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Abstract

Although the Bayesian paradigm is an important benchmark in studies of human infer-
ence, the extent to which it provides a useful framework to account for human behavior
remains debated. We document systematic departures from the predictions of Bayesian
inference, even on average, in the estimates by experimental subjects of the probabil-
ity of a binary event following observations of successive realizations of the event. In
particular we find under-reaction of subjects’ probability estimates to the evidence
(‘conservatism’) after only a few observations, and at the same time over-reaction af-
ter a longer sequence of observations. This is not explained by an incorrect prior, nor
by many common models of Bayesian inference. We uncover the autocorrelation in
estimates, which suggests that subjects carry imprecise representations of the decision
situations, with noise in beliefs propagating over successive trials. But even taking into
account these internal imprecisions, we find that the subjects’ updates are inconsistent
with the rules of Bayesian inference. We show how subjects instead considerably econ-
omize on the attention that they pay to the information relevant to decision, and on
the degree of control that they exert over their precise response, while giving responses
fairly adapted to the experimental task. A “noisy counting” model of probability esti-
mation reproduces the several patterns we exhibit in subjects’ behavior. In sum, human
subjects in our task perform reasonably well while greatly minimizing the amount of
information that they pay attention to. Our results emphasize that investigating this
economy of attention is crucial in understanding human decisions.
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Introduction: Are People “Intuitive Statisticians”?
A fundamental question about human decision making under uncertainty concerns the accu-
racy with which people are able to assess the probabilities of different possible outcomes. A
considerable body of evidence suggests that people are not good at estimating the Bayesian
posterior probabilities of the few hypotheses that could underlie the evidence presented to
them (typically, just two hypotheses, in ‘bookbag-and-poker-chips’ tasks; Benjamin, 2019).
At the same time, an important strand of the literature has argued that people are sur-
prisingly good at estimating probabilities under certain circumstances — that man is “an
intuitive statistician,” in the phrase of Peterson and Beach (1967) — namely, ones in which
a subject must estimate a probability, on the basis of a sequence of random samples, each
obtained with this probability (e.g., in Gallistel et al., 2014, subjects are asked to estimate
the proportion of red vs. green rings in a box, on the basis of random samples from the box.)
Since the latter kind of task is arguably of greater ecological relevance, one might wonder if it
is not reasonable to assume that people base their decisions on essentially correct probability
beliefs, despite their poor grasp of abstract principles of statistical inference.

More precisely, one might wonder if these studies do not support the validity of the
hypothesis of “rational expectations” as formulated by Muth (1961), which proposed that
while individual forecasters do not make correct statistical forecasts, their forecasts are on
average correct.1 For example, Figure 1A plots (on the vertical axis) the probability estimates
of subjects in the study of Khaw et al. (2017a) as a function of the correct Bayesian posterior
mean probability, given the evidence shown to that point. There is evidently a great deal of
error in individual estimates; but as shown in panel B, the average response, conditional on
the correct Bayesian estimate, is close to the diagonal. This result has a special importance
in the field of economics, if one supposes that to the extent that market outcomes depend
only on the aggregate behavior of a large number of people who form independent beliefs,
these market outcomes will (as in Muth’s analysis) be the same as in a world where market
participants were all perfect Bayesians.

Here we reconsider this question, by focusing, like such studies as Peterson and Beach
(1967), Gallistel et al. (2014), and Khaw et al. (2017a), on a task in which subjects must
estimate the probability of a binary event on the basis of a sequence of successive realizations,
with a new probability estimate elicited after each new realization. But we simplify the
environment, relative to many classic studies, in a crucial respect. While the probability of
the event shifts over time in studies like Gallistel et al. (2014), and at times unknown to
the subject (‘change points’,) in our experiment the unknown probability remains the same
for a fixed number of trials, and the subject is always told when a new probability has been
drawn. This means that in our experiment a subject will repeatedly be asked to estimate
the probability under precisely the same sequence of evidence that they have previously
experienced. The fact that a small number of possible evidentiary states are repeatedly
experienced allows us to document in detail each subject’s distribution of responses to each
possible evidentiary state.

1In more recent economic literature, the “rational expectations hypothesis” is usually taken to assert that
all agents are perfect Bayesian statisticians. However, Muth (1961) asserts only the accuracy of “averages of
expectations in an industry” (p. 316), and denies that his hypothesis asserts “that predictions of entrepreneurs
are perfect or that their expectations are all the same” (p. 317).
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Figure 1: Subjective probability estimates plotted against the correct Bayesian
posterior mean, in an experiment with occasional shifts in the true probability.
(A) All trials on which the subject changes their reported estimate. (B) Mean estimates,
and standard error of the mean (whiskers), for each range of values of the correct Bayesian
estimate; the horizontal location of each of these ranges corresponds to the mean Bayesian
estimate for that bin. (Data: Khaw et al., 2017b.) See Khaw et al. (2017a) for details of
the experiment and the method of calculation of the correct Bayesian posterior probability
beliefs.

Just as with the data shown in Figure 1, we find in the case of our simpler task that
a linear regression of the subjective estimate on the correct Bayesian posterior mean given
the evidence available on that trial would yield a line close to the diagonal (see Figure 3
below). Nonetheless, we find systematic departures from correct Bayesian estimates on the
part of our subjects, even on average. However, the biases in our subjects’ estimates exhibit
neither systematic “conservatism” of the kind found, for example, by Phillips and Edwards
(1966), nor the systematic over-reaction to evidence of the kind reported by Brown and
Bane (1975). Instead, we find a conservative bias in subjects’ estimates after only a small
amount of evidence about a new regime has been presented; but after further evidence is
observed the bias switches to over-reaction (to the cumulative evidence). Both of these
biases are pervasive in our data, but would be obscured if we were to look only for a static
relationship between the optimal Bayesian estimate and subjects’ responses, as in Figure 1.
We conjecture that they are also obscured in the case of an experimental design, like the
ones just described with random change points, in which there is less experimental control
of the degree of evidence that the subjects believe themselves to have at each point in time.

We further investigate the source of these patterns of bias, and conclude that they are
consistent with a relatively simple view of our subjects’ behavior. Rather than basing their
responses on a precise awareness of the body of evidence presented to them, but using an
incorrect formula to produce a probability estimate from that information, it seems that (i)
subjects base their responses on very little information, and (ii) they do not precisely control
their exact response, allowing an element of arbitrary randomness in it. Subject to these
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constraints, their responses are about as accurate as they can be.
Moreover, it appears that rather than considering on each trial what the probability

estimate should be, given the body of evidence provided to that point, subjects instead
consider only how much they should adjust their existing estimate in the light of the new
evidence just received. Of course, if such an adjustment decision were made on the basis of
information that included a precise awareness of one’s current estimate, making a decision
about how much to change one’s estimate and making a decision about what estimate to
announce should be equivalent problems. But our hypothesis is that the decision about how
much to adjust the estimate takes little account of what the existing estimate is; it pays
attention to the last binary outcome that has been observed — indeed, we find that the sign
of the adjustment nearly always agrees with this latest piece of evidence — but to very little
else. Deciding on the change to make on the basis of this limited information set has very
different implications than a decision about the estimate to announce on the basis of the
same information set, and the model of limited-information changes is much more consistent
with our data.

The idea that people may have a better idea of how accurately the change in their
estimate matches the latest increment to the evidence than of how the absolute size of their
estimate matches the cumulative import of the evidence that they have seen is consistent
with a common property of perception in sensory domains, where it is often observed that
people can more accurately judge changes or differences in some sensory magnitude (say,
height) than they can judge the absolute magnitude of an individual stimulus (Laming, 2011).
Another common feature of judgments about sensory magnitudes is that they are random.
Similarly, we find that a given increment to the observed evidence results in an adjustment
of subjects’ estimates by a random amount, rather than a deterministic adjustment as would
be implied by correct Bayesian inference.

We thus find that many features of our subjects’ estimates are consistent with a “noisy-
counting” model of probability estimation. In this model, subjects adjust their estimate
up or down (depending on the sign of the most recent observation) by a random amount,
and keep track only of the estimate that they have reached through this process, which is
essentially a noisy count of the net number of pieces of evidence in one direction or the other.

Because the distribution of possible adjustments on any given trial is assumed not to
be conditioned on information other than the most recent observation, it is not possible for
adjustment to be larger in the case of early pieces of evidence and smaller in the case of later
observations, as would be true under correct Bayesian updating (with correct beliefs about
the process generating the observations). Even under the hypothesis that the average size of
adjustments is optimized (taking as given the constraint on the information upon which the
adjustment can be conditioned, and the amount of random variation in the adjustment on
each trial), it will inevitably be the case that adjustments will be too small (relative to the
Bayesian benchmark) on the early trials after a change in the true probability, and too large
on the later trials. Thus the pattern of early under-reaction and later over-reaction that we
observe is precisely what such a model predicts.

In section 1, we explain our experimental design, and discuss the ways in which aver-
age responses under each informational condition are systematically biased relative to the
Bayesian benchmark. We further show that the biases cannot be summarized by a sim-
ple monotonic transformation of the probability indicated by the evidence into a distorted
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average response, as in the model of Zhang et al. (2020); instead, the biases are different de-
pending on the amount of evidence that has been observed. In section 2, we present evidence
indicating that subjects’ responses are not simply biased, but that they appear to make use
of only a limited-precision record of the evidence presented to that point, and indeed that
the biases can largely be attributed to the limited informational basis for subjects’ responses.

In section 3, we then ask whether subjects’ estimates are optimal conditional on the
limited information used in producing them, as in the Bayesian models of perceptual bias
proposed by authors such as Wei and Stocker (2015) or Petzschner et al. (2015), and find
that they are not. We also show that the subjects’ estimates are not consistent with Bayesian
estimation conditional on both noisy evidence and an incorrect prior, as in the model of bias
in probability estimates proposed by Zhu et al. (2020). Instead, we conclude that in addition
to being based on limited information, subjects’ estimates incorporate a certain degree of
random response error, in addition to the noise in their internal representation of the evidence
that they have observed. In section 4 we examine a family of ‘quasi-Bayesian’ models inspired
by the literature, in which the prior and the likelihood are under- or over-weighted in the
application of Bayes’ rule; but we do not find that it provides the most satisfying account of
subjects’ behavior. Finally, in section 5 we present our “noisy-counting” model, and show that
simulations of this model have many of the properties of our subjects’ estimates documented
in the previous sections. Section 6 offers a concluding discussion.

1 Biases Relative to the Bayesian Benchmark
In this section, we explain our experiment, and document that subjects’ probability estimates
differ from correct Bayesian estimates even on average, contrary to the results shown in
Figure 1 in the case of a more complex task.

1.1 Our behavioral task and the Bayesian benchmark

In a computer-based task, subjects are repeatedly asked to infer the proportion of red rings
in a box containing red and green rings, based on the presentation of rings randomly drawn
from the box. Specifically, an experimental session is divided in 200 blocks of five trials.
At the beginning of each block, a new (virtual) box is prepared, with a proportion of red
rings, p, randomly sampled from the uniform distribution on [0, 1]. In an effort to convey
this uniform prior to the subjects, the task instructions indicate twice that “all proportions
of red rings, from 0% to 100%, are equally likely”. At each trial a ring is drawn from the box;
its color, x, is a Bernoulli random variable that takes the value R (denoting a red ring) with
probability p, and G (denoting a green ring) with probability 1 − p. It is presented to the
subject, who is then asked to provide an estimate, p̂, of the proportion of red rings, using a
slider (Fig. 2). The ring is then replaced in the box, and a new trial begins. After five trials,
the block ends, and the subject is notified that a new block — with a new proportion of red
rings — begins. For each estimate provided, the subject receives a number of points which
is a decreasing affine function of the squared error, (p̂ − p)2. (No feedback was provided,
except in a short practice phase.) At the end of the experiment, the points are converted
into a financial reward. The average reward received by the subjects was $22. Additional
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Figure 2: Subjects were asked to estimate the proportion of red rings in a box
upon the presentation of random ring draws. At each trial, a ring is drawn (here, a
green ring) and it is presented to the subject, who then uses a slider to provide her estimate
of the proportion of red rings.

details on the task can be found in Methods. Finally, we also run a variant of the experiment
in which blocks of trials do not end after a fixed length of five trials, but instead end with
probability 0.2 after each trial (resulting in geometrically-distributed sequence lengths). The
results pertaining to this variant strengthen our conclusions. We present them in Methods.

The posterior of a Bayesian observer inferring the proportion of red rings, in the task
just presented, is a Beta distribution with parameters nR + 1 and t − nR + 1, where t is
the number of rings observed, and nR the number of red rings among them. The optimal
estimate, obtained by maximizing the expected reward, is the posterior mean,

p∗ =
nR + 1

t+ 2
. (1.1)

We denote by s a given sequence of ring draws (with length anywhere between one to five),
and by p∗(s) the optimal estimate implied by the sequence s. To respond optimally in the
task (assuming one has the correct belief about the process underlying the observations), it
is thus sufficient to keep track of two quantities — the number of red rings observed and the
total number of rings — and to compute the ratio given by Eq. 1.1. We now compare the
responses provided by the subjects to the optimal estimates.

1.2 Bias in the average estimates

Over the course of the 200 blocks of trials, many sequences of ring draws are sampled more
than once. Although the optimal estimate is a deterministic function of the sequence, the
responses of subjects to identical sequences are not identical. In other words, there is (intra-
subject) variability in the responses. A possibility is that this variability is explained by the
presence of motor noise, which may prevent the subjects from selecting the optimal slider
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position, but that on average the responses of subjects are equal to the optimal estimates.
Looking at the average responses in comparison to the optimal estimates, we note that, in
most cases, these two quantities are different (Fig. 3, blue solid line).

We point to the symmetry, around 1/2, of the subjects’ average responses plotted against
the optimal estimates (Fig. 3, blue solid line), which suggests that the deviations from opti-
mality do not simply result from sampling noise. Nevertheless, we test the hypothesis that
the average responses equal the optimal estimates. For this test, as for many of the tests we
run below, we compute the p-value of the F statistics implied by the squared errors in the
predictions of a ‘restricted’ hypothesis, which assumes that the data obey some constraints
characterized by a given set of parameters, and the predictions of an alternative, less con-
straining, ‘unrestricted’ hypothesis, which comes with a greater number of parameters. We
carry the F -tests both with the responses of all subjects, pooled together, and with the
responses of each subject, taken separately. In the latter case, we report the proportion
of subjects for whom the p-value of the test is below .01, and the median p-value across
subjects.

We run the F -test of the restricted hypothesis that for any sequence of ring draws, s,
the average of subjects’ responses is equal to the optimal estimate (E[p̂|s] = p∗(s)), against
the unrestricted hypothesis that the average response may be any function of the optimal
estimate (E[p̂|s] = m(p∗(s))). The restricted hypothesis is rejected for all the subjects
(Table 1, line 1). (We also conduct a series of t-tests, which support this result; see Table 6 in
Methods). We thus turn to alternative hypotheses, that predict a bias in subjects’ responses.

1.2.1 The average response not simply a monotonic transformation of the op-
timal Bayesian estimate

A simple hypothesis that results in a bias in responses is one in which the average response is a
linear transformation of the optimal estimate, i.e., E[p̂|s] = ap∗(s)+ b. A different approach,
however, has been reported to account successfully for the biases of human subjects in a
variety of studies involving probability and frequency estimations. In this approach, the
distortion in a subject’s estimate of a probability results from a linear transformation of the
log-odds of the two outcomes (Zhang and Maloney, 2012; Zhang et al., 2020). The log-odds
(or logit) transformation of a probability is the function

Lo(p) ≡ ln
p

1− p
, (1.2)

and the hypothesis we now investigate posits that the log-odds of the subject’s response
p̂ is an affine function of the log-odds of the probability to be estimated, p, i.e., Lo(p̂) =
a · Lo(p) + b, or equivalently

p̂ = Lo−1
(
a · Lo(p) + b

)
, (1.3)

where Lo−1(·) is the logistic function (the inverse of Lo(·)).
We test both the restricted hypothesis that the average of subjects’ responses is a linear

transformation of the optimal estimate (E[p̂|s] = ap∗(s) + b), and the restricted hypothesis
that it results from a linear transformation of the log-odds of the optimal estimate (i.e.,
E[p̂|s] = Lo−1

(
(a · Lo(p∗(s)) + b)

)
), against the unrestricted hypothesis, as in the previous

section, that it may be any function of the optimal estimate (E[p̂|s] = m(p∗(s))). Both
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Figure 3: Subjects’ responses are poorly captured by functions of the optimal
Bayesian estimate alone. Subjects’ average responses, and responses derived from various
hypotheses, as a function of the optimal estimate p∗. Grey line and dots: optimal estimates.
Blue solid line: average responses as a function of the optimal estimates. The responses to
all the sequences that yield the same optimal estimate are pooled together. Largest standard
error of the mean (sem): .004. Red circles: Average responses, when pooling together the
responses to the sequences that have the same length, t, and contain the same number of red
rings, nR (thus the order of the rings may differ). Largest sem: .004. For p∗ = 1/3 and 2/3,
two pairs (nR, t) yield the same optimal estimate p∗; in these cases nR and t are indicated.
Red dots: Average responses to each of the 62 possible sequences in the task, as a function
of the optimal estimate. Largest sem: .014 (median sem: .007). In all cases, the responses of
all the subjects are pooled together. Green solid line: affine function of the optimal estimate
that best fits subjects’ responses (least squares). Green dashed line: best-fitting function
of the optimal estimate such that the log-odds of an average response is an affine function
of the log-odds of the optimal estimate. Blue dashed line: non-decreasing function of the
optimal estimate that best fits subjects’ responses.



restricted hypotheses are strongly rejected (Table 1, lines 2-3). We note that the two hy-
potheses result in an average response that is an increasing function of the optimal estimate,
and which underestimates the probabilities greater than .5 and overestimates the proba-
bilities smaller than .5 (Fig. 3, green lines). Subjects’ responses, however, exhibit more
intricate patterns, which both approaches fail to capture. We now examine these patterns
more closely.

Over the range of the different optimal estimates implied by the various sequences of rings
that appear in the experiment, the responses of subjects seem alternatively below and above
the optimal estimate, and the curve of the average response as a function of the optimal
estimate crosses nine times the first bisector. Besides, although at first glance the subjects’
responses seem to increase as a function of the optimal estimate, a close inspection reveals
that between the two increasing optimal estimates 5/7 and 3/4 (and between the symmetrical
estimates 1/4 and 2/7,) the subjects’ average responses decrease sharply (Fig. 3, blue solid
line). In other words, when presented with two sets of evidence, the Bayesian observer
concludes that the first one suggests a larger proportion of red rings than the second one,
but the subjects draw the opposite conclusion: that the first set of evidence suggests a
smaller proportion of red rings than the second one.

To test whether subjects’ responses do decrease where optimal estimates increase, we
consider the restricted hypothesis that the average of subjects’ responses to a sequence of ring
draws, s, is a non-decreasing function, m, of the optimal estimates, p∗(s). We fit the function
m to subjects’ data, with the constraint that it not be decreasing, a problem known as isotonic
least-square regression (Best, 1990; Pedregosa et al., 2011; Fig. 3, blue dashed line). As for
the unrestricted hypothesis, we note that the pair of optimal estimates mentioned above,
between which subjects’ responses seem to decrease, correspond to sequences of two different
lengths: two rings (for p∗ = 1/4 and 3/4) and five rings (for p∗ = 2/7 and 5/7). Looking at the
responses of subjects separately for each sequence length, it appears that the average response
of subjects, conditional on a given sequence length, increases as a function of the optimal
estimate (in contrast with the responses unconditional on the sequence length; Fig. 4A).
Thus we run the F -test of the restricted hypothesis mentioned above (E[p̂|s] = m(p∗(s)),m
non-decreasing) against the weaker hypothesis that the average response is a function of
both the optimal estimate and the number of draws in the sequence, m(p∗(s), n(s)), such
that for each sequence length, n, the function p∗ 7→ m(p∗, n) is a non-decreasing function
of the optimal estimate, p∗. (This last constraint, however, proves non-binding, for all
subjects.) The restricted hypothesis is strongly rejected (Table 1, line 4). We conclude that
the responses of the subjects are not well captured by any non-decreasing function of the
optimal estimate.

