are made; it has the implication
that ηt declines monotonically, and converges to zero for large t. Thus in the case

22Dividing by α further reduces the numbers of parameters that we need to specify in considering the
different possible forms that the optimal memory structure may take, since it is only the relative weights
on the two loss terms in the objective (1.6) that matter for the optimal memory structure.

23See Appendix .G details of the argument.
24See Appendix .G for an explicit algebraic solution for this function.
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Figure 1: The evolution of scaled uncertainty about µ
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Figure 2: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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The top-right panel shows the direction of the vector v∞, and the bottom-right panel shows the ”intrinsic” persistence
derived as ρm ≡ λ∞(e′1v∞) (e′1 − γ1c)X∞v∞.

2

Figure 1. : The evolution of uncertainty about µ (for varying degrees of λ̄)

Note: The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remembered)
observations grows. The right panel shows the long-run value of scaled uncertainty (to which ηt converges
as t → ∞) as a function of the constraint on the complexity of memory, parameterized by λ̄.

of perfect memory, the DM should eventually learn the value of µ with perfect
precision, and hence make forecasts of the kind implied by the hypothesis of
rational expectations.
When λ̄ < 1, instead, the law of motion (4.1) implies that ηt should decrease

initially, as even imprecise memory of the DM’s observations of the external state
reduces uncertainty to some degree, but that ηt remains bounded away from zero,
and converges to a value η∞(λ̄) > 0. This is illustrated in Figure 1, which shows
the dynamics implied by (4.1) for each of several different values of λ̄, in the case
that ρ = 0 and K = 1.25 The left panel plots the sequence of values {ηt} implied
by (4.1) for a given value of λ̄. (Note that the initial value η0 is the same in each
case.) The right panel shows the value η∞ to which the sequence converges as
t grows; this value depends on λ̄, and the functional relationship between λ̄ and
this limiting degree of uncertainty can be described by a function η∞(λ̄), plotted
as a smooth curve in the right panel of the figure.
In the case that λ̄ = 1 (shown as a dashed curve in the left panel of Figure

1), the sequence {ηt} decreases monotonically to zero at the rate predicted by
the difference equation (4.2). But for any number of prior observations t > 0,
the value of ηt remains higher the lower is λ̄ (that is, the tighter the memory
constraint), and the long-run degree of uncertainty about µ, measured by η∞, is
a decreasing function of λ̄ as well, as shown by the curve in the right panel of the

25The effects of variation in the parameters ρ and K are illustrated in additional figures shown in
Appendix .H.
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derived as ρm ≡ λ∞(e′1v∞) (e′1 − γ1c)X∞v∞.
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Figure 2. : The optimal memory structure in the long run (for varying degrees of
λ̄)

Note: Coefficients describing the optimal memory structure in the long run, as a function of the degree of
persistence ρ of the external state, for alternative values of λ̄. Respective panels show the long-run values
for ηt (measuring uncertainty about µ), the direction vector vt (indicating the content of the memory
state), the Kalman gain γ1t (for updating the DM’s estimate of µ), and ρm (measuring the intrinsic
persistence of fluctuations in the memory state).

figure. Because of the limit on the amount of information that can be retained
in memory, the DM’s uncertainty about the value of µ never falls below a certain
level, even in the long run, despite our assumption that the value of µ is fixed
for all time. We further observe that the long-run degree of uncertainty η∞ is
larger, the smaller is λ̄ (that is, the tighter the constraint on memory). In the
limit as λ̄ approaches zero (corresponding to a constraint that memory must be
completely uninformative), the long-run degree of uncertainty η∞ approaches the
prior degree of uncertainty η0 = K/(K + 1).

As ηt falls along one of these trajectories, the weight vector vt that constitutes
the optimal memory state (3.13) shifts as well. As ηt converges to the long-run
value η∞, the optimal weight vector vt similarly converges to a long-run value
v∞, indicating the particular linear combination of µ̂t and yt that is imprecisely
recorded in memory each period. Associated with this stationary long-run mem-
ory structure there will also be a stationary long-run value for the Kalman gain
coefficient γ1t in equation (3.1), and more generally, stationary values for the co-
efficients of the linear difference equations describing the joint dynamics {yt, m̃t}
of the external state and the memory state.

These long-run stationary coefficients will depend on the value of λ̄ and also on
the value of ρ. Figure 2 indicates how variation in each of these parameters affects
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several of the long-run stationary coefficients.26 In each panel, a curve shows how
the coefficient in question varies as a function of ρ (for values of ρ between 0.0 and
0.9), for a given value of λ̄; curves of this kind are shown for each of three different
values of λ̄, ranging between λ̄ = 0.95 (in which case memory is relatively precise)
and λ̄ = 0.30 (in which case it is much more constrained). All of the curves shown
in Figure 2 are again for the case of prior uncertainty K = 1.
The upper-right panel of the figure shows the long-run direction vector v∞; the

quantity reported on the vertical axis is the long-run value of the ratio v2t/v1t
of the vector’s two components.27 Thus a value of −0.3 for this quantity means
that the univariate memory state m̃t+1 is (up to a multiplicative factor that does
not affect its information content) equal to the value of µ̂t − 0.3yt, plus additive
Gaussian noise. The figure shows that when ρ = 0, the optimal univariate mem-
ory state involves v2 = 0; that is, only the current estimate µ̂t of the unknown
mean is remembered with noise, with the current observation yt being completely
forgotten. This is optimal because when ρ = 0, the current value yt contains no
information that is relevant for improving subsequent forecasts of the external
state, except to the extent that it helps to improve the DM’s estimate of µ (which
information is already reflected in the estimate µ̂t). Instead, when the external
state is serially correlated, it is optimal to commit to memory a linear combina-
tion of µ̂t and the current state yt; in the case that ρ > 0, the optimal linear
combination puts a negative relative weight on yt, to an extent that is greater the
greater the degree of serial correlation, and greater the tighter the constraint on
memory.
The upper-left panel of the figure shows the long-run degree of uncertainty

about µ, measured by η∞. As shown in Figure 1, when ρ = 0, η∞ is a decreasing
function of λ̄. We see in Figure 2 that this is also true when ρ > 0. However, for
a given memory constraint λ̄, the long-run value η∞ is also an increasing func-
tion of ρ, with the degree of increase when the external state is highly persistent
being particularly notable when memory is more accurate. The greater the serial
correlation of the state, the fewer the effective number of independent noisy ob-
servations of µ that the DM receives over any finite time period; thus even under
perfect Bayesian updating, equation (4.2) indicates that the rate at which preci-
sion is increased by each additional observation is smaller the larger is ρ. In the
case of perfect memory, the long-run degree of uncertainty about µ is nonetheless
zero (there is simply slower convergence to that long-run value when ρ is large);
but with moderately imperfect memory, the effective amount of experience that
can ever be drawn upon remains bounded, so that the uncertainty about µ re-

26See Appendix .H for the formulas used to calculate each of the coefficients plotted here as functions
of the model parameters.

27This information (together with the value of η∞ given in the upper left panel) suffices to completely
determine the vector vt, since the vector is normalized so that v′tvar[s̄t]vt = 1. The value of λt (given by

the constraint λ̄), the matrix var[s̄t] (determined by the value of η∞), and the vector vt then completely
determine the long-run stationary elements of the matrix Λ̄t (using (3.11)) and hence also of the matrix
Σω̄ (using Σω̄,t+1 = (I − Λ̄t) var[s̄t] Λ̄′

t); thus the dynamics of the memory state given by (3.4) are
completely specified.
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mains larger forever when ρ is larger. When memory is even more imperfect, not
much more than one observation (the most recent one) can be used in any event,
so that the value of η∞ is in this case less sensitive to the value of ρ.

In the long run, the dynamics of the cognitive state s̄t and the memory state
m̄t+1 are described by linear equations with constant coefficients. The lower-left
panel of Figure 2 shows the long-run value for the Kalman gain γ1t in (3.1). With
imperfect memory, this is always a quantity between 0 and 1, meaning that a
higher value of the current state yt raises the DM’s estimate of the value of µ,
though by less than the amount of the increase in yt. For a given value of ρ, the
Kalman gain is larger the tighter the constraint on memory; in the limit as λ̄→ 1
(perfect memory), the long-run value of this coefficient approaches zero (as the
true value of µ is eventually learned), while in the limit as λ̄ → 0 (no memory),
the value approaches a maximum value that is still less than one (because of the
DM’s finite-variance prior).

Finally, the lower-right panel reports the long-run value of ρm, a measure of the
intrinsic persistence of the memory state. The impulse response function for the
effect of a memory-noise innovation ω̃t on the subsequent path of the univariate
memory state m̃τ is proportional to (ρm)τ−t for all τ ≥ t;28 thus the value of ρm
indicates the rate of exponential decay of the memory state back to its long-run
average value. A smaller value of ρm means that the contents of memory decay
more rapidly; for any value of ρ, the figure shows that ρm is smaller, the tighter
the memory constraint. At the same time, while a larger value of ρm implies that
memory persists for a longer time, it also implies that when memory noise creates
an erroneous impression of prior experience, this bias in what is recalled about is
also corrected more slowly; thus the value of ρm is an important determinant of
the predicted persistence of forecast bias.

B. The case of a linear cost of information

Analysis of the model is more complex when instead the amount of informa-
tion stored in memory each period can be increased at some finite cost. As an
illustration we consider the polar opposite case in which c̃ (It) is a linear function
of It, so that the marginal cost of a further increase in the mutual information is
independent of how large it already is. Thus we assume that c̃ (It) = θ̃ · It, for
some coefficient θ̃ > 0 which parameterizes the cost of memory.

In this case, the optimal choice of λt in any period will depend on the value
of reducing uncertainty in the following period. We note that the value function
V (σ̂2t+1) appearing in the Bellman equation (3.15) can be written as σy · Ṽ (ηt+1),

where ηt+1 is the scaled uncertainty measure and the function Ṽ (η) is independent
of the scale factor σy (for given values of the parameters K, ρ, β and θ̃). We can

28Here we refer to the difference that the realization of ω̃t makes for the forecasts of m̃τ at different
horizons τ ≥ t, by an observer who knows the true value of µ and the DM’s cognitive state at time t− 1,
in addition to observing the realization of ω̃t. See Appendix .H for details of the calculation.
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Figure 6: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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Figure 3. : The evolution of uncertainty about µ (for varying degrees of θ̃)

Note: The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remembered)
observations grows, now for the case of a linear cost of memory complexity. The right panel shows the

long-run value of scaled uncertainty for each value of the cost parameter θ̃, plotted as a point on the
same locus of optimal long-run memory structures as in Figure 1.

then write the Bellman equation in the scale-invariant form

(4.3) Ṽ (ηt) = min
0≤λt≤1

{
ηt −

θ̃

2
log(1− λt) + βṼ (ϕ (ηt;λt))

}
.

The optimal choice of λt in any period will be the value that solves the problem
on the right-hand side of (4.3). This problem has a solution λt = λ∗(ηt) which
depends only on the value of ηt, the degree of uncertainty in period t determined
by the memory structures chosen for periods prior to t.
Thus we can solve for the optimal policy function λ∗(ηt) once we know the value

function Ṽ (ηt+1), and we can solve numerically for the value function by iterating
the Bellman equation (4.3), as discussed further in the appendix.29 The policy
function λt = λ∗(ηt) together with the law of motion

(4.4) ηt+1 = ϕ (ηt;λt)

derived earlier can then be solved for the dynamics of the scaled uncertainty {ηt}
for all t ≥ 0, starting from the initial condition η0 = K/(K +1).30 The dynamics
of scaled uncertainty as a function of the number of observations t are shown for

29See Appendix .G for details.
30See Appendix .G for further discussion of the implied dynamics.
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Figure 4. : The optimal memory structure in the long run (for varying degrees of
θ̃)

Note: Coefficients describing the optimal memory structure in the long run, as a function of the degree
of persistence ρ of the external state, in the case of a linear memory cost function, for alternative values

of θ̃. Respective panels show the long-run values for η, the direction vector v, the Kalman gain γ1, and
the memory precision coefficient λ.

progressively larger values of θ̃ in Figure 3, using the same format as in Figure
1. Once again, we see that while uncertainty about µ eventually falls to zero as a
result of when there is no cost of memory complexity, as long as the cost is positive,
the value of ηt remains bounded away from zero, and converges asymptotically to
a value η∞ that is higher the higher the cost of memory complexity.

Associated with such an asymptotic degree of uncertainty is a particular long-
run memory structure (λ∞, v∞), which will imply a particular long-run value
for the Kalman gain γ1. The way in which the long-run values of these different
quantities vary with different assumptions about the values of ρ and θ̃ is illustrated
in Figure 4. (We use the same convention as in Figure 2 to indicate the direction
of the vector v∞ in the upper-right panel of the figure.) As we vary ρ for a given
value of θ̃, the associated value of λ∞ changes; hence the fixed-θ̃ curves shown
in Figure 4 do not correspond exactly to any of the fixed-λ curves plotted in
Figure 2, even though each of the long-run memory structures associated with
a pair (ρ, θ̃) is identical to the long-run memory structure associated with some
pair (ρ, λ̄). As shown in the lower-right panel of the figure, the optimal λ∞ rises
as ρ increases, for any value of the cost parameter θ̃ > 0; the more persistent
the external state that must be forecasted, the more it becomes worthwhile to
pay a larger information cost in order to retain a more precise memory of prior
experience.
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Figure 5. : The long-run uncertainty

Note: Long-run value of the scaled uncertainty measure η∞ (blue dots) as a function of the cost parameter

θ̃, in the case of a linear memory cost function. Left panel: K = 1, ρ = 0. Right panel: K = 10, ρ = 0.

Not surprisingly, we observe that for any value of ρ, increasing the memory
cost θ̃ makes it optimal for the long-run precision of memory λ∞ to be smaller,
and consequently for the long-run degree of uncertainty about µ to be larger. In
the case of a sufficiently high value of θ̃, it will be optimal for memory to be
completely uninformative. In fact, this happens for a finite value of θ̃, and it can
occur abruptly, rather than through a gradual increase in the long-run degree of
uncertainty η∞ toward the limiting value of η0 = K/(K + 1) as θ̃ is increased. A
graph of the relationship between η∞ and the value of θ̃ is shown in Figure 5, for
the case ρ = 0, and two different possible values of K: K = 1 and K = 10. For
each value of θ̃, the value of η∞ associated with the optimal memory structure is
shown by a large blue dot.

In each panel of this figure, the continuous black curve is the correspondence
consisting of all points (θ̃, η∞) such that η∞ is a stationary solution of the Eu-
ler equation associated with the optimization problem on the right-hand side of
(4.3).31 The Euler equation represents a first-order condition for the optimal
choice of the degree of precision of memory; satisfaction of this condition is nec-
essary but not sufficient for memory precision leading to ηt+1 = η to be optimal
starting from a situation in which ηt = η. Because the objective function on the
right-hand side of (4.3) is not a convex function, it can have multiple local min-
ima (as well as a local maximum located between two local minima). Which of
the local minima represents the global minimum (and hence the optimal memory

31See Appendix .G for derivation of this equation.
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structure) can jump abruptly as a result of a small change in parameters;32 this is
what happens when the value of η∞ changes abruptly in the right panel of Figure
5, for a value of θ̃ slightly above 0.28.

In the K = 10 case, we see that there need not be a unique value of η∞ for a
given value of θ̃ that represents a stationary solution to the Euler equation. For
any value of θ̃ greater than a critical value around 0.15, if one starts from ηt = η0
(a completely uninformative memory), the choice of ηt+1 = η0 again represents a
local minimum of the objective; hence η = η0 is a stationary solution of the Euler
equation for all of these values of θ̃, as shown in the figure. However, for values
of θ̃ only moderately larger than the critical value (such as θ̃ = 0.20), this is not
the only local minimum, and the global minimum is instead at an interior choice
for λt; this value results in a path {ηt} that converges to a different stationary
value for η∞, on the lower branch of the correspondence (as shown for example
by the blue dot for θ̃ = 0.20). Yet for values of θ̃ that exceed a second critical
value just above 0.28, the global minimum shifts from the interior minimum to
the local minimum at ηt+1 = η0. For all values beyond this point, the optimal
memory structure involves λt = 0 for all t, so that η∞ = η0 (as shown by the blue
dots on the upper branch of the correspondence).

Thus while the locus of fixed points η∞(λ) is the same in Figures 1 and 3, all
points on this locus represent possible long-run memory structures (attainable
through an appropriate choice of λ̄) in the case of a fixed upper bound on mutual
information, but not all of them are always attainable in the case of a linear
memory cost function. In the case K = 1, the two sets of long-run solutions
are identical; but in the case K = 10, there is a range of values for η∞ that are
associated with particular (relatively low) values of λ̄ but do not correspond to
any possible value of θ̃.33

C. Forecast Dynamics and Recency Bias

We can now generalize the discussion in section 2 of the implied dynamics of
the DM’s forecasts in response to shocks to the external state. We first show that
DM’s cognitive state fluctuates around a steady state in the long run, just as in
the i.i.d. case (2.8).

As shown in (3.13), the DM’s memory regarding the state vector xt can be
summarized by a one-dimensional memory state m̃t. The evolution of the vector
s̃t ≡ (m̃t, yt) then fully characterizes the DM’s forecasts of the future evolution
of the external state. In the case that data have been generated in accordance
with the law of motion of the memory state for a sufficiently long time for the
coefficients of the DM’s Kalman filter to converge, the dynamics of s̃t can be

32See Appendix .G for a numerical example.
33We can show analytically that the continuous relationship shown in the left panel of Figure 5 occurs

for all K ≤ 1 when ρ = 0, while the backward-bending correspondence and consequent discontinuous

relationship between θ̃ and η∞ occurs for all K > 1. See Appendix .G for further explanation.
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described by a VAR(1) system with constant coefficients of the form

(4.5) s̃t+1 = f µ + F s̃t + ut+1, ut+1 ∼ N(0, Σu)

where ut+1 ≡ (ω̃t+1, ϵy,t+1), and f, F and Σu denote a 2-vector and two 2 × 2
matrices of constant coefficients respectively. The matrix F furthermore has an
upper-triangular form, while Σu is diagonal. We show in the appendix that the
eigenvalues of the matrix F are ρ and ρm.34 We further show that 0 < ρm < 1,
so that both yt and m̃t exhibit stationary fluctuations around well-defined long-
run average values which depend linearly on µ. The two independent exogenous
sources of variation in this system are the innovations ϵy,t+1 in the external state
and the memory noise innovations ω̃t+1.

We can further see that DM’s forecasts continue to exhibit recency bias, just as
in the i.i.d. case (2.9). The system (4.5) implies that we can express the value of
the memory state m̃t+1 as a function of the sequence of external states {yτ} for
τ ≤ t and the sequence of memory noise realizations {ω̃τ+1} for τ ≤ t:

(4.6) m̃t+1 = F12 ·
∞∑
j=0

(ρm)jyt−j + ω̃sum
t+1 ,

where ω̃sum
t+1 ≡ ∑∞

j=0(ρm)jω̃t+1−j and F12 is the (1, 2) element of the matrix F

in (4.5).35 Thus, the reduced memory state m̃t is more influenced by recent
observations.