Furthermore, the analysis just presented suggests that subjects’ responses are not sat-
isfactorily predicted by the optimal estimate alone, and that they seem to also vary with
the number of rings presented. We point to two other results that support this hypothesis.
First, if the average response of subjects were a function of the optimal estimate and did
not vary with the number of samples, then two sequences of ring draws that implied the
same optimal estimate, but that had different lengths, should yield the same response. For
instance, the one-draw sequence containing one red ring and the four-draw sequences con-
taining three red rings and one green ring all result in the same optimal estimate, p∗ = 2/3.
However, the average responses of subjects in these two cases exhibit a sizable and statis-
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tically significant difference of .096 (Fig. 3, red circles; t-test p-value, pooling all subjects:
1.5e-272; individual tests: p-value < .01 for 95% of subjects; median p-value: 5.6e-23). Sec-
ond, we run an F -test of the restricted hypothesis that the average response is a function
of the optimal estimate (E[p̂|s] = m(p∗(s))) against the unrestricted hypothesis that the
average response is a function of both the optimal estimate and the number of rings pre-
sented (E[p̂|s] = m(p∗(s), n(s))), and find that the restricted hypothesis is rejected at the
.01 level for 95% of the subjects (Table 1, line 5). We conclude that the average response of
subjects is not accounted for by a transformation of the sole optimal estimate, but that it
also varies with other features of the observed sequence of ring draws, such as the length of
the sequence. Hence, we examine more closely, below, the responses of subjects in response
to different numbers of rings presented.

Restricted hypothesis Unrestricted hyp. Subjects pooled Individual tests
E[p̂|s] = . . . E[p̂|s] = . . . p-value % < .01 median pval.

(1) p∗(s) = (nR + 1)/(t+ 2) m(p∗(s)) 0.0*** 1. 1.4e-151
(2) ap∗(s) + b m(p∗(s)) 0.0*** .95 6.1e-98
(3) Lo−1

(
a · Lo(p∗(s)) + b

)
m(p∗(s)) 0.0*** .95 2.1e-95

(4) m(p∗(s)) ↗ m(p∗(s), n(s)) ↗ 0.0*** .95 4.7e-79
(5) m(p∗(s)) m(p∗(s), n(s)) 3.7e-322*** .95 7.3e-42
(6) pα(s) =

nR+α
t+2α

m(p∗(s), n(s)) 0.0*** 1. 2.9e-111
(7) pαρλ(s) (see Eq. 4.7) m(s) 1.46e-54*** .81 2.6e-17

Table 1: F -tests of various hypotheses about subjects’ responses. Each line shows
the result of a Neyman-Pearson F -test of a restricted hypothesis on the mean estimate of
subjects given a sequence of ring draws, E[p̂|s], against an unrestricted hypothesis with more
parameters. A p-value of 0.0 indicates that the value is smaller than computer precision
(about 1e-323). The restricted hypotheses at lines 1 to 3 assume that the mean estimate is a
function of the optimal estimate, p∗(s); each hypothesis posits a different function. Lo(·) is
the log-odds function (Eq. 1.2). Lines 4 and 5 test the hypotheses that the mean estimate is
an arbitrary function of the optimal estimate (a non-decreasing function, in line 4), against
the unrestricted hypothesis that it also depends on the sequence length, n(s). (In line 4,
the arrow ‘↗’ means, in the case of the restricted hypothesis, that m(·) is required to be a
non-decreasing function, and in the case of the unrestricted version, that m(·, n) is required
to be non-decreasing for each n.) Line 6 tests the hypothesis that subjects perform Bayesian
inference but use an incorrect prior (a symmetric Beta distribution with parameter α). Note
that the hypothesis that subjects misweight the likelihood in their application of Bayes’ rule
is equivalent to the incorrect-prior hypothesis tested in line 6 (see Eq. 4.5). Line 7 tests the
hypothesis that subjects have an incorrect prior and misweight the prior and the likelihood
in their application of Bayes’ rule. In all cases the restricted hypothesis is rejected at the
.01 level for at least 81% of subjects, and in most cases for 95% or more.
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1.2.2 Under-reaction to small samples (“conservatism”), but over-reaction to
larger samples

As noted above, for a given number of draws, the average estimate of subjects increases with
the optimal estimate (Fig. 4A). The difference between the estimate of subjects and the op-
timal estimate, i.e., the bias, varies across different numbers of draws (Fig. 4B). Specifically,
upon observation of the first ring draw, the optimal estimate is .67 if the ring is red (and
.33 if it is green), but the average estimate of subjects is .58 (or .42 for a green ring), a
statistically significant difference (see Table 7 in Methods). Consistently, after two and three
ring draws, the subjects are biased towards .5, i.e., they underestimate the proportion of
red rings when the optimal estimate is greater than .5, and they overestimate it when the
optimal estimate is less than .5. In other words, after observing no more than three ring
draws, subjects’ estimates exhibit “conservatism,” as in many previous studies (Peterson et
al., 1965; Phillips and Edwards, 1966; Benjamin, 2019).
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Figure 4: Bias reversal: subjects exhibit conservatism after the first three sam-
ples, and the opposite at the fifth sample. (A) Subjects’ response, p̂, as a function
of the optimal estimate, p∗, after the presentation of t rings, with t from 1 (yellow) to 5
(blue). (B) Bias, i.e., difference between the subjects’ response, p̂, and the optimal estimate,
p∗, after the presentation of t rings, as a function of the optimal estimate. The error bars
indicate the standard error of the mean.

We note that the negative biases in subjects’ responses, for optimal estimates greater
than .5 (and the positive biases for optimal estimates less than .5), are smaller after the
third draw than after the first draw. From this trend one might assume that the responses of
subjects converge towards optimality as additional rings are drawn. However, upon observing
the fourth ring, if the four rings observed are red, the subjects, here also, underestimate the
proportion of red rings, but if three rings are red and one is green, they overestimate the
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proportion, a behavioral pattern at odds with the predictions of conservatism (as in both
cases the optimal estimate is greater than .5). Moreover, the conservatism pattern is entirely
reversed upon observation of the fifth ring: if three or more rings are red (and thus the optimal
estimate is greater than .5), the subjects exhibit a sizable, positive bias, i.e., their responses
are closer to the extreme value 1 than are the optimal estimates. Symmetrically, if two rings
or less are red, the bias is negative, and the responses of subjects are closer to 0. In other
words, after five rings the subjects are biased away from .5. In summary, subjects under-
react to the evidence after one, two and three ring draws, and over-react to the evidence
after five ring draws (we clarify that this is an overreaction to the cumulative evidence from
the five observations, and not just to the last observation). Figure 4B illustrates the reversal
of the bias as the number of draws increases from one to five.

1.3 Bayesian updating from an incorrect prior

A dynamic pattern of bias of the kind documented here cannot be explained by a model that
assumes that the subject’s response is based on the correct Bayesian posterior mean, but that
this correct response is subjected to a (possibly nonlinear) transformation and that random
response error is added. Here we examine the hypothesis that subjects behave like Bayesian
observers, but misinterpret the information about the proportion of red rings that is available
to them before any ring is drawn (specifically, that “all proportions of red rings, from 0%
to 100%, are equally likely”). As seen in Eq. 1.1, the optimal estimate is derived from the
number of red rings drawn and the length of the sequence presented. How the Bayesian
observer uses these two inputs to determine the best response depends, in addition, on the
prior. The optimal estimate is obtained using the correct, uniform prior, but a possibility
is that the subjects make Bayesian inferences on the basis of an incorrect prior. Under this
assumption, a subject’s response is a different function of the number of red rings and of the
length of the sequence than the optimal estimate. Here, we consider the case of a symmetric
Beta-distributed prior, with parameter α > 0. Symmetric Beta distributions spans a diverse
range of distribution shapes, from distributions concentrated around the center of the [0, 1]
segment, to distributions that allocate a high probability to values close to the extremes, 0
and 1. Moreover, the symmetry of the problem, in our task, warrants the use of a symmetric
prior. Finally, this family includes the correct prior, which corresponds to the case α = 1.

The optimal estimate, for a Bayesian observer equipped with a symmetric Beta prior
with parameter α, is

pα =
nR + α

t+ 2α
, (1.4)

where nR is the number of red rings drawn, and t the length of the sequence. Using Eq. 1.1,
this can be reformulated as

pα = p∗ + (2p∗ − 1)
1− α

t+ 2α
, (1.5)

where p∗ is the truly optimal estimate. Hence, in contrast with the hypotheses examined
above, the responses, here, and thus the bias over the course of the experiment, are predicted
to vary as a function of both the optimal estimate and the length of the sequence. However,
it follows from Eq. 1.5 that a subject, in this erroneous-prior hypothesis, either overestimates
large proportions (and underestimates small proportions), if α < 1, or the converse, if α > 1,
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but it cannot exhibit both patterns, in contrast with the biases observed in our subjects’
responses. Accordingly, the hypothesis that the estimates of a subject are, on average, equal
to the estimates of a Bayesian observer equipped with a symmetric Beta prior is strongly
rejected for all our subjects (Table 1, line 6), confirming that this hypothesis does not
offer a satisfying account of subjects’ responses (we present additional evidence against this
hypothesis in section 3.2 below.)

1.4 Bayesian inference with incorrect beliefs about the data-generating
process

So far we have considered several hypotheses about subjects’ average responses: that they
are equal to the estimates of the optimal, Bayesian observer; that they are captured by
a transformation of these optimal estimates; and that they result from Bayesian inference
with an incorrect prior. We have rejected these hypotheses, on the basis of their failure
to reproduce the qualitative patterns we find in subjects’ responses. But there are other
ways in which subjects may have incorrect beliefs about the underlying process generating
the observations: for instance, they may believe that the successive samples from a given
box are not independent and identically distributed. Inspired by the literature, we examine
several such hypotheses. First, we follow Yu and Cohen (2008), who show that ‘sequential
effects’ in some behavioral tasks are well accounted for by the assumption that subjects have
a prior belief in the non-stationarity of the probability underlying the observations. We thus
assume, as in their models, that subjects are Bayesian, but believe that the proportion of
red rings is subject to random changes at unannounced times (although the instructions
explicitly mention that within each block of five trials the proportion does not change).
We also examine a different hypothesis inspired by Meyniel, Maheu, and Dehaene (2016),
whereby subjects believe that there is a sequential dependency in the ring draws, i.e., that the
probability of a red ring depends on whether the preceding ring was red, or green. Formally,
subjects are assumed to be inferring — in a Bayesian fashion — the conditional probabilities
(or ‘transition probabilities’) of the red and green rings.

We consider in addition the possibility that subjects start each block of trial with a
different prior on the proportion of red rings. This would occur, for instance, if they were
uncertain about the prior, but gradually learned it, from one block to the next. Thus
we consider a hierarchical Bayesian model, in which subjects learn the prior throughout
the experiment. We also consider the hypothesis that the prior is randomly chosen at the
beginning of each block (independently from the preceding block). And finally, we compare
the behavior of subjects when the preceding block contains a majority of red rings, and
when it contains a majority of green rings. We note that apart from this last analysis, the
hypotheses we examine are ones in which the subjects are assumed to be conducting sound
Bayesian inference, but on the basis of incorrect beliefs.

Through a careful qualitative and quantitative examination of the behaviors predicted
by these hypotheses, the statistical testing of their various implications, the analysis of
the performance, in comparison to our other models, of the models derived from these
hypotheses, and the inspection of model simulations, we confidently reject all the hypotheses
listed in this section: they do not provide a satisfying account of the behavioral data. In
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the interest of space, here we have only presented these hypotheses; the interested reader
will find the details of how we test their implications in Methods. Below, we continue our
examination of subjects’ responses, and exhibit how they seem to derive from imprecise
retrieval of the information presented, in contrast with the models considered so far.

2 Evidence of Judgments Based on an Imprecise Cogni-
tive State

We have seen that subjects’ judgments cannot be understood as simply a noisy report of,
or some nonlinear transformation of, the optimal response on that trial, given all of the
evidence that has been to that point. We next argue that there is reason to conclude that
subjects’ judgments do not make use of a precise record of that evidence while nonetheless
computing a suboptimal response; instead, they appear to make use only of an imprecise
record of the evidence that has been presented. This suggests that subjects’ errors should be
attributed not so much to a mistaken understanding of how to use the information available
to them, as to cognitive processing that economizes on the amount of information that must
be retained and retrieved while the subjects perform the task.

The information that is used in producing subjects’ judgments seems to be less precise
than a perfect record of the evidence presented, in at least two respects. First, subjects’
judgments seem to be based on a noisy record of past evidence, rather than a perfectly
precise one. We conclude this because their judgments involve random noise, that cannot be
attributed purely to noise in the way the response is generated on the basis of a determin-
istically evolving cognitive state; instead, there appears to be random noise in the available
record of past observations, evident from the way that the noise seems to propagate from
one trial to the next. And second, whereas a perfect record of the evidence presented would
require a subject’s belief state to vary along two dimensions, subjects’ responses appear to
reflect the evolution of an internal cognitive state that moves randomly among a set of states
that can be ordered on a line. Thus even apart from the random noise in the cognitive state,
it appears to involve a compressed representation that is not informative enough to make
optimal responses possible.

2.1 Noise in cognitive processing propagates to successive trials

We turn first to the evidence for noise in the record of past observations that is available
to the decision process. It is evident that our subjects’ responses involve noise; since the
same finite number of possible evidentiary states (i.e., finite sequences of ring draws) are
visited multiple times by each subject, we can see that a given subject does not always
give the same response in response to given evidence. Yet this noise might be viewed as
arising in the process by which subjects’ responses are generated, on the basis of an internal
state that includes a perfect record of the presented evidence. For example, one might
assume that instead of maximizing the expected reward from their response, subjects respond
probabilistically according to a “softmax” operator, but that the relative probabilities of
different responses are determined by the (correctly calculated) expected rewards. (In the
experimental game theory literature, the “quantal response equilibrium” solution concept

14



(Palfrey, 1995) assumes behavior of this kind.) Alternatively, Khaw et al. (2017a) propose
a model of subject behavior in a more complex version of our task, in which the subject’s
response on each trial is based on a noisy, imprecise readout of the history of ring draws; but
although this readout, when producing a response, is imprecise, the model assumes that a
perfect record of the complete the history of ring draws is available to the decision-maker at
all times. Such a model predicts that responses are random (conditional on the history of ring
draws), but the randomness in the response given on some trial does not in any way corrupt
the accuracy of the record that is available to be (imperfectly) accessed on subsequent trials.
Here we show that no model of this kind can account for the nature of the randomness in
subjects’ responses.

2.1.1 Autocorrelation of subjects’ responses

There is an important testable prediction of any model in the above class. Under the
assumption that the subject’s cognitive state evolves as a deterministic function of the history
of evidence (whether in fact it represents a complete record of that evidence), with noise
arising only in the way that the response is generated on the basis of this cognitive state,
one obtains the prediction that, conditional on the sequence of ring draws, responses are
independent events. We propose to test this prediction in the case of our subjects’ responses.

Let the ‘excursion’ of a given subject at a given trial be the difference between the
subject’s response provided upon the observation of this trial’s sequence of rings, and the
average of the subject’s responses provided at all the trials that feature the same sequence.
An excursion thus measures how far a subject’s response is from her average response when
presented with identical sequences. Under the assumptions of deterministic cognitive states
and noise in response selection, an excursion at trial t+ 1 is a random variable independent
from the excursion at the preceding trial, t. We find, however, that the excursion at a
given trial is highly correlated with the excursion at the preceding trial (Pearson correlation
coefficient: 0.62; p-value below computer precision. Individual coefficients: mean: 0.62,
standard deviation: 0.14; all p-values < .01, median p-value: 4.2e-95). In other words, if
on a given trial a subject provides a larger response than she does on average in trials that
feature the same sequence of rings, then in the subsequent trial she also provides a response
larger than average (Fig. 5A). This suggests that independent noise in response selection
does not alone account for the variability in subjects’ responses.

A possible explanation of the correlation between subjects’ successive excursions is that
each block of five successive trials is characterized by an excursion from the average that
uniformly impacts the responses at all the trials in the block. To illustrate this possibility, we
consider a subject whose response at a given trial, in a given block, is the sum of the average
response to sequences identical to that observed at this trial, and of a block-dependent
excursion, which is a centered random variable, sampled once at the beginning of the block
(it represents, for instance, the variability of the subject’s cognitive state at the beginning
of the block). For this subject, two successive responses are correlated — not because of
a mechanistic relation between the two, but because both are influenced by the common,
initial excursion. Moreover, the correlation coefficient between responses at more distant
trials, e.g., at trial t and at a preceding trial t − l, is also positive, and it does not depend
on the distance between the trials, l, as all responses in a block are equally impacted by
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Figure 5: Autocorrelation in subjects’ responses. (A) Excursions in responses (i.e.,
distances from the average response,) at a given trial vs. excursions in responses at the
preceding trial. Specifically, let p̂is(x1:t) be the estimate given by subject s after a sequence
of t draws, x1:t, in the ith block of trials, and p̄s(x1:t) the mean estimate of subject s averaged
over the blocks of trials featuring the same sequence, x1:t. The excursion of subject s in trial t
of block i is the difference p̂is(x1:t)− p̄s(x1:t). Panel A shows the positive correlation between
the excursions of subjects at trials t + 1 and the excursions at trial t. In other words, a
larger-than-average response at a given trial is predictive of a larger-than-average response
at the subsequent trial. (B) Coefficients of correlation between subjects’ excursions at trial t
and subjects’ excursions at trial t− l, with lag l ranging from 1 to t− 1. Error bars indicate
the 90% confidence interval.

the same excursion (we also consider a more elaborate model in which the initial prior in
each block is subject to a random shock. The behavior of this model is similar to the one
just described; see Methods). Turning to the responses of subjects, we find that there is
indeed a positive autocorrelation in their responses at distant trials. However, in contrast
with the prediction just presented, the autocorrelation decreases, approximately linearly, as
a function of the distance between two trials. The Pearson correlation coefficient between
the most distant trials, the first and last ones, is 0.22, i.e., roughly three times less than
that of successive trials (Fig. 5B). An hypothesis consistent with these observations is that
a subject’s response is derived from an internal cognitive state which is not a deterministic
function of the history of ring draws, but rather represents a noisy record of the presented
evidence, and that noise propagates through successive cognitive states. This hypothesis
implies that a response at a given trial should provide information about the response at the
next trial — although one might expect a priori that the latter response should only depend
on the observed sequence of ring, while the former response should be irrelevant. Hence we
further investigate, below, the extent to which a response at some trial contains information
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about the response at the following trial.

2.1.2 The information content of the preceding response

The results just presented indicate that the response of a subject in a given trial is predictive,
to some extent, of the responses in the following trials. This suggests a different account of
subjects’ responses than the ones investigated thus far. Under this new account, the average
subjects’ response p̂t+1 at trial t + 1 can be derived from the preceding response, p̂t, and
from the new drawn ring, xt+1, rather than from the sequence of rings presented, x1:t+1.
To compare these two accounts, we seek to obtain quantitative measures of the respective
shares, in the response of a subject, that can be derived from the preceding response, p̂t, and
from the sequence presented before the new ring, x1:t. Information theory provides measures
suitable for this purpose. Specifically, we decompose, first, the entropy of a response at trial
t+ 1 as

H(p̂t+1) = I(p̂t+1;xt+1) + I(p̂t+1; p̂t, x1:t|xt+1) +H(p̂t+1|p̂t, x1:t+1). (2.1)

The first term of the right-hand side of Eq. 2.1 is the mutual information (MI) between the
response at trial t + 1, p̂t+1, and the last ring draw, xt+1. It is a measure of the amount of
information about the subject’s response p̂t+1 that is obtained by learning the last ring that
the subject observed, xt+1. The second term is the MI between p̂t+1 and the pair composed
by the two variables we are interested in — the preceding response, p̂t, and the sequence
observed, x1:t — conditional on the last ring, xt+1. It measures the amount of information
about p̂t+1 that is obtained by learning p̂t and x1:t, once the knowledge of xt+1 has been taken
into account (below, we further decompose this term in order to examine the information
content of each variable, p̂t and x1:t). Finally, the third term is the ‘residual’ entropy, i.e.,
the information that is left in p̂t+1 once p̂t, x1:t, and xt+1 have been taken into account.