We can also use the law of motion (4.5) to trace out the impulse response of
the vector s̃t (and hence of the DM’s forecasts) to an innovation in the external
state yt. Figure 6 plots the responses when the precision of memory is bounded
each period, in the case that K = 1 and ρ = 0.4.36 The left panel shows how
µ̂τ responds in the long run to a unit positive innovation in the value of yt. In
the case that λ̄ = 1 (perfect memory), the value of µ is learned with precision.
However, when memory is imperfect, an observation of a high value of yt leads to
a higher estimate µ̂t of the mean. This additional effect on the forecast (leading
to over-reaction relative to the RE benchmark) is initially larger the smaller is
λ̄; but a smaller λ̄ (tighter memory constraint) also causes the additional effect
to die out more rapidly, since its propagation can only be through the DM’s
memory of her previous judgment about the value of µ. The right panel shows
the impulse response of the one-quarter-ahead forecast ŷτ+1|τ to a unit positive
innovation in yt, using the same conventions as in the left panel. When ρ > 0,
the rational-expectations forecast (corresponding to λ̄ = 1 in the figure) is itself
increased by a positive innovation in yt (by an amount equal to fraction ρ of the

34See Appendix .H for the derivation.
35This is a stationary random process with a finite unconditional variance, since 0 < ρm < 1, as shown

in Appendix .H. Note that the fact that ρm < 1 implies that forecasts necessarily exhibit recency bias.
36These impulse responses are plotted for a variety of assumptions about the degree of persistence of

the external state in Appendix .H.
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Figure 6. : Impulse response functions

Note: Impulse responses of the DM’s estimate of µ (left panel) and one-period-ahead forecast of the state
(right panel) to a unit positive innovation in the observed value of yt at the time marked as “time = 0”
on the horizontal axis. Responses are plotted for alternative values of the information bound λ̄, in the
case that K = 1, ρ = 0.4.

innovation), and the increase in the forecast is furthermore persistent (decaying
back to its original level at a rate proportional to ρτ−t). But when λ̄ < 1, the
forecast is increased by even more, owing to the fact that the higher observation
of yt increases the DM’s estimate of µ as well.

5. Experimental Evidence

We have shown that our model provides an explanation for important quali-
tative features of observed subjective expectations. Here we briefly discuss the
model’s quantitative fit with data on subjective expectations from the laboratory
experiment of Afrouzi et al. (2023). We focus on this particular evidence for a
quantitative test of our model, because it involves forecasts of a stationary AR(1)
process, and in that sense matches exactly the problem assumed in our theoretical
analysis above. A laboratory experiment also has the advantage over field studies
of allowing us to be sure exactly what the true data-generating process is, and
exactly what information is available to decision makers at each point in time
(though of course questions remain about how the situation is understood by the
experimental subjects, and what they pay attention to).
As noted in the introduction, Afrouzi et al. (2023) conduct a laboratory exper-

iment in which subjects observe successive realizations of an AR(1) process, and
forecast what the next realizations should be. They find that subjects’ reported
expectations over-react to innovations in this process, as predicted by our model
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(as well as the related model of noisy memory that they discuss). They give
particular emphasis to a measure of over-reaction in which a subject’s forecast
ŷt+h|t (where h is the number of realizations in advance for which the forecast is
solicited in trial t) is regressed on the realization of the variable just before the
forecast is solicited:

(5.1) ŷt+h|t = as,h + bs,h yt + vt.

A separate regression (with coefficients as,h, bs,h) can be estimated for each of
several horizons h. Afrouzi et al. are interested in the difference between the

“implied persistence” measured by the estimated value ρsh ≡ b
1
h
s,h and the cor-

responding coefficient ρ of the yt process. The authors measure the degree of
over-reaction of expectations to news by the extent to which ρsh is larger than ρ.
Note that this is an example of a test of the predictability of forecast errors, since
the coefficient of a regression of the forecast error yt+h − ŷt+h|t on yt will equal

ρh − bs,h.
We can investigate what our model of expectation formation on the basis of an

imperfect memory implies about the relationship between ρsh and ρ in the case of a
stationary AR(1) process. Here we consider the predicted values of the regression
coefficients in the long run, as the length of the time series used to estimate them
goes to infinity. Then, subjective forecasts should be given by

ŷt+h|t = (1− ρh) µ̂t + ρh yt,

so that the predicted coefficient bs,h in regression (5.1) will equal

(5.2) bs,h = (1− ρh)βµ̂|y + ρh

where βµ̂|y is the coefficient in a regression of µ̂t on yt,

βµ̂|y =
cov[µ̂t, yt |µ]
var[yt |µ]

=
cov[µ̂t, yt |µ]

σ2y
.

We show in the appendix how to calculate this coefficient as a function of the
model parameters.37

Importantly, our numerical solutions indicate that µ̂t and yt are always posi-
tively correlated (conditional on µ). This is because a positive innovation in the
external state yt raises (or at least never lowers) the expected value of yτ for all
τ ≥ t, and at the same time also raises the expected value of µ̂τ for all τ ≥ t (as
illustrated in figures in Appendix .H). Since the memory noise has no effect on
the evolution of the external state, there are no shocks that move µ̂t and yt in
opposite directions, while some (at least the innovation ϵyt) move both of them in
the same direction. But given that βµ̂|y > 0, equation (5.2) implies that ρsh > ρ;
that is, our model implies over-reaction of the kind exhibited by the forecasts of

37See Appendix .H for details.
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Figure 7. : Two regression coefficients

Note: Comparison of the values for the regression coefficients ρ and ρsh for different values of ρ and h.
Model parameters are calibrated to match data points on the top left panel. The diagonal line indicates
the prediction of the rational-expectations hypothesis.

the subjects of Afrouzi et al.
Equation (5.2) also implies that for fixed values of the model parameters other

than ρ, the over-reaction measure ρsh − ρ converges to zero as ρ → 1, for any
forecast horizon h.38 This is also approximately true of the regression coefficients
reported by Afrouzi et al. (see their Figures 2B and 3). Indeed, these authors
stress the finding that in their data, the discrepancy ρsh − ρ is much larger when
ρ is relatively small. As will be seen, this is also true in numerical solutions of
our model.
Our model can be parameterized so that it simultaneously fits the experimental

evidence for the different horizons for which forecasts are solicited in the exper-
iment of Afrouzi et al. We find parameters that fit the regression coefficient
estimated from the experimental data. In particular, we target those from one-
period forecasts (i.e., ρs1). As discussed in detail in Appendix .H, we find pairs
of (λ̄,K) that minimize the sample MSE in matching the estimated ρs1 for six
different values of ρ. The targeted moments do not allow separate identification
of λ̄ and K, so we find every pair that is equally good at fitting the moments.
Figure 7 plots the model-predicted moments under our parameterization for

both targeted and untargeted moments. The squares show the values of the
estimated ρsh against the actual ρ from the experiment of Afrouzi et al., and the

38This prediction depends on βµ̂|y remaining bounded as ρ approaches 1. This is the case in our

numerical solutions, both when λ̄ is held constant as ρ is varied (as in Figure 2) and when θ̃ is held
constant as ρ is varied (as in Figure 4).
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solid line corresponds to the model prediction. We find pairs of (λ̄,K) that best
fit the data points in the top left panel and average the values of ρsh predicted by
all such pairs. The other panels show the model fit in generating the extent of
over-reactions observed in longer-horizon forecasts (for h = 2, 5 and 10). These
are untargeted moments, which speak to the model’s ability to quantitatively
explain the degree of over-reactions that vary with the persistence of the forecasted
variable and the forecast horizons.
There is also evidence of over-reaction to news in the forecasts of macroeco-

nomic and financial variables by professional forecasters, as discussed by Bordalo
et al. (2020). A satisfactory quantitative account of the predictable forecast er-
rors observed in these forecasts requires an extension of the model presented here,
as discussed by Sung (2024). While the more complex model in that paper in-
volves additional information frictions, as addition to allowing for more complex
dynamics of the variables that are forecasted, noisy memory of the kind modeled
here remains crucial for explaining the observed patterns. And while information
frictions of the kind proposed by Coibion and Gorodnichenko (2012, 2015) are also
important, Sung finds that quantitative estimates of the size of those frictions are
significantly biased by failing to take account of the effects of noisy memory.

6. Related Models

Here we compare our model to alternative models of belief formation that make
at least somewhat similar predictions, most notably with regard to the possibility
of over-reaction to recent news. We show how our model has important formal
similarities to some of these others, and clarify the ways in which it differs from
them.

A. Alternative Explanations for Over-Reaction

We begin by reviewing possible explanations for over-reaction to news that
do not rely upon imperfect memory. The following subsection then considers
alternative models of imperfect memory.

Reactions to News when the Mean is Understood to Drift

In our model, over-reaction of forecasts to new observations of the variable
yt reflect revisions of the DM’s estimate of the mean of the stochastic process
{yt}, even though the mean µ is assumed to be constant over time; failure of the
DM to learn the exact value of µ, even in the long run, depends on imperfect
memory. However, there would be a perpetual revision of beliefs about the mean,
even with perfect memory (and perfect Bayesian inference) in a world where the
mean is (correctly) understood to evolve stochastically over time. In this case,
observations farther in the past would be of progressively less relevance to the
DM’s current estimate of the mean, even with perfect memory.
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Such a model can predict forecast dynamics similar (though not identical) to
those in our model. As a simple example, suppose that yt = µt + ϵt, where
ϵt ∼ N(0, σ2y) represents an i.i.d. deviation from the time-varying mean µt; and
suppose that the mean evolves according to an AR(1) process,

µt = ϕµt−1 + νt,

where 0 < ϕ < 1 and νt ∼ N(0, (1 − ϕ2)Ω) is another i.i.d. process. Note that
this specification implies that the unconditional prior distribution for the mean
is given by N(0, Ω), just as in our model.39 Let us consider the evolution of the
beliefs of a perfect Bayesian DM in such an environment, who observes yt with
perfect precision each period, starting from prior beliefs about µ0 (before y0 is
observed) corresponding to the unconditional prior.

The posterior distribution for the value of µt, just before the observation of yt,
will be a Gaussian distribution N(µ̂t|t−1, σ̂

2
t|t−1). The posterior after observing

yt will be another Gaussian distribution N(µ̂t|t, σ̂
2
t|t). The mean and variance of

this distribution are given by the same Kalman-filter formulas (2.1)–(2.3).40 In
the case of perfect memory, these posterior beliefs about µt imply a posterior
distribution for the value of µt+1 that is also Gaussian, with mean and variance

(6.1) µ̂t+1|t = ϕµ̂t|t,

(6.2) σ̂2t+1|t = σ̂2t|t + (1− ϕ2)(Ω− σ̂2t|t).

Comparison of equation (6.2) with the corresponding equation (2.6) for the
dynamics of posterior uncertainty in our noisy-memory model reveals that the
degree of uncertainty, after any particular number of observations of yt, is the
same in both models in the case that ϕ2 = λ̄. The same path for uncertainty
about the mean then implies the same path for the Kalman gain γt, given by (2.2).
Hence the perfect-Bayesian model with a stochastic mean is equally capable of
explaining why a DM’s estimate of the mean should continue to be influenced by
recent observations, even after a long sequence of observations; the predictions of
the two models about this are identical, if the parameter ϕ is chosen appropriately.

However, this does not mean that the two models are observationally equivalent.
Equations (6.1)–(6.2) together with the Kalman-filter equation (2.1) imply that
after a sufficiently long sequence of observations, the Bayesian estimate of the
mean will be given by a solution of the form (2.10), but with the weights {αj}

39The difference is that in the drifting-mean model, we no longer assume that a value of the mean is
drawn from this distribution and then remains constant forever after. Our specification in the previous
sections can be regarded as the ϕ → 1 limit of this prior.

40Here we must substitute µ̂t|t−1 for the prior mean m̄t in equation (2.1), and σ̂2
t|t−1

for the prior

variance Σµ
t . Similarly µ̂t|t and σ̂2

t|t correspond to the variables called simply µ̂t and σ̂2
t in the previous

equations.



38 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

given by
αj,t = ϕj γ̄(1− γ̄)j

where γ̄ is a constant value between 0 and 1, and without any idiosyncratic noise.
If we assume that ϕ2 = λ̄, so that the Kalman gains implied by both models are
the same, the weights on past observations {yτ} will equal

αj,t = λ̄j/2γ∞(1− γ∞)j .

The weights decay exponentially, like the weights implied by the noisy-memory
model; but they do not decay at the same rate. (The weights decay more rapidly
as j increases in the case of the noisy-memory model; hence the weights are
smaller for all j ≥ 1 in that case.)

Another difference between the two models is that the perfect-Bayesian model
implies that there should be a tight relationship between the degree of persistence
of the series {µt} — and hence the autocorrelation of the observed series {yt} —
and the coefficients (such as the Kalman gain γt) that describe the dynamics
of beliefs about the mean. In the noisy-memory model, the coefficient λ̄ that
determines the size of the Kalman gain and the intrinsic persistence of the belief
state can be specified independently of the time-series properties of the process
{yt}. This flexibility is important for accounting for observed beliefs. Bayesian
models of subjective forecasts often have to posit a DM with an apparent prior
belief that an unknown state fluctuates more than is actually the case.41 The
noisy-memory model can account for such findings without having to suppose
that people fail to learn the correct statistics of their environment. The example
just presented shows that noisy memory (λ̄ < 1) can result in belief dynamics
similar to those of a Bayesian model in which the DM’s prior assumes that the
mean µt is more stochastic than it really is (the prior assumes that ϕ < 1 when
actually µ never changes).

Finally, the perfect-Bayesian model implies that the DM’s estimate µ̂t|t (and
hence forecasts of future yt) at any time will be a deterministic function of the
sequence of values (y0, . . . , yt) that have been observed. It follows from this that
all forecasters who observe the same series should have identical forecasts, and
that the variation over time in their forecasts can be fully accounted for by the
variation in the values that have been observed. The noisy-memory model instead
implies that each DM’s beliefs and forecasts are affected by memory noise, as
shown in (2.10); this implies both that forecasts are not perfectly predictable
from the past history of the series being forecasted, and that they should differ
across forecasters. This is an attractive feature of the noisy-memory model, since
observed forecasts have both of these properties.42

41See, for example, Yu and Cohen (2008).
42See Sung (2024) for discussion of the difference between individual professional forecasters’ forecasts

and the consensus forecast, in the case of a variety of macroeconomic variables.
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Incomplete Learning Owing to a Small Sample

Another reason for over-reaction of forecasts to new observations (relative to
the RE prediction, assuming knowledge of the true mean) could be that the DM
has not observed a long enough history of the series {yt} to have learned the mean
with sufficient precision, even though the DM’s forecasts are optimal conditional
on what they have seen. An obvious question about this proposal is why the DM
should not have access to a long enough history (under the assumption of perfect
memory). Presumably the reason must be that the process {yt} has not been
generated according to the current law of motion since time immemorial, and
this is evident to the DM, so that only a relatively short series of observations is
considered relevant for the current forecast. Overreaction could continue to be
observed over time, under this justification, only if one supposes that the world
continues to change from time to time, so that the relevant sample is never too
long.

This explanation would then be closely related to the hypothesis of parameter
drift discussed in the previous subsection, and subject to similar criticisms. In
addition, while such a model would allow for predictable forecast errors from
the standpoint of an observer who knows the true value of µ at each point in
time, there would not be any errors that are forecastable on the basis of variables
actually observed by the DM (either currently or in the past). To the extent
that forecast errors are found to be correlated with variables known to have been
observed by the forecaster (as for example in the study of Bordalo et al., 2020),
this finding is inconsistent with the hypothesis of correct conditioning on a sample
that is never too large.43

Constant-Gain Learning

One also obtains a prediction of perpetual learning, and hence continued over-
reaction to news even after an arbitrarily long sequence of observations, in a
model where the DM is assumed to estimate the value of the parameter µ us-
ing a “constant-gain” variant of least-squares learning (Evans and Honkapohja,
2001, sec. 7.4). Constant-gain (CG) algorithms effectively put an exponentially
decreasing weight on observations farther in the past; for example, an unknown
mean is estimated by a linear estimator of the form

µ̂t =
∞∑
j=0

γ(1− γ)jyt−j

where 0 < γ < 1 is the constant “gain factor”. This is similar to the kind of
estimate of the unknown mean implied by the perfect-Bayesian model in the case

43The finding of Bordalo et al. is instead consistent with the model of noisy memory proposed here,
as discussed in Sung (2024).
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of a drifting mean.44 Moreover, in the CG algorithm, the value of γ can be
specified independently of the dynamics of the process {yt} that is forecasted.45

To the extent that a model of CG learning is considered to be empirically re-
alistic, however, a question arises as to what determines the value of the gain
parameter. In the adaptive control literature, such algorithms are proposed as a
way of dealing with drift in the values of parameters to be estimated; the appro-
priate value of the gain parameter should thus depend on one’s prior regarding
the degree of volatility of the parameters to be estimated, as in our discussion
above of Bayesian inference when the mean drifts. But once again, the gain pa-
rameters that are found to best fit expectations data do not seem to correspond
to ones that would be optimal given the degree of structural change in the fore-
casted time series.46 Alternatively, authors such as Malmendier and Nagel (2016)
propose that aggregate dynamics similar to those predicted by a model of CG
learning can result from aggregation of the decisions of people of different ages,
who each form beliefs on the basis of their personal experience (and hence on the
basis of samples extending different distances into the past).47 But also under
this explanation for CG learning, the predicted gain parameter should depend on
other features of the model, that may not justify a gain parameter as large as the
one required to explain the observed degree of over-reaction to news.48 Our model
provides an alternative foundation for belief dynamics similar to those implied by
a CG algorithm, in which a substantial gain parameter can exist even when the
value of the mean remains constant (or nearly constant) over long periods of time,
and even when forecasters have long personal histories of observations.

Forecasts Based on an Incorrect Model

A longstanding explanation for systematic over-reaction to news is the hypoth-
esis that people form their forecasts on the basis of an incorrect statistical model
— for example, under an assumption that the fluctuations in {yt} are more per-
sistent than is actually the case. Explanations of this kind have continued to be
prominent in the recent literature (e.g., Angeletos et al., 2021), but they raise the
question: why should people persist in mis-estimating the dynamics?
Fuster et al. (2010, 2011) offer one answer: people’s forecasts are optimal, given

their estimated model of the dynamics, and their estimated model is the one that

44Note that if we consider a limiting case in which ϕ → 1 while (1−ϕ2)Ω → σ2
ν > 0, then the dynamics

of the mean estimate implied by the perfect-Bayesian model are exactly those of a constant-gain mean
estimate with a gain factor of γ̄.

45In empirical applications (e.g., Milani, 2007, 2014; Slobodyan and Wouters, 2012), the gain param-
eter and the parameters specifying the persistence of the exogenous states are treated as independent
free parameters to be estimated.

46See, e.g., Branch and Evans (2006) and Berardi and Galimberti (2017).
47For additional examples, see Nakov and Nuño (2015), Schraeder (2016), Collin-Dufresne et al.