We estimate each of these quantities in behavioral data. The ‘naïve’ approach to deriving
the entropy from a dataset, which consists in directly using the empirical frequencies in lieu
of the probabilities in the expression of the entropy, is known to suffer from a strong bias.
Hence we use, to estimate these quantities, the ‘Best Upper Bounds’ estimator, which min-
imizes a polynomial approximation of the bias of the naïve estimator (Paninski, 2003). We
also computed these quantities with a different method, which relies on Bayesian estimates
(Wolpert and Wolf, 1995; Nemenman et al., 2002), and obtain similar results (see Table 8
in Methods.)

Panel A
Value Share

H(p̂t+1) 6.39 100%
= I(p̂t+1;xt+1) 0.25 3.96%
+I(p̂t+1; p̂t, x1:t|xt+1) 4.34 67.9%
+H(p̂t+1|p̂t, x1:t+1) 1.80 28.3%

Panel B
Value Share

I(p̂t+1; p̂t, x1:t|xt+1) 4.34 100%
= I(p̂t+1;x1:t|xt+1) 0.92 21.1%
+I(p̂t+1; p̂t|x1:t+1) 3.42 78.9%

Table 2: A larger share of a response’s information stems from the preceding
response than from the evidence presented. Breakdown of the entropy of a response,
following Eq. 2.1 (Panel A) and Eq. 2.2 (Panel B).
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We find that the last ring presented, xt+1, represents just under 4% of the entropy in
subjects’ responses, while the residual entropy, not accounted for by the preceding response
nor by the sequence of ring draws, represents 28.3% of the entropy in responses (Table 2A).
In order to examine the information contents of the sequence of rings up to trial t, x1:t, and
of the preceding response, p̂t, we now turn to the second term of Eq. 2.1, which we further
decompose as the sum of the MI of p̂t+1 and x1:t, conditional on xt+1, and the MI of p̂t+1

and p̂t, conditional on the whole sequence x1:t+1, i.e,

I(p̂t+1; p̂t, x1:t|xt+1) = I(p̂t+1;x1:t|xt+1) + I(p̂t+1; p̂t|x1:t+1). (2.2)

For any observer whose response at trial t + 1 is a deterministic function of the se-
quence of rings observed, x1:t+1, the information in the response, p̂t+1, is entirely contained
in the sequence up to trial t, x1:t, once the last ring, xt+1, is known; and once the whole
sequence x1:t+1 is known, no additional information resides in the preceding response, p̂t,
i.e., I(p̂t+1; p̂t|x1:t+1) = 0. In other words the first term in the right-hand side of Eq. 2.2
represents 100% of the left-hand side, and the second term represents 0%. This is the case,
for instance, of the optimal observer. By contrast, for the subjects, these shares are 21.1%
and 78.9%, respectively (instead of 100% and 0%; Table 2B). The share of the preceding
response, p̂t, once the whole sequence is known, is thus more than 3.7 times the share of
the observed sequence, x1:t, once xt+1 is known, while it would be zero if the response was
a function of the sequence. In other words, only a small fraction of the information content
of a response is contained in the sequence of ring draws, while a larger fraction is instead
contained in the preceding response. Thus subjects’ responses seem to derive from represen-
tations of the decision situations — cognitive states — that are not perfect records of the
sequences presented. Cognitive states, rather, seem to be imprecise records of the history of
ring draws, with noise propagating through successive states as new evidence is presented.
Below, we examine the kind of information that is carried by cognitive states, and in par-
ticular whether they seem to comprise the summary statistics that are used by the optimal
observer to modulate its responses as a function of the presented evidence.

2.2 The cognitive state appears to be one-dimensional

We have shown that subjects’ responses are based on a cognitive state that provides only a
noisy record of previous experience, with noise that propagates from one trial to the next.
But in addition to this, the set of possible states between which stochastic transitions occur
in response to additional observations appears to be insufficiently differentiated to allow the
range of different responses that would be required for optimal Bayesian estimates. We have
shown above (Equation 1.1) that optimal responses depend on two pieces of information:
both nR and nG, or alternatively, both the net evidence in favor of red, nR−nG, and the total
number of observations, t. Indeed, although one might think that the quantity p∗ defined in
Equation 1.1 suffices as a summary statistic, the current value of p∗ suffices to determine the
current optimal slider position but it does not provide the information needed in order to
know how to adjust the value of p∗ after another ring draw is observed; that would depend
both on the old value of p∗ and the value of t. For instance, the optimal adjustment to bring
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to the current optimal response after a red ring is drawn is

p∗R − p∗ =
1

t+ 3
(1− p∗), (2.3)

where p∗R is the new optimal response. A two-dimensional summary of observed evidence
(such as any invertible transformation of the pair (nR, nG),) is necessary to determine both
the optimal response on the current trial and the way in which the summary description
should be updated in response to further observations. Thus optimal decision making re-
quires access to a cognitive state that varies over two dimensions as evidence accumulates,
reflecting changes both in the degree to which the evidence supports a higher posterior mean
estimate of p and in the degree of certainty that the evidence provides about the value of p.

Instead, our evidence suggests that the cognitive state moves along a line, or more gener-
ally a one-dimensional manifold, implying that both the degree to which experience favors a
higher estimate and the degree of certainty are not independently represented. We maintain
the assumption that a subject’s response derives from an internal cognitive state, r, which we
assume to be a mental representation of the decision situation (characterized by the sequence
of rings observed), a point in a space of possibly high dimension (e.g., a vector representing
the activity of every neuron in the brain). The observation of a new ring, x, results in a new
cognitive state which depends deterministically or stochastically on the preceding cognitive
state, and on the color of the new ring. We do not have access to the cognitive states, but
we do observe the responses, p̂, which we assume to depend, here also deterministically or
stochastically, on the cognitive states. Therefore, the mean responses, at a trial t and at sub-
sequent trials, are functions of the cognitive state at trial t. As functions from the (possibly
high-dimensional) space of cognitive states to the [0,1] response scale, these mean responses
act as “projections” that can indirectly inform us on the topology of the cognitive states. In
particular, if the manifold of cognitive states occurring in our experiment has dimension n,
its projection on the space of average responses cannot have a dimension higher than n. If
instead the projections of the cognitive states have dimension n′ smaller than the space into
which they are projected, it suggests that the dimension of the cognitive states may be as
small as n′.

For instance, for all sequences of t draws, x1:t, we compute the average of the obtained
responses, ⟨p̂t|x1:t⟩, and for each of these sequences followed by a red ring, (x1:t, xt+1 = R),
we compute the average adjustment, ⟨p̂t+1 − p̂t|x1:t, xt+1 = R⟩. We can thus look at the
adjustments as a function of the preceding responses, averaged for each sequence. For the
optimal observer, as predicted by Eq. 2.3 above, the adjustments depend not only on the
preceding response, but also on the number of pieces of evidence observed, t. For each t, the
adjustment is a linear function of the preceding response, but the slope and intercept of this
linear function depend on the number of rings drawn (Fig. 6, top left panel). By contrast,
the adjustments of subjects seem to all fall along a single line, regardless of the amount of
evidence accumulated (Fig. 6, top right panel). In other words, in the plane formed by
these two quantities (the average responses and the average adjustments), the sets of points
obtained for the optimal observer occupy a bidimensional area, while those obtained for the
subjects are close to a unidimensional curve.

We can look at different planes, formed by different quantities: for instance, the average
adjustments after observing a green ring, ⟨p̂t+1 − p̂t|x1:t, xt+1 = G⟩, paired with the average
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responses, ⟨p̂t|x1:t⟩, and the average response after observing a red ring, ⟨p̂t+1|x1:t, xt+1 = R⟩,
paired with the average response after observing a green ring, ⟨p̂t+1|x1:t, xt+1 = G⟩. In
all cases, we find that the the optimal responses describe a bidimensional area, in which
responses are differentiated, in particular, by the different numbers of samples presented
in the corresponding sequences, t, while the responses of subjects appear to fall along a
unidimensional curve, and seem not to depend on t (Fig. 6).
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Figure 6: Subjects’ responses seem to reflect unidimensional cognitive states, in
contrast with those of the Bayesian observer. Top row: average updates, p̂t+1−p̂, after
observing the sequence x1:t and a red or a green ring (xt+1 = R or G), vs. average responses
after observing the same sequence (x1:t). Bottom row: average responses after observing the
sequence x1:t and a green ring (xt+1 = G), vs. average responses after observing the same
sequence (x1:t) and a red ring (xt+1 = R). The grey line is the identity line. Left column:
Optimal responses. Right column: Subjects’ responses.
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We propose to measure quantitatively the extent to which the responses of subjects can
be characterized by an underlying state that is unidimensional. We consider the responses
as points in the three-dimensional space given by the average response at trial t and those
at trial t + 1 following a red or a green ring. We compute the line and the plane that
minimize the distance to these points—a linear dimensionality-reduction procedure, known
as Principal Component Analysis (PCA). We then compute the error of each response, as
its distance from the corresponding average response projected on the PCA line or plane,
and we examine the Fraction of Variance Unexplained (FVU), defined as the mean squared
error divided by the variance of responses. With just one principal component, we find that
the FVU is 17.73%. With two components, it is 17.62% (and with three components it is
17.61%). Thus the second PCA component increases the variance explained, but only by a
modest amount (0.11 percentage point). The relative share explained by a single component
could certainly be improved, at least marginally, if non-linear transformations were allowed;
but this linear analysis suggests that the responses of subjects can be accounted for, to a
large extent, by a unidimensional underlying state, which imperfectly reflects the sequence
of observations.

3 Responses are Not Bayesian, Even Conditional on the
Imprecise Cognitive State

We have argued that subjects’ responses appear to be a function of a cognitive state which
provides only imprecise information about the sequence of rings that has been observed.
This raises the question whether the bias and variability of subjects’ responses can be fully
accounted for by the imprecision of this cognitive state. Are their responses perhaps optimal,
conditional on the fact that they must be based on the imprecise cognitive state, as in
Bayesian accounts of perceptual biases (e.g., Petzschner et al., 2015; Wei and Stocker, 2015),
“rational inattention” models of imperfect economic decisions (Caplin and Dean, 2015; Caplin
et al., 2020), or the model of imprecise probability estimation proposed by Khaw et al.
(2017a)? In fact, there are testable predictions of this hypothesis that can be formulated
independently of a specific mode of the evolution of the cognitive state, and that allow us to
reject the hypothesis of Bayesian optimality of our subjects’ responses.

3.1 Are subjects’ probability estimates well-calibrated?

In our task, subjects would maximize the expected value of their reward, given that their
response must be some function of the current cognitive state r, by reporting a probability
estimate equal to

p̂(r) = E[p |r], (3.1)

where the conditional expectation is computed using the joint distribution of p and r implied
by the prior from which p is drawn (we assume in this section that subjects hold the correct
prior), and by the stochastic dynamics of the cognitive state in response to independent,
identically-distributed draws from the Bernoulli distribution with parameter p. But if this
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Figure 7: The calibrated-responses Bayesian property is not verified in subjects’
responses. Empirical average of the true proportions p conditional on each response p̂
(orange dots) and conditional on each .025-long response interval Ii (blue line). The lengths
of the error bars equal twice the standard error of the mean. Filled blue points indicate the
cases in which the t-tests of equality between the means of the true probabilities and of the
responses are rejected at the .01 level (see Methods).

is true, the law of iterated expectations implies that we should observe that

E [p|p̂] = E [E [p|r, p̂] |p̂] = E [E [p|r] |p̂] = p̂, (3.2)

for each slider setting p̂ that is ever observed, where the conditional expectation on the left
is computed using the joint distribution of p and p̂, and the middle equality follows from p̂
being a deterministic function of r (Eq. 3.1). In other words, subjects’ reported probability
estimates should be “well-calibrated” in the terminology of Dawid (1982).

This prediction is a property of the joint distribution of p and p̂ that would have to hold,
regardless of what we assume about the structure of the cognitive state r and its stochastic
dynamics. Hence it is straightforward for us to test it, subject of course to the caveat that
we have only a finite sample from the joint distribution of p and p̂ implied by our subjects’
decision process.

An examination, in subjects’ data, of the empirical average of the true proportion p for
each response p̂ suggests that Eq. 3.2 is not everywhere verified. Instead, when the subject’s
response is above .75 (respectively, below .25), the average true proportion is below the
subject’s response (respectively, above), a behavior that has been called ‘over-confidence’
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in the literature (Erev et al., 1994). Closer to the middle value, .5, the subjects exhibit
the opposite behavior, i.e., the average true proportions are further from .5 than are the
responses of the subjects (Fig. 7).

Before proceeding to a statistical test of the hypothesis defined by Eq. 3.2, we note that
many of the possible responses p̂ are chosen once, or a small number of times (on average,
51% of the responses of a subject are chosen only once by this subject, over the course of the
experiment). Thus an empirical estimation of the average of the true proportions conditional
on a response (the left-hand side of Eq. 3.2) would be established on the basis of a very
small sample. Hence instead of considering separately each possible response p̂ we divide
the set of possible responses into disjoints intervals Ii of length .025 (except at each end of
the response scale, where the interval is half this length in order to obtain a middle interval
that contains the response .5 at its center; see Methods). We test the prediction, implied by
Eq. 3.2, that for each interval Ii the mean true proportion conditional on Ii is equal to the
mean response conditional on Ii, i.e.,

E[p|p̂ ∈ Ii] = E[p̂|p̂ ∈ Ii]. (3.3)

We test the restricted hypothesis defined by Eq. 3.3 against the unrestricted hypothesis that
allows the mean true probability to be any function, m, of the interval Ii, i.e., E[p|p̂ ∈ Ii] =
m(Ii). The restricted hypothesis is strongly rejected when pooling together the responses
of the subjects (p-value: 8.4e-219). As for the individual tests, the restricted hypothesis
is rejected at the .05 level for 96% of subjects, and at the .01 level for 76% of subjects
(median p-value: 3.4e-10). We conclude that the responses of most subjects do not satisfy
the calibrated-responses Bayesian property. (We conducted additional tests of Eq. 3.3,
including ANOVA F -tests and a series of t-tests, and reached the same conclusion; see
Methods.)

3.2 Are the changes in subjects’ estimates consistent with Bayesian
updating?

A limitation of the test of the Bayesian optimality of subjects’ responses considered in the
previous section is that it tests (and rejects) a property of estimates that would be optimal
under the correct prior distribution for the true value of p, but that would not have to
hold, even if subjects’ estimates are consistent with Eq. 3.1, if the prior distribution used
to compute the conditional expectation in Eq. 3.1 is some other distribution. One might
suppose instead that subjects’ responses are optimal Bayesian estimates, conditional on a
noisy internal representation of the evidence presented to them, but optimized for a prior
regarding the true value of p that subjects bring to the experiment from their prior experience
with probabilities, as proposed by Zhu et al. (2020).2

We have already tested (and presented evidence against) the hypothesis that our subjects
form correct Bayesian estimates, starting from an incorrect prior but conditioning on a

2We tell our subjects that p is drawn from a uniform distribution. But Bayesian models of perception
should not be understood as assuming that people consciously apply Bayes’ rule in order to form the judg-
ments that they express, and the implicit prior for which perceptual processing has been optimized, under a
hypothesis of this kind, is not generally supposed to be modifiable by information about stated probabilities
supplied in an experiment rather than learned from experience (Feldman, 2015).
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perfect record of the ring draws that they have seen. We wish now to consider the more
general hypothesis of Bayesian inference, starting from a possibly incorrect prior and not
necessarily based on a perfect record of the ring draws. Even under these weaker assumptions,
Bayesian inference requires a certain consistency between a subject’s estimate after a certain
amount of evidence and the estimates that they will make after another ring draw (depending
which color of ring is drawn). We can seek to determine whether successive estimates of our
subjects are consistent in this way, regardless of the objective correctness of the probability
beliefs that they hold before the additional ring is drawn.

Let rt be the cognitive state of a subject at a given trial t, f(p|rt) the Bayesian belief
distribution it implies (possibly derived from an incorrect prior), and let p̂(rt) be the subject’s
estimate, derived from the cognitive state rt. In addition to allowing for a subjective prior, we
do not necessarily wish to assume that the observer’s subjective belief just before observing
a new ring, xt+1, is necessarily the same as the one upon which the estimate p̂(rt) is based;
that is, we do not wish to assume that the cognitive state rt+1 includes a perfect record of
the previous cognitive state rt, given the evidence above suggesting that the cognitive state
is merely one-dimensional. Thus we assume that rt+1 consists of an imprecise record r̃t+1 of
the previous cognitive state, together with the new observation, xt+1, but we do not assume
that rt can be precisely reconstructed from knowledge of r̃t+1. (For example, both r̃t and r̃t+1

may be one-dimensional, while rt = (r̃t, xt) is two-dimensional.) We nonetheless assume that
r̃t+1 contains sufficient information about the previous cognitive state to allow the value of
the posterior mean conditional on rt to be inferred from r̃t+1; specifically, E[p|r̃t+1] = E[p|rt].
Note that this allows r̃t+1 to be one-dimensional (a record of the previous posterior mean).
Moreover, under the hypothesis that the subject’s response on each trial is her subjective
posterior mean, i.e., p̂(rt) = E[p|rt], then it makes sense that it should still be possible
to condition upon the value of the previous posterior mean when choosing r̃t+1, since the
previous response p̂(rt) will still be visible on the screen under our experimental interface.

Let f(p|r̃t+1) be the subjective density over p conditional on an imperfect record r̃t+1

before observing the next ring draw, and let fx(p|r̃t+1) be the subjective posterior density if
a ring draw x ∈ {R,G} is observed along with the imperfect record r̃t+1. Correct Bayesian
updating further requires that

f(p|r̃t+1) = P (R|r̃t+1)f
R(p|r̃t+1) + P (G|r̃t+1)f

G(p|r̃t+1), (3.4)

where P (x|r̃t+1) is the subjective probability of drawing the ring x, under the belief im-
plied by the imprecise record, r̃t+1. In other words, Bayesian updating requires that the
‘prior’, f(p|r̃t+1), be the ‘expectation of the posterior’, where the expectation is taken over
the possible observations, x. Furthermore, given an imprecise record, r̃t+1, the subjective
probability of observing a red ring is the mean of the posterior over p implied by r̃t+1, i.e.,
P (R|r̃t+1) =

∫
pf(p|r̃t+1)dp ≡ E[p|r̃t+1], a quantity that we have assumed to be equal to

E[p|rt] = p̂(rt); similarly, the subjective probability of observing a green ring is 1 − p̂(rt).
If the response after observing the additional ring draw x, which we denote by p̂x(r̃t+1), is
here also the mean of the subjective posterior (i.e., p̂x(r̃t+1) =

∫
pfx(p|r̃t+1)dp), then from

the equation above we derive the relation

p̂(rt) = p̂(rt)p̂
R(r̃t+1) + (1− p̂(rt))p̂

G(r̃t+1), (3.5)
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i.e., the response of a Bayesian observer at a given trial is the expectation of the response
at the next trial, where the expectation is taken over the possible outcomes. An equivalent
view on this property is obtained by rearranging the terms of the equation, as

p̂(rt)
(
p̂R(r̃t+1)− p̂(rt)

)
+ (1− p̂(rt))

(
p̂G(r̃t+1)− p̂(rt)

)
= 0. (3.6)

Bayesian inference thus prescribes, in our task, a relation between the adjustment of the
response should the new ring be red, p̂R(r̃t+1) − p̂(rt), and the adjustment of the response
should the new ring be green, p̂G(r̃t+1)− p̂(rt). If the estimate of the proportion of red rings,
p̂(rt), is large, then the adjustment should be small if a red ring is observed and it should be
large if a green ring is observed; and vice-versa if p̂(rt) is small instead.

We call Eq. 3.6 the ‘consistent-updates’ property, and we emphasize that it is implied by
Bayes’ rule and the structure of our task. We implicitly assume that the subjects understand
this structure, and in particular that they believe the true probability p to be constant (in
Methods we examine, and reject, alternative hypotheses). The only additional assumption
is that the imprecise record of the previous cognitive state allows for a precise recall of
the previous posterior mean, i.e., of the previous response—an assumption that we deem
reasonable, as the previous response is visible on screen. Unfortunately, in all trials we
observe either the response following a red ring, or the response following a green ring, but
we do not observe both simultaneously; neither do we observe the cognitive state. In order to
be able to investigate and test the consistent-updates property in subject’s data, we consider
the two subjective-probability-weighted revisions

δR(r, r̃) = p̂(r)
(
p̂R(r̃)− p̂(r)

)
and δG(r, r̃) = −(1− p̂(r))

(
p̂G(r̃)− p̂(r)

)
.

(3.7)

The consistent-updates property (Eq. 3.6) implies that these are equal, i.e.,

δR(r, r̃) = δG(r, r̃). (3.8)

We take the expectation over r and r̃ of both sides of Eq. 3.8 conditional on the observed
sequence s, and obtain two functions of s, E[δR|s] and E[δG|s], which are predicted to be
equal, i.e.,

E[δR|s] = E[δG|s]. (3.9)

We can estimate these quantities from a subject’s overt behavior, and test that they are
equal. (We note that although we can only observe δR (and δG) when the sample at the next
trial is red (and green, respectively), both quantities are independent of the outcome at the
next trial, thus their averages conditional on the outcome are equal to their unconditional
averages.) Alternatively we can take the expectation of Eq. 3.8 conditional on another
observable which we have shown to be a variable of interest: the preceding response, p̂. For
the reasons explained in the previous section, we consider instead the interval Ii to which
belongs the preceding response, and obtain the prediction

E[δR|p̂ ∈ Ii] = E[δG|p̂ ∈ Ii]. (3.10)

The scatterplots of the left- and right-hand sides of Eqs. 3.9 and 3.10 in subjects’ data
suggest that these relations are not verified in many instances (Fig. 8). For each relation, we
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Figure 8: Subjects’ revisions of their estimates are not consistent with Bayesian
updating. Left-hand side vs. right-hand side of Eq. 3.9 (A) and of Eq. 3.10 (B). Each point
corresponds to a different sequence of ring draws (A), or to a different interval containing
the response p̂ (B), and has as coordinates the means of the quantities δR = p̂(p̂R − p̂) and
δG = −(1 − p̂)(p̂G − p̂), where p̂ is the response at a given trial, p̂R the response at the
following trial in cases where the ring is red, and p̂G the response at the following trial in
cases where the ring is green. The length of the vertical and horizontal error bars equal twice
the standard errors of the means. Bayesian inference predicts the two quantities to be equal,
and thus the points to align on the first bisector. Filled points indicate where the t-test
of equality of the means is rejected at the .01 level. The colors indicate (A) the difference
nR − nG between the numbers of red and green rings in each sequence, and (B) the center
of the interval containing the preceding response p̂, from nR − nG = −4 and p̂ close to 0
(yellow), to nR − nG = 4 and p̂ close to 1 (dark blue).

test the hypothesis that it is verified against the alternative hypothesis that the two sides of
the equation can be different. More precisely, for Eq. 3.9, we test the restricted hypothesis
that there is a function m(s) such that E[δR|s] = E[δG|s] = m(s), against the unrestricted
hypothesis that the two functions mR(s) ≡ E[δR|s] and mG(s) ≡ E[δG|s] are not necessarily
equal. Similarly, for Eq. 3.10, we test the restricted hypothesis that there is a function m(Ii)
such that E[δR|p̂ ∈ Ii] = E[δG|p̂ ∈ Ii] = m(Ii), against the unrestricted hypothesis that the
two functions mR(Ii) ≡ E[δR|p̂ ∈ Ii] and mG(Ii) ≡ E[δG|p̂ ∈ Ii] are not necessarily equal.

When pooling subjects’ responses, the restricted hypotheses of the two tests are strongly
rejected. With individual tests, the hypothesis of equality conditional on the sequence
(Eq. 3.9) is rejected at the .01 level for 95% of the subjects, while the hypothesis of equality
conditional on the interval to which belongs the preceding response (Eq. 3.10) is rejected at
the .01 level for 71% of subjects (Table 3). We conducted, in addition, a series of additional
t-tests, which strengthen these results (see Methods). We conclude that the responses of a
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Restricted Unrestricted Subj. pooled Individual tests
hypothesis hypothesis p-value % < .01 median p-v.

E[δR|s] = E[δG|s], ∀s E[δC |s] = mC(s), C ∈ {R,G} 0.0*** .95 4.9e-37
E[δR|Ii] = E[δG|Ii],∀Ii E[δC |Ii] = mC(Ii), C ∈ {R,G} 4.9e-250*** .71 1.1e-13

Table 3: Statistical tests reject the hypothesis that subjects’ updates of their
estimates satisfy the Bayesian-consistency property. F -tests of the hypotheses that
the responses of the subjects satisfy the equalities in Eqs. 3.9 and 3.10, predicted for Bayesian
observers.

majority of subjects do not verify the consistent-updates property. Hence, their responses
do not appear to be compatible with Bayesian reasoning.

Moreover, there is a clear pattern to the way in which subjects’ adjustments of their
estimates differ from what would be required by Bayesian updating. Bayesian updating
requires that the upward adjustment of the probability estimate in the case that a red ring
is drawn be different in size from the downward adjustment in the case that a green ring
is drawn; the size of the adjustment in each case should be proportional to the extent to
which that ring draw is a surprise (under the subjective beliefs indicated by the previous
estimate p̂). Instead, our subjects adjust their estimates by a similar amount (though in
opposite directions) regardless of whether a red ring or a green ring is drawn. This results
in δR > δG (points below the diagonal in either panel of Figure 8) when a red ring is more
likely to be drawn (the cases in which nR > nG, or p̂ > 0.5), and in δG > δR (points above
the diagonal in the figures) when a green ring is more likely (when nR < nG, or p̂ < 0.5).
This suggests a simple interpretation of the bias: subjects pay attention to the color of the
new ring that has been drawn, when deciding how to adjust their estimate following each
ring draw, but pay little attention to either previously observed evidence or their previously
expressed estimate. This suggests a simple model of the cognitive process reflected in our
subjects’ estimates, which we explain in section 5. Before exploring this model, however, we
note that our finding that subjects substantially depart from Bayesian optimality calls for
an examination of a prominent hypothesis regarding human inference: that people are not
perfectly Bayesian, but apply instead a distorted version of Bayes’ rule. We examine this
hypothesis in section 4.

4 Can a “quasi-Bayesian” model of belief updating ex-
plain the biases?

In the preceding sections we have shown that subjects’ responses exhibited systematic depar-
tures from optimal Bayesian inference, that could not be accounted for by a transformation of
the Bayesian estimate, by Bayesian updating based on an incorrect prior, nor by a Bayesian
inference process that allows for imprecise recalls of the previous ring draws. We thus turn
towards a family of non-Bayesian models of inference, that nonetheless retain much of the
structure of correct Bayesian inference. Indeed the model subjects in these ‘quasi-Bayesian’
models of inference make use of their prior and of the likelihood of observations, as does the
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Bayesian observer, but they assign too much or too little importance to either or both of
these quantities in their updating of their belief. Specifically, we consider a quasi-Bayesian
subject who holds a belief distribution f̃(p) over the proportion of red rings, and who ob-
serves one or several samples randomly drawn from the box; we denote by d this observed
data, and by P (d|p) the likelihood, i.e., the probability of the data given a proportion p.
The belief of the quasi-Bayesian subject about p after observing d is the posterior density

f̃ρλ(p|d) = f̃(p)ρP (d|p)λZd, (4.1)

where ρ > 0, λ > 0, and Zd is a normalization constant. This update rule resembles Bayes’
rule, but the prior and the likelihood are given ‘weights’ that distort the subject’s posterior,
in comparison to the Bayesian posterior. The parameter ρ is the weight of the prior in this
update rule, and λ is the weight of the likelihood; correct Bayesian inference corresponds to
ρ = λ = 1.

This specification is largely inspired by the literature, and several existing models belong
to this quasi-Bayesian family, including the model of conservatism proposed by Phillips
and Edwards (1966), the “diagnostic expectations” model of Bordalo et al. (2019), the
representativeness model of Grether (1980) and the model of base-rate neglect of Benjamin
et al. (2019). We examine, below, the ability of these models to capture the behavioral data.
We note, however, that in this model family the posterior will be a deterministic function
of the presented data, and more precisely, of a two-dimensional statistics of the data. Thus
we do not expect these models to reproduce the unidimensionality of the statistics used to
provide a response — except in degenerate cases where the parameters take extreme values —
nor the autocorrelation in subjects’ responses. But the prominence of this modeling approach
in the literature prompts us to investigate how it fares in capturing at least some aspects of
the data, such as the conservatism after the first few trials followed by an overreaction at later
trials. Besides, after having rejected a Bayesian account of subjects’ responses, we would
like to examine the extent to which a more general model is more successful in capturing the
behavioral data.

4.1 Representativeness and the hypothesis of an incorrect weight-
ing of the likelihood

We start by looking at the case in which the prior is assigned the weight that it receives in
correct, Bayesian inference, i.e., ρ = 1, but the likelihood may be under- or over-weighted,
i.e., λ ̸= 1. A model of this kind was first introduced by Phillips and Edwards (1966) as an
account of conservatism in ‘bookbag-and-poker-chips’ inference tasks (in which subjects are
asked to estimate the probability that either of two bags is the one from which are drawn
the poker chips presented to them.) Their results, along with those of many subsequent
studies, suggest that λ < 1, i.e., that the likelihood is underweighted (see Benjamin (2019)
for a review). A more recent proposal, the model of “diagnostic expectations” proposed by
Bordalo et al. (2019), conversely implies an overweighting of the likelihood. This theory is of
particular relevance for our experiment because it is explicitly proposed for settings in which
probability judgments are constantly revised in response to a stream of sequential evidence
(such as economic or financial forecasting,) and because it allows for over-reaction of the
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kind that we observe in the case of longer sequences of ring draws. We introduce a model
that is inspired by this theory, and which belongs to our family of quasi-Bayesian models,
with ρ = 1 and an overweighting of the likelihood (λ ≥ 1). We then examine the responses
of quasi-Bayesian observers with ρ = 1 (but no specific restriction on λ other than λ > 0).

The theory of diagnostic expectations is motivated by Kahneman and Tversky’s repre-
sentativeness heuristic (Kahneman and Tversky, 1972; Tversky and Kahneman, 1974), and
proposes that estimates are based not on the correct Bayesian posterior, given the stream of
evidence observed, but rather on a posterior density distorted by a measure of representa-
tiveness. Here, we consider a more flexible hypothesis, in that it allows people to start from
an incorrect prior, as assumed (for example) by Zhu et al. (2020). Our hypothesis thus nests
both the case of diagnostic expectations starting from a correct prior (as in the exposition of
Bordalo et al.), and the hypothesis of correct Bayesian updating starting from an incorrect
prior.

Let f(p|x1:t) be the posterior of a Bayesian observer starting from a prior f(p) and who
observes a sequence of rings x1:t. We define the representativeness of the proportion p as the
ratio

f(p|x1:t)

f(p)
. (4.2)

A proportion is thus more representative if it is more probable, when given the evidence
x1:t, in comparison with its probability in the absence of evidence. Following Bordalo et
al. (2019), we consider the hypothesis that the posterior is distorted by representativeness;
specifically, that subjects derive their responses from the density

f̃θ(p|x1:t) = f(p|x1:t)

(
f(p|x1:t)

f(p)

)θ

Z, (4.3)

where Z is a normalization constant, and θ ≥ 0 is a parameter controlling the degree of
the distortion (if θ = 0, there is no distortion). The Bayesian posterior is proportional to
the product of the prior and of the likelihood, i.e., f(p|x1:t) ∝ f(p)P (x1:t|p), and thus the
posterior distorted by representativeness is

f̃θ(p|x1:t) = f(p)P (x1:t|p)1+θZx1:t , (4.4)

where Zx1:t is a normalization constant. The model subject under this theory is thus a ‘quasi-
Bayesian observer’ with ρ = 1 and λ = 1+ θ, and it follows that λ ≥ 1, i.e., the likelihood is
overweighted (or it has the correct weight, if θ = 0). However we do not restrict our analysis
to this case, and below we allow λ to be smaller or larger than 1.

In order to examine the responses of this model subject (with ρ = 1 and λ ̸= 1), we
assume, for the reasons exposed in section 1.3, that the subject’s prior is a symmetric Beta
prior with parameter α. The resulting distorted posterior, in the context of our task, is a
Beta distribution with parameters λnR + α and λnG + α, where nR and nG are the number
of red and green rings in the sequence x1:t. The subject provides as a response the mean of
the distorted density, which we can also formulate as a function of the optimal estimate, as

pαλ =
λnR + α

λt+ 2α
= p∗ + (2p∗ − 1)

1− α/λ

t+ 2α/λ
. (4.5)

29



This hypothesis is thus equivalent to the erroneous-prior hypothesis, with the parameter
α replaced by the ratio α/λ (see Eq. 1.5). If this ratio is greater than 1 (for instance,
if λ < 1 and α is correctly set to 1, as in Phillips and Edwards’ model,) then the model
subject exhibits ‘conservatism’, or ‘underinference’. If conversely the ratio is lower than 1
(for instance, if λ > 1 and α = 1, as in the model of Bordalo et al.), then there is overreaction
to the evidence presented. But this model cannot reproduce the conservatism followed by
overreaction that we observe in behavioral data; and the hypothesis that subjects’ estimates
are consistent with this model is rejected for all the subjects (Table 1, line 6). We conclude
that assigning an incorrect weight to the likelihood in the updating of beliefs is insufficient
to account for subjects’ behavior, even if we also allow the prior to differ from the uniform
distribution used in the experiment.

4.2 Base-rate neglect and the hypothesis of an incorrect weighting
of the prior

The representativeness heuristic proposed by Tversky and Kahneman (1974) is not only con-
cerned with the way people take into account the likelihood of observations in the formation
of their beliefs: it also predicts an ‘insensitivity’ to the prior probabilities of outcomes, a
behavioral pattern known as ‘base-rate neglect’. In the formalizations of this reduced sensi-
tivity proposed by Grether (1980) and by Benjamin et al. (2019), people are quasi-Bayesian
observers who assign an incorrect weight on the prior in their update rule, i.e., ρ ̸= 1. For
Benjamin et al., following the conclusions of the extensive review, conducted by Benjamin
(2019), of the literature on ‘bookbag-and-poker-chip’ experiments, base-rate neglect results
from the weight on the prior being lower than 1, i.e., ρ < 1, while in Grether’s approach, the
weight on the prior is lower than the weight on the likelihood, i.e., ρ < λ.

Before we examine the case in which ρ ̸= 1, we must first specify how the quasi-Bayesian
update rule is applied when several samples are sequentially presented. A first theory is one
in which the subject’s original prior (before any sample is presented) is exponentiated by the
exponent ρ, while the likelihood of the entire sequence of pieces of evidence is exponentiated
by the exponent λ; i.e., after observing the last element of the sequence x1:t, the subject
applies the update rule (Eq. 4.1) with d = x1:t, and with f̃(p) equal to its initial prior. In a
second theory, the subject applies the update rule recursively: each time an additional piece
of evidence is observed, a posterior is formed using the update rule, and then this posterior
becomes the new prior for the application of the update rule when the next piece of evidence
is observed; i.e., after observing the last element of the sequence x1:t, the subject applies the
update rule (Eq. 4.1) with d = xt and with f̃(p) equal to the posterior f̃ρλ(p|x1:t−1) derived
after the preceding observation.

Under the first theory, if the initial prior of the subject is the correct, uniform density
over [0, 1], then the exponentiated prior is also the uniform density, and thus the value of ρ
has no impact. If the prior is incorrect, then we note that the behavior of a model subject
who holds the initial prior f̃(p) and assigns to it the weight ρ when updating its beliefs is
identical to the behavior of a model subject whose initial prior is the same function raised
to the power ρ and normalized, but who assigns to it the correct weight when updating
its beliefs. Thus in any case, under the first theory, the behavior of the model subject is
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essentially already addressed in the previous section (in which we have assumed ρ = 1).
Thus henceforth we focus on the second theory, by which the quasi-Bayesian update rule is
applied recursively.

If ρ ̸= 1, the recursive model has different implications than the first theory. In particular,
while in the first theory the effect of a given set of observations of red and green rings should
be independent of the order in which they are observed (so that nR, nG continue to be
sufficient statistics for the sequence s), this is no longer true in the recursive model when
ρ ̸= 1. Instead we should observe ‘order effects’: two sequences that have the same length,
t ≥ 2, and the same number of red rings, nR (with 0 < nR < t), will not result in the
same estimates if the red and green rings appear at different positions in the two sequences.
We conduct an array of tests to look for such order effects in our subjects’ data, and find
that a majority of subjects do not exhibit significant order effects (for details see Methods),
contrary to the results obtained by authors such as Ashinoff et al. (2022) using the more
familiar “balls and urns” paradigm. And indeed, when we estimate the parameters of the
recursive quasi-Bayesian model (as discussed below), the value of the parameter ρ that best
fits subjects’ data is close to 1. (When fitting individual subjects, we find that the best-
fitting parameter ρ for 81% of the subjects is between 1 and 1.06.) Nonetheless, allowing for
a value of ρ different from 1 allows the model to better fit some aspects of subjects’ behavior.

Simply allowing ρ to differ from 1 is not enough, however. If we allow ρ ̸= 1, but start
from the correct, uniform prior (we consider the case of an incorrect prior in the next section),
and if we assume that the likelihood is correctly weighted (λ = 1), then the model cannot
account for the observed pattern of bias. After the first ring draw (t = 1), the prior will
still be the correct, uniform one even if raised to a power ρ different from 1; thus after only
one ring draw the quasi-Bayesian inference with λ = 1 will be the same as correct Bayesian
inference, so that the subject’s estimate should equal p∗. The strong conservatism of subjects
after the first ring draw is thus inconsistent with this specification. Similarly, we show in
Methods that even after more than one ring (t > 1), this model predicts either consistent
over-reaction to the evidence (if ρ > 1) or consistent under-reaction (conservatism, if ρ < 1).
The model cannot reproduce the subjects’ initial conservatism followed by eventual reversal
of the bias, illustrated in Fig. 4. Hence the sole hypothesis of a misweighting of the prior in
the application of Bayes’ rule is insufficient to account for the main patterns in our behavioral
data.

The model can predict a wider range of types of behavior if both the prior and the
likelihood can be assigned incorrect weights (ρ ̸= 1 and λ ̸= 1). But even in this case, it
cannot account for the observed pattern of estimation biases if we assume ‘base-rate neglect’
in a way compatible with the experimental findings of Grether (1980), i.e., with ρ < λ; or
in a way consistent with the conclusions of the meta-analysis of Benjamin (2019), i.e., with
ρ < 1. Starting from the correct prior, the model reproduces the conservatism of subjects at
the first trial (t = 1) only if the likelihood is underweighted, i.e., if λ < 1. But then ‘base-rate
neglect,’ under either formulation, requires that ρ < 1 as well. In this case, a model subject
necessarily under-reacts to evidence for all t, since an observation k trials earlier than the
current one receives a multiplicative weight λρk < 1 rather than the weight of 1 that it would
receive under correct Bayesian updating. The model is capable of predicting conservatism
for low t together with over-reaction for larger values of t (as observed in our subjects) only
if we suppose that λ < 1 but ρ > 1. (This combination of inequalities represents a necessary
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but not a sufficient condition for reversal of the sign of the estimation bias as n increases;
for details see Methods.) Thus the biases observed in our experiment are inconsistent with
typical parameterizations of quasi-Bayesian updating. The model can reproduce the pattern
we observe in data if we assume λ < 1 < ρ. We further comment on this parameterization,
below; but a significantly better account of the data is obtained if an incorrect prior is
assumed, and thus we first turn to this case.

4.3 Quasi-Bayesian updating from an incorrect prior

We can further generalize the class of models considered by also allowing the model sub-
ject’s prior to differ from the correct, uniform prior. As above, we assume that the prior
is a symmetric Beta distribution with parameter α. Under this assumption, the subject’s
posterior after observing t samples, x1, . . . , xt, is a Beta distribution with parameters ñR+1
and ñG + 1, where ñR and ñG are exponentially-weighted counts of the red and green rings

ñR = λ
t−1∑
i=0

ρixt−i + ρt(α− 1) and ñG = λ
t−1∑
i=0

ρi(1− xt−i) + ρt(α− 1). (4.6)

The subject’s estimate is then the mean of the posterior,

pαρλ =
ñR + 1

ñR + ñG + 2
. (4.7)

We note that to keep track of ñR and ñG over the course of several successive trials, it
is not necessary to remember the whole sequence of ring draws: these quantities can be
updated recursively after each new observation, x, by replacing ñR by ρñR + λx, and ñG by
ρñG+λ(1−x). (With ρ = 1 and λ = 1, this amounts to a simple count of the red and green
rings.) The responses of the quasi-Bayesian observer are thus functions of a bidimensional
summary statistics of the evidence presented, just as with the Bayesian observer, with the
simple counts nR and nG replaced by their counterparts ñR and ñG.