(2017), Ehling et al. (2018), and Malmendier et al. (2020).
48Thus Malmendier et al. (2020) posit an exponentially decaying influence of earlier experiences on a

given DM’s expectations, even among the events that have occurred during one’s lifetime, rather than
relying upon demographics alone to account for the rate at which past events cease to influence current
market pricing.
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best fits the autocorrelation function of the actual series, within some parameteric
family of possible models (that need not include the true data-generating process).
Their hypothesis of “natural expectations” assumes that the class of statistical
models considered is that of all possible AR(k) models, for some fixed bound
on k.49 The authors argue that actual time series often involve long-horizon
dependencies, and show that in this case (say, an AR(40) process forecasted by
people who consider models with no more than 10 lags), long-horizon forecasts
using the best-fitting AR(k) model can significantly over-react to recent trends
in the data.
This proposal, however, remains subject to several objections. Why should

the restriction to models of the data with a fixed upper bound on k be main-
tained, even when the available sequence of observations with which to estimate
the model becomes unboundedly long? Moreover, even if one grants that a con-
straint on model complexity requires that no more than some finite number of
explanatory variables be stored and used as a basis for forecasts, why must the
possible explanatory variables correspond only to the last k observations of the
series? In the kind of example in which Fuster et al. argue that their proposal
predicts over-reaction, more accurate long-horizon forecasts would be possible if
the forecast were conditioned on a long moving average of observations, rather
than only recent observations; yet tracking a small number of moving averages
would seem no more complex than always having access to the last k observa-
tions. And above all, the Fuster et al. explanation implies that over-reaction
should only be observed in the case of variables that are not well-described by an
AR(k) process of low enough order. Yet as discussed above, Afrouzi et al. (2023)
find significant over-reaction in an experiment in which the true data-generating
process is an AR(1) process; and in fact, they find the most severe degree of
over-reaction when the process to be forecasted is white noise.
Like the hypothesis of “natural expectations,” our model assumes that forecasts

are optimal, among those forecasting rules in which the forecast is based on only a
limited summary of past history; but the way in which we model the limit on the
complexity of possible representations of past data is different. Our approach does
not impose any a priori restriction on either the dimensionality of the memory
state or the number of past observations that can be (imperfectly) represented
by the memory state. And the form of complexity limit that we assume has the
advantage of implying forecasting bias (and more specifically over-reaction) even
when the true dynamics are very simple — indeed, even when the true dynamics
are white noise (and are recognized by the DM to be white noise).

B. Alternative Models of Imprecise Memory

We are also not the only authors to have proposed that expectational biases
may result from forecasts being based on imperfect memory of past observations.

49More general versions of this hypothesis are considered in the more recent work of Molavi (2023).
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Here we briefly discuss similarities and differences of alternative proposals with
our own approach.

Models of Quasi-Bayesian Belief Updating

Nagel and Xu (2022) propose that a variety of asset-pricing anomalies can be
explained by the biases in expectations regarding future asset returns implied by
a particular type of departure from perfect Bayesian inference from observed past
returns, which they call a model of “fading memory.” As in this paper, they
consider a situation in which a DM (an investor) must infer the mean µ of a
process {yt}, based on past observations of this process; and (as in the simple
case analyzed in section 2) they assume that the process is i.i.d. (and known to
be), and that the only unknown parameter of the distribution is µ. Given a prior
p(µ) over possible values of µ, and a likelihood p(y |µ) for the observation of yt in
any period conditional on the unknown mean, the Bayesian posterior distribution
conditional on a finite sequence of observations y = (yt0 , . . . , yt−2, yt−1, yt) is given
by

p(µ |y) ∼ p(µ)

t−t0∏
j=0

p(yt−j |µ).

The Nagel-Xu model of “fading memory” instead assumes a subjective posterior
of the form

(6.3) p(µ |y) ∼ p(µ)

t−t0∏
j=0

p(yt−j |µ)(1−ν)j ,

for some small quantity ν > 0, which indicates the rate at which memory of
past observations “fades.” (Note that their model reduces to perfect Bayesian
inference in the limiting case in which ν = 0.)
The Nagel-Xu model, like ours, is one in which there is perpetual learning: in

the limit as t0 → −∞, the posterior distribution (6.3) remains non-degenerate,
despite being based on a sample of infinite length. As in our case, the reason is
that past observations have a progressively weaker influence on the posterior, the
farther they are in the past, and more specifically the influence decreases as an
exponential function of the elapsed time. Also as in our case, the Nagel-Xu model
implies that one should observe “recency effects.” Another important similarity
between their approach and ours is that Nagel and Xu model the DM’s complete
posterior at each point in time, not just the DM’s point estimate of µ; and like
us, they tie the rate of decay of past information to cognitive limitations, rather
than the rate at which the environment is objectively likely to have changed.
Our model differs from that of Nagel and Xu, however, in offering an explicit

representation of the imprecise information contained in memory, and then de-
riving the DM’s subjective posterior from (correct) Bayesian conditioning on this
imprecise record, rather than directly assuming a particular modification of the
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Bayesian expression for the posterior beliefs. This is not simply a matter of hav-
ing failed to provide intermediate steps in the derivation; the subjective beliefs
assumed by Nagel and Xu are not correct conditional beliefs, if one were to con-
dition on the information about past observations reflected in the assumed beliefs
(and therefore revealed by the DM’s cognitive state, since the subjective posterior
must be some function of the cognitive state). Our model also differs from theirs
in that it implies that individuals’ beliefs involve idiosyncratic cognitive noise;
thus our model, unlike that of Nagel and Xu, predicts that investors should have
heterogeneous beliefs even if they observe identical information. (This difference
is relevant for applications to financial economics, since our model of heteroge-
neous beliefs on the part of individual investors provides a motive for trading,
even when all information about asset fundamentals is public.) In these respects,
the predictions of our model are not quantitatively identical to those of the model
of Nagel and Xu, despite many similarities.
Prat-Carrabin et al. (2021) derive a quasi-Bayesian posterior very similar to the

one postulated by Nagel and Xu from a hypothesis of “costly Bayesian inference,”
in which belief updating after each new piece of evidence arrives is distorted
(relative to exact Bayesian updating) so as to reduce the precision of the resulting
belief state.50 This hypothesis is even more closely related to the one that we
propose here, insofar as the sensitivity of beliefs to past observations decreases
over time as a consequence of the cost of storing a more precise record of the
DM’s past cognitive state. The model of Prat-Carrabin et al. differs from ours
in identifying the imprecise memory state with the DM’s (distorted) posterior
beliefs given the sequence of observations to that point; instead, we distinguish
between the DM’s cognitive state (which includes the memory state mt) and the
probability beliefs that would optimally be inferred from such a state. Thus while
there are again many similarities between the predictions of their model and ours,
the predictions are not identical.

Alternative Models of Noisy Memory

Neligh (2024) proposes a model of decaying memory that is conceptually closer
to our own in that, as in this paper, it is assumed that memory can be retrieved
only with noise, and the judgments that are made are optimal (consistent with
correct Bayesian inference) subject to being based on the noisy memory state. The
difference with our model is in how the memory state and the cost of retrieving
a more precise memory are modeled.
Neligh assumes an “episodic” memory, in which there is an independent noisy

record of each of the past observations yτ for 0 ≤ τ ≤ t − 1; the element of
the memory vector corresponding to the observation at time τ is equal to the
value of yτ plus a mean-zero Gaussian noise term, distributed independently of
the value of yτ , and with a variance that depends on the amount of elapsed time.

50Prat-Carrabin et al. (2024) fits the model to an experimental data set.
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This is a special case of the kind of noisy memory that our framework allows
for, but is not the form of memory that is found to be optimal for the decision
problem considered in this paper. In addition to imposing the constraint that
memory must take this form, Neligh endogenizes the precision of memory in only
one respect: the precision with which observation yτ is initially encoded at date
τ is optimized (subject to a cost of greater encoding precision), but given the
choice of an initial encoding precision, the precision of the memory that can be
retrieved after a time delay is exogenously determined by the amount of time
that has elapsed. Our model instead allows the precision with which memory is
maintained over time to be endogenously varied.51

An important similarity between Neligh’s model and ours is that in both models,
observations more distant in the past are retrieved with greater noise, because of
the way in which noise is cumulatively added as the memory state is maintained
over time. This means that both models predict recency effects.52 There would
remain, however, two important differences between Neligh’s model and ours.
One is that our model derives its predictions from less special assumptions and
involves fewer free parameters; thus in the case that both models were equally
consistent with empirical observations like those of Afrouzi et al. (2023), our
model would provide a more parsimonious explanation. And second, Neligh’s
model implies a much higher-dimensional memory state than does ours. In the
case of the decision problem considered in this paper, this makes no difference,
as forecasts depend on memory only through a single scalar summary statistic;
but the predictions of the two models would likely be different in the case of more
complex decisions.

Like us, Afrouzi et al. (2023) propose to explain the biases in their experimental
subjects’ forecasts using a model of endogenously imprecise memory. The nature
of the imprecise representation that is used for the decision is optimized subject
to a cost of precision, which as in our model is based on mutual information (for
them, the mutual information between the complete contents of memory and the
imprecise representation). As in our model, the information cost implies that an
accurate estimate of the value of µ cannot be made on the basis of memory, even
after a very large number of observations. Hence subjects’ forecasts (assumed as
in our model to be optimal subject to having to be conditioned on an imprecise
cognitive state) are based on a precise observation of the current yt together
with an imprecise estimate of µ deriving from an imprecise summary of past
observations. This results, as in our model, in a prediction of over-reaction to
the most recent observation (that can be observed with greater precision than
any past observations are recalled); and the predicted degree of over-reaction is

51In addition to considering a different class of possible memory structures, Neligh (2024) addresses
largely distinct questions from those analyzed here.

52It would be possible to specify the rate of increase of memory noise with the passage of time in
Neligh’s model in such a way as to make the distribution of E[µ |mt] conditional on the sequence of
past observations — and hence the conditional distribution of all of the DM’s forecasts, in the decision
problem considered here — the same as the one predicted by our model.
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greatest in the case of variables with low persistence (since in this case optimal
forecasts are largely determined by the optimal estimate of µ).
Despite these similarities in the predictions of the two models, there is an im-

portant difference between the model of noisy memory in Afrouzi et al. (2023)
and our own. In their model, all past observations are stored in memory with
perfect precision; imprecision enters only when an imperfect representation of the
contents of memory is retrieved in order to inform a decision. Thus, information
retrieved from memory (at a cost) for use in a decision at time t has no conse-
quences for the information that will be available later. This makes the problem
of optimal selection of the information to be retrieved at any time t a (relatively
simple) static problem in their model, whereas it is a dynamic problem in the
model proposed here, since in our model, information not remembered at time t
cannot (at any cost) be retrieved in any later period.
This difference in their model implies that all past observations are accessible

with equal precision when a forecast needs to be made; hence the optimal noisy
representation implies much less “decay” of old observations than in our model.
As a simple example, consider the case in which yt is i.i.d. Then the contents of
memory will be distributed independently of the current observation yt, and the
equally-weighted sample mean of the observations {yτ} for 0 ≤ τ < t will be a
sufficient statistic for the information about the mean µ that is contained in the
previous observations; hence the optimal representation will be a noisy read-out
of this sample mean. It follows that any past observation yτ (for τ < t) should
have exactly the same effect on forecasts at time t as any other: there will be no
“recency effect” at all, except for the fact that the observation yt will have a larger
effect than any of the observations at dates τ < t. Thus the model of Afrouzi et al.
provides no explanation for the kind of recency effects that have frequently been
documented in the experimental literature (e.g., Hogarth and Einhorn, 1992), as
well as in macroeconomic and financial contexts by authors such as Malmendier
et al. (2020).

7. Conclusion

We have shown that it is possible to characterize the optimal structure of mem-
ory, for a class of linear-quadratic-Gaussian forecasting problems, when the cost
of a more precise memory is increasing in Shannon’s mutual information, and
when we assume that the joint distribution of past cognitive states and the mem-
ory state is of a multivariate Gaussian form, but with no a priori restriction on
the dimension of the memory state or the dimensions of past experience that
may be more or less precisely recalled. Strikingly, we find that for the class of
problems that we consider, the optimal memory structure is necessarily at most
one-dimensional. This means that what can be recalled at any time about past
observations is simply a noisy recollection of a single summary statistic for past
experience. We show how the model parameters determine the law of motion for
that summary statistic, and hence what single dimension of past experience will
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be (imprecisely) available as an input to the DM’s forecasts.
Among the implications of our model, two seem of particularly general interest.

First, while our formalism allows for the possibility of an independent noisy record
of each past observation (as assumed for example in the model of Neligh, 2024),
this is not optimal; instead, the optimal memory structure is one in which only a
particular weighted average of past observations can be recalled with noise. And
second, this weighted average places much larger weights on recent observations
than on ones at earlier dates, even though observations at all dates are equally
relevant to inference about the value of the parameter µ, which matters for the
DM’s decisions. Thus our model provides an explanation for “recency bias” in the
influence of past observations on current decisions, unlike the model of endogenous
memory precision proposed by Afrouzi et al. (2023).
In the applications sketched above, we have focused on biases that have been ob-

served in people’s stated expectations. But we suspect that the expectational bi-
ases implied by our model can help to explain puzzling aspects of market outcomes
as well. For example, Bordalo et al. (2024) argue that a number of well-known
puzzles about the behavior of the aggregate stock market are in fact all consistent
with a simple dividend discount model of stock prices, under the hypothesis that
market expectations regarding firms’ future earnings differ systematically from
rational expectations in a particular way, in a way that is also indicated by the
biases observed in survey expectations of earnings.
They further show that a particular sort of bias in market expectations is needed

in order to explain both the biases in survey expectations and the asset pricing
anomalies, one very much like the kind of forecast bias predicted by our model.
The most important difference with the reduced-form specification of expecta-
tional bias proposed by Bordalo et al. is that in their model, there are arbitrary
random variations in the “market expectations” that determine the value of the
stock market; our model instead implies the existence of idiosyncratic random
variation in the beliefs of an individual forecaster, but one might expect that
these idiosyncratic variations should cancel out in their effects on the market
price. It is possible that a satisfactory model of asset pricing will require us to
suppose that some individual traders are large enough for their idiosyncratic be-
liefs to have a non-negligible effect on aggregate outcomes, as in the model of
Gabaix et al. (2006). We leave the development of a complete model of asset
prices for future work; but it seems likely that imperfect memory of the kind
modeled here will be a necessary element in such a model.

REFERENCES

Afrouzi, Hassan, Spencer Y. Kwon, Augustin Landier, Yueran Ma,
and David Thesmar. 2023. “Overreaction in Expectations: Evidence and
Theory.” Quarterly Journal of Economics, 138(3): 1713–1764.

Azeredo da Silveira, Rava, Yeji Sung, and Michael Woodford. 2024.
“Replication Data for: Optimally Imprecise Memory and Biased Forecasts.”



VOL. VOL NO. ISSUE IMPRECISE MEMORY 47

American Economic Association. Inter-university Consortium for Political and
Social Research. https://doi.org/10.3886/E206101V1.

Berardi, Michele, and Jaqueson K. Galimberti. 2017. “Empirical cali-
bration of adaptive learning.” Journal of Economic Behavior & Organization,
144: 219–237.

Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer. 2018. “Diagnostic
Expectations and Credit Cycles.” Journal of Finance, 73(1): 199–227.

Bordalo, Pedro, Nicola Gennaioli, Rafael La Porta, and Andrei
Shleifer. 2024. “Belief Overreaction and Stock Market Puzzles.” Journal of
Political Economy, 132: 1450–1484.

Bordalo, Pedro, Nicola Gennaioli, Yueran Ma, and Andrei Shleifer.
2020. “Overreaction in Macroeconomic Expectations.” American Economic Re-
view, 110(9): 2748–2782.

Branch, William A., and George W. Evans. 2006. “A simple recursive
forecasting model.” Economics Letters, 91(2): 158–166.

Caplin, Andrew, Mark Dean, and John Leahy. 2022. “Rationally Inatten-
tive Behavior: Characterizing and Generalizing Shannon Entropy.” Journal of
Political Economy, 130(6): 1676–1715.

Coibion, Olivier, and Yuriy Gorodnichenko. 2012. “What can survey fore-
casts tell us about information rigidities?” Journal of Political Economy,
120(1): 116–159.

Coibion, Olivier, and Yuriy Gorodnichenko. 2015. “Information rigidity
and the expectations formation process: A simple framework and new facts.”
American Economic Review, 105(8): 2644–2678.

Collin-Dufresne, Pierre, Michael Johannes, and Lars A. Lochstoer.
2017. “Asset pricing when ‘this time is different’.” Review of Financial Studies,
30(2): 505–535.

Cover, Thomas M., and Joy A. Thomas. 2005. Elements of Information
Theory. . 2nd ed., John Wiley & Sons, Ltd.

Ehling, Paul, Alessandro Graniero, and Christian Heyerdahl-Larsen.
2018. “Asset prices and portfolio choice with learning from experience.” Review
of Economic Studies, 85(3): 1752–1780.

Evans, George W., and Seppo Honkapohja. 2001. Learning and expectations
in macroeconomics. Princeton University Press.

Fox, Roy, and Naftali Tishby. 2012. “Bounded planning in passive
POMDPs.” Proceedings of the 29th International Conference on Machine
Learning (ICML’12), 2: 75–82.



48 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

Fuhrer, Jeff. 2017. “Expectations as a source of macroeconomic persistence:
Evidence from survey expectations in a dynamic macro model.” Journal of
Monetary Economics, 86: 22–35.

Fuhrer, Jeffrey C. 2018. “Intrinsic Expectations Persistence: Evidence from
Professional and Household Survey Expectations.” Federal Reserve Bank of
Boston Working Papers 18-9.
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ONLINE APPENDIX

Rava Azeredo da Silveira, Yeji Sung, and Michael Woodford,
“Optimally Imprecise Memory and Biased Forecasts”

A. Reduction of the General Forecasting Problem to Estimation of µ

In the main text, we suppose that DM’s forecasts and memory structure mini-
mize the expected loss function (1.2). In this section, we show that the optimiza-
tion problem can be restricted to a problem of estimating µ, in which the memory
system minimizes the discounted sum of mean squared errors in the estimation
task.

Consider the problem of choosing the vector of forecasts zt each period so as
to minimize (1.2). The elements of zt must be chosen as a function of the DM’s
cognitive state at time t (after observing the external state yt). As explained in
the text, the DM’s cognitive state at time t is assumed to consist of the value of the
current external state yt (observed with perfect precision), along with whatever
additional information is reflected in the DM’s period t memory state mt. (In this
section, it is not yet necessary to specify the nature of the vector mt.)

If we use the notation Et[·] for the expectation of a random variable conditional
on a complete description of the state at date t (including knowledge of the true
value of µ), then

E[(zt − Etz̃t)
′W (z̃t − Etz̃t)] = 0,

since z̃t − Etz̃t is a function of innovations in the external state subsequent to
date t, that must be distributed independently of all of the determinants of both
zt and Etz̃t. It follows that the term in (1.2) involving zt can be equivalently
expressed as53

E[(zt − z̃t)
′W (zt − z̃t)] = E[(zt − Etz̃t)

′W (zt − Etz̃t)]

+E[(z̃t − Etz̃t)
′W (z̃t − Etz̃t)]

≡ L1t + L2t.

Moreover, L2t is independent of the decisions of the DM, and thus irrelevant to
a determination of the optimal decision rule. The loss function (1.2) can thus
equivalently be written as the discounted sum of the L1t terms, which involve
squared differences between zt and Etz̃t.

It further follows from the law of motion (1.1) that

Etz̃t =

∞∑
j=0

Aj [µ+ ρj(yt − µ)].

53Here we omit the factor βt that multiplies this term in (1.2).
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Since the precise value of yt is presumed to be part of the cognitive state on the
basis of which zt can be chosen, one can write any decision rule in the form

zt = ẑt + (

∞∑
j=0

ρjAj) · yt,

where ẑt must be some function of the cognitive state at date t. In terms of this
notation, the relevant part of the loss function (1.2) can then be written as

L1t = E[(ẑt − µa)′W (ẑt − µa)],

where we define a ≡∑∞
j=0(1− ρj)Aj and make use of the fact that Et[µ] = µ.