If we assume that the weight on the likelihood is correct (λ = 1), and allow α and ρ to be
different from 1, then we show in Methods that it is possible to obtain conservatism followed
by overreaction to evidence. A necessary (though not sufficient) condition is the combination
of inequalities α > 1 and ρ > 1, i.e., that the initial prior be more concentrated around middle
values than the uniform prior, and that the prior be overweighted in the inference. So far we
have thus seen two specifications of the model of quasi-Bayesian inference that are able to
reproduce qualitatively the pattern we find in the behavioral data: {α = 1, ρ > 1, λ < 1}, as
seen in the previous section, and {α > 1, ρ > 1, λ = 1} (in both cases, the two inequalities
are necessary but not sufficient conditions). However, the model comparison presented in
the next section shows that the model of quasi-Bayesian inference with α = 1, and the one
with λ = 1, with in each case the other two parameters being allowed to differ from 1, both
yield much poorer fits than the one in which the three parameters, α, ρ, and λ, are allowed
to be different from 1. In addition, with the subjects’ best-fitting parameters, these two
models do not in fact reproduce the overreaction to evidence observed in subjects’ data (see
Fig. 13 in Methods). For these reasons, we focus here on the version of the model in which
α, ρ, and λ are all free parameters.
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We fit these three parameters to our subjects’ data, under the additional assumption that
the responses include Gaussian noise (the model-fitting procedure is detailed in section 5).
We find that the best-fitting value of ρ is relatively close to 1 (1.011), while those of α and
λ are relatively small: 0.067 for α, and 0.022 for λ. With these values, the average response
to sequences featuring nR red rings and nG green ring can be approximated (see Methods)
as

p̄αρλ ≈ 1

2
+

λ

4α
(nR − nG). (4.8)

Note that this approximate average response does not depend on t = nR + nG, the total
number of rings drawn, but only on nR − nG, the difference between the numbers of red
and green rings in the sequence. In other words, when fitted to subjects’ data, the model
of a quasi-Bayesian observer equipped with an incorrect prior approaches a model in which
responses are determined by a unidimensional summary statistic of the presented sequence—
precisely the kind of behavioral pattern that we have exhibited in section 2.2.

Furthermore, we can write the (approximate) average response to sequences that include
nR red rings and nG green rings as a function of the optimal estimate, as

p̄αρλ ≈ p∗ + (2p∗ − 1)
1

2

[ λ

2α
(t+ 2)− 1

]
. (4.9)

If the term in the brackets is negative, the model subject exhibit conservatism, while if it is
positive the model subject overreacts to the evidence, as compared to the optimal subject.
We note that this term increases with the number of samples, t; in particular, it is negative
up to t = 3 (and thus the model subject exhibits conservatism up to the third sample) if the
ratio λ/α is lower than 2/5 = 0.4; while it is positive for t ≥ 5 (and thus the model subject
exhibits overreaction from the fifth sample on) if this ratio is greater than 2/7 ≈ 0.29. The
values of λ and α that best fit subjects’ data satisfy both of these conditions (λ/α = 0.33).
In short, this model, with the subjects’ best-fitting parameters, is able to reproduce the
conservatism followed by overreaction that we observe in subjects’ data.

Although the quasi-Bayesian model captures these aspects of subjects’ behavior, it re-
mains unsatisfactory in other respects. First, it does not capture the autocorrelation in
responses documented above. Second, the test of the restricted hypothesis that the average
response equals pαρλ against the unrestricted hypothesis that it is a more general function
m(s) of the presented sequence is rejected for 81% of subjects (Table 1, line 7). Third,
the values of the parameters α and λ that best fit subjects’ data are relatively extreme,
suggesting that they correspond to a degenerate case of the model: α = 0.067 corresponds
to a prior on [0, 1] in which 74% of the probability mass is either below 0.01 or above 0.99
(versus 2% under the correct, uniform prior). We deem it unlikely that the subjects hold
such an extreme belief. And the value λ = 0.022 implies that new observations have only a
very small impact on estimates, which also seems implausible.

To the extent that the quasi-Bayesian model can fit the data, this seems to reflect the
fact that it can be parameterized so as to imply that subjects respond mainly to the net
difference between red and green rings, a simple heuristic that would already account for both
the subjects’ initial conservatism and its subsequent reversal. Above, we concluded section 3
by noting that subjects seemed to decide on the adjustment of their estimate mostly by
paying attention to the color of the new ring, but neglecting other kind of information,
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such as the total amount of evidence presented, t. Together, our results suggest a simple
“noisy-counting” model of the subjects’ cognitive process, which we detail in the next section.

5 A “Noisy-Counting” Model of Probability Estimation
We have shown that our subjects’ responses do not represent optimal (Bayesian) responses,
conditional on the information contained in the noisy cognitive state on the basis of which
the response is generated. Instead, our results indicate that subjects’ adjustments of the
position of the slider following a new ring draw are largely insensitive to the information
about previous evidence that would instead modulate the size of the adjustment in the case
of an ideal Bayesian statistician.

5.1 Informational insensitivity of the adjustment decision

As mentioned above (Eq. 2.3), the ideal Bayesian response rule (Eq. 1.1) requires that the
amount by which the slider should be adjusted following the observation of an additional
red ring will equal

p̂R − p̂ =
1

t+ 3
(1− p̂), (5.1)

where t is the number of ring draws upon which the estimate p̂ was based. This implies
that for any given current slider position p̂, the size of the upward adjustment should be
smaller the larger the number of rings t that had already been observed; and also that for
any number of ring draws, the size of the upward adjustment should be smaller the larger
the existing estimate p̂. Instead, in our data there is very little sensitivity of the adjustment
size to the values of either t or p̂.

We first consider the dependence of subjects’ adjustments on t. Our results suggest
that the average of a subject’s response p̂t+1 obtained after the presentation of a new ring,
xt+1 = R or G, can be predicted by the preceding response, p̂t, in a way that is independent
of the sequence length, t (see Fig. 6, top-right panel). This is contrary to the prediction of
Eq. 5.1, but consistent with our previous observation that subjects’ cognitive states appear to
evolve along a line; a unidimensional cognitive state suffices to determine a current estimate
p̂, but cannot differentiate between different experiences that lead to the same estimate p̂
after sequences of observations of different lengths.

This is shown more clearly in panel A of Figure 9, where we plot the distribution of
estimates p̂Rt+1 following observation of another red ring as a function of the previous estimate
p̂t, for each of the different values of t. The solid lines show the mean value p̄Rt+1 as a function
of p̂t for each value of t, while the dotted lines indicate the range between the 5th and 95th
percentiles of the response distributions, as a function of p̂t, for each value of t. It is evident
that there is very substantial overlap between the distributions associated with different
values of t.

We statistically test the dependence of the adjustment size on the number of rings drawn
in the following way. For each value of p̂, we can compute an average value of the subsequent
response following a red ring, p̄R(p̂), averaging over trials in which p̂ is based on different
amounts of evidence. On any individual trial, we can then compute the deviation of p̂Rt+1
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Figure 9: The adjustments in subjects’ responses following the observation of a
red ring do not vary strongly with the sequence length, nor with the preceding
response, except for preceding responses close to 1. (A) Average responses after
a red ring, p̂Rt+1 (solid lines), and fifth and 95th centiles of the distributions of responses
following a red ring (dotted lines), for sequence lengths from t = 1 to 4, as a function of the
preceding response, p̂t. The error bars equal twice the standard error of the mean. Averages
are taken over intervals of length .025. (B) Averages (blue) and standard deviations (orange)
of the adjustments in responses following a red ring, p̂Rt+1− p̂t, as a function of the preceding
responses, p̂t. Dots correspond to single responses, p̂t, and lines to intervals of length .025.

t p-value % < .01
1 .26 .19
2 .17 .14
3 .24 0
4 .25 .29

Table 4: Average responses do not depend on the number of rings that have been
observed, for most subjects. Student’s t-tests of the hypotheses that, for each sequence
length, t, the deviations conditional on the sequence length, ⟨p̂Rt+1 − p̄R(p̂)|t⟩, are on average
zero, where p̄R(p̂) is the unconditional (not conditional on t) average response following a
response p̂ and the observation of an additional red ring. A large p-value indicates that we
cannot reject the hypothesis that the average response conditional on the sequence length is
equal to the average unconditional response, thus suggesting that the sequence length does
not influence subjects’ responses.
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from this average; and we can obtain a sample distribution of deviations from the average
adjustment, for each of the different values of t. We wish to test the hypothesis that these
different distributions all have the same mean, zero. An F -test of the joint hypothesis that
the means are zero in all four cases t = 1, 2, 3, 4 has a p-value of 0.117, so that we fail
to reject the null hypothesis of equality at the ten percent level of significance. Table 4
(middle column) similarly shows the p-values for t-tests of the null hypothesis that the mean
deviation is zero for each of the individual values of t; again, we fail to reject any of these
null hypotheses at even the ten percent level.

We conduct the same analyses at the individual level. For the F -test, the null hypothesis
is rejected at the .05 level for 52% of subjects, and at the .01 level for 43% of subjects. As
for the t-tests, the p-values indicate that for up to 29% of subjects the null hypothesis that
the average conditional deviation is zero is rejected at the .01 level (Table 4, last column).
These results suggest that there are subjects for whom the number of rings observed, t, does
have some effect on the new response, p̂t+1. To obtain a measure of the magnitude of this
influence, we compute for each subject the ratio of the variance of the means of the deviations,
Var[⟨p̂Rt+1− p̄R(p̂t)|t⟩], divided by the total variance of the deviations, Var[p̂R− p̄R(p̂)]. Across
the subjects, the median of this ratio is 1.3%, and 90% of subjects have a ratio below 5%,
suggesting that the quantitative impact of the number of rings observed is limited.

Next we consider the way in which the average adjustment size p̂R(p̂)− p̂ depends upon a
subject’s existing estimate p̂. In the case of a Bayesian ideal observer, Eq. 5.1 requires that
this should decrease linearly with increasing values of p̂. Instead, panel B of Figure 9 shows
that the mean adjustment is of about the same size (approximately 0.08 to 0.09) over the
entire range of values of p̂ between 0.1 and 0.9. (Equation 5.1 would instead require it to be
9 times as large at one end of that interval as at the other.) The adjustments are smaller
in the case of values of p̂ close to 1, but this is largely a mechanical consequence of the
fact that the slider cannot be moved much higher when it is already near its upper bound.
(There is also some evidence of larger adjustments when p̂ is close to zero, but the number
of observations is not large enough for this to be estimated very precisely.) As explained
at the end of the previous section, the large departures from the diagonal in both panels of
Figure 8 also result from the fact that the average adjustment size varies very little with the
subject’s previous estimate of the probability of drawing another red ring.

Panel B of Figure 9 also plots the standard deviation of the distribution of adjustment
sizes as a function of p̂, and this is also relatively constant over much of the range of possible
values of p̂. (Again, it is smaller for values of p̂ near 1, but this can largely be attributed to
the fact that the amount that the estimate can be increased is mechanically bounded in these
cases.) Thus our data indicate that the distribution of adjustments following observation of
an additional red ring is much the same, regardless of the estimate p̂ prior to this observation,
except for the fact that the distribution is necessarily truncated by the subject’s inability
to express a probability estimate higher than 1. The same is true for the distribution of
adjustments following observation of an additional green ring, except that the sign of the
adjustments is reversed in this case, and the distribution is truncated by the inability to
express a probability estimate lower than 0.
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5.2 A quantitative model of “noisy counting”

This suggests that to a reasonable approximation, our subjects’ responses are consistent with
a model of “noisy counting.” According to this model, a subject keeps a running count of
the net amount of evidence in favor of a higher rather than a lower value of p, adding an
additional positive increment to the count whenever a red ring is observed, and an additional
negative increment whenever a green ring is observed. (We suppose that the process starts
from a neutral belief — the value of the count corresponding to an estimate p̂ = 0.5 — before
the first ring is drawn.) This is like a rule of simply counting the net excess of red rings over
green rings, in that if the size of each increment were a constant, the cognitive state would
correspond to (a linear transformation of) the quantity nR − nG. However, we posit “noisy
counting,” because the size of the increment on any given trial is a draw from a probability
distribution of possible adjustment sizes. From this hypothesis we derive several versions of
the noisy-counting model, which we now present.

In a first version, a subject’s estimate of the value of the hidden probability evolves
according to a law of motion

p̂t+1 = [p̂t + xt+1yt+1][0,1], (5.2)

where p̂t is the estimate after t rings have been observed, xt+1 is the sign of the t + 1st
observation (taking the value +1 in the case of a red ring, and −1 in the case of a green
ring), and yt+1 is an independent draw from a distribution F (y) of possible adjustment sizes.
Note that the distribution F (y) is assumed to be the same for adjustments of either sign, and
independent of both the previous estimate p̂t and all of the previous observations x1:t. For
any real number x, we use the notation [x][0,1] to indicate the value of x truncated to remain
within the interval [0, 1]. Thus Eq. 5.2 indicates that the probability estimate is increased
or decreased (depending on the color of ring that is drawn) by the random amount yt+1,
except when this would take the estimate outside the range [0, 1]; in the latter case, the new
estimate p̂t+1 is given by the most extreme feasible value. A complete specification of the
model requires that we specify the distribution F (y) from which adjustment sizes are drawn.
One simple choice is to assume a normal distribution,

y ∼ N(µ, σ2), (5.3)

with parameters µ, σ2 to be estimated. (This is the model considered on line 8 of Table 5.)
In this version of the noisy-counting model, the randomly evolving cognitive state (on

the basis of which the subject’s response is chosen) is identified with the response itself; the
cognitive state rt on any trial is simply the response p̂t itself. (Thus in Equation 5.2, we
have directly written a stochastic law of motion for the estimate.) Alternatively, we might
suppose that the cognitive state rt is a noisy count, which must then be converted into an
estimate using a response rule. In this case, we need not assume that the noisy count itself
is truncated to remain within the interval [0, 1]; the truncation may instead be part of the
response rule. We might also assume additional stochastic noise in the response rule that
determines p̂t, over and above the noise in the counting process.

Thus we might alternatively assume that the cognitive state rt is a noisy count, updated
according to a law of motion

rt+1 = rt + xt+1yt+1, (5.4)
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starting from an initial condition r0 = 0.5, and that the subject’s estimate on any trial is
then given by a noisy truncation rule

p̂t = [rt + εt][0,1], (5.5)

where εt is a draw from the distribution N(0, ν2), independent of the evolution of the cogni-
tive state and of the response noise on any other trials. If, for example, we assume that yt+1

is drawn from a Gaussian distribution (Eq. 5.3), the model is completely specified by values
for the parameters µ, σ2, and ν2. (This is the model considered on line 10 of Table 5.) Note
that although we assume normal distributions for both the update of the cognitive state
(Eqs. 5.3-5.4) and the response noise (Eq. 5.5), the two types of additive Gaussian noise do
not have equivalent effects, so that their respective variances can be estimated. Indeed, while
the effects of the realization of yt on the cognitive state are propagated to later periods, the
size of the response noise εt has no consequences for responses in later periods.

5.3 Comparison of behaviors favors noisy counting over response
noise

If (on grounds of parsimony) only one type of noise were to be assumed, it is clearly more
important to allow for noise in the evolution of the cognitive state, in order to account for
the features of our data. Figure 10 recalls some of the key regularities discussed above, and
compares the ability of four models to account for them. The top row of the figure reproduces
figures illustrating five different aspects of our subjects’ data, already discussed above. The
other rows show the corresponding plots for data from simulations of four different theoretical
models, where in each case the free parameters of the theoretical model are chosen so as to
maximize the likelihood of the subjects’ data.

The second row considers a model in which subjects are assumed to correctly observe the
ring draws and to perform correct Bayesian inference, but they start from an incorrect prior
Beta(α, α). (Truncated Gaussian response error of the kind modeled in Eq. 5.5 is added to
the Bayesian estimate, in order for the model to have a well-defined likelihood function.) In
the third row, we consider a counting model in which the cognitive state evolves in accordance
with Eq. 5.4, but there is no noise in the count (yt+1 = µ with certainty; i.e., we assume that
σ = 0), and the subject’s response is assumed to be given by Eq. 5.5, where we allow ν2 to
be positive. The fourth row instead considers a model in which the noise and the truncation
are assumed to occur at the level of the cognitive state, while there is assumed instead to
be no response noise. In this case, the cognitive state can be identified with the subject’s
estimate p̂t, and the law of motion for the cognitive state is given by Eq. 5.2, in which yt+1

is assumed to be drawn from a Gaussian distribution (Eq. 5.3). In short, in the third row of
Fig. 10, there is noise in the model subject’s responses, but not in the cognitive states, while
in the fourth row there is noise in the cognitive states, but not in the responses. We note
that the latter model of counting noise is not the one that best fits our data (see Table 5);
but considering this case allows the most direct comparison with the alternative model in
the third row of Fig. 10 (with noise in responses), since the number of free parameters is
then the same in both models (two: µ and a single noise variance), and both models assume
additive Gaussian noise prior to the truncation. We comment on the fifth row of Fig. 10
further below.
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Figure 10: The model in which a scalar cognitive state is updated with noise
qualitatively reproduces subjects’ behavioral patterns. Behavior of the subjects (first
row), of a Bayesian observer equipped with an incorrect prior (second row), of the model
featuring noiseless updates of a scalar cognitive state, and noisy (Gaussian) responses (third
row), of the model featuring noisy (Gaussian) updates of a cognitive state, and noiseless
responses (fourth row), and of the model with noisy (Gaussian) updates of a cognitive state,
and noisy (log-normal) responses (last row). First column: biases in responses as a function
of the optimal estimate, for different sequence lengths (as in Fig. 4B). Second column: serial
correlation in the responses at two trials in a sequence, as a function of the distance between
the two trials (as in Fig. 5B). Third column: average responses after observing a given
sequence followed by a green ring, vs. average responses after observing the same sequence
followed by a red ring (as in Fig. 6, second row). Fourth column: Bayesian consistent-updates
property, with the quantities δR and δG averaged over sequences (as in Fig. 8A). Last column:
response adjustment following a red ring, p̂Rt+1 − p̂t, as a function of the preceding response,
p̂t (as in Fig. 9B). The models were simulated on 100 times more trials than the subjects
faced.



We observe that the model of Bayesian inference based on an incorrect prior (second
row) fails to capture a number of salient features of the data: it fails to predict the pattern
of under-reaction to evidence when t ≤ 3 combined with over-reaction after more rings are
observed (the first column of Fig. 10); it fails to predict positive serial correlation in subjects’
responses (the second column); it predicts that the cognitive state should be two-dimensional
rather than unidimensional (the third column); it fails to predict the pattern of systematic
deviation from the Bayesian-consistency property in subjects’ updates (the fourth column);
and it predicts counterfactually that the mean adjustment after observing a red ring should
be a sharply decreasing function of p̂t (the fifth column).

Both variants of the noisy-counting model (third and fourth rows) do better on several
of these counts: they predict the pattern of under-reaction switching to over-reaction as
t increases; they predict the existence of a unidimensional cognitive state; and they get
the nature of the departures from the Bayesian-consistency property of estimate updates
broadly correct. However, the counting model with only response noise (third row) still fails
to predict positive serial correlation of responses (the second column), and still predicts that
the mean adjustment after observing a red ring should be a sharply decreasing function of
p̂t (the fifth column). The noisy-counting model in which the noise is in the evolution of
the cognitive state instead (fourth row) makes the right qualitative predictions in all five
columns.

In addition to the five behavioral patterns just examined, we showed above that the
responses of subjects were not ‘well calibrated’ (Fig. 7). This sixth pattern in the behavioral
data is also well reproduced by the model with noise in the cognitive states. However, we find
that the responses of most of our models exhibit as well a similar pattern of deviations from
the calibrated-responses Bayesian property. This analysis is thus not strongly differentiating,
and we have not included it in this comparison; but the reader can find it in Methods.