The term L1t that we wish to minimize can further be expressed as the expected
value (integrating over all possible realizations of the cognitive state st in period
t) of the quantity

L̃1(st) ≡ E[(ẑt − µa)′W (ẑt − µa) |st]
= E[ẑt |st]′WE[ẑt |st] + E[z̆′tWz̆t |st]

− 2a′WE[ẑt |st] · E[µ|st] + a′Wa · E[µ2|st],

where we define z̆t ≡ ẑt −E[ẑt |st]. (In expanding the right-hand side in this way,
we use the fact that E[z̆t |st] = 0, and that z̆t must be independent of the deviation
of µ from E[µ|st], since the DM has no way to condition her action on µ except
through the information about µ revealed by the cognitive state.) The expression
L̃1(st) can then be separately minimized for each possible cognitive state st, by
choosing a distribution for ẑt conditional on that state. We further note that the
random component z̆t of the action affects only the second term on the right-hand
side, and so should be chosen to minimize that term; since W is positive definite,
this is achieved by setting z̆t = 0 with certainty, so that ẑt must be a deterministic
function of st.

We can then simply write E[ẑt |st] as ẑt, and observe that

(A.1) L̃1(st) = (ẑt − aE[µ|st])′W (ẑt − aE[µ|st]) + a′Wa · var[µ|st],

where the final term on the right-hand side is independent of the choice of ẑt.
Thus in each cognitive state st, ẑt must be chosen to minimize the first term
on the right-hand side; since W is positive definite, this is achieved by setting
ẑt = a · µ̂t, where µ̂t = E[µ|st].
Thus there is no loss of generality in restricting the DM to response rules of

the form ẑt = a · µ̂t, where µ̂t is a scalar choice that depends on the cognitive
state in period t, and that can be interpreted as the DM’s estimate of µ given the
cognitive state. Substituting this expression for ẑt into (A.1), we have

L̃1(st) = a′Wa ·
{
(µ̂t − E[µ|st])2 + var[µ(st)]

}
= a′Wa · E[(µ̂t − µ)2 |st].
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Then taking the unconditional expectation of this expression, we obtain

L1t = α ·MSEt,

where α ≡ a′Wa > 0 and MSEt is defined as in the text.
Under any forecasting rule of the kind assumed here, then, the value of the loss

function (1.2) will equal (1.4), plus an additional term

∞∑
t=0

βtL2t

that is independent of the DM’s forecasting rule. Hence within this class of
forecasting rules, the rule that minimizes (1.2) must be the one that minimizes
(1.4); and since any other kind of forecasting rule can only lead to a higher
value of (1.2), we can replace the problem of choosing a rule for determining zt
that minimizes (1.2) by the problem of choosing a rule for determining µ̂t that
minimizes (1.4).

B. Bayesian Updating After the External State is Observed: A Kalman Filter

In this section, we show how DM’s belief is updated given the feasible class of
memory system assumed in (1.5). We discuss the Kalman Filter problem when
the external state yt is observed.As in section 3, we define the state vector as
xt ≡ (µ, yt−1). Given any inherited memory state mt, we partition its elements
as as

(B.2) mt =

[
mt

m̄t

]
,

where the lower block consists of the elements of the “reduced” memory state,
m̄t ≡ E[xt |mt], while the upper block consists of the conditional expectations
E[yt−j |mt] for 2 ≤ j ≤ t. (This simply requires an appropriate ordering of the
elements of mt, using the notation for this vector introduced in the main text.)
The assumed memory structure implies that a posterior distribution of xt con-

ditional on the memory state mt is of the form

xt |mt ∼ N(m̄t, Σt),

where m̄t is a 2-vector and Σt is a 2 × 2 symmetric, p.s.d. matrix. Under our
assumption of linear-Gaussian dynamics for the memory state, the vector m̄t will
also be drawn from a multivariate Gaussian distribution. Since the prior for the
hidden state vector is specified to be

(B.3) xt ∼ N(0, Σ0), Σ0 ≡
[
Ω Ω
Ω Ω+ σ2y

]
,

it follows that the unconditional distribution for the reduced memory state m̄t
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must be of the form
m̄t ∼ N(0, Σ0 − Σt).

The complete set of variables (xt,mt) also have a multivariate Gaussian distri-
bution. Moreover, since (by assumption) the expectation of xt conditional on the
realization of mt depends only on the elements of m̄t, it follows that the entire
distribution of xt conditional on mt depends only on m̄t, so that

xt|mt = xt|m̄t.

Hence the joint distribution of the variables (xt,mt) can be factored as

p(xt,mt, m̄t) = p(xt, m̄t) · p(mt |m̄t).

The DM then observes the external state yt, which is assumed to depend on
the hidden state vector xt through an “observation equation” of the form

yt = c′xt + ϵyt, ϵyt ∼ N(0, σ2ϵ )

where the vector c′ ≡ [1 − ρ ρ] is from (1.1) and ϵyt is distributed independently
of both mt and xt. It follows that the variables (xt,mt, yt) will have a joint distri-
bution that is multivariate Gaussian; and that this distribution can be factored
as

p(xt,mt, yt) = p(xt,mt) · p(yt |xt)
= p(mt |m̄t) · p(xt, m̄t) · p(yt |xt)
= p(mt |m̄t) · p(xt, m̄t, yt).

From this it follows that
xt |mt, yt = xt |m̄t, yt.

Thus both the expectation of xt conditional on the cognitive state st ≡ (mt, yt),
and the variance-covariance matrix of the errors in the estimation of xt based
on the cognitive state, will depend only on the joint distribution of the variables
(xt, m̄t, yt).Moreover, the distribution for xt conditional on the realizations of the
elements of the cognitive state will be multivariate Gaussian,

(B.4) xt |m̄t, yt ∼ N(µ̄t, Σ̄t),

where µ̄t is a linear function of m̄t and yt, while Σ̄t is independent of the realiza-
tions of either m̄t or yt.
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We can further decompose the vector of means µ̄t as

µ̄t = E[xt |m̄t, yt]

= E[xt |m̄t] + {E[xt|m̄t, yt]− E[xt|m̄t]}
= m̄t + γt · (yt − E[yt |m̄t])

= m̄t + γt · (yt − c′E[xt |m̄t])

= m̄t + γt · (yt − c′m̄t),

where γt is the vector of Kalman gains.

The vector of Kalman gains must be chosen so that the estimation errors xt−µ̄t
are orthogonal to the surprise in the observation of the external state, yt − c′m̄t.
This requires that

0 = cov(xt − µ̄t, yt − c′m̄t)

= cov((xt − m̄t)− γt(yt − c′m̄t), yt − c′m̄t)

= var[xt − m̄t]c − var[c′(xt − m̄t) + ϵyt] · γt
= Σtc − [c′Σtc+ σ2ϵ ] · γt.

Hence

(B.5) γt =
Σtc

c′Σtc+ σ2ϵ
.

The gain coefficient γ1t in equation (2.2) is just the first element of this vector,
γ1t ≡ e′1γt.

The variance-covariance matrix in the conditional distribution (B.4) will be
given by

Σ̄t = var[xt − µ̄t] = var[(xt − m̄t)− γt(yt − c′m̄t)]

= var[(I − γtc
′)(xt − m̄t) − γtϵyt]

= (I − γtc
′)Σt(I − γtc

′)′ + σ2ϵ γtγ
′
t

= Σt − 2[c′Σtc+ σ2ϵ ]γtγ
′
t + [c′Σtc]γtγ

′
t + σ2ϵ γtγ

′
t

= Σt − [c′Σtc+ σ2ϵ ]γtγ
′
t.

The remaining uncertainty about the value of µ given the cognitive state, σ̂2t , is
then equal to Σ̄11,t, so that

(B.6) σ̂2t = e′1Σ̄te1 = e′1Σte1 − (c′Σtc+ σ2ϵ )(γ1t)
2.
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Substituting expression (B.3) for Σ0 into this solution, we obtain

σ̂20 = Ω −
(
Ω+ σ2y

)
·
[

Ω

Ω+ σ2y

]2
=

Ωσ2y
Ω+ σ2y

,

which is the formula given in (1.8). It remains to be shown that this is an upper
bound for σ̂2t . To show this, we observe that

σ̂2t = min
β,γ

var[µ− β′m̄t − γyt]

≤ min
γ

var[µ− γyt]

≤ var[µ − (Ω/(Ω + σ2y)) · yt]
= var[(σ2y/(Ω + σ2y))µ − (Ω/(Ω + σ2y))(yt − µ)]

=

(
σ2y

Ω+ σ2y

)2

var[µ] +

(
Ω

Ω+ σ2y

)2

var[yt|µ]

=

(
σ2y

Ω+ σ2y

)2

Ω +

(
Ω

Ω+ σ2y

)2

σ2y

=
Ωσ2y

Ω+ σ2y
= σ20.

This establishes the upper bound (1.8) stated in the main text.

C. Information Optimally Recorded in the Memory Structure

In this section, we derive that the optimal memory structure records information
only about the “reduced” cognitive state, as represented in (3.4). In our general
analysis, the reduced cognitive state is defined as

s̄t ≡
[
µ̂t
yt

]
.

Note that in the simple case discussed in section 2, the recorded reduced cognitive
state is simply s̄t = µ̂t. This simplification arises because yt is a transitory process:
it is only the knowledge about µ̂t that increases accuracy of forecasts that will be
made in time t + 1 and beyond. In this case, we wish to show that the optimal
memory structure records information only about µ̂t, as represented in (2.4). The
derivation below applies analogously.
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Let the feasible memory structure (1.5) be written in the partitioned form

(C.7)

[
mt+1

m̄t+1

]
=

[
Λa,t Λb,t

Λc,t Λd,t

] [
st
s̄t

]
+

[
ωt+1

ω̄t+1

]
.

Here mt+1 is again partitioned as in (B.2). The lower block of st consists of the
elements of the reduced cognitive state s̄t, which is linear function of st since
s̄t = E[xt+1|st]. We choose a representation for the vector st such that the lower
block consists of the elements of s̄t, the elements of st are all uncorrelated with
the elements of s̄t, and the elements of the vectors s̄t and st together span the
same linear space of random variables as the elements of st. (We can necessarily
write any memory structure of the form (1.5) in this way; it amounts simply to
a choice of the basis vectors in terms of which the vectors mt+1 and st are each
decomposed.)
Let us suppose furthermore that a representation for mt+1 is chosen consis-

tent with the normalization E[s̄t |mt+1] = m̄t+1. This holds if and only if both
elements of the vector s̄t − m̄t+1 are uncorrelated with each of the elements of
mt+1. These consistency conditions can be reduced to two requirements: (i) the
requirement that

(C.8) var[Λc,tst + ω̄t+1] = (I − Λd,t)XtΛ
′
d,t,

where the matrix Xt defined as

Xt ≡ var[s̄t]

is independent of the memory structure chosen for period t; and (ii) the require-
ment that s̄t−m̄t+1 be uncorrelated with all elements ofmt+1. (Note that s̄t−m̄t+1

is uncorrelated with m̄t+1 if and only if (C.8) holds.)
We show that (1) forecast accuracy depends only on {Λd,t}, and (2) setting

Λa,t = Λb,t = Λc,t = 0 is optimal, from which we conclude that optimal m̄t+1 is
linear in s̄t with an additive Gaussian noise.

Forecast accuracy depends only on the matrices {Λd,t}

Suppose that in any period t, we take the memory structure in periods τ < t as
given. This means that the DM’s uncertainty about xt given the memory state
mt (specified by the posterior variance-covariance matrix Σt) will be given. (If
t = 0, Σ0 is simply given by the prior.) Hence the value of µ̂t as a function of m̄t

and yt will be given, and consequently the value of MSEt will be given, following
the discussion in the main text (and the previous section of this appendix). The
elements of the matrix Xt will similarly be given.
We next consider how Λd,t must be chosen, in order for it to be possible to

choose matrices Λc,t and var[ω̄t+1] such that (C.8) is satisfied. Equation (C.8)
requires that (I−Λd,t)XtΛ

′
d,t, be a symmetric matrix; this will hold if and only if

the simpler requirement is satisfied that Λd,tXt = XtΛ
′
d,t be a symmetric matrix.
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In addition, it is necessary that (I − Λd,t)XtΛ
′
d,t be a p.s.d. matrix. The set

of matrices Λd,t with these properties is a non-empty set (Λd,t = 0 is a trivial
example), and depends only on the matrix Xt. Let this set of matrices be denoted
L(Xt).

Now let Λd,t be any matrix that belongs to L(Xt). Then it is possible to choose
the matrices Λc,t and var[ω̄t+1] so that (C.8) is satisfied; and given any such choice
of these two matrices, it is further possible to choose the specification of the
equation for mt+1 so that all elements of mt+1 are uncorrelated with the elements
of s̄t − m̄t+1. Given any such specifications, both conditions (i) and (ii) above
will be satisfied. Thus the matrix Λd,t is admissible as part of the specification
of a memory structure; and any possible memory structure consistent with the
matrix Λd,t will be one of those with the properties just assumed.

Given a matrix Λd,t of this sort, we next observe that the equations determining
m̄t+1 can be written in the form

m̄t+1 = Λd,ts̄t + νt+1,

where νt+1 ∼ N(0, Λd,tXt) is distributed independently of s̄t. Thus the joint
distribution of (s̄t, m̄t+1) will be a multivariate Gaussian distribution, the param-
eters of which are completely determined by Xt and Λd,t. It then follows that the
conditional distribution s̄t|m̄t+1 will be a bivariate Gaussian distribution, with
a mean m̄t+1 and a variance independent of the realization of m̄t+1, which also
depends only on Xt and Λd,t. Moreover, since the elements of mt+1 are all Gaus-
sian random variables distributed independently of s̄t− m̄t+1, knowledge of mt+1

cannot further improve one’s estimate of s̄t, and so the conditional distribution
s̄t|mt+1 = s̄t|m̄t+1. Finally, since we can write

xt+1 = s̄t +

[
ut
0

]
,

where ut ∼ N(0, σ̂2t ) must be uncorrelated with any of the elements of st (and
hence uncorrelated with any of the elements of mt+1), we must further have

xt+1|mt+1 ∼ N(m̄t+1, Σt+1)

where
Σt+1 = var[s̄t |m̄t+1] + σ̂2t e1e

′
1.

Since σ̂2t also depends only on Σt (see equation (3.2)), it follows that the elements
of Σt+1 depend only on Σt and Λd,t.

This argument can then be used recursively (starting from period t = 0) to
show that given the initial uncertainty matrix Σ0 implied by the prior (B.3), we
can completely determine the entire sequence of matrices {Σt}, given a sequence
of matrices {Λd,t} for all t ≥ 0 with the property that for each t, Λd,t ∈ L(Xt),
where Xt is the matrix implied by Σt. Moreover, given such a sequence of matri-
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ces {Λd,t}, the value of MSEt for each period t will be uniquely determined as
well. Hence the terms in the loss function (1.6) that depend on the accuracy of
forecasts that are possible using a given memory structure will depend only on
the sequence of matrices {Λd,t}. (These matrices must be chosen to satisfy a set of
consistency conditions, stated above, but these conditions can also be expressed
purely in terms of the sequence of matrices {Λd,t}.) Thus the other elements of
the specification (C.7) of the memory structure matter only to the extent that
they have consequences for the information cost terms in (1.6).

Mutual information: a useful lemma

Information costs in period t are assumed to be an increasing function of It =
I (M ;S), the Shannon mutual information between random variables M (the
realizations of which are denoted mt+1) and S (the realizations of which are
denoted st).

54 Each of the random vectors M and S can further be partitioned
as M = (M, M̄), S = (S, S̄).

Now for any random variablesX1, X2, . . . , letH(X1, X2, . . . , Xk) be the entropy
of the joint distribution for variables (X1, X2, . . . , Xk), andH(X1, . . . , Xk |Xk+1, . . . Xk+m)
be the entropy of the joint distribution of the variables (X1, . . . , Xk) conditional
on the values of the variables (Xk+1, . . . Xk+m). The chain rule for entropy implies
that

H(X1, X2, . . . , Xk) = H(X1) + H(X2 |X1) + . . . + H(Xk |X1, . . . , Xk−1).

We can then define the mutual information between the variables (X1, . . . , Xk)
and the variables (Xk+1, . . . Xk+m) as

I (X1, . . . , Xk; Xk+1, . . . , Xk+m) ≡ H(X1, . . . , Xk)

− H(X1, . . . , Xk |Xk+1, . . . Xk+m).

(The information about the first set of variables that is revealed by learning the
values of the second set of variables is measured by the average amount by which
the entropy of the conditional distribution is smaller than the entropy of the
unconditional distribution of the first set of variables.) Similarly, we can define
the mutual information between the first set of variables and the second set of
variables, conditioning on the values of some third set of variables as

I (X1, . . . , Xk; Xk+1, . . . , Xk+m |Xk+m+1, . . . , Xk+m+n)

≡ H(X1, X2, . . . , Xk |Xk+m+1, . . . , Xk+m+n) − H(X1, . . . , Xk |Xk+1, . . . , Xk+m+n).

54Here we adopt the notation used in Cover and Thomas (2006), with different symbols for the random
variables M and S and their realizations. This is to make it clear that It is not a function of the values
taken by mt+1 and st along a particular history, but instead a function of the complete joint distribution
of the two random variables; It is itself not a random variable, but a single number for each date t.
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Thus for any set of four random variables M, M̄, S, S̄, we must have

I (S, S̄; M, M̄)

= H(S, S̄) − H(S, S̄ |M, M̄)

= [H(S̄) +H(S |S̄)] − [H(S̄ |M, M̄) +H(S |S̄,M, M̄)]

= [H(S̄) +H(S |S̄)] − [H(S̄,M, M̄)−H(M |M̄)−H(M̄)] − H(S |S̄,M, M̄)

= [H(S̄) +H(S |S̄)] − [(H(M̄) +H(S̄ |M̄) +H(M |M̄, S̄))−H(M |M̄)−H(M̄)]

− H(S |S̄,M, M̄)

= [H(S̄) +H(S |S̄)] − [H(S̄ |M̄) +H(M |M̄, S̄)−H(M |M̄)] − H(S |S̄,M, M̄)

= [H(S̄)−H(S̄ |M̄)] + [H(S |S̄)−H(S |S̄,M, M̄)] + [H(M |M̄)−H(M |M̄, S̄)]

= I (S̄; M̄) + I (S; M, M̄ |S̄) + I (M ; S̄ |M̄).

Then, since mutual information is necessarily non-negative, we can establish the
lower bound

(C.9) It = I (S, S̄; M, M̄) ≥ I (S̄; M̄).

Furthermore, this lower bound is achieved if and only if

I (S; M, M̄ |S̄) = I (M ; S̄ |M̄) = 0.

For any three random variables X,Y, Z, the conditional mutual information
I (X; Y |Z) = 0 if and only if the variables X and Y are distributed indepen-
dently one another, conditional on the value of Z. Hence the lower bound (C.9)
is achieved if and only if (a) conditional on the value of m̄t+1, the variables s̄t
and mt+1 are independent of one another; and (b) conditional on the value of s̄t,
the variables st and mt+1 are independent of one another.

Optimality of Setting Λa,t = Λb,t = Λc,t = 0

We return now to the consideration of possible memory structures. Let the se-
quence of matrices {Λd,t} be chosen to satisfy the consistency conditions discussed
above, and for a given such sequence, consider an optimal choice of the remain-
ing elements of the specification (C.7), from among those specifications that are
consistent with the sequence {Λd,t} (that is, that will satisfy both conditions (i)
and (ii) stated above).
We have shown above that the sequence of values {MSEt} is completely deter-

mined by the specification of {Λd,t}. Hence other aspects of the specification of
the memory structure can matter only to the extent that they affect the sequence
of values {It}. Moreover, we have shown that the joint distribution of (s̄t, m̄t+1)
each period is completely determined by Xt and Λd,t, which means that the lower
bound for It given in (C.9) is completely determined by the choice of {Λd,τ} for
τ ≤ t. It thus remains only to consider whether this lower bound can be achieved,
and under what conditions.
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We first observe that the lower bound is achievable. For any sequence of ma-
trices {Λd,t} satisfying the specified conditions, a memory structure specification
with Λa,t = Λb,t = Λc,t = 0, together with a stipulation that ωt+1 be distributed
independently of ω̄t+1 and that var[ω̄t+1] = Λd,tXt, will satisfy both conditions
(i) and (ii) stated in the introduction to this appendix, and thus this represents
a feasible memory structure. One can also show that such a specification satis-
fies both of conditions (a) and (b) stated at the end of section .C, so that the
lower bound (C.9) is achieved in each period. Thus such a specification achieves
the lowest possible value for the combined objective function (1.6), and will be
optimal, given our choice of the sequence {Λd,t}.
Not only will this specification be sufficient for achieving the lowest possible

value of (1.6), but it will be essentially necessary. We have shown above that
achieving the lower bound for It in period t requires that conditional on the value
of s̄t, the variables st and mt+1 are independent of one another. This means
that the values of the variables in the vector st cannot help at all in predicting
any elements of mt+1, once one is already using the reduced cognitive state s̄t to
forecast the next period’s memory state; thus one must be able to write law of
motion (C.7) for the memory state with Λa,t = Λc,t = 0.55 Thus it is necessarily
the case that the elements of mt+1 convey information only about the reduced
cognitive state s̄t, and not about any other aspects of the cognitive state st.

In addition, we have shown above that achieving the lower bound for It in
period t requires that conditional on the value of m̄t+1, the variables s̄t and mt+1

are independent of one another. Thus all of the information about s̄t that is
contained in the memory state mt+1 is contained in the elements m̄t+1. This
means either that Λb,t = 0 as well, or, to the extent that some element of mt+1

corresponds to a row of Λb,t with non-zero elements, that element of mt+1 must
be a linear combination of the elements of m̄t+1, so that conditioning upon its
value conveys no new information about s̄t. Thus any specification of the memory
structure in which Λb,t ̸= 0 in any period represents a redundant representation
of the contents of memory available in period t+ 1; we can equivalently describe
the contents of memory by eliminating all such rows from mt+1.

Thus there is no loss of generality in assuming that the lower bound is achieved
by specifying Λa,t = Λb,t = Λc,t = 0 in each period. Finally, satisfaction of consis-
tency condition (ii) in this case requires that the elements of ωt+1 be distributed
independently of the elements of ω̄t+1. We might still allow var[ωt+1] to be non-
zero; this would mean that mt+1 contains elements that fluctuate randomly, but
are completely uncorrelated with the previous period’s cognitive state st. Such
an information structure is equally optimal, in the sense that (1.6) is made no

55It might be possible to satisfy the condition required for the lower bound with non-zero elements in
one of these matrices; but this will occur only because of collinearity in the fluctuations in the elements
of the vector st, so that it is possible to have a law of motion in which st has no effect on mt+1,
despite non-zero matrices Λa,t and Λc,t. In such a case, the representation of the cognitive state by the
vector st would involve redundancy; and in any event, there would be no loss of generality in setting
Λa,t = Λc,t = 0, since the implied fluctuations in the memory state would be the same.
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larger by the existence of such components of the memory state, given our as-
sumption that only mutual information is costly. But the additional components
mt+1 of the memory structure will have no consequences for cognitive processing,
and our inclusion of them as part of the representation of the memory state vi-
olates our assumption in the text that we label memory states by their implied
posteriors for the values of µ and the past realizations of the external state; using
labels (mt+1, m̄t+1) in which mt+1 is non-null will mean having separate labels
for memory states that imply the same posterior (since the value of mt+1 would
be completely uninformative about either µ or any past external states).
Hence in the case of any optimal memory structure, the memory state can be

described more compactly by identifying it with the reduced memory state m̄t+1,
which evolves according to

(C.10) m̄t+1 = Λ̄ts̄t + ω̄t+1,

where Λ̄t is the matrix called Λd,t in (C.7). (This corresponds to equation (3.4)
in the main text.) We need only consider (at most) a two-dimensional memory
state, and the optimal memory state conveys information only about the reduced
cognitive state s̄t, not about any other aspects of the cognitive state st.

Properties that Λ̄t should satisfy

In order for (C.10) to represent a memory structure consistent with the normal-
ization according to which E[xt+1 |m̄t+1] = m̄t+1, the sequence of matrices {Λ̄t}
and {Σω̄,t+1} must satisfy certain properties. Note first that the condition (C.8)
will be satisfied if and only if

(C.11) Σω̄,t+1 = (I − Λ̄t)XtΛ̄
′
t.

For Σω̄,t+1 to be a symmetric, p.s.d. matrix, the matrix Λ̄t must satisfy the
following properties: (a) the matrix Λ̄tXt = XtΛ̄

′
t must be symmetric (so that

the right-hand side of (C.11) is also symmetric); and (b) the right-hand side of
(C.11) must be a p.s.d. matrix. For any symmetric, positive definite 2×2 matrix
Xt, we let L(Xt) be the set of matrices Λ̄t with these properties. Note that since

XtΛ̄
′
t = (I − Λ̄t)XtΛ̄

′
t + Λ̄tXtΛ̄

′
t,

and Xt is necessarily a p.s.d. matrix, it follows from the assumption that (I −
Λ̄t)XtΛ̄

′
t is p.s.d. that Λ̄tXt = XtΛ̄

′
t will also be a p.s.d. matrix; but this latter

condition is weaker than the one assumed in our definition of the set L(Xt). This
constitutes the complete set of conditions that must be satisfied for (C.10) to
represent a memory structure consistent with our proposed normalization of the
vector mt+1.
We can further specialize these conditions in the case that Λ̄t is a singular

matrix. (Here we assume that Xt is of full rank.) If Λ̄t is of rank one (or less), it
can be written in the form Λ̄t = utv

′
t, where we are furthermore free to normalize
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the vector v′t so that v′tXtvt = 1. Then the condition that Λ̄tXt = XtΛ̄
′
t will hold

only if ut(v
′
tXt) = (Xtvt)u

′
t. This means that ut must be collinear with Xtvt,

so that we must be able to write ut = λtXtvt, for some scalar λt. Thus in the
singular case, we must be able to write

(C.12) Λ̄t = λtXtvtv
′
t,

where λt is a scalar and vt is a vector such that v′tXtvt = 1. Then

(I − Λ̄t)XtΛ̄
′
t = λt(1− λt)(Xtvt)(Xtvt)

′

will be a p.s.d. matrix if and only if in addition 0 ≤ λt ≤ 1. Thus a singular matrix
Λ̄t is an element of L(Xt) if and only if it is of the form (C.12) with 0 ≤ λt ≤ 1
and vt a vector such that v′tXtvt = 1.
Consistency with the proposed normalization ofmt+1 then further requires that

(C.13) Σω̄,t+1 = λt(1− λt)Xtvtv
′
tXt.

This implies that Σω̄,t+1 is a singular matrix; the random vector ω̄t+1 can be
written as ω̄t+1 = Xtvt · ω̃t+1, where ω̃t+1 is a scalar random variable, with
distribution N(0, λt(1− λt). It follows that in such a case, the memory state can
be given a one-dimensional representation, writing m̄t+1 = Xtvt · m̃t+1, where
the scalar memory state m̃t+1 has a law of motion

(C.14) m̃t+1 = λtv
′
ts̄t + ω̃t+1, ω̃t+1 ∼ N(0, λt(1− λt)).

In the case that Xt = X0 (the only case in which it is possible for Xt = X(σ̂2t )
to be singular), mt is completely uninformative. Since µ̂t is proportional to the
observation yt, there exists a vector w >> 0 such that s̄t = w · yt. In this case,

Xt = X0 ≡ [Ω + σ2y ]ww
′,

and we can show that the requirements stated above are satisfied by a matrix Λ̄t

if and only if Λ̄tw = λtw (w is a right eigenvector), with an eigenvalue satisfying
0 ≤ λt ≤ 1. Since the two elements of s̄t are perfectly collinear in this case, the
only part of the matrix Λ̄t that matters for the evolution of the memory state is
the implied vector Λ̄tw (which must be a multiple of w). Thus we can without
loss of generality impose the further restriction that if σ̂2t = σ̂20, we will describe
the dynamics of the memory state using a matrix Λ̄t of the form

(C.15) Λ̄t = λt
ww′

w′w
,

for some 0 ≤ λt ≤ 1. We now adopt this more restrictive definition of the set
L(X0) in this special case.56 In this case, Λ̄t is necessarily of the form (C.12),

56Restricting the set of transition matrices Λ̄t that may be chosen in this way has no consequences for
the evolution of the memory state, but it makes equation (3.7) below also valid in the case that Xt = X0,
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with the vector vt given by

(C.16) vt =
w

(Ω + σ2y)
1/2(w′w)

.

Hence our comments above about the case in which Λ̄t is singular apply also in
the case in which Xt is singular, except that in this latter case we have the further
restriction that vt must be given by (C.16). In this special case, (C.13) reduces
to

Σω̄,t+1 = λt(1− λt)[Ω + σ2y ]ww
′.

An alternative representation for the reduced cognitive state

Since s̄t is defined as E[xt+1|st], we can decompose the variance of var[xt+1] as

var[xt+1] = var[s̄t] + var[xt+1|st]

from which we see that

Xt = X(σ̂2t ) ≡
[
Ω− σ̂2t Ω

Ω Ω+ σ2y

]
.

Thus, the variance matrix of the reduced cognitive state s̄t can be written as a
function of the single parameter σ̂2t . There is another way of writing this function
that will be useful below.

We can orthogonalize the reduced cognitive state using the transformation s̄t =
Γšt, where

(C.17) Γ ≡
[

1 Ω
Ω+σ2

y

0 1

]
.

The elements of the orthogonalized cognitive state have the interpretation

št ≡
[
µ̂t − E[µ|yt]

yt

]
,

from which it is obvious that the first element must be uncorrelated with the
second.

The variance matrix of št is therefore diagonal:

(C.18) var[št] = X̌(σ̂2t ) ≡
[
σ̂20 − σ̂2t 0

0 Ω + σ2y

]
.

We can then alternatively write

(C.19) X(σ̂2t ) = ΓX̌(σ̂2t )Γ
′.

and thus it allows us to state certain conditions below more compactly.
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D. The Law of Motion and the Information Content of Memory

We now consider how the parameterization of the law of motion (C.10) for the
memory state determines the degree of uncertainty about the external state vector
that will exist when beliefs are conditioned on the memory state, and how the
same parameters determine the mutual information between the memory state
and the prior cognitive state, and hence the size of the information cost term
c (It).

The degree of uncertainty implied by a given memory structure

We turn now to the question of how the memory-implied uncertainty Σt+1 in
the following period is determined by the law of motion for the memory state
m̄t+1 that can be accessed at that time. Note that the variance of the marginal
distribution for xt+1 can be decomposed as

var[xt+1] = E[var[xt+1 |mt+1]] + var[E[xt+1 |mt+1]],

where in the first term on the right-hand side, the variance refers to the distribu-
tion of values for xt+1 conditional on the realization of mt+1, and the expectation
is over realizations of mt+1, while in the second term the variance refers to the
distribution of values for mt+1, and the expectation is over values of xt+1 condi-
tional on the realization of mt+1. Since the marginal distribution for xt+1 is the
same for all t, and coincides with the prior distribution for x0 specified in (B.3),
the left-hand side must equal the matrix Σ0 defined there. Hence the variance
decomposition can be written as

Σ0 = Σt+1 + var[m̄t+1],

which implies that in any period,

Σt+1 = Σ0 − var[m̄t+1].

Thus in order to understand how the choice of Λ̄t determines Σt+1, it suffices that
we determine the implications for the degree of variation in m̄t+1.
A law of motion of the form (C.10) implies that

var[m̄t+1] = Λ̄tXtΛ̄
′
t + Σω̄,t+1

= Λ̄tXtΛ̄
′
t + (I − Λ̄t)XtΛ̄

′
t

= XtΛ̄
′
t,

where the second line uses (C.11). Hence we obtain the prediction that

(D.20) Σt+1 = Σ0 − XtΛ̄
′
t.

Note that for any Λ̄t ∈ L(Xt), this must be a symmetric, p.s.d. matrix.
Hence for any value of σ̂2t satisfying 0 ≤ σ̂2t ≤ σ̂20 and any transition matrix
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Λ̄t ∈ L(X(σ̂2t )), we can substitute Xt = X(σ̂2t ) and the value of Σt+1 given by
(D.20) into (B.6) to obtain a solution for σ̂2t+1 as a function of σ̂2t and Λ̄t. This
defines the function f(σ̂2t , Λ̄t) referred to in the main text. We can then define
Lseq as the set of sequences of transition matrices {Λ̄t} for all t ≥ 0 such that

Λ̄0 ∈ L(X0), Λ̄1 ∈ L(X(f(σ̂20, Λ̄0))), Λ̄2 ∈ L(X(f(f(σ̂20, Λ̄0), Λ̄1))),

and so on.
Then given any sequence of transition matrices {Λ̄t} ∈ Lseq, there will be

uniquely defined sequences {σ̂2t , Xt} for all t ≥ 0. Equation (D.20), together with
(B.3), can then be used to uniquely define the implied sequence of matrices {Σt}
for all t ≥ 0. These matrices can in turn be used in (3.3) to define the Kalman
gain γ1t for each t ≥ 0. Thus for any sequence of transition matrices {Λ̄t} ∈ Lseq,
there will be uniquely determined sequences {Σt, γ1t, σ̂

2
t , Xt}, as stated in the

text. These in turn will imply a uniquely determined sequence of losses {MSEt}
from forecast inaccuracy.

The mutual information implied by a given memory structure

Finally, we compute the mutual information It in the case that the memory
state consists only of a reduced memory state m̄t+1, with law of motion (C.10).
We first review the definition of mutual information in the case of continuously
distributed random variables.
Let X and Y be two random variables, each parameterized using a finite sys-

tem of coordinates (so that realizations x and y are each represented by finite-
dimensional vectors), and suppose that at least Y has a continuous distribution,
with a density function p(y|x) such that p(y|x) > 0 for all y in the support of Y
and all x in the support of X. Suppose also that the marginal distribution for Y
can be characterized by a density function p(y) = E[p(Y |x)], where the expecta-
tion is over possible realizations of x, and p(y) > 0 for all y in the support of Y .
Then we can measure the degree to which knowing the realization of x changes
the distribution that one can expect y to be drawn from by the Kullback-Liebler
divergence (or relative entropy) of the conditional distribution p(y|x) relative to
the marginal distribution p(y), defined as

(D.21) DKL(p(·|x)||p(·)) ≡ E

[
log

p(y|x)
p(y)

]
≥ 0,

where the expectation is over possible realizations of y, and this quantity is a
function of the particular realization x.57 The mutual information I (X; Y ) can
then be defined as the mean value of this expression,

(D.22) I (X; Y ) ≡ E[DKL(p(·|x)||p(·))],

57The value of this quantity is necessarily non-negative because of Jensen’s inequality, owing to the
concavity of the logarithm.
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where the expectation is now over possible realization of x, and the mutual infor-
mation is also necessarily non-negative.58

This definition of the mutual information has the attractive feature of being
independent of the coordinates used to parameterize the realizations of the vari-
able Y . Suppose that we write y = ϕ (z), where ϕ (·) is an invertible smooth
coordinate transformation between two Euclidean spaces of the same dimension.
Then corresponding to the conditional density p(y|x) for any x, there will be
a corresponding density function p̃(z|x) for the random variable Z (which is
just the variable Y described using the alternative coordinate system), such that
p̃(z|x) = p(ϕ (z)|x) · Dϕ (z) for each z, where Dϕ (z) is the Jacobian matrix of
the coordinate transformation, evaluated at z. It follows that for any z in the
support of Z and any x in the support of X,

p(ϕ (z)|x)
p(ϕ (z))

=
p̃(z|x)
p̃(z)

,

so that
DKL(p(·|x)||p(·)) = DKL(p̃(·|x)||p̃(·))

for all x. We thus find that the mutual information I (X; Y ) will be the same
as I (X; Z): it is unaffected by a change in the coordinates used to parameterize
Y .59

We can similarly define the mutual information in a case in which the support
of Y is not the entire Euclidean space, because of the existence of redundant coor-
dinates in the parameterization of realizations y. Suppose that all vectors y in the
support of Y are of the form y = ϕ (z), where ϕ (·) is a smooth embedding of some
lower-dimensional Euclidean space (the support of Z) into a higher-dimensional
Euclidean space. Then the information about the possible realizations of y con-
tained in a realization of x is given by the information that x contains about the
possible realizations of z. If the joint distribution of X and Z is such that we
can define conditional density functions p̃(z|x), with p̃(z|x) > 0 for all z and x,
and a marginal density function p̃(z) > 0 for all z, then we can define the mutual
information between X and Z using (D.22) as above. Since mutual information
should be independent of the coordinates used to parameterize the variables, we
can use the value of I (X; Z) as our definition of I (X; Y ) in this case as well
(even though expression (D.21) is not defined in this case).

In the case of interest in this paper, X and Y are variables with a joint dis-
tribution that is multivariate Gaussian. Let us consider first the generic case in
which the conditional variance-covariance matrix var[Y |x] is of full rank. (Note
that this matrix will be independent of the realization of x, and so can be written

58Note that this definition — rather than the one often given in terms of the average reduction in the
entropy of Y from observing X — has the advantage of remaining well-defined even when the random
variable Y has a continuous distribution. See Cover and Thomas (2006) for further discussion.

59It is equally unaffected by a change in the coordinates used to parameterize X, though we need not
show this here.
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var[Y |X], to emphasize that only the parameters of the joint distribution matter.)
In this case var[Y ] is of full rank as well, and for any x and y, the ratio of the
density functions satisfies

log
p(y|x)
p(y)

= −1

2
log

det(var[Y |x])
det(var[Y ])

− 1

2
(y − E[y|x])′var[Y |x]−1(y − E[y|x]) +

1

2
(y − E[y])′var[Y ]−1(y − E[y]).

Hence for any x, we have

DKL(x) = −1

2
log

det(var[Y |x])
det(var[Y ])

,

and since this will be independent of the realization of x, we similarly will have

(D.23) I (X; Y ) = −1

2
log

det(var[Y |X])

det(var[Y ])
.

One case in which var[Y |x] will not be of full rank is if y = Uz for some matrix
U , where z is a random vector of lower dimension than that of y. (In this case,
the rank of var[Y |x] cannot be greater than the rank of var[Z|x], which is at most
the dimension of z.) Let us suppose that the rank of U is equal to the dimension
of z, so that any vector y = Uz is associated with exactly one vector z. In such
a case we can, as discussed above, define the mutual information between X and
Y to equal the mutual information between X and Z. If var[Z|x] is of full rank,
then we can use the calculations of the previous paragraph to show that

(D.24) I (X; Y ) = I (X; Z) = −1

2
log

det(var[Z|X])

det(var[Z])
.

We turn now to the calculation of the mutual information between the reduced
cognitive state s̄t and the memory state m̄t+1, in the case of a law of motion of
the form (C.10) for the memory state. We first consider the case in which Xt is
of full rank (which, as noted in the text, will be true except when the memory
state mt is completely uninformative). If Λ̄t and I − Λ̄t are also both matrices of
full rank, then

var[m̄t+1 |s̄t] = Σω̄,t+1 = (I − Λ̄t)XtΛ̄
′
t

will be of full rank, and

var[m̄t+1] = Λ̄tXtΛ̄
′
t + Σω̄,t+1 = XtΛ̄

′
t

will be of full rank as well. We can then apply (D.23) to obtain

(D.25) It = −1

2
log

det[(I − Λ̄t)XtΛ̄
′
t]

det[XtΛ̄′
t]

= −1

2
log det(I − Λ̄t),
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in conformity with equation (3.7) in the text.