Finally, we have also run simulations of the quasi-Bayesian models. As noted in sec-
tion 4.3, the responses of the model in which the prior may be incorrect (α ̸= 1) and the
prior and the likelihood may be assigned incorrect weights (ρ ̸= 1 and λ ̸= 1), and which is
able to reproduce more behavioral patterns than the other quasi-Bayesian models, are well
approximated by a linear function of the difference nR − nG (Eq. 4.8). The behavior of
this model is thus not very different from that of the model of counting with response noise,
shown in the third row of Fig. 10. We report in Methods on the behavior of this model and
of the other quasi-Bayesian models.

5.4 Model fitting

We can quantify the relative fit of these models, as well as a number of other alternatives,
using the Bayes Information Criterion (BIC; Schwarz, 1978) as a basis for model comparison.
(This allows us to compare models that differ in the number of free parameters, by penalizing
the use of additional parameters.) Table 5 compares the fit of twelve alternative models.
The first three lines of Table 5 consider models in which the cognitive state is assumed to
be two-dimensional and consisting of the quantities nR and nG, or alternatively t and nR

(which suffices for implementation of the estimation rules that we consider here, as these
are sufficient statistics for the information about the value of p contained in the history of
ring draws.) In the models of the next four lines of Table 5, the cognitive state is also two-
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dimensional, but consists of the exponentially-filtered counts ñR and ñG that determine the
responses of quasi-Bayesian observers (see Eq. 4.6). In each of the seven models considered
in this part of the table, a deterministic estimate is computed on the basis of the values of
nR and nG, or of ñR and ñG, and truncated Gaussian response noise is added (as in Eq. 5.5)
in order to allow the BIC to be finite.

In the first three models, we consider three classes of deterministic estimation rules. The
model in line 1 corresponds to the correct Bayesian estimate, but with response error added.
In line 2, Bayesian estimation is again assumed, but starting from a Beta(α, α) prior (the
model simulated in the second row of Figure 10). Finally, the model in line 3 assumes a
linear-in-log-odds transformation of the correct estimate (Eq. 1.3), as in line 3 of Table 1.
(In Table 1, we considered the consistency of these models with subjects’ average estimates
in different evidentiary states; we now consider the ability of versions of these models that
have been augmented with additive Gaussian response error to fit subjects’ trial-by-trial
responses.) No subject has their responses best-fitted by any of these full-information models
(Table 5, last column).

The next four models also correspond to deterministic estimation rules, but those of
quasi-Bayesian observers with a weight on the prior, ρ, allowed to be different from 1. In
line 4, the prior and the weight on the likelihood are correct (i.e., α = 1 and λ = 1). In
line 5 the weight on the likelihood, λ, is allowed to differ from 1; in line 6 the prior is a
Beta(α, α) distribution, with α a free parameter (and λ = 1); and in line 7 both α and λ
are free parameters. The responses of this last model are based on the estimate pαρλ (see
Eq. 4.7), with the addition of truncated Gaussian noise. We denote by pρ, pρλ, and pαρ the
estimates on which the responses of the models in line 4, 5, and 6 are based, and which are
equal to pαρλ with, respectively, α = λ = 1, α = 1, and λ = 1. As for the quasi-Bayesian
models with ρ = 1 and λ ̸= 1, and with α either set to 1 or allowed to differ from 1, we have
seen that they produce the same responses as the Bayesian, incorrect-prior model of line 2 (if
α is replaced by 1/λ or by α/λ; see Eq. 4.5), and thus they yield the same likelihood. The
model with α set to 1 has the same number of parameters as the Bayesian, incorrect-prior
model, and thus the same BIC; but the BIC of the model with α as an additional parameter
is necessarily higher. For these reasons, we do not show these models in Table 5.

The remaining five models considered are versions of the noisy-counting model. The
model in line 8 assumes that the cognitive state is a precise, deterministic count (a linear
transformation of nR − nG), but allows for truncated Gaussian response error; this is the
model simulated in the third row of Figure 10. The model in line 9 instead assumes noisy
counting, with a Gaussian distribution of cognitive-state updates, and no response error; this
is the model simulated in the fourth row of Figure 10. The model in line 10 nests the previous
two models, by allowing both noisy counting (with a Gaussian distribution of cognitive-state
updates) and a Gaussian response noise. This model corresponds to Eqs. 5.4–5.5 above,
with yt+1 drawn from a Gaussian distribution (Eq. 5.3), and with σ ̸= 0 and ν ̸= 0.

In the last three models just presented, we have assumed Gaussian noise in the responses,
in the cognitive states, or in both. However, it is evident from Fig. 9A that in subjects’
responses, the adjustment is almost always positive in sign when a red ring is observed (and
similarly, the adjustment is almost always negative when a green ring is observed.) While
subjects’ adjustments are largely independent of both their previous observations and their
previous estimates, they are quite informative about the sign of the most recent ring draw;
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the distributions of adjustments associated with red rings and green rings are almost entirely
non-overlapping. And the degree to which the sign of the adjustment is predictable from the
sign of the ring draw is somewhat greater than one would expect under the hypothesis of a
Gaussian distribution of adjustment sizes.

The empirical distribution of adjustment sizes is asymmetric, and more similar to a log-
normal distribution than to a normal distribution. This skewness may originate either in the
stochastic updates to the internal cognitive state, or in the errors in response selection. This
leads us to consider two additional models: first, a noisy-counting model in which cognitive
states follow the law of motion in Eq. 5.4, where the random update, y, is log-normally
distributed, i.e.,

log y ∼ N(log µ, σ2), (5.6)

again with parameters µ, σ2 to be estimated, and we assume in addition that Gaussian noise
and truncation occur at the moment of the response (Eq. 5.5). This is the model in line 11
of Table 5. Second, we consider (in line 12) a different model in which the cognitive state, rt,
again follows the law of motion of Eq. 5.4, but here with Gaussian updates y (Eq. 5.3), and
with log-normal noise in the choice of a response. More precisely, given a preceding response
p̂t and a new cognitive state rt+1, we assume that the new response is chosen following the
noisy truncation rule

p̂t+1 = [p̂t + (rt+1 − p̂t)e
εt ][0,1], (5.7)

where εt is a draw from the normal distribution N(0, ν2), and where we assume the initial
condition p0 = 0.5. In other words, the response p̂t is adjusted, prior to truncation, with
a log-normally-distributed adjustment whose median is rt+1 − p̂t. Thus we assume that
subjects’ slider movements are subject to a law of “scalar variability,” of the kind observed
in case of many tasks where a subject must reproduce or estimate a physical magnitude
(Petzschner et al., 2015) or a number (Whalen et al., 1999; Dehaene and Marques, 2002)
that they have previously been shown.

We fit each model, first with identical parameters for all the subjects, and second, with
subject-specific parameters (Table 5). For all the models we obtain a better fit (lower BIC)
in the latter case, and thus we focus on the results of this fit. The model-fitting results
substantiate the results obtained in the previous sections. First, the models on lines 2-7,
which allow the optimal Bayesian inference process to be distorted in one way or another,
all fit better than the model on line 1, which departs from full optimality only by allowing
for truncated Gaussian response noise. Among these seven models, the model in line 7 has
the lowest BIC, by a sizable amount (more than 9000); this model corresponds to the quasi-
Bayesian observer with free parameters α, ρ, and λ, whose responses we have seen are well
approximated by a linear function of the net difference nR − nG (Eq. 4.8). The model in
line 8, precisely, assumes that responses are a linear function of nR − nG (with the addition
of truncated Gaussian noise), and its BIC is also lower than those of the first six models.
(It is however higher than that of the quasi-Bayesian model of line 7. We note that the
model in line 8 has two parameters, µ and σ, while the one in line 7 has four; presumably
this enables a larger flexibility in capturing subjects’ behavior.) However, these eight models
with deterministic cognitive states and noise only in the response (lines 1-8) are the ones with
the highest BICs in Table 5; they all have BICs that are higher than those of the four counting
models with noisy, unidimensional cognitive states (lines 9-12), and higher than that of our
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Cognitive state Noise Response selection Homog. Heterog. % subj.
(1) r = (nR, nG) • p̂ = [p∗ + ε][0,1], where p∗ = nR+1

t+2
250,098 246,664 0%

(2) r = (nR, nG) • p̂ = [pα + ε][0,1], where pα = nR+α
t+2α

247,107 237,050 0%
(3) r = (nR, nG) • p̂ = [Lo−1

(
aLo(p∗) + b

)
+ ε][0,1] 248,240 238,915 0%

(4) r = (ñR, ñG) • p̂ = [pρ + ε][0,1] 250,099 244,710 0%
(5) r = (ñR, ñG) • p̂ = [pρλ + ε][0,1] 246,049 234,592 0%
(6) r = (ñR, ñG) • p̂ = [pαρ + ε][0,1] 246,950 235,943 0%
(7) r = (ñR, ñG) • p̂ = [pαρλ + ε][0,1] 243,370 224,613 4.8%
(8) rt+1 = rt + xt+1µ • p̂ = [r + ε][0,1] 243,359 227,242 0%
(9) rt+1 = [rt + xt+1µ+ ξ][0,1] • p̂ = r 232,098 220,982 0%
(10) rt+1 = rt + xt+1µ+ ξ • • p̂ = [r + ε][0,1] 231,602 219,528 14.3%
(11) rt+1 = rt + xt+1µe

ξ • • p̂ = [r + ε][0,1] 230,909 217,279 33.3%
(12) rt+1 = rt + xt+1µ+ ξ • • p̂t+1 = [p̂t + (rt+1 − p̂t)e

ε][0,1] 229,305 209,676 47.6%

Table 5: Comparison of the fit of alternative stochastic models. Mathematical
formulations of the models, and their BICs. nR and nG denote the number of red and green
rings presented, and t the total number of rings. ñR and ñG denote the exponentially-filtered
counts with weight ρ (Eq. 4.6). pαρλ is the estimate of the quasi-Bayesian model with free
parameters α, ρ, and λ (Eq. 4.7), while pρ, pρλ, and pαρ correspond to the cases in which,
respectively, α = λ = 1, α = 1, and λ = 1. ξ and ε are two mean-zero Gaussian random
variables (thus eξ and eε are two log-normal random variables with median 1). For models
8-12, r0 = 0.5, and for model 12, p0 = 0.5. The “Noise” column indicates whether each model
includes noise in the cognitive states (left dots) and in the response selection (right dots).
Models are fitted either by requiring the same parameters for all the subjects (“Homog.”
column) or by allowing for different parameters for each subject (“Heterog.” column). The
last column shows the proportion of subjects whose responses are best-fitted by the model
in the row. The horizontal lines marks the separation between the models that do not have
noise in the cognitive state (above the line) and those that do (below the line).

best-fitting model (line 12) by more than 14,900. This indicates very substantially worse fit;
even in the case of the best of these models (line 7, with subject-specific parameters), the
Bayes factor in favor of the noisy-counting model is larger than 103243.

Second, the model in which we assume that the response is a noisy report based on a
cognitive state that counts the net number of red rings precisely (line 8) results in a higher
BIC (by more than 6000) than the model that assumes truncated Gaussian noise in the
counting process, but no response noise (line 9); the latter thus yields a better fit of the
data. This supports the conclusions of the visual comparison of the predictions of these two
models in rows 3 and 4 of Figure 10. Allowing for both noisy counting and response noise
(line 10) results in an even lower BIC (despite the penalty for the additional free parameter);
but it is clear that the noise in the evolution of the cognitive state is the more important of
the two types of noise to include.

Finally, the two best-fitting models assume both noisy counting and noisy responses, but
with an asymmetric distribution for either of these two types of noise. The responses of 81%
of our subjects are best-fitted by one of these two models. The one with log-normal noise in
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responses (line 12) yields a lower BIC than the model with log-normal updates of cognitive
states (line 11). We note that the large difference in BIC between these two models (more
than 7,600) is mainly driven by the responses of two subjects. These two subjects have
a strong propensity to repeat their responses, in successive trials: more than 40% of their
responses are repetitions (while the other subjects have a median of 2.3% of repetitions).
These frequent repetitions are well captured by a model of log-normal responses (Eq. 5.7),
when the noise parameter, ν2, is large: in this case, almost half of the adjustments result in
repetitions, because they are smaller than the resolution of the response scale (0.1%, on a
scale that ranges from 0% to 100%).

We show, in the last row of Fig. 10, the behavior of the best-fitting model (with log-
normal noise in responses): it reproduces the behavioral patterns that we have identified in
subjects’ responses. The second-best model (with log-normal updates of the cognitive states
and truncated Gaussian response noise,) and the third-best model (in which both types of
noise are Gaussian) also reproduce these patterns (see Methods). Overall, the responses of
nearly half of our subjects are best-fitted by the model with log-normal noise in the responses
(and Gaussian updates of the cognitive states), while one third is best-fitted by the model
with log-normal updates of the cognitive states (and Gaussian noise in responses; Table 5,
last column). As 14.3% of subjects are best-fitted by the model in which the two types of
noise are Gaussian, a total of 95.2% of subjects are best-fitted by models in which there is
noise in the evolution of the cognitive states and in the selection of a response. Moreover, if
we allow these subjects to have only one type of noise (either in the updates of the cognitive
states, or in the response selection; i.e., if we only allow for the models in line 8 and 9 of
Table 5), we find that 90% are better fitted by the model with noise in the cognitive states.

In summary, our results point to an inference mechanism that is not Bayesian, but not
either approximately Bayesian; and which relies instead on a unidimensional cognitive state
that is updated (increased or decreased) upon each observation of a new ring, and which
determines the response (no subject is best fitted by any of the full-information models); in
addition, noise occurs both in the cognitive-state updates and in the selection of a response,
but the former accounts for a larger share of the response variability. This simple mechanism
accounts for the major behavioral patterns found in our data: first, the Bayesian properties
that we have identified are not verified; second, the updates of the unidimensional cognitive
states account for the reversal of the conservatism bias; and third, the presence of noise in
the cognitive-state updates produces autocorrelation in successive responses.

6 Discussion

6.1 Summary

We have documented patterns of both bias and variability in the probability estimates of
our subjects, that are fairly consistent across subjects, and that indicate not only that they
fail to accurately produce the correct Bayesian estimate, but that their estimates depart
predictably from the Bayesian benchmark on average. The subjects’ average responses do
not seem to be monotonic transformations of the optimal Bayesian responses, and we reject
both the hypothesis that responses result from a process of Bayesian updating that optimally
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takes into account the evidence but on the basis of an erroneous prior, and the hypothesis
that subjects misweight the prior and the likelihood in their application of Bayes’ rule; the
combination of these two hypotheses is rejected as well (Fig. 3, Table 1). We also reject two
hypotheses under which subjects conduct Bayesian inference, but on the basis of erroneous
beliefs: a belief in sudden changes of the underlying probability, and a belief in sequential
dependency in the ring draws. Finally, we consider, and reject, the hypothesis of random
shocks in the prior occurring at the beginning of each block, and a hierarchical Bayesian
model with learning across blocks (see Methods).

The responses of a Bayesian observer who would have only access to imprecise (noisy)
representations of the decision situations, in our inference task, would verify two proper-
ties implied by Bayesian inference (the ‘calibrated-responses’ property, Eq. 3.2, and the
‘consistent-updates’ property, Eq. 3.6). In contrast to many studies of Bayesian models of
human cognition, which usually aim at showing that given some evidence presented, sub-
jects’ responses are approximately consistent with those of a Bayesian observer, we note that
these two properties are a kind of implication of Bayesian inference that imposes restrictions
on the distributions of responses of the Bayesian observer, across various evidentiary states.
We find that these properties are not verified in behavioral data, and subjects’ responses are
in fact markedly different from them (Figs. 7-8, Table 3). In short, the behavior of subjects
is not compatible with Bayesian inference.

Moreover, we find that subjects’ estimates under-react to the evidence presented (con-
servatism) in the first few ring draws of a new regime, but then eventually over-react to
the evidence presented, once a sufficient number of rings have been observed (Fig. 4). Our
subjects exhibit, in addition, autocorrelation in their responses, i.e., for a given sequence of
rings, a large response at some trial is likely to be followed by a large response at subsequent
trials (Fig. 5), which suggests that the noise in the subjects’ representation of the current sit-
uation propagates through successive trials. What is more, the responses of subjects appear
not to be based on two statistics obtained from the observed evidence, as would be necessary
to provide an optimal response, but instead seem to derive from a unidimensional cognitive
state that imperfectly reflects the sequence of evidence (Fig. 6). Indeed, the size of the
adjustments chosen by the subjects seem to be relatively insensitive to the total amount of
evidence presented, although an optimal observer would adopt smaller adjustments as more
evidence is accumulated (Table 4). In fact, the adjustments do not either vary strongly with
the preceding response, in contradiction with optimal behavior (Fig. 9; this also explains
why the consistent-updates Bayesian property is not verified in subjects’ data). In sum, the
adjustments seem to depend mostly on only one kind of information: the color of the ring
drawn. If it is red, the subjects adjust the slider to the right by some distance, and if it is
green they adjust it to the left, by roughly the same distance.

These various patterns are consistent with a “noisy-counting” model of the way in which
running probability estimates are adjusted in response to the sequential arrival of evidence.
We show that assuming that subjects keep an imprecise running count of the net number of
red over green rings that is updated, with noise, on each presentation of a new ring, is suffi-
cient to qualitatively reproduce the main patterns identified in data, such as the conservatism
after short sequences of evidence and its reversal after longer sequences, the autocorrelation
in responses, the violations of the identified Bayesian properties, and the independence of
adjustments from the length of the sequence and from the preceding response (Fig. 10).
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Finally, model fitting favors noisy-counting models, with noise in both the cognitive state
and in response selection, with a degree of skewness in either of the types of noise (Table 5).

We have also run a variant of the experiment in which the length of each block of trials
is a geometrically-distributed random variable (instead of being fixed at five draws). We
present these additional results in Methods. The subjects in this variant exhibit similar
behavioral patterns than in the original experiment, thus substantiating our results. One
difference, however, is that in this variant the subjects seem to make smaller adjustments in
their responses (another finding that is not accounted for by traditional models of Bayesian
inference). Further below, we discuss how this is in fact consistent with an efficient adaptation
of the decision-making process to the statistics of the sequence lengths.

6.2 In what ways are subjects Bayesian?

Our finding that human behavior is not consistent with Bayesian inference seems at odds with
the literature on inference from sequential data, in which models of the optimal, Bayesian
observer have been shown to capture several aspects of human behavior (Wilson et al., 2013;
Khaw et al., 2017a; Prat-Carrabin et al., 2021). In particular, the result of Khaw et al.
(2017a) reproduced in Fig. 1B (and obtained in a probability-estimation task,) suggests
that the average response of subjects equals the Bayesian estimate; but in our study this
hypothesis is significantly rejected for all our subjects (Fig. 3 and Table 1, line 1). An
important difference, however, between these results is that in the analysis of Khaw et
al. (2017a) the responses of subjects are averaged over groups of different sequences of
observations that all yield identical or close-to-identical Bayesian estimates. This ‘pooling’
masks the diversity of the evidentiary states in which subjects are asked to make a decision.
By contrast, the restricted number of possible sequences, in our task design, allows to examine
the distribution of subjects’ responses in each separate evidentiary state, and thus to exhibit
that their average differs from the Bayesian estimate, in most cases (Fig. 3). Hence, while a
natural interpretation of the results in Fig. 1 is that human subjects are well approximated
by the Bayesian observer once one averages out the imprecision in responses, these findings
suggest that subjects’ responses appear Bayesian when averaged instead over the different
possible sets of presented evidence. Our results show that at least in the case of short
sequences of evidence, the average response, when looking at one specific sequence, is not
Bayesian.

This raises the questions so as to why human behavior should be suboptimal in response
to each one of many short sequences of evidence (as in our study), but close to optimal
when averaged over many long sequences of evidence (as in the studies of Gallistel et al.,
2014 and Khaw et al., 2017a); and as to what mechanism may give rise to such a behavioral
pattern. A conjecture is that one’s environment typically changes over time (and in fact it
did in the experiments of Gallistel et al., 2014 and Khaw et al., 2017a), such that one usually
faces a series of inference problems that are roughly identical, but with different underlying
parameters. If the brain is subject to cognitive limitations that prevent it from forming the
optimal response to one given set of evidence, it may be advantageous, in such a changing
environment, to optimize the average response to many different sets of evidence. Another
possibility is that after long sequences of evidence, a given inferential mechanism is used,
while when no or very little evidence has been observed, human inference relies on a different
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mechanism, perhaps because of the novelty of the situation. In any case, these questions call
for a closer examination of human inference in the context of long sequences, so as to more
clearly appreciate whether (or when) human responses to sequences of evidence are close to
Bayesian optimality.