In the case that Xt is of full rank, but Λ̄t is varied so that one of its eigenvalues
approaches 1 (meaning that I− Λ̄t approaches a singular matrix, while the deter-
minant of Λ̄t remains bounded away from zero), the value of It implied by (D.25)
grows without bound. It thus makes sense to assign a value of +∞ to the mutual
information in the case that Λ̄t is of full rank but I − Λ̄t is not. Note that in
this case there is a linear combination of the elements of s̄t that is revealed with
perfect precision by the memory state (since Σω̄,t+1 will be singular), while this
linear combination is a continuous random variable with positive variance (since
Xt is of full rank). This is not consistent with any finite value for the mutual
information (and so cannot represent a feasible memory structure).

Suppose instead that while Xt is of full rank, Λ̄t is only of rank one. In this
case, we have shown above that Λ̄t must be of the form (C.12), as a consequence
of which Σω̄,t+1 must be given by (C.13). In this case, the memory state can
be represented in the form m̄t+1 = Xtvt · m̃t+1, where m̃t+1 is a scalar random
variable with law of motion (C.14). This implies that var[m̃t+1 |st] = var[ω̃t+1] =
λt(1− λt), while var[m̃t+1] = λt. In the case that 0 < λt < 1, we can then apply
(D.24) to show that

(D.26) It = −1

2
log

λt(1− λt)

λt
= −1

2
log(1− λt),

Since in this case, det(I − Λ̄t) = det(I − λtvtv
′
t) = 1 − λt, result (D.26) is again

just what (D.25) would imply, so that (D.25) continues to be correct even though
Λ̄t is singular.

If we consider a sequence of matrices of this kind in which λt approaches 1,
the mutual information (D.26) grows without bound. Thus we can assign the
value +∞ to It in the case that Λ̄t is a matrix of rank one with λt = 1. Indeed,
in this case, the memory state reveals with perfect precision the value of v′ts̄t, a
continuous random variable with positive variance (under the assumption that Xt

is of full rank); but this is not possible in the case of any finite bound on mutual
information. Hence (D.25) can be applied to this case as well.

Suppose instead that Xt is of full rank, but Λ̄t = 0. In this case, the distribution
of m̄t+1 is independent of the value of st+1, and the mutual information between
these two variables must be zero. This is also what (D.25) would imply, so that
(D.25) is correct in this case as well.

Finally, consider the case in which Xt = X0, the only possible case in which
Xt is not of full rank. In this case, we have defined L(X0) to consist only of
matrices of the form (C.12), with the vector vt given by (C.16). If λt = 0, then
the entire matrix Λ̄t = 0, and the argument in the previous paragraph again
applies. Suppose instead that λt > 0. Just as in the discussion above of the case
of a singular transition matrix, the memory state can be represented by a scalar
state variable m̃t+1 with law of motion (C.14), and we can apply (D.24) to show
that It will be given by (D.26). Again this is just what (D.25) would imply, so
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that (D.25) also yields the correct conclusion when Xt is a singular matrix.
Thus in all cases, (D.25) applies, and the value of It depends only on the choice

of the transition matrix Λ̄t. It follows that for any sequence of transition matrices
{Λ̄t} ∈ Lseq, there will be uniquely defined sequences {MSEt, It}, allowing the
objective (1.6) to be evaluated.

E. Recursive Determination of the Optimal Memory Structure

We have shown in the text how the optimal memory structure can be charac-
terized if we can find the value function V (σ̂2t ) that satisfies the Bellman equation

(E.27) V (σ̂2t ) = min
Λ̄t∈L(X(σ̂2

t ))
[ασ̂2t + c (I (Λ̄t)) + βV (f(σ̂2t , λt, vt))].

Here we establish some properties of the solution to the optimization problem
on the right-hand side of (E.27) for an arbitrary function V ∈ F ., which we can
then be used to establish properties of the value function V (σ̂2t ) that solves this
equation, and properties of the optimal memory structure.

Monotonicity of the value function

We first show that, for any function V that may be assumed in the problem
on the right-hand side of (E.27), the minimum achievable value of the right-hand
side is a monotonically increasing function of σ̂2t . This in turn implies that the
value function (which must satisfy (E.27)) must be a monotonically increasing
function of its argument.
Fix any value function V to be used in the problem on the right-hand side of

(E.27), and consider any two possible degrees of uncertainty σ̂2a, σ̂
2
b , satisfying

(E.28) 0 ≤ σ̂2a < σ̂2b ≤ σ20.

Let Λ̄t = Λ̄b be some element of L(X(σ̂2b )), and thus a feasible memory structure
when σ̂2t = σ̂2b , and let us further suppose that I (Λ̄b) < ∞, as must be true of
an optimal memory structure. We wish to show that we can choose a transition
matrix Λ̄a ∈ L(X(σ̂2a)) such that

(E.29) f(σ̂2a, Λ̄a) = f(σ̂2b , Λ̄b),

and in addition

(E.30) I (Λ̄a) ≤ I (Λ̄b).

That is, in the case of the smaller degree of uncertainty σ̂2a in the cognitive state
in period t, it is possible to choose a memory structure that implies exactly the
same degree of uncertainty in period t+1, and hence the same value for V (σ̂2t+1),
at no greater an information cost, and thus it is possible to achieve a strictly
lower value for the right-hand side of (E.27).
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If we can show this for an arbitrary transition matrix Λ̄b ∈ L(X(σ̂2b )), then it
is also true when Λ̄b is the transition matrix associated with the optimal memory
structure (the solution to the problem on the right-hand side of (E.27)) when
σ̂2t = σ̂2b . This implies that it is possible to achieve a lower value for the right-
hand side of (E.27) when σ̂2t = σ̂2a than it is possible to achieve when σ̂2t = σ̂2b .
Since this must be true for any values of σ̂2a, σ̂

2
b consistent with (E.28), the right-

hand side of (E.27) defines a monotonically increasing function of σ̂2t .

To show that such a construction is always possible, let us first consider the
case in which σ̂2b = σ̂20, so that the memory state mt is completely uninformative
in case b. In this case, the assumption that Λ̄b ∈ L(X(σ̂2b )) = L(X0) requires that

Λ̄b = λb
ww′

w′w

for some 0 ≤ λb < 1.60 In this case, the memory structure for the following period
is equivalent to one in which there is a univariate memory state

m̃b =
λb

(Ω + σ2y)
1/2

yt + ω̃b, ω̃b ∼ N(0, λb(1− λb)).

The implied uncertainty in the following period (given the memory state, but
before yt+1 is observed) is then given by

(E.31) Σt+1 = Σ0 − λb(Ω + σ2y)ww
′.

Now let s̄a be the reduced cognitive state in period t, in the case of a more
informative memory structure that implies the lower degree of uncertainty σ̂2a,
and let Xa ≡ X(σ̂2a) be the variance of this random vector. In this case, we
can choose a memory structure for the following period defined by the transition
matrix

Λ̄a = λbXa
e2e

′
2

Ω+ σ2y

where e2 ≡ [0 1]′. This is a matrix of the form (C.12), and hence an element of
L(Xa). Because Λ̄a is singular, the specified memory structure is equivalent to
one in which there is a univariate memory state

m̃a = λb
e′2s̄a

(e′2Xae2)1/2
+ ω̃a, ω̃a ∼ N(0, λb(1− λb)).

But this means that

m̃a =
λb

(Ω + σ2y)
1/2

yt + ω̃a, ω̃a ∼ N(0, λb(1− λb)).

60The upper bound is required in order to satisfy the assumption that I (Λ̄b) < ∞.
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Hence the joint distribution of (m̃a, xt+1) is identical to the joint distribution of
(m̃b, xt+1), and the implied uncertainty in the following period given this memory
structure is again given by (E.31). Hence the value of σ̂2t+1 implied by memory
structure a is the same as that implied by memory structure b. This establishes
condition (E.29). Moreover, for both memory structures we have the same mutual
information,

I (Λ̄a) = I (Λ̄b) = −1

2
log(1− λb).

This establishes condition (E.30). Hence the value of the right-hand side of (E.27)
must be lower when σ̂2t = σ̂2a.

Let us next consider the less trivial case in which 0 < σ̂2b < σ̂20. Let s̄b be the
reduced cognitive state in period t that implies a degree of uncertainty σ̂2b , and
let Xb ≡ X(σ̂2b ) be the variance of this random vector. Let the optimal memory
structure for the following period (the solution to the problem on the right-hand
side of (E.27)) in this case be

(E.32) m̄b = Λ̄bs̄b + ω̄b,

where
Λ̄b ∈ L(Xb), ω̄b ∼ N(0, (I − Λ̄b)XbΛ̄

′
b).

The implied uncertainty in the following period will then be given by

(E.33) Σt+1 = Σ0 − XbΛ̄
′
b.

Let us consider the memory structure for cognitive state a defined by the tran-
sition matrix

(E.34) Λ̄a = Λ̄bΓΨΓ−1,

where Γ is the invertible matrix defined in (C.17), and

Ψ ≡
[
ψ 0
0 1

]
,

where 0 < ψ < 1 is the quantity

ψ ≡ σ̂20 − σ̂2b
σ̂20 − σ̂2a

.

Note that Ψ is a diagonal matrix, with the property that

ΨX̌a = X̌aΨ = X̌b,

using the notation X̌i ≡ X̌(σ̂2i ) for i = a, b, where X̌(σ̂2t ) is the function defined in
(C.18). It is first necessary to verify that Λ̄a ∈ L(Xa), so that this matrix defines
a possible memory structure.
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We first show that Λ̄aXa = XaΛ̄
′
a. Definition (E.34) implies that

Λ̄aXa = Λ̄bΓΨΓ−1Xa

= Λ̄bΓΨX̌aΓ
′

= Λ̄bΓX̌bΓ
′

= Λ̄bXb.

The fact that Λ̄b ∈ L(Xb) implies that Λ̄bXb must be a symmetric matrix; hence
Λ̄aXa, which is the same matrix, must also be symmetric. Thus Λ̄aXa = XaΛ̄

′
a.

Next, we must also show that (I − Λ̄a)XaΛ̄
′
a is a p.s.d. matrix. We first note

that I − Ψ is a diagonal matrix with non-negative elements on the diagonal; it
follows that (I − Ψ)X̌b is also a diagonal matrix with non-negative elements on
the diagonal, and hence p.s.d. From this it follows that

Λ̄bΓ · (I −Ψ)X̌b · Γ′Λ̄′
b = Λ̄bΓ(X̌b −ΨX̌aΨ)Γ′Λ̄′

b

= Λ̄b(ΓX̌bΓ
′)Λ̄′

b − (Λ̄bΓΨΓ−1)(ΓX̌aΓ
′)(Λ̄bΓΨΓ−1)′

= Λ̄bXbΛ̄
′
b − Λ̄aXaΛ̄

′
a

= (XaΛ̄
′
a − Λ̄aXaΛ̄

′
a) − (XbΛ̄

′
b − Λ̄bXbΛ̄

′
b)

= (I − Λ̄a)XaΛ̄
′
a − (I − Λ̄b)XbΛ̄

′
b

must be p.s.d. as well. But since the fact that Λ̄b ∈ L(Xb) implies that (I −
Λ̄b)XbΛ̄

′
b must be p.s.d., it follows that (I − Λ̄a)XaΛ̄

′
a can be expressed as the

sum of two p.s.d. matrices, and so must also be p.s.d. This verifies the second of
the conditions required in order to show that Λ̄a ∈ L(Xa).

Thus if s̄a is a reduced cognitive state for period t that implies a degree of
uncertainty σ̂2a, a possible memory structure for the following period is

(E.35) m̄a = Λ̄as̄a + ω̄a,

where the transition matrix Λ̄a is defined in (E.34), and

ω̄a ∼ N(0, (I − Λ̄a)XaΛ̄
′
a).

The implied uncertainty in the following period will then be given by

Σt+1 = Σ0 − XaΛ̄
′
a.

This latter matrix is the same as the one in (E.33); it follows that the implied
value of σ̂2t+1 is also the same as for the memory structure (E.32). Thus we have
shown that in the case of the smaller degree of uncertainty σ̂2a, it is possible to
choose a memory structure that implies exactly the same degree of uncertainty
in period t+1 as when the degree of uncertainty in period t is given by the larger
quantity σ̂2b .

It remains to be shown that memory structure (E.35) involves no greater in-
formation cost than memory structure (E.32). Consider first the case in which
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the memory state m̄b is non-degenerate, in the sense that var[m̄b] = XbΛ̄
′
b is non-

singular. It follows that the same must be true of memory state m̄a. Then for
either of the two memory structures i = a, b just discussed, (D.25) implies that
the mutual information will be given by

It = −1

2
log

det[(I − Λ̄i)XiΛ̄
′
i]

det[XiΛ̄′
i]

.

We have shown above that the value of the denominator in this expression is the
same for i = a, b (and under the assumption that XbΛ̄

′
b is non-singular, it must

be positive). Hence the relative size of the two mutual informations depends on
the relative size of the numerator in the two cases. But we have shown above that
(I − Λ̄a)XaΛ̄

′
a can be expressed as the sum of (I − Λ̄b)XbΛ̄

′
b plus a p.s.d. matrix.

Since both of these matrices are also p.s.d., their determinants satisfy

det[(I − Λ̄a)XaΛ̄
′
a] ≥ det[(I − Λ̄b)XbΛ̄

′
b] > 0,

where the final inequality is necessary in order for memory structure b to have a
finite information cost. It follows that condition (E.30) must hold in this case.

Now suppose instead that var[m̄b] is a singular matrix. In the case that the
matrix is zero in all elements, Λ̄b = 0, and so (E.34) implies that Λ̄a = 0 as well.
In this case, det(I − Λ̄a) = det(I − Λ̄b) = 1, so that I (Λ̄a) = I (Λ̄b) = 0, and
(E.30) is satisfied in this case as well. Thus we need only consider further the case
in which var[m̄b] is of rank one, which requires that Λ̄b be of rank one as well.

In this case, we can write
Λ̄b = λbXbvbv

′
b,

where 0 < λb < 161 and vb is a vector such that v′bXbvb = 1. All columns of Λ̄b

are multiples of the vector Xbvb, and as a consequence the unique non-null right
eigenvector of Λ̄b is given byXbvb, with the associated eigenvalue λb. Alternatively,
using the orthogonalized representation of the cognitive state introduced in section
.C, we can write

Γ−1Λ̄bΓ = λbX̌bv̌bv̌
′
b,

where we define v̌b ≡ Γ′vb, and note that v̌′bX̌bv̌b = 1.

Then (E.34) implies that the columns of Λ̄a must also all be multiples of the
vector Xbvb. It follows that Λ̄a must also be singular, and that its unique non-null
eigenvector must be Xbvb, with an associated eigenvalue

λa = λbv
′
bΓΨΓ−1(Xbvb)

= λbv̌
′
bΨX̌bv̌b

= λb(v̌
′
bΨ

1/2)X̌b(Ψ
1/2v̌b)

≤ λbv̌
′
bX̌bv̌b = λb.

61Again, the upper bound is required in order for I (Λ̄b) to be finite.
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Thus we must have

det(I − Λ̄a) = (1− λa) ≥ (1− λb) = det(I − Λ̄b),

from which it follows that (E.30) must hold in this case as well.

Thus we have shown that whenever σ̂2a, σ̂
2
b satisfy (E.28), for any memory struc-

ture for case b with a finite information cost, it is possible to choose a memory
stucture for case a satisfying both (E.29) and (E.30). This means that it must be
possible to achieve a lower value for the right-hand side of (E.27) when σ̂2t = σ̂2a
than when σ̂2b . This in turn implies that the right-hand side of (E.27) defines a
monotonically increasing function of σ̂2t , regardless of the nature of the function
V (σ̂2t+1) that is assumed in this optimization problem. Hence the value func-
tion V (σ̂2t ) defined by (E.27) must be a monotonically increasing function of its
argument.

Optimality of a unidimensional memory state

Here we establish, as stated in the text, that the matrix Λ̄t that solves the
problem

(E.36) min
Λ̄t∈L(X(σ̂2

t ))
I (Λ̄t) s.t. f(σ̂2t , Λ̄t) ≤ σ̂2t+1,

for given values of (σ̂2t , σ̂
2
t+1) is necessarily at most of rank one. As explained in

the text, we need only consider the case in which σ̂2t < σ̂20. Given a matrix Λ̄t

of rank two that satisfies the constraint in (E.36), we wish to show that we can
choose an alternative transition matrix of at most rank one, that also satisfies the
constraint, but which achieves a lower value of I (Λ̄t).

We first note that when σ̂2t < σ̂20, X(σ̂2t ) is non-singular. Under the hypothesis
that Λ̄t is non-singular, it follows that XtΛ̄

′
t is non-singular as well (where we now

simply write Xt for X(σ̂2t )), and hence positive definite. Similarly, Λ̄tXtΛ̄
′
t must

be non-singular and hence positive definite.

It is useful to observe that in any period t, the Kalman filter (3.1) implies that
the optimal estimate of the unknown value of µ will be given by a linear function
of elements of the cognitive state of the form

µ̂t = ψt + δ′m̄t.(E.37)

where δt+1 ≡ e1 − γ1,t+1c.

Then let the alternative transition matrix be given by

(E.38) Λ̄1D
t = λtXtvtv

′
t,

with

λt =
δ′t+1Λ̄tXtΛ̄

′
tδt+1

δ′t+1XtΛ̄′
tδt+1

, vt =
Λ̄′
tδt+1

(δ′t+1Λ̄tXtΛ̄′
tδt+1)1/2

,
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where we let the matrix Σω̄,t+1 be correspondingly modified, i.e. Σω̄,t+1 = (I −
Λ̄1D
t )XtΛ̄

1D
t ′. The fact that XtΛ̄

′
t is positive definite implies that the denominator

of the expression for λt is necessarily positive, so that this quantity is well-defined.
Similarly, the fact that Λ̄tXtΛ̄

′
t is positive definite implies that the denominator

of the expression for vt is necessarily positive, so that this vector is well-defined
as well.

In addition, the fact that (by assumption) Λ̄t ∈ L(Xt) implies that (I−Λ̄t)XtΛ̄
′
t

must be p.s.d. From this it follows that

δ′t+1(I − Λ̄t)XtΛ̄
′
tδt+1 ≥ 0,

and hence that
δ′t+1XtΛ̄

′
tδt+1 ≥ δ′t+1Λ̄tXtΛ̄

′
tδt+1 > 0,

where the final inequality follows from the fact that Λ̄tXtΛ̄
′
t is positive definite.

Thus the proposed definition of λt satisfies 0 < λt ≤ 1. One also observes from
the definition of vt that v′tXtvt = 1. These conditions suffice to establish that
the alternative transition matrix Λ̄1D

t is also an element of L(Xt). That is, it
represents a feasible memory structure for period t, given the value of σ̂2t .

This alternative transition matrix corresponds to a memory structure in which
m̄t+1 = Xtvtm̃t+1, where m̃t+1 is the unidimensional memory state with law of
motion (3.13). From this it follows that

δ′t+1m̄t+1 = λtδ
′
t+1Xtvtv

′
ts̄t + δ′t+1Xtvtω̃t+1

will be a normally distributed random variable, with conditional first and second
moments given by

E[δ′t+1m̄t+1 |st] = λtδ
′
t+1Xtvtv

′
ts̄t

=
δ′t+1Λ̄tXtΛ̄

′
tδt+1

δ′t+1XtΛ̄′
tδt+1

δ′t+1XtΛ̄
′
tδt+1 · δ′t+1Λ̄ts̄t

δ′t+1Λ̄tXtΛ̄′
tδt+1

= δ′t+1Λ̄ts̄t

and

var[δ′t+1m̄t+1 |st] = λt(1− λt)(δ
′
t+1Xtvt)

2

= (1− λt)
δ′t+1Λ̄tXtΛ̄

′
tδt+1

δ′t+1XtΛ̄′
tδt+1

(δ′t+1XtΛ̄
′
tδt+1)

2

δ′t+1Λ̄tXtΛ̄′
tδt+1

= (1− λt)δ
′
t+1XtΛ̄

′
tδt+1

= δ′t+1XtΛ̄
′
tδt+1 − δ′t+1Λ̄tXtΛ̄

′
tδt+1

= δ′t+1[(I − Λ̄t)XtΛ̄
′
t]δt+1

= δ′t+1Σω̄t+1δt+1.

These are the same conditional mean and variance as in the case of the memory
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structure specified by the transition matrix Λ̄t. Since the optimal estimate µ̂t+1

depends on mt+1 only through the value of δ′t+1m̄t+1 (from equation (E.37)), it
follows that the conditional distribution µ̂t+1|st, yt+1 will be the same under the
alternative memory structure. This in turn implies that the variance of µ̂t+1 will
be the same, and hence that

σ̂2t+1 = Ω − var[µ̂t+1]

will be the same. Thus Λ̄1D
t also satisfies the constraint in (E.36).

Next we show that I (Λ̄1D
t ) must be lower than I (Λ̄t). Let u

′
1 and u

′
2 be the two

left eigenvectors of Λ̄t, with associated eigenvalues µ1 and µ2 respectively, and let
the eigenvectors be normalized so that u′iXtui = 1 for i = 1, 2. The corresponding
right eigenvectors must then be Xtu1 and Xtu2 respectively. Thus we have

Λ̄tXtui = µiXtui, u′iΛ̄t = µiu
′
i,

for i = 1, 2, and

u′1Xtu1 = u′2Xtu2 = 1, u′1Xtu2 = 0.

The vector δ′t+1 introduced in (E.37) can be written as a linear combination of
the two left eigenvectors,

δ′t+1 = α1u
′
1 + α2u

′
2,

for some coefficients α1, α2. This implies that

δ′t+1XtΛ̄
′
tδt+1 = α2

1µ1 + α2
2µ2,

δ′t+1Λ̄tXtΛ̄
′
tδt+1 = α2

1µ
2
1 + α2

2µ
2
2,

and hence that

λt =
α2
1µ1

α2
1µ1 + α2

2µ2
µ1 +

α2
2µ2

α2
1µ1 + α2

2µ2
µ2.

Thus we see that λt must be a convex combination of µ1 and µ2.

The fact that Λ̄t ∈ L(Xt) requires that both eigenvalues satisfy 0 ≤ µi ≤ 1,
and the assumption that Λ̄t is non-singular further requires that µi > 0 for both.
Thus we must have

1− µi > (1− µ1)(1− µ2)

for both i = 1, 2. Since λt is a convex combination of µ1 and µ2, it follows that

1− λt > (1− µ1)(1− µ2).

Thus
det(I − Λ̄1D

t ) = 1− λt > (1− µ1)(1− µ2) = det(I − Λ̄t).
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Results (D.25) and (D.26) then imply that I (Λ̄1D
t ) < I (Λ̄t).

Thus Λ̄t cannot be the solution to the optimization problem (E.36). Since this
argument can be made in the case of any matrix Λ̄t ∈ L(Xt) that is of full rank,
we conclude that the optimal transition matrix can be at most of rank one.

The optimal weight vector of the univariate memory state

We turn now to the question of which linear combination of the elements of the
reduced cognitive state constitutes the single variable for which it is optimal to
retain a noisy record in memory — that is, we wish to characterize the optimal
weight vector vt in (C.14). Here we take as given the value of λt (or equivalently,
the mutual information between the period t cognitive state and the memory
carried into period t + 1), and solve for the optimal choice of vt for any given
value of λt. With this in hand, it will then be possible to characterize an optimal
memory structure in terms of the single parameter λt.

Given the value of σ̂2t and the matrix Xt ≡ var[s̄t], and taking as given the
value of λt, we wish to choose vt so as to minimize σ̂2t+1. Note that

σ̂2t+1 = min
ξ,γ1

var[µ− ξm̃t+1 − γ1yt+1].

Hence we can write our problem as the choice of ξ, γ1, and the vector vt so as to
minimize

f(σ̂2t , λt, vt; ξ, γ1) ≡ var[µ − ξ (λtv
′
ts̄t + ω̃t+1) − γ1yt+1]

= var[µ − ξλtv
′
ts̄t − γ1yt+1] + ξ2λt(1− λt),

subject to the constraint that v′tXtvt = 1. Note that the solution to this problem
will simultaneously determine the optimal choice of vt (and hence the optimal
memory structure, given a choice of λt) and the coefficients of the optimal estimate

(E.39) µ̂t+1 = ξm̃t+1 + γ1yt+1

based on that memory structure.

We can alternatively define this problem as the choice of a weighting vector ψ ≡
ξλtvt and a Kalman gain γ1. The values of these quantities suffice to determine
the value of the objective (if we know the values of σ̂2t and λt), since we can
reconstruct ξ and vt from them:

vt =
ψ

(ψ′Xtψ)1/2
, ξ = (ψ′Xtψ)

1/2λt.

Moreover, there is no theoretical restriction on the elements of the vector ψ,
since the scale factor ξ can be of arbitrary size in the previous formulation of the
optimization problem. Thus we can alternatively state our problem as the choice
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of a weighting vector ψ and a Kalman gain γ1 to minimize

(E.40) f(σ̂2t , λt; ψ, γ1) = var[µ − ψ′s̄t − γ1yt+1] +
1− λt
λt

ψ′Xtψ.

We can write the first term in this objective as

var[µ − ψ′s̄t − γ1yt+1] = var[(1− (1− ρ)γ1)(µ− µ̂t)− γ1(yt+1 − µ) + (e′1 − γ1c
′)s̄t − ψ′s̄t]

= (e′1 − γ1c
′ − ψ′)Xt(e1 − γ1c− ψ) + (1− (1− ρ)γ1)

2σ̂2t + γ21σ
2
ϵ .

Substituting this into (E.40), we see that the objective is a strictly convex quadratic
function of ψ and γ1, for any values of σ̂2t and λt. It follows that the objective has
an interior minimum, given by the unique solution to the first-order conditions.

The FOCs for the minimization of (E.40) are given by the linear equations

(E.41) ψ = λt(e1 − γ1c),

(E.42) c′Xt(e1 − γ1c− ψ) + (1− ρ)(1− (1− ρ)γ1)σ̂
2
t − γ1σ

2
ϵ = 0.

Equation (E.41) already allows one valuable insight: the optimal weight vector
vt is simply a normalized version of the vector δt+1 defined in (E.37). However,
this does not yet tell us how to choose vt, since the vector δt+1 depends on the
Kalman gain γ1,t+1, which depends on the memory structure chosen in period t.

But together equations (E.41)–(E.42) provide a linear system that can be solved
for ψ and γ1, given the values of σ̂2t and λt. We obtain

(E.43) γ1,t+1 =
(1− λt)Ω + λt(1− ρ)σ̂2t

(1− λt)(Ω + ρ2σ2y) + λt(1− ρ)2σ̂2t + σ2ϵ

as an explicit solution for the Kalman gain. It is worth noting that this implies
that

(E.44) 0 < γ1,t+1 <
1

1− ρ
.

We can then use this solution to evaluate the elements of the vector δ. We
obtain

δ1,t+1 ≡ 1− (1− ρ)γ1,t+1 =
(1− λt)ρ(Ω + ρσ2y) + σ2ϵ

(1− λt)(Ω + ρ2σ2y) + λt(1− ρ)2σ̂2t + σ2ϵ
> 0,

δ2,t+1 ≡ −ργ1,t+1 = − (1− λt)ρΩ+ λtρ(1− ρ)σ̂2t
(1− λt)(Ω + ρ2σ2y) + λt(1− ρ)2σ̂2t + σ2ϵ

≤ 0.

The weight vector vt is then just a normalized version of δt+1.

We note that when ρ = 0, the optimal weight vector has v2 = 0; that is, the
memory state m̃t+1 is just a noisy record of µ̂t. (This is intuitive, since when the
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state is i.i.d., and given the estimate µ̂t of the mean, the value of yt provides no
information about anything that needs to be estimated or forecasted in period
t + 1 or later.) Instead when ρ > 0, we see that the sign of v2 is necessarily
opposite to the sign of v1: the optimal memory state averages µ̂t and yt with a
negative relative weight on yt.

Given this solution for γ1, the implied solution for the vector ψ is given by
(E.41). Substituting the solutions for γ1 and ψ into the quadratic objective, we
obtain for the minimum possible value of the objective

(E.45) σ̂2t+1 = (1− λt)δ
′
t+1Σ0δt+1 + λt(δ1,t+1)

2σ̂2t + γ21,t+1σ
2
ϵ .

This provides an equation for the evolution of the uncertainty measure σ̂2t+1, given
a choice each period of λt, and using the formulas above for the values of γ1,t+1

and δt+1.

F. The Simple Example in Section 2

Posterior uncertainty about the long-run mean µ sequentially evolves according
to (2.3), (2.6) and (2.7). It is straightforward to see that the posterior uncertainty
converges to a limit after an extensive learning, i.e. Σt → Σ∞ and σ̂2t → σ̂2∞. From
the equations, one can derive that Σ∞ should satisfy

Σ∞ = (1− λ̄) Ω + λ̄

(
1

Σ∞
+

1

σ2y

)−1

.

Rearranging this term yields a unique solution for Σ∞ as follows,

Σ∞ =
σ2y
2

{
−(1− λ̄)

(
1− Ω

σ2y

)
+

√
(1− λ̄)2

(
1− Ω

σ2y

)2

+ 4(1− λ̄)
Ω

σ2y

}
.

Thus, in the perfect memory case (λ̄ = 1), the posterior uncertainty converges to
zero, Σ∞ = σ̂2∞ = 0. In comparison, for λ̄ < 1, we have Σ∞ > 0 and σ2∞ > 0.
Then, (2.2) determines the long-run Kalman gain as

γ∞ =
Σ∞

Σ∞ + σ2y
,

which is positive as long as λ̄ < 1.

G. Numerical Solutions

Here we provide further details of the numerical calculations reported in section
5 of the main text.
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Figure 1. : The evolution of uncertainty about µ (when ρ = 0)

The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remembered)

observations grows. Each panel corresponds to a particular value of K (maintaining the assumption

that ρ = 0, as in Figure 1). Each panel shows the evolution for several different possible values of

λ̄ (color code is the same in both panels).

Dynamics of uncertainty given the path of {λt}

We begin by discussing our approach to numerical solution for the law of motion
ηt+1 = ϕ (ηt;λt) for the scaled uncertainty measure {ηt}, given a path for the
memory-sensitivity coefficient {λt}. In terms of this rescaled state variable, the
law of motion (E.45) becomes

(G.46) ηt+1 = (1−λt)(1−γ1,t+1)
2K + (1−ρ2λt)γ21,t+1 + λt(1−(1−ρ)γ1,t+1)

2ηt,

and (E.43) becomes

(G.47) γ1,t+1 =
(1− λt)K + (1− ρ)λtηt

(1− λt)(K + ρ2) + (1− ρ2) + (1− ρ)2λtηt
.

Substitution of (G.47) for γ1,t+1 in the right-hand side of (G.46) yields an ana-
lytical expression for the function ϕ (ηt;λt).

This result suffices to allow us to compute the optimal dynamics of the uncer-
tainty measure {ηt} in the case that the only limit on the complexity of memory
is an upper bound λt ≤ λ̄ < 1 each period. We observe from (E.40) that the ob-
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Figure 2. : The evolution of uncertainty about µ (when ρ > 0)

Note: The evolution of scaled uncertainty about µ as the number t of previous (imperfectly remembered)
observations grows. Each panel corresponds to a particular value of ρ (maintaining the assumption that
K = 1, as in Figure 1). Each panel shows the evolution for several different possible values of λ̄ (color
code is the same in both panels).

jective f(σ̂2t , λt; ψ, γ1) is minimized, for given values of the other parameters, by
making λt as large as possible. Hence the same is true for the function f(σ̂2t , λt, vt)
obtained by minimizing the objective over possible choices of ξ and γ1. It follows
that it will be optimal to choose λt = λ̄ each period in the case of this kind of
constraint.

We thus obtain a nonlinear difference equation

ηt+1 = ϕ (ηt; λ̄)

for the dynamics of the scaled uncertainty measure. We can iterate this map-
ping, starting from the initial condition η0 = K/(K + 1), to obtain the complete
sequence of values {ηt} for all t ≥ 0 implied by any given value of λ̄. This is the
method used to compute the dynamic paths shown in Figure 1 in the main text.

Figure 1 shows the dynamics for {ηt} implied by this solution, for various
possible values of λ̄, in the case that K = 1 and ρ = 0. Figure 1 shows how
this graph would be different in the case of two larger values for K (but again
assuming ρ = 0). A higher value of K (greater prior uncertainty) implies a higher
value for the initial value η0 of our normalized measure of uncertainty (since
η0 = K/(K + 1)). This means that the curves all start higher, the larger the
value of K. But the value of K also affects the long-run level of uncertainty η∞,
even though the initial condition becomes irrelevant in the long run. Except when
λ̄ = 1 (perfect memory), a higher value of K implies greater long-run uncertainty;
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and whenK is large (as illustrated in the right panel), η∞ is large (not much below
the degree of uncertainty implied by the prior) except in the case of quite high
values of λ̄.
Figure 2 similarly shows how Figure 1 would look in the case of two larger

values of ρ, but again assuming K = 1. We see that for a given degree of prior
uncertainty and a given bound on memory precision, the rate at which uncertainty
is reduced is slower when the external state is more serially correlated. This is
because there are effectively fewer independent observations over a given number
of periods when the state is serially correlated. In the case of perfect memory
(λ̄ = 1), this affects the speed of learning but not the long-run value η∞ = 0 that
is eventually reached. Instead, when memory is imperfect, the long-run value η∞
is also higher when the state is more serially correlated; effectively, the limited
number of recent observations of the state that can be retained in memory reveal
less about the value of µ when the state is more serially correlated.

Solving for the value function Ṽ (η) and policy function λ∗(η) in the case

of a linear information cost

In the case of a linear information cost (or any other cost function with a positive
marginal cost of increasing It), it is necessary to solve the Bellman equation for
the value function Ṽ (η), in order to determine the optimal dynamics of {λt}.
Here we explain the methods used to solve this problem in the case of a linear
information cost (the results reported in section 4.B).
Once we have solved for the function ϕ (ηt;λt), as in the previous subsection,

the Bellman equation for the case of a linear information cost can be written

(G.48) Ṽ (ηt) = min
λt∈[0,1]

[
ηt −

θ̃

2
log (1− λt) + βṼ (ϕ (ηt;λt))

]
.

We use the value function iteration algorithm to find the value function that is a
fixed point of this mapping.
When iterating the mapping to update the value function, we use a grid search

method to find the optimal policy function, because the right-hand side of the
Bellman equation is in general a non-convex function of the policy variable λt
(as we illustrate in Figure 5 below). We approximate the value function with
Chebyshev polynomials. Once the value function has converged, we can use our
solution for Ṽ (η) to solve numerically for the policy function λ∗(η), the solution
to the minimization problem on the right-hand side of (G.48).
This function is graphed for several values of θ̃ in Figure 3, where we maintain

the parameter valuesK = 1, ρ = 0 as in Figure 1. When θ̃ = 0 (no cost of memory
precision), it is optimal to choose λt = 1 (perfect memory) in all cases. But for any
value of η, the optimal λ∗(η) < 1 when θ̃ > 0 (since in this case, perfect memory
becomes infinitely costly); furthermore it is lower (memory is more imperfect) the
higher is θ̃. We also see that for any cost parameter θ̃ > 0, the optimal λ∗(η) is
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The case of a linear cost of information

Figure 3: The optimal policy function λ∗(η)
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Figure 4: The dynamics of scaled uncertainty and memory precision

0.0 0.1 0.2 0.3 0.4 0.5
0.6

0.8

1.0

t > 0 t < 0

t=0t=1

( )
= = 0.8

0.0 0.1 0.2 0.3 0.4 0.5
0.6

0.8

1.0

t > 0 t < 0

t=0

t=1

( )
( ), = 0.2

3

Figure 3. : The optimal policy function

Note: The optimal policy function λ∗(η), in the case of progressively larger values for the information

cost parameter θ̃, under the assumption that K = 1, ρ = 0.

a decreasing function of η. This indicates that the less accurate the information
contained in the cognitive state st (as indicated by the higher value of ηt), the less
information about the cognitive state that it will be optimal to store in memory,
when the memory cost can be reduced by storing a less informative record.

The policy function λt = λ∗(ηt) together with the law of motion

(G.49) ηt+1 = ϕ (ηt;λt)

derived in section .G can then be solved for the dynamics of the scaled uncertainty
{ηt} for all t ≥ 0, starting from the initial condition η0 = K/(K+1). The dynamics
implied by these equations can be graphed in a phase diagram, as illustrated in
Figure 4. In the phase diagrams shown in each of the two panels, the value of
ηt is indicated on the horizontal axis and the value of λt on the vertical axis.
Equation (G.49), which holds regardless of the nature of the information cost
function and the degree to which the future is discounted, determines a locus
η∞(λ), indicating for each value of λ the unique value of η that will be a fixed
point of these dynamics if λt is held at the value λ. We can further show that
whenever ηt < η∞(λt), the law of motion (G.49) implies that ηt+1 > ηt, so that
uncertainty will increase, while if ηt > η∞(λt), it implies instead that ηt+1 < ηt,
so that uncertainty will decrease.

The choice of λt (and hence the degree to which uncertainty will increase or
decrease) is given by the policy function, that depends on the specification of
information costs. When there is a fixed upper bound on information (the case
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The case of a linear cost of information

Figure 3: The optimal policy function λ∗(η)
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Figure 4: The dynamics of scaled uncertainty and memory precision
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Figure 4. : The dynamics of scaled uncertainty and memory precision

Note: The dynamics of scaled uncertainty ηt and memory precision λt graphed in the phase plane. The
left panel gives an alternative graphical presentation of the dynamics plotted in Figure 1 for the case of
a fixed upper bound λ̄ on memory precision. The right panel shows the corresponding dynamics in the

case of a linear cost of precision parameterized by θ̃.

discussed in the previous subsection), the policy function is just a horizontal line
at the vertical height λ̄, as shown in the left panel of the figure.62 In this case, the
values of (ηt, λt) in successive periods start at the point (η0, λ̄), labeled “t = 0”
in the figure, and then move left along the graph of the policy function (since
η0 > η∞(λ̄) as shown). They continue to move left along the policy function,
with ηt converging asymptotically to η∞(λ̄) from above; the stationary long-run
values (η∞, λ∞) correspond to the point at which the policy function λ = λ̄
intersects the locus of fixed points η∞(λ).

The right-hand panel of the figure shows the corresponding phase-plane dynam-
ics in the less trivial case of a linear cost function for information. In this case,
the policy function is instead a downward-sloping curve, as shown in Figure 3.63

Again the values of (ηt, λt) in successive periods must always lie on the graph of
the policy function; the direction of motion up or down this curve depends on
whether the current position lies to the left or right of the locus of fixed points
η∞(λ). The initial point (labeled “t = 0”) is determined as the point on the

62The figure plots the location of this line for the case λ̄ = 0.8. The figure is drawn for parameter
values K = 1, ρ = 0. Thus the dynamics of uncertainty shown in the figure correspond to the curve
labeled λ̄ = 0.8 in Figure 1.