6.3 Conservatism and over-reaction as byproducts of limited atten-
tion

One well-known discrepancy from Bayesian optimality is conservatism, i.e., the insufficient
reaction of human inferences to the evidence presented, as compared to the prescriptions
of Bayes’ rule. First documented in the 1960s (Phillips et al., 1966; Phillips and Edwards,
1966), conservatism has since then been the object of a considerable number of studies (see
Benjamin (2019) for a review). We uncover a more subtle pattern: although we do find
significant conservatism in the responses of subjects after the presentation of up to three
rings, this behavior is reversed after longer sequences, and subjects then excessively react to
the evidence, in comparison to the Bayesian observer (Fig. 4). This finding is all the more
surprising as a meta-analysis of the evidence on belief-updating found that conservatism was
“more severe the larger the sample size” (Benjamin, 2019), although this was obtained in
the context of simultaneous presentations of the pieces of evidence, and with ‘bookbag-and-
poker-chips’ tasks, in which subjects have to estimate the probability that one of two bags is
the one being drawn from — which is the kind of tasks used in the vast majority of studies
that report conservatism.

These tasks present similarities and differences with ours. In both paradigms, subjects
are presented with instructions that clearly imply, in formal terms, the prior probabilities
of several hypotheses, and a likelihood function (i.e., the probability of data, under each
hypothesis); they are then presented with data, and asked about their posterior beliefs. The
experiments differ in that in the typical bookbag-and-poker-chips task, there are only two
hypotheses (e.g., either 30% of red chips, or 70% of red chips), while in our task there is a
continuum of hypotheses (all the proportions between 0% and 100%). The latter may be
more ecologically relevant (e.g., when estimating the probability that it will rain, there is
usually no reason to restrict the support of one’s prior to just two values). Furthermore, in
bookbag-and-poker-chips tasks, subjects are asked for the posterior probability of one of the
two possible hypotheses, while in our task subjects are asked for a point in the continuum
of hypotheses (their estimate of the proportion), and not for a posterior probability. This
could be an important difference, as subjects might find it more natural to report a ‘concrete’
hypothesis (a proportion of red rings), which could actually have generated the observed data,
than to report an abstract, Bayesian probability. In any case, the reward function in our
task implies that the response provided should be the mean of the posterior: thus in short,
we ask for the first moment of the posterior, while in bookbag-and-poker-chip experiments
subjects are asked for the posterior itself. In the inference task studied by Phillips, Hays,
and Edwards (1966), there are four hypotheses (instead of just two), and subjects are asked
to report the posterior probabilities of the four of them, i.e., the full posterior. Here also,
the authors find conservatism in subjects’ responses. The conservatism in the updates of the
posterior mean, which we obtain for t ≤ 3, could be interpreted as a natural corollary of the
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conservatism in the updates of the posterior, exhibited in these studies, insofar as the latter
further extends to a continuum of hypotheses.

Reports of over-reaction to evidence, as we find, are relatively rare in the literature,
although it is already visible in the data reported by Peterson and Miller (1965) and Phillips
and Edwards (1966). In Brown and Bane (1975), subjects’ estimates of a probability are more
extreme than the Bayesian estimates, but in this task the true probability increases as more
samples are drawn (when it does not increase, the authors find conservatism). In economics,
expectations about macroeconomic and financial quantities (e.g., stock returns, interest rates,
etc.) have been shown to overreact to new information (Bordalo et al., 2020; Afrouzi et al.,
2020). Benjamin (2019) points to several studies in which over-reaction to evidence has been
found, with bookbag-and-poker-chips tasks or similar tasks in which subjects are asked to
infer the probability of a hidden state that can take only two values (Peterson and Miller,
1965; Phillips and Edwards, 1966; Donnell and Du Charme, 1975; Griffin and Tversky, 1992).
A common finding in these studies is that if the distribution of the evidence conditional on
one state (the likelihood, or ‘diagnosticity’) is very different from the distribution conditional
on the other state (such that the evidence is very informative and distinguishing the two
states is easy), then subjects tend to underreact to the evidence, as compared to the Bayesian
observer (i.e., they exhibit conservatism); while if the likelihoods are close (such that the
evidence is not very informative and distinguishing the two states is difficult), then subjects
tend to overreact to the evidence. Augenblick, Lazarus, and Thaler (2023) closely examine
this point and consistently find, in experimental and empirical evidence, overreaction to weak
signals and underreaction to strong signals.

We note that in the former case (if the likelihoods are dissimilar), then a new piece of
evidence brings a lot of information, thus the Bayesian posterior is very different from the
prior, and the update of the Bayesian estimate is large. In the latter case (if the likelihoods
are close), then a new piece of evidence brings little information, and the Bayesian update
is small. In our task, the first ring drawn brings a lot of information: the Bayesian observer
thus adjusts its estimate by a large amount (from 1/2 to 1/3 or 2/3, i.e., an adjustment
of 16.67%). The last drawn ring brings less information, and consequently the update of
the Bayesian observer is smaller (5.5% on average). In both cases, subjects adjust their
estimates by about 8%. Thus subjects seem to underreact to the evidence when it brings a
lot of information, and overreact to the evidence when it brings little information — similarly
to the studies mentioned above.

Our account of these effects, however, is very different from the explanation extensively
studied in the literature, according to which people, when updating their beliefs, misweight
the likelihood (as in the original proposal of Phillips and Edwards, 1966), or misweight the
prior, or both, amounting to a distortion of the optimal Bayesian procedure that we have
dubbed ‘quasi-Bayesian inference’ — and which does not provide a satisfying explanation of
the behavioral data. The account we propose is not grounded on the principles of Bayesian
inference. We show that the subjects seem to pay attention to the color of the new ring,
and to choose their adjustment on the basis of that information alone, thus neglecting many
pieces of information that would be useful to a Bayesian observer, such as the total number
of rings observed, the number of red rings among them, and even their current estimate of
the probability.

In spite of this great frugality in the attention paid to relevant information, subjects per-
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form reasonably well in the task (a point we further discuss below). What our results suggest
is that one should be careful in modeling human inference (and probably other decisions),
as subjects may use only an unexpectedly small fraction of the information presented to
them. A typical modeling approach founded on the Bayesian paradigm starts with the ideal
information-processing procedure that makes optimal use of all the available information;
the resulting behavior is then compared to experimental data; and finally some of the proce-
dure’s assumptions are relaxed in order to accommodate for the suboptimal patterns found
in data. It would perhaps be fruitful to adopt a different approach, and take instead as a
starting point a total lack of information of the decision-maker about the decision situation,
and then ask what piece of information would be useful in reaching a decision. The rationale
for this approach is that subjects seem to considerably economize on the information upon
which they base their decisions. At least in our task, subjects’ decisions about how they will
move the slider seem to depend mostly on just one binary variable, the color of the new ring.

Presumably, paying attention to more variables would necessitate more cognitive effort.
Human decision-makers have been shown to be sensitive, indeed, to the cognitive demands
associated with different tasks, and tend to prefer the less demanding ones, even if it decreases
their rewards (Kool et al., 2010; Westbrook et al., 2013). This suggests the existence of a
trade-off between rewards and cognitive costs, as formalized in the theory of ‘expected value
of control’ (Shenhav et al., 2013). How to best characterize the cost of acquiring actionable
information remains uncertain, and all the more so in the context of our task, as paying
attention to the color of the ring (displayed on screen) presumably involves mechanisms of
a different nature than those allowing to remember some information about the sequence of
preceding rings (which are not displayed on screen anymore).

The theory of ‘rational inattention’ puts forth, as a candidate formalized cost, the mu-
tual information between the relevant variable and the signal obtained about it (Sims, 2003;
Maćkowiak et al., 2020). This framework is typically used to model the processing of infor-
mation that is external to the observer, although Azeredo da Silveira et al. (2020) use it in
a model of imprecise recall from memory. A different cognitive constraint appears in some
encoding-decoding models of perception, which posit a cost (or a bound) proportional to a
measure of the encoding capacity of the perceptual system, resulting in imprecise representa-
tions (Ganguli and Simoncelli, 2010; Morais and Pillow, 2018; Prat-Carrabin and Woodford,
2021). In any case, we surmise that changing the presentation of the evidence (e.g., leaving
on screen the sequence of past rings) would change the cognitive cost of paying attention to
it, and result in different behavioral patterns. We leave, however, for future studies a fuller
theoretical and experimental investigation of the mechanisms by which subjects neglect or
pay attention to the information presented to them.

6.4 Implications of the imprecision in cognitive states

An inference task with short sequences of binary stimuli, very similar to ours, was conducted
by Shanteau (1970), who also concluded that the Bayesian benchmark was inadequate in
reproducing human behavior. He considered, in addition, a model based on information in-
tegration theory (Anderson, 1991). This theory proposes that in sequential decision-making
problems, new information is integrated in an existing decision state, although this inte-
gration does not have to be constrained by Bayes’ rule. The resulting ‘additive’ decision
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model considered by Shanteau (1970) is very similar to the version of our counting model
in which no noise perturbs the cognitive state, i.e., in which the model subject maintains a
deterministic, precise count of the net excess of red rings over green rings. However, both
the model-selection procedure and the qualitative examination of subjects’ and models’ be-
havioral patterns, in our task, suggest that the presence of noise in the cognitive states is
crucial in reproducing subjects’ behavior. Noise in response selection alone does not capture,
in particular, the autocorrelation in responses, and if only one type of noise is allowed then
the responses of 90% of subjects are best-fitted by the model that features noise in cognitive
states.

The autocorrelation in responses is not predicted by the model in Shanteau (1970), nor
is it predicted by many models of sequential inference in the literature, in which beliefs are,
often implicitly, deterministic functions of the presented evidence, and noise is sometimes
added in the selection of a response. In the model of Gallistel et al. (2014), each response
is a function of the preceding response and of the new evidence, and thus ultimately it is a
function of all the evidence presented. Nassar et al. (2010) and Wilson et al. (2013) model
belief updating in a changing environment using ‘delta-rule’ approximations to Bayesian
inference that are deterministic. In Khaw et al. (2017a), a model of ‘rational inattention’
describes at each trial the response distribution, which itself depends deterministically on
the evidence history.

Several recent studies, however, emphasize the role of computational imprecision in be-
havioral variability (Renart and Machens, 2014; Wyart and Koechlin, 2016; Findling et al,
2019, 2021). Hilbert (2012) shows how a cognitive model based on an information channel
with noisy memory accounts for eight deviations from optimality commonly found in human
decisions. In a decision task requiring the accumulation of sensory evidence, Drugowitsch et
al. (2016) find that a dominant fraction of choice suboptimality results from random fluctua-
tions in inference, while only a minimal fraction originates in sensory and response-selection
noise. In Azeredo da Silveira et al. (2020), over-reaction to new information is accounted
for by imprecision in the memory of past observations. In a sequential inference task with
binary states, Glaze et al. (2018) find that a ‘stochastic learning algorithm’ outperforms
other (deterministic) models, and in another inference task, Prat-Carrabin et al. (2021)
show that subjects’ behavior is better captured by models in which an approximation of the
posterior is stochastically updated upon each new observation, than by various models of
noisy response selection. We note that such models of stochastic inference, by nature, yield
autocorrelation in responses, which decrease with the distance between the presentations of
two pieces of evidence, as observed in our subjects’ behavior (Fig. 5).

Because it propagates over successive observations of evidence, the noise in cognitive
states is a source of response variability that is qualitatively different than response-selection
noise. It implies that the cognitive state (and thus the belief) at a given time is contingent
not only on all the evidence observed up until that time, but also on the idiosyncrasies of
the preceding cognitive state. In sequential inference tasks, for a given sequence of evidence,
cognitive states may thus take many different ‘paths’; and one cannot understand a subject’s
belief at a given time just by looking at the sequence of evidence that this subject has
observed. In other words, the sequence observed represents only a minor fraction of the
information content of a subject’s response, while the subject’s preceding response represents
a major fraction (Table 2). Similarly, in perceptual identification tasks, subjects’ responses
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have been shown to be influenced by their preceding responses, when no feedback is provided
(Ward and Lockhead, 1971; Mori and Ward, 1995), a behavior reproduced by the relative
judgment model of Stewart, Brown, and Chater (2005). (We note in addition that this last
model is one in which subjects are sensitive to the difference in successive stimuli, rather
than to their absolute magnitudes).

In the context of inference tasks, a consequence of noisy cognitive states is that when
several pieces of evidence are presented simultaneously, the resulting cognitive state depends
(possibly stochastically) on the initial state and on the whole set of evidence, while when
the evidence is presented sequentially, it is the result of a succession of noisy updates of
the cognitive state. This may provide an explanation to the fact that human subjects
make different inferences in these two cases (Shanteau, 1970; Benjamin, 2019). The closer
examination of how human inference depends on the sequential or simultaneous presentation
of evidence may shed light on the role of noise in the updating of beliefs; we leave this
investigation to future work.

6.5 Subjects’ behavior is adapted to their limited attention

Our noisy-counting model might seem to show that people use a heuristic that reflects an
incorrect understanding of the rules of probability, or even misunderstanding of the nature
of the task in our experiment. Instead, we find that the most notable feature of the cognitive
process that subjects appear to use is the degree to which it allows them to perform the
task (producing the required judgments, in a sequential fashion) while requiring very little
information about the specific situation in which each new judgment is selected. Subjects
appear to approach the task not by considering afresh on each trial which slider position
represents an appropriate estimate given the cumulative evidence revealed to that point, but
instead by considering what size of change in the slider position is appropriate in light of
the new evidence observed since their last response. This adjustment decision is made in
a way that takes little account of either the previously observed evidence or their previous
responses (including the existing location of the slider); it depends mostly on the color of the
latest ring draw. Finally, while it seems that subjects pay attention to the amount by which
they change their reported estimate (i.e., how much they move the slider) on each trial, they
do not exert close control of this, so that there is considerable trial-to-trial random variation
in the exact size of the adjustment (which our model treats as pure response error), though
our model assumes perfect control of the direction of adjustment.

Subject to these limits on the degree of attention paid to the specific situation and the
degree of control exercised over the subject’s precise response, the subjects’ responses are
reasonably well-adapted to the task and its reward structure. The decision to approach the
task as one of decision on a direction and size of slider adjustment, rather than making a
fresh decision about where to place the slider after each new ring draw, is in fact adaptive,
assuming the above constraints on the information that is to be used in action selection. If
the subject were instead to make a fresh decision about slider placement on each trial, but
subject to the informational constraints just summarized, they would select an estimate p̂t on
each trial as an independent draw from a distribution of possible slider positions associated
with the ring draw xt. Thus there would be only two possible distributions from which the
estimate would be randomly drawn on any trial, and the distribution of possible estimates
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would depend on the current ring draw in the same way for all values of t. Choosing a
change based on the same limited information instead allows the subject’s estimate to be
highly correlated with the cumulative excess number of red rings, nR−nG, rather than being
correlated only with the most recent ring draw, and this provides a better approximation to
the optimal estimates across sequences of differing length.

The average size of subjects’ adjustments in response to each ring draw is also somewhat
reasonable. Suppose that we take as given that the update of the cognitive state will be
chosen from a Gaussian distribution with variance σ2, independently of any information
about ring draws prior to the current one or the subject’s previous estimates, as well as the
fact that given the subject’s choice of a direction of adjustment, the size of the adjustment,
prior to truncation, will necessarily be drawn from a log-normal distribution (Eq. 5.7), where
the value of ν (reflecting the subject’s degree of control over their action) is also taken as
given, regardless of the subject’s choice of the mean size of the cognitive-state update, µ.
Under these constraints, the only aspects of a subject’s response behavior that remain to be
chosen are the sign of the adjustment following each perceived ring draw, and the value of µ.
With regard to these elements of the decision rule, it is clearly optimal for the adjustment
to have the same sign as xt+1.

The parameter µ in turn will have an optimal value that trades off the considerations
that smaller values of µ will imply under-reaction for small values of t (when an additional
ring draw provides a great deal of additional information) while larger values will imply
over-reaction for larger values of t (when an additional ring draw should not change one’s
beliefs much). One should therefore expect, if µ is chosen optimally, to observe under-
reaction for small values of t, together with over-reaction for larger values of t, as we do.
And finally, under our log-normal model of the distribution of responses, there is a greater
risk of adjustments being considerably larger than desired than of their being smaller than
desired to the same extent; this makes it optimal to aim for a smaller mean size of the
cognitive-state update, µ, the larger is ν; this is also a factor that makes it optimal for µ to
be chosen more “conservatively.”

The blue line in Fig. 11 illustrates how the predicted mean squared error (MSE) of a
subject’s estimates varies with different possible choices for the mean update size µ, taking as
given values for σ and ν. (Here these parameters are set at the medians of the subject-specific
parameter values obtained from maximum-likelihood estimation of the noisy-counting model
described on line 12 of Table 5. Further details of the simulations used to produce this figure
are given in Methods.) There is a clear interior minimum; for most subjects, this is when the
mean size of the cognitive-state update, µ, reaches a value slightly below 0.1. Compared to
these optimal values, the average sizes of the adjustments chosen by subjects are seen to be
of roughly the right magnitude, and allow them to keep a mean error close to the minimum
(Fig. 11, blue boxplot). Hence, although there is imprecision in the way that subjects update
their cognitive states upon the observation of a new ring, along with an imperfect control in
their choice of a response, the mean size of their adjustments seems appropriate, and close
to the value that would maximize the accuracy of their responses (and thus their reward in
the task).

Because a particular choice of µ typically results in under-reaction to the evidence up
to some sequence length t, and over-reaction for longer sequences, the optimal choice of µ
depends on the distribution of sequence lengths that one can expect to experience. In a
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Figure 11: Subjects’ mean update sizes are close to optimal, given the limited
information upon which updates are conditioned, and the noise in cognitive
states and in response selection. Here we consider how different values of µ would
affect the mean squared error (MSE) of a model subject’s probability estimates, for given
values of ν and σ, assuming the model of noisy counting specified by Eqs. 5.4, 5.3, and 5.7
(Gaussian updates of the cognitive states and truncated log-normal response noise). Lines:
MSE in simulations of the model for alternative values of the mean size of the cognitive-state
update, µ, when σ = 0.0344 and ν = 0.194, the median estimated values of these parameters
across our subjects. Boxplots: Across-subjects distribution of average adjustments (vertical
line: median, box: first and third quartiles, whiskers: 10th and 90th percentiles). Blue: Main
experiment, with sequences of five draws. Orange: Variant experiment, with geometrically-
distributed sequence lengths.

variant of the experiment that we run, the lengths of the sequences presented are not fixed
to five draws, but are instead random, and geometrically-distributed. The average sequence
length is here also equal to five, but sometimes the subjects see only one or two draws, for
instance (in which cases larger adjustments are appropriate), and sometimes they see ten
or more (in which cases smaller adjustments are better). With these different statistics,
the MSE of a noisy-counting subject with the same values of σ and ν as above reaches
its minimum for a different, and smaller, value of µ (Fig. 11, orange line). The subjects,
consistently, make smaller adjustments in this variant of the experiment (Fig. 11, orange
boxplot; see also Methods). This strengthens the hypothesis that the subjects’ average
adjustment size is not an arbitrary choice, but is in fact an efficient adaptation, both to the
statistics of the task and to the imprecision in their decision-making process.

53



Methods

Behavioral Task and Subjects

The computer-based task was developed and run using Python and oTree (Chen et al.,
2016). After reading the instructions, the participants faced eight practice blocks of five
trials (five ring draws with the same underlying probability, which was sampled from the
uniform distribution on [0,1]). Feedback was provided after each practice block: the correct
probability, their five responses, and the number of points obtained in each trial were shown
to the subjects. The points obtained in the practice trials did not count towards the final
payoff. After the practice trials, the participants faced 200 ‘real’ blocks, also of five trials,
which counted for the final payoff. In each block, the probability was sampled from the
uniform distribution on [0,1]. The end of each block and the beginning of the following one
were explicitly notified to the subject. No feedback was provided at the end of each ‘real’
block. Each estimate provided by a subject augmented her total score by 6.5− 85(p̂− p)2,
where p̂ is the estimate and p the true probability. At the end of the experiment, subjects
received 1 cent (USD) per point accumulated, with a minimum of $10.