63In the figure, the policy function and the implied dynamics are shown for the case in which θ̃ = 0.2,
corresponding to one of the intermediate curves shown in Figure 3. Again the figure is for the case
K = 1, ρ = 0, so that the location of the locus of fixed points η∞(λ) and the law of motion (G.49) remain
the same as in the left panel.
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Figure 5. : The Bellman equation

Note: The objective function RHS(λt, ηt) that is minimized in the Bellman equation, plotted as a
function of λt for the initial level of uncertainty ηt = η0. The function is normalized so that the value

is 1.0 when λt = 0, and plotted for three nearby values of θ̃, in the case that K = 10. The minimizing

value of λt jumps discontinuously as θ̃ passes a value between 0.2800 and 0.2805.

policy curve with horizontal coordinate given by the initial condition η0. Since
this point lies to the right of the locus of fixed points, the points for successive
periods move up and to the left on the policy curve, meaning that λt rises as ηt
falls.
The scaled uncertainty continues to fall, and the precision of memory continues

to rise, until the values (ηt, λt) converge to stationary long-run values (η∞, λ∞),
again corresponding to the point at which the policy function λ∗(η) intersects the
locus of fixed points η∞(λ). Note that convergence is slower in the right panel
of the figure than in the left, because in the early periods, when uncertainty is
high, a less precise memory is chosen in the linear-cost case, resulting in slower
learning from experience.
Different values of θ̃ correspond to different locations for the policy function

λ∗(η), as shown in Figure 3, and hence to different dynamics in the phase plane,
converging to different long-run levels of scaled uncertainty. The dynamics of
scaled uncertainty as a function of the number of observations t are shown for
progressively larger values of θ̃ in Figure 3 in the main text, using the same format
as in Figure 1.

The possibility of discontinuous solutions

Figure 5 illustrates our comment about the possible non-convexity of the opti-
mization problem (G.48). Let RHS(λt; ηt) be the function defined on the right-
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hand side of (G.48), i.e., the objective of the minimization problem. The figure
plots the value of RHS(λ; η0), normalized by dividing by the positive constant
RHS(0; η0) (so that a value of 1.0 on the vertical axis means that RHS(λ; η0)
is of exactly the same size as RHS(0; η0)). This function is shown for each of
three slightly different values of θ̃, assuming in each case that K = 10, as in the
right panel of Figure 5 in the text. In the case of each of these curves, a large dot
(the same color as the curve) indicates the global minimum of the function. A
horizontal dashed line (also the same color as the corresponding curve) indicates
the minimum of RHS(λ; η0) — and thus the value of Ṽ (η0) — again normalized
by dividing by RHS(η0).

The figure shows that for values of θ̃ in this range, RHS(λ) is not a convex
function of λ. It is increasing for small enough values of λ, making the choice
λt = 0 a local minimum in this case. (This is true for all values of θ̃ greater
than a critical value around 0.15, which explains the existence of the horizontal
segment of the connected black curve in the right panel of Figure 5.) However, the
function reaches a local maximum, and then decreases for larger values of λ, as the
degree to which a larger value of λt reduces ϕ (η0;λt) outweighs the increase in the
information cost. (A large enough value ofK is required for this to occur. A larger
value of K increases the sensitivity of the value of ϕ (η0;λ) to the value of λ; see
equation (G.50) below.) For even larger values of λ (values approaching 1), further
increases in λ increase the information cost term so sharply that RHS(λ; η0) is
again decreasing in λ. This means that there is a second local minimum of the
objective function, at an interior value of λ. Which of the two local minima
represents the global minimum of the function depends on parameter values.

In the case illustrated in the figure, the interior local minimum achieves a lower
value of the objective than the choice λt = 0, for all values of θ̃ less than a critical
value that is slightly larger than 0.2805. (As shown in the figure, when θ̃ =
0.2805, the interior minimum achieves a value of the objective that is quite close
to the value RHS(0; η0). However, the value achieved remains slightly smaller:
there is a (barely visible) green dashed line, just below the blue dashed line at the
normalized value 1.0.) But the normalized value of the objective at the interior
minimum increases as θ̃ is increased, and for a value of θ̃ only slightly greater
than 0.2805, the normalized value becomes greater than 1.0 (which is to say, the
interior local minimum is no longer the global minimum of the objective). When
this critical value of θ̃ is passed, the optimal value λ∗(η0) jumps discontinuously
from the interior local minimum (which is a continuously decreasing function
of θ̃) to the value zero. When this happens, the optimal long-run level for the
normalized uncertainty measure η∞ increases discontinuously, from a value on the
lower branch of the correspondence shown in the right panel of Figure 5 to the
value η0 = K/K + 1. For all values of θ̃ higher than this, it is optimal to choose
a completely uninformative memory for all t, so that ηt = η0 for all t, and hence
ηt → η∞ = η0.

For larger values of θ̃ than those considered in Figure 3, the optimal policy
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Figure 6. : The optimal policy function (for a sufficiently large θ̃)

Note: The optimal policy function λ∗(η), in the case of progressively larger values for the information

cost parameter θ̃, under the assumption that K = 1, ρ = 0. Here we consider values of θ̃ larger than
those shown in Figure 3.

function λ∗(η) is equal to zero for all large enough (though still finite) values of
η, as illustrated in Figure 6. Once θ̃ is large enough for λ∗(η0) to equal zero, the
optimal dynamics imply ηt = η0 for all t, and hence η∞ = η0 = K/K + 1, as
shown in Figure 5.

The case ρ = 0

Additional analytical results are possible in the case that ρ = 0 (the external
state is an i.i.d. random variable). In this case, the law of motion for the scaled
uncertainty measure (derived in section .G) simplifies to

(G.50) ηt+1 = 1− 1

K + 1− λt(K − ηt)
≡ ϕ (ηt;λt).

In the case of an exogenous upper bound on mutual information, the nonlinear
difference equation obtained by setting λt = λ̄ in (G.50) is of an especially simple
sort. The function on the right-hand side of this equation is a hyperbola, increas-
ing and concave for all ηt > 0.We easily see that the right-hand side has a positive
value when ηt = 0, and a value less than K/(K + 1) when ηt = K/(K + 1).

Thus for any 0 < λ̄ < 1, the function ϕ (ηt; λ̄) is an increasing, concave function
that is above the diagonal at ηt = 0 and below the diagonal at ηt = K/(K+1). It
follows that the function must intersect the diagonal at exactly one point, ηt = η∞.
We can furthermore give an explicit algebraic solution for this fixed point as the
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solution to a quadratic equation. Note in particular that it is necessarily strictly
positive and strictly less than K/(K + 1), and that it is a decreasing function of
λ̄, approaching K/(K + 1) as λ̄→ 0, and approaching 0 as λ̄→ 1.

On the interval η∞ < ηt ≤ K/(K + 1), the law of motion (G.50) implies that
η∞ < ηt+1 < ηt. Hence when we start from the initial condition η0 = K/(K + 1),
the implied dynamics must satisfy

η0 > η1 > η2 > η3 . . . ,

a monotonically decreasing sequence. Because the sequence is bounded below by
η∞, it must converge, and it is easily seen that it can only converge to the fixed
point η∞ that we have already calculated. Hence for each possible λ̄, we obtain a
monotonically decreasing, convergent sequence of the kind shown in Figure 1. We
can also easily show that the curve must be lower for each value of t, the larger
is λ̄.

We can also obtain additional analytical results in the case of a linear informa-
tion cost. The value function satisfies a Bellman equation of the form

Ṽ (ηt) = min
λt

[
β2ηt −

θ̃

2
log (1− λ) + βṼ (ϕ (ηt;λt)))

]
.

The first order condition with respect to λt is

(G.51)
θ̃

2

1

1− λt
+ βṼ ′(ηt+1)

∂ϕ (ηt;λt)

∂λt
= 0.

And the envelope condition is

Ṽ ′(ηt) = β2 + βṼ ′(ηt+1)
∂ϕ (ηt;λt)

∂ηt
.

We can use these two conditions to derive an Euler equation for the dynamics of
the scaled uncertainty measure.

Substituting the solution (G.50) for ϕ (ηt;λt) and taking the derivative with
respect to λt, we can rewrite (G.51) as

Ṽ ′(ηt+1) = − θ̃

2β

1

1− λt

(
∂ϕ (ηt;λt)

∂λt

)−1

= − θ̃

2β

1

1− λt

(
− (K − ηt)

(K + 1− λt(K − ηt))
2

)−1

=
θ̃

2β

(K + 1− λt(K − ηt))
2

(1− λt)(K − ηt)

=
θ̃

2β

1

(1− ηt+1) (1− (1− ηt+1)(1 + ηt))
,
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where the last equality is derived by again substituting the law of motion (G.50).
It follows that if ηt → η∞ in the long run, the stationary solution η∞ must satisfy

(G.52) Ṽ ′(η∞) =
θ̃

2β

1

(1− η∞)η2∞
.

Next we rewrite (.G), again taking the derivative of expression (G.50) for

(̃ηt;λt):

Ṽ ′(ηt) = β2 + βṼ ′(ηt+1)
∂ϕ (ηt;λt)

∂ηt

= β2 + βṼ ′(ηt+1)
λt

(K + 1− λ(K − ηt))
2

= β2 + βṼ ′(ηt+1)
λt

(1− ηt+1)
−2

= β2 + βṼ ′(ηt+1)(1− ηt+1)
2 (K + 1)(1− ηt+1)− 1

(K − ηt)(1− ηt+1)
.

It follows that the stationary solution η∞ must satisfy

(G.53) Ṽ ′(η∞) = β2 + βṼ ′(η∞)
(1− η∞) [(K + 1)(1− η∞)− 1]

K − η∞
.

Moreover, in a stationary solution, the value Ṽ ′(η∞) given by (G.52) must also
be the value of Ṽ ′(η∞) in (G.53). Using (G.52) to substitute for Ṽ ′(η∞) in (G.53),
we obtain a condition that must be satisfied by η∞ in any stationary solution with
an interior optimum (i.e., a stationary solution in which 0 < η∞ < K/(K + 1)):

(G.54) θ̃ = 2β3(1− η∞)η2∞

[
1− β

(K + 1)(1− η∞)2 − (1− η∞)

K − η∞

]−1

.

This is the relationship between θ̃ and η∞ that is graphed as a connected black
curve in Figure 5. Note that for any value 0 < η∞ < K/(K+1), there is a unique
θ̃ > 0 consistent with this relationship; but (as shown in the right panel of Figure
5) there may be multiple solutions for η∞ consistent with a given value of θ̃.

H. Predicted Values for the Quantitative Measures of Forecast Bias

Here we provide further explanation of the numerical results reported in section
5 of the main text.

Long-run stationary fluctuations

From the definition of the univariate memory state m̃t+1 = λtv
′
ts̄t+ωt+1, we can

derive a law of motion for the univariate memory state m̃t. Using the subscript
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∞ for the long-run stationary coefficients, we get

m̃t+1 = λ∞v
′
∞s̄t + ω̃t+1

= λ∞v
′
∞

(
µ̂t
yt

)
+ ω̃t+1

= λ∞
[
e′1v∞

{
(e′1 − γ1c

′)mt + γ1yt
}
+ (e′2v∞)yt

]
+ ω̃t+1

= λ∞
[
e′1v∞

{
(e′1 − γ1c

′)X∞v∞m̃t + γ1yt
}
+ (e′2v∞)yt

]
+ ω̃t+1

= ρmm̃t + ρmyyt + ω̃t+1

where ρm ≡ λ∞(e′1v∞) (e′1 − γ1c
′)X∞v∞ and ρmy ≡ λ∞ (γ1 + e′2v∞).

We can evaluate the numerical values of the coefficients defining the long-run
dynamics as follows. Equations (G.46)–(G.47) imply that the long-run coefficients
λ∞, η∞, γ1,∞ must satisfy the pair of nonlinear equations

η∞ =
(1− λ∞)(1− γ1,∞)2K + (1− ρ2λ∞)γ21,∞

1 − λ∞(1− (1− ρ)γ1,∞)2
,

γ1,∞ =
(1− λ∞)K + (1− ρ)λ∞η∞

(1− λ∞)(K + ρ2) + (1− ρ2) + (1− ρ)2λ∞η∞
.

In the case of an exogenous bound on mutual information, we can set λ∞ = λ̄,
in which case these provide two equations to solve for the values of η∞ and γ1,∞.
(Note that the relevant solution is the one that satisfies the bounds 0 < η∞ <
K/(K+1), and that it necessarily also satisfies 0 < γ1,∞ < 1/(1−ρ).) This allows
us to compute the long-run stationary values of the coefficients η and γ1 plotted
for alternative values of λ̄ in Figure 2.

We have also shown in section .E that the optimal weight vector vt is just a
normalized version of the vector δt+1 ≡ e1 − γ1,t+1c. Hence in the long run, this
vector must become

v∞ =
e1 − γ1,∞c

(e′1 − γ1,∞c′)X∞(e1 − γ1,∞c)
.

In particular, the ratio v2,∞/v1,∞ (the quantity plotted as “v∞” in Figure 2) is
given by

v2,∞
v1,∞

= − ργ1,∞
1 − (1− ρ)γ1,∞

< 0.

Finally, we observe that the intrinsic persistence coefficient ρm defined above
must satisfy

ρm ≡ λ∞v1,∞ · (e′1 − γ1,∞c
′)X∞v∞

= λ∞v1,∞

= λ∞(1− (1− ρ)γ1,∞).
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This allows us to calculate the other coefficient that is plotted in Figure 2. Note
that because the Kalman gain necessarily satisfies the bounds 0 < γ1 < 1/(1−ρ),
this solution for the intrinsic persistence coefficient implies that

(H.55) 0 < ρm < 1.

In the long run, we can describe the evolution of the DM’s cognitive state using
the following system of equations:

m̃t+1 = ρmm̃t + ρmyyt + ω̃t+1

yt+1 = (1− ρ)µ+ ρyt + ϵy,t+1

Therefore, we can write it as a VAR(1) system with constant coefficients and
Gaussian innovation terms:(

m̃t+1

yt+1

)
=

(
0

1− ρ

)
µ+

(
ρm ρmy

0 ρ

)(
m̃t

yt

)
+

(
ω̃t+1

ϵy,t+1

)
Because the two eigenvalues of this vector law of motion are ρ and ρm, (H.55)
implies that this describes a stationary stochastic process. Hence we can com-
pute stationary long-run values for the second moments of the variables, and use
these to define the impulse response functions and predicted regression coefficients
reported in the text.
For example, in the case of a fixed per-period bound on mutual information,

we can compute the impulse responses for the DM’s estimate of µ and her one-
quarter-ahead forecast of the external state, as explained in section 4.C. Here we
present additional figures, showing what the impulse responses shown in Figure
6 in the text would be like in the case of alternative values of ρ. In Figures ??
and ?? shown here, each panel corresponds to a different value of ρ, and shows
the responses for several different possible values of λ̄. (As with Figure 6 in the
main text, we here assume that K = 1.)
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Figure 2: Impulse response of the DM’s estimate of µ for alternative degree of persistence
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Figure 7. : Impulse responses of the DM’s estimate of µ for alternative degrees of
persistence ρ of the external state process.
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Figure 3: Impulse response of the DM’s one-quarter-ahead forecast of the external state for alternative degree of
persistence
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Figure 8. : Impulse responses of the DM’s one-quarter-ahead forecast of the
external state for alternative degrees of persistence ρ of the external state process.
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Predicted value of the regression coefficient bs,h

Given a long enough series of observations from an environment with a fixed µ,
our model yields stationary values for the Kalman gain γ1 and for the amplitude
of fluctuations in the memory state var[m̄t]. We can then compute the values of
the following long-run conditional second moments:

var[m̄t|µ] = var[m̄t]− cov[m̄t, µ]var[µ]
−1cov[µ, m̄t]

= var[m̄t]− cov[m̄t, xt]e1var[µ]
−1e′1cov[xt, m̄t]

= var[m̄t]−
1

var[µ]
var[m̄t]e1e

′
1var[m̄t]

cov[µ̂t, yt|µ] = cov[(e′1 − γ1c
′)m̄t + γ1yt, yt|µ]

= (e′1 − γ1c
′)cov[m̄t, yt|µ] + γ1var[yt|µ]

= (e′1 − γ1c
′)var[m̄t|µ]c+ γ1var[yt|µ]

var[µ̂t|µ] = var[(e′1 − γ1c
′)m̄t + γ1yt|µ]

= (e′1 − γ1c
′)var[m̄t|µ](e1 − γ1c) + γ21var[yt|µ] + 2γ1(e

′
1 − γ1c

′)cov[m̄t, yt|µ]
= (e′1 − γ1c

′)var[m̄t|µ](e1 − γ1c) + γ21var[yt|µ] + 2γ1(e
′
1 − γ1c

′)var[m̄t|µ]c

In order to write the dynamics of the model in terms of scale-invariant quanti-
ties, we divide each second moment by var[yt|µ] = σ2y . Thus we can write

var[m̄t|µ]
var[yt|µ]

= Σ̃m̄ − 1

K
Σ̃m̄e1e

′
1Σ̃m̄

cov[µ̂t, yt|µ]
var[yt|µ]

= (e′1 − γ1c
′)
var[m̄t|µ]
var[yt|µ]

c+ γ1

var[µ̂t|µ]
var[yt|µ]

= (e′1 − γ1c
′)
var[m̄t|µ]
var[yt|µ]

(e1 − γ1c) + γ21 + 2γ1(e
′
1 − γ1c

′)
var[m̄t|µ]
var[yt|µ]

c,

using the notation Σ̃m̄ ≡ var[m̄t]/σ
2
y .

We now wish to calculate the predicted asymptotic value of the regression
coefficient

bs,h ≡
cov[ŷt+h|t, yt|µ]

var[yt|µ]
where ŷt+h|t ≡ E[yt+h|m̄t, yt]. From

cov[ŷt+h|t, yt|µ] = cov[(1− ρh)µ̂t + ρhyt, yt|µ]
= (1− ρh)cov[µ̂t, yt|µ] + ρhvar[yt|µ],



VOL. VOL NO. ISSUE IMPRECISE MEMORY 95

where µ̂t ≡ E[µ|m̄t, yt], we can then compute

bs,h = (1− ρh)
cov[µ̂t, yt|µ]
var[yt|µ]

+ ρh

= (1− ρh)

[
(e′1 − γ1c

′)

(
Σ̃m̄ − 1

K
Σ̃m̄e1e

′
1Σ̃m̄

)
c + γ1

]
+ ρh.

In Figure 7, the value of b
1
h
s,h is plotted against the value of ρ.

Parameterization of the Model

We find pairs of parameters (λ̄,K) that minimize the following target.

MSEtargeted =
1

6

∑
ρ

(
ρs1 − ρ̂s1
ρ̂s1

)2

where ρ̂s1 is the degree of over-reactions observed in one-period-ahead forecasts
data, and ρ takes values from [0.0, 0.2, 0.6, 0.8, 1.0]. The minimum sample MSE
is achieved at 0.0011, and the best-fitting pairs are displayed in the left panel of
Figure ??. The right panel displays the pairs of (λ̄,K) that generate the same
level of MSEtargeted. We can see that each curve is upward-sloping. This is
because a lower degree of over-reactions predicted by a higher λ̄ has to be offset
by a higher K.
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Figure 9. : Pairs of (λ̄,K) generating the same level of MSEtargeted