Twenty-five subjects, aged 19 to 50 (average 25.3), were recruited using ORSEE (Greiner,
2015) and participated in the experiment. The sample size was determined so as to be
comparable to that used in similar experiments (Gallistel et al., 2014; Khaw et al., 2017a).
All subjects gave informed consent. The experimental protocol was approved by Columbia
University’s Institutional Review Board (IRB; protocol number: AAAQ2255). Four subjects
performed significantly less well than the other subjects. Their average absolute error, |p̂−p|,
was .263 (standard deviation: .0298), while the average absolute error of the other 21 subjects
was .176 (standard deviation: .0132). We excluded these subjects from our analyses because
of this difference of more than 6 standard deviations. Thus the responses of a total of 21
subjects were included in the analyses. We report how we determined our sample size, all
data exclusions (if any), all manipulations, and all measures in the study.

Bias from Bayesian estimate: additional tests

Table 6 shows the results of t-tests of equality between the average of the responses of
subjects and the optimal estimate. In most cases, the equality is rejected. Table 7 shows the
results of the t-tests when pooling by the numbers of red and green rings in the sequences.

Mutual information: alternative method of estimation

Table 8 provides the result of the decomposition of the information contained in a subject’s
response, using a different estimation method than the one used in the main text. The
results are similar and suggest the same conclusions.

Intervals Ii of responses

In the computer-based inference task, the resolution of the response scale allows for a pre-
cision of one decimal digit, where responses are expressed as percentages (e.g., “72.4%”; see
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p∗ p̂ p-value % < .01 median p-v.
1/7 .143 .119 4.6e-10 .62 .00017
1/6 .167 .187 3.1e-08 .67 2.7e-10
1/5 .200 .263 3.9e-76 .71 5.1e-12
1/4 .250 .339 2.2e-214 .86 1e-18
2/7 .286 .240 1.7e-39 .81 4.9e-07
1/3 .333 .391 1.5e-204 .90 4.7e-18
2/5 .400 .402 .51 .52 .0016
3/7 .429 .405 8e-12 .38 .029
1/2 .500 .498 .15 .14 .37
4/7 .571 .598 1.3e-13 .38 .023
3/5 .600 .588 7.1e-06 .52 .00014
2/3 .667 .610 4e-200 .95 1.1e-19
5/7 .714 .761 1.2e-40 .76 6e-06
3/4 .750 .663 1e-193 .81 6.2e-25
4/5 .800 .747 1.4e-57 .81 1.6e-11
5/6 .833 .824 .015 .71 9.1e-10
6/7 .857 .895 2.8e-29 .81 7.2e-08

Table 6: Test of equality of subjects’ responses and optimal estimates, for each
optimal estimate. Bayesian estimates (first two columns), averages of subjects’ responses
(third column), and p-values of the t-tests of equality between the two (fourth column). Last
two columns: proportions of subjects for whom the p-value is below 0.01, and median p-value
across subjects.

Fig. 2). This results in 1001 possible responses. In our analyses, we split this set of possible
responses in 41 disjoints intervals Ii. Two intervals, one at each end of the response scale, con-
tain 13 responses: {0, .001, . . . , .011, .012} and {.988, .989, . . . , .999, 1}, and 39 intervals
contain 25 responses, each centered on a multiple of .025, e.g., {.013, .014, . . . , .036, .037}.

Bayesian inference with alternative structural assumptions

We consider the possibility that subjects undertake sound Bayesian inference, but on the
basis of erroneous beliefs about the process underlying the observations. We examine two
hypotheses: that subjects assume that the proportion of red rings suddenly changes from
time to time, and that subjects believe that the probability of drawing a red ring depends
on whether a green or a red ring was drawn in the preceding trial.

Belief in sudden changes in the probability parameter

In each trial of the task, the drawn ring is replaced in the box after its presentation to the
subject. Therefore, within each block of five trials, the proportion of red rings in the box
does not change. Nevertheless, here we consider the possibility that the subjects believe that
the proportion of red rings undergoes random changes at unannounced times. Such beliefs
in ‘non-stationarity’ have been proposed by Yu and Cohen (2008) as an account of sequential
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Sequence Pooled subjects Individual tests
t nR nG p∗ p̂ p̂− p∗ p-value % < .01 median p-v.
1 0 1 .333 .420 +.087 0 .95 1.5e-41
1 1 0 .667 .582 −.085 0 1 3.7e-54
2 0 2 .25 .339 +.089 2.2e-214 .86 1e-18
2 1 1 .5 .497 −.003 0.079 .05 .34
2 2 0 .75 .663 −.087 1e-193 .81 6.2e-25
3 0 3 .2 .263 +.063 3.9e-76 .71 5.1e-12
3 1 2 .4 .402 +.002 0.51 .52 .0016
3 2 1 .6 .588 −.012 7.1e-06 .52 .00014
3 3 0 .8 .747 −.053 1.4e-57 .81 1.6e-11
4 0 4 .167 .187 +.020 3.1e-08 .67 2.7e-10
4 1 3 .333 .318 −.015 2.8e-06 .57 .0043
4 2 2 .5 .500 −.000 0.91 .05 .57
4 3 1 .667 .678 +.011 0.00039 .67 .00077
4 4 0 .833 .824 −.009 0.015 .71 9.1e-10
5 0 5 .143 .119 −.024 4.6e-10 .62 .00017
5 1 4 .286 .240 −.046 1.7e-39 .81 4.9e-07
5 2 3 .429 .405 −.024 8e-12 .38 .029
5 3 2 .571 .598 +.027 1.3e-13 .38 .023
5 4 1 .714 .761 +.047 1.2e-40 .76 6e-06
5 5 0 .857 .895 +.038 2.8e-29 .81 7.2e-08

Table 7: Test of equality of subjects’ responses and optimal estimates, for each
pair (nR, nG) of numbers of red and green rings. One-sample t-tests of equality between
the subjects’ average estimates when presented with nR red rings and nG green rings, and
the optimal estimates. In the first two rows (t = 1), the bias, p̂ − p∗, is positive when
p∗ < .5 and negative when p∗ > .5. In the last six rows (t = 5), the opposite holds true: the
bias is negative when p∗ < .5 and positive when p∗ > .5.

Panel A
Value Share

H(p̂t+1) 6.41 100%
= I(p̂t+1;xt+1) 0.25 3.95%
+I(p̂t+1; p̂t, x1:t|xt+1) 3.88 60.5%
+H(p̂t+1|p̂t, x1:t+1) 2.28 35.6%

Panel B
Value Share

I(p̂t+1; p̂t, x1:t|xt+1) 3.88 100%
= I(p̂t+1;x1:t|xt+1) 0.88 23%
+I(p̂t+1; p̂t|x1:t+1) 3.00 77%

Table 8: Breakdown of the entropy of a response, using alternative method of
entropy estimation. Same as Table 2, but using the estimation method developed by
Nemenman et al. (2002) (see also Wolpert and Wolf, 1995).

effects in some behavioral tasks. We examine the same model as Yu and Cohen: specifically,
we consider a Bayesian subject who believes that the color of the ring drawn at some trial t
is a Bernoulli random variable whose parameter, pt, may change from one trial to the next.
At the first trial, p1 is assumed to be sampled from a prior distribution f . We do not assume
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this prior to necessarily be the uniform distribution on [0, 1]; we assume however that it is
symmetric around 1/2, i.e., f(1−p) = f(p) (in the next section we show that most subjects’
responses are indeed symmetric). At any later trial t, the probability pt is assumed to be
equal to its preceding value, pt−1, with probability 1−γ; and with probability γ ∈ [0, 1], it is
sampled from the prior distribution, f . In other words, the parameter pt is subject to ‘change
points’, which occur at each trial with probability γ. We posit, moreover, that the subject
holds a belief distribution about the parameter pt, which she updates in a manner that is
optimal under the non-stationarity assumption, i.e., through Bayes’ rule and taking into
account the possible change points. Finally, we assume that our model subject provides as a
response the (subjective) probability of observing a red ring in the next draw. (We note that
Yu and Cohen show that under some conditions this Bayesian model can be approximated
by a non-Bayesian model featuring an exponential filtering of the past observations. This
corresponds to the quasi-Bayesian model with ρ < 1 that we examine, and reject, in the
main text.)

Under these assumptions, we can compute, as in the main text, the subject’s expected
adjustment (implied by the subject’s subjective probability). We obtain

p̂(p̂R − p̂) + (1− p̂)(p̂G − p̂) = −γ
(
p̂− 1

2

)
, (6.1)

where p̂ is the response at some trial, and p̂R and p̂G are the responses at the following trial
if the new ring is red and if it is green, respectively. We have used the fact that because
of its symmetry around 1/2, the mean of the prior is 1/2. In the absence of change points
(γ = 0), we obtain the consistent-updates property (Eq. 3.6), i.e., the expected adjustment
is zero. If the probability of change points is positive (γ > 0), then the subject takes into
account the possibility that the parameter pt may change to an unknown value, sampled
from the prior, f . As a result, the expected adjustment is directed towards the mean of the
prior, 1/2: if p̂ > 1/2, the expected adjustment is negative, while if p̂ < 1/2, it is positive.

Using similar notations as in the main text, namely, δR = p̂(p̂R−p̂) and δG = −(1− p̂)(p̂G − p̂),
the equation above implies the relation

δG = δR + γ
(
p̂− 1

2

)
. (6.2)

Thus this model predicts that when the response p̂ is greater than 1/2, the quantities δG and
δR should verify the inequality δG > δR, which corresponds to the area above the diagonal
in Figure 8; and conversely (δG < δR) when p̂ < 1/2. The subjects, however, exhibit the
opposite behavior (Fig. 8). As mentioned in the main text, when they believe that a red ring
is more probable than a green ring (i.e., p̂ > 1/2), the adjustment they adopt in case of a
red ring is too large in comparison with that which would be implied, under the consistent-
update property, by the adjustment they adopt in case of a green ring. As a result, when
p̂ > 1/2 their expected adjustment is positive, i.e., the (expected) new response is closer to 1.
By contrast, the expected adjustment of the model subject with a belief in non-stationarity
is negative when p̂ > 1/2 (Eq. 6.1), i.e., the (expected) new response is closer to 1/2. When
p̂ < 1/2, the subjects move the response slider closer to 0, in expectation, while the model
subject with a non-stationarity belief moves the slider closer to 1/2, in expectation. This
model is thus incompatible with the behavioral data.
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We note that these predictions of the model remain valid if we allow the model subject to
hold only an imprecise record of the ring draws. Moreover, a similar qualitative discrepancy
between model and empirical data is obtained if we assume a different response-selection
strategy, in which the model subject is assumed to provide as a response the current expected
value of pt (instead of the probability that the next ring will be red). Consistently with these
results, when we fit to subjects’ data this model with belief in non-stationarity (assuming a
symmetric Beta prior), we find that the likelihood of the model is maximized when γ = 0,
i.e., when the model subject correctly assumes that the proportion of red rings in the box is
not subject to random changes within blocks of trials.

Belief in sequential dependency

Although the subjects do not seem to be assuming that the proportion of red rings suddenly
changes from one trial to the next, they may believe that the probability that the next
ring be red depends on the color of the preceding ring. The hypothesis that subjects, in
presence of a sequence of binary stimuli, are inferring the conditional probabilities generating
the successive observations, has also been suggested as an account of sequential effects in
choice reaction-time tasks and prediction tasks (Meyniel, Maheu, and Dehaene, 2016; Prat-
Carrabin, Meyniel, and Azeredo da Silveira, 2022). Thus we consider a model in which the
subject believes that the statistics of the samples are determined by two parameters, qG and
qR, which represent the probability of observing a red ring after having observed a green ring,
and after having observed a red ring, respectively. The subject holds a prior belief on these
parameters, f(qG, qR), which she updates through Bayes’ rule at each trial. We denote by
f(qG, qR|x1:t) her posterior belief after having observed the sequence x1:t. As in the previous
section, we assume that the subject provides as a response the inferred probability that the
next ring be red, which is the expected value of qG, if the previous ring is green, or the
expected value of qR, if the previous ring is red.

First, we assume a prior of the form f(qR, qG) = (qG + 1− qR)fG(qG)fR(qR). Under this
assumption, after observing any number t ≥ 1 of ring draws, the posterior distribution is
one under which qR and qG are distributed independently of each other, i.e.,

f(qG, qR|x1:t) = fG(qG|x1:t)fR(qR|x1:t), (6.3)

where fG and fR are the posterior beliefs over qG and qR. (We note that if this equality
is verified after one observation, x1, then it is also verified for all subsequent sequences of
observations.) This is the kind of posterior assumed by Meyniel et al. (2016). Under this
assumption, one can update separately the two marginal posteriors fG and fR, as

fG(qG|x1:t) ∝ fG(qG|x1)q
nGR
G (1− qG)

nGG ,

and fR(qR|x1:t) ∝ fR(qR|x1)q
nRR
R (1− qR)

nRG ,
(6.4)

where nXY is the number of times that the color X is followed by the color Y in the sequence
x1:t.

It follows that the response to a sequence that ends with a green ring is determined by the
counts nGR and nGG, while the response to a sequence that ends with a red ring is determined
by the counts nRR and nRG. Therefore, the two sequences (R,G) and (R,R,R,R,G), for
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instance, are predicted to result in equal responses (as in both cases nGR = nGG = 0); but the
subjects provide very different responses, in these two cases (on average 0.506 and 0.777). It
is obvious in the behavioral data that different sequences that have the same pair of counts
(nGR and nGG for the sequences ending with a green ring, or nRR and nRG for the sequences
ending with a red ring) result in different responses, in the general case. F -tests of the
hypotheses that these responses are in fact equal on average in subjects’ data, for each set of
sequences that have the same pairs of counts, are all rejected with a p-value lower than 10−3,
except for the sequences for which an observer with a correct belief about the structure of
the task would also provide identical responses, such as (G,G,G,R,G), (G,G,R,G,G), and
(G,R,G,G,G). We conclude that this model under the independence assumption (Eq. 6.3)
fails at reproducing subjects’ responses.

We relax the independence assumption, and consider a more general case. We now only
impose a symmetry assumption on the prior: specifically, that f(qG, qR) = f(1− qR, 1− qG).
(This property implies that the prior does not contain an a priori bias towards one color:
the prior belief that a red ring is more probable after observing a red ring, for instance, is
equal to the prior belief that a green ring is more probable after observing a green ring.
See the next section for an analysis of the symmetry in subjects’ responses.) The rules of
probabilities imply a series of relations, which we now present, between the responses of a
subject who is inferring the conditional probabilities qR and qG. First, we note that these
two parameters together determine the probability of an observation x, unconditional on any
preceding observation, as

P (x|qG, qR) =
qxG(1− qR)

1−x

qG + 1− qR
, (6.5)

where x = 1 for a red ring, and x = 0 for a green ring (and thus the numerator is qG if the
ring is red, and 1 − qR if it is green). The joint probability of observing the sequence x1:t,
given qG and qR, is then

P (x1:t|qG, qR) =
qx1
G (1− qR)

1−x1

qG + 1− qR
qnGR
G (1− qG)

nGGqnRR
R (1− qR)

nRG , (6.6)

and given a prior f(qG, qR), one obtains the subjective joint probability of the sequence, as
P (x1:t) =

∫∫
P (x1:t|qG, qR)f(qG, qR)dqGdqR. Consequently, two sequences x1:t and x̃1:t have

the same subjective joint probability of occurence if

nGG = ñGG,

nGR = ñGR + x̃1 − x1,

nRG = ñRG − x̃1 + x1,

and nRR = ñRR,

(6.7)

where ñXY is the number of times that the color X is followed by the color Y in the sequence
x̃1:t. Finally, we note that the subjective joint probability of x1:t can be expressed as a
function of the successive responses of the model subject when presented with the sequence
x1:t−1, as

P (x1:t) = P (x1)P (x2|x1)P (x3|x1:2) . . . P (xt|x1:t−1)

=
1

2

t−1∏
i=1

p̂(x1:i)
xi+1(1− p̂(x1:i))

1−xi+1 ,
(6.8)
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where p̂(x1:i) is the subject’s response after having observed the sequence x1:i. We have used
the fact that the symmetry property of the prior implies that the subjective probability of
the first outcome, red or green, is 1/2.

In summary, two sequences x1:t and x̃1:t that verify the equalities in Eq. 6.7 have equal
subjective joint probabilities, and these can be recovered from the successive responses to
each sequence, following Eq. 6.8; thus providing testable predictions of the model. For
instance, the sequences (G,R,R) and (R,R,G) verify the equalities in Eq. 6.7, which implies
that their subjective probabilities are equal, i.e., P (G,R,R) = P (R,R,G); and thus we
obtain the prediction p̂(G)p̂(G,R) = p̂(R)(1 − p̂(R,R)), which relates the two successive
responses for the sequence (G,R) with the two successive responses for the sequence (R,R).
In subjects’ data, however, these two quantities are significantly different (t-test p-value:
10−15). The two sequences that ‘mirror’ the previous two (by inverting R and G), (R,G,G)
and (G,G,R), also verify Eq. 6.7, and thus they make a prediction of the same kind, (1 −
p̂(R))(1 − p̂(G,G)) = (1 − p̂(G))p̂(G,G), but here also the hypothesis of this equality in
subjects’ data is rejected (p-v.: 10−18). More generally, there are 50 pairs of sequences of
length no greater than 6 that verify Eq. 6.7 and whose two elements are not ‘mirrors’ of each
other. We test the 50 corresponding predictions. For 37 of them, the t-test of equality is
rejected at the .01 level (and for 30 of them it is rejected at the .001 level). Moreover, ten
of these predictions are rejected at the .01 level by more than 50% of subjects, and four are
rejected at the same level by more than 85% of subjects. The responses of a majority of
subjects thus do not seem to be consistent with the predictions of this model.

To complement this analysis, we fit the model to subjects’ data. This requires specifying
a prior, f(qG, qR). First we consider the case in which the prior is the product of the marginal
priors fG(qG) and fR(qR), which we assume to be Beta distributions with parameters (α, β)
and (β, α), respectively, i.e., f(qG, qR) ∝ qαG(1 − qG)

βqβR(1 − qR)
α. This prior is symmetric,

in the sense that f(qG, qR) = f(1 − qR, 1 − qG). In addition, after observing a sample x,
the subject’s posterior is proportional to the product of this prior and of the probability
P (x|qG, qR), as given in Eq. 6.5: we note that the resulting posterior is not such that qG and
qR are independent, as in Eq. 6.3, which implied predictions that we rejected. In other words,
with this prior, all observations are informative about both qG and qR. We fit this model
by maximizing its likelihood (with the additional assumption of noise in the response). We
compare the resulting maximum likelihood with that of the model of an optimal Bayesian
observer who has a correct belief on the structure of the task. Although we clearly reject that
observer model in the main text, we find that the model with beliefs in sequential dependency
result in a much lower likelihood. The corresponding Bayes factor is about 10−780, indicating
a very poor fit to subjects’ data, in comparison with the optimal-observer model.

This result, however, largely follows from our choice of prior. Although it may seem
natural, for an observer who believes that the random draws obey different laws when the
preceding ring is red and when it is green, the form of prior we have assumed posits that
the laws in these two cases are completely unrelated: for all choices of α and β, there is
no correlation between qG and qR. But the true structure of the random draws, in our
task, is precisely the opposite extreme case, as qG and qR should in fact be equal (and thus
perfectly correlated). In other words, this functional form of the prior does not nest any
prior that implies the correct assumption about the lack of sequential dependency in the
task. A possibility, instead, is that the belief of subjects is not so different from the truth,
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and that their prior on qG and qR implies that these two parameters are correlated, although
not necessarily equal, thus allowing from some amount of deviation from the correct belief.
To that end, we find it convenient to reparameterize the (putative) structure of the draws,
and replace qG and qR by two other parameters: pR, which determines the unconditional
probability of observing a red ring (unconditional on any preceding observation), and ω, a
parameter that indicates the extent to which the structure of the random draws (under these
parameters) deviates from the true structure (in which the probability of a red ring does not
depend on the color of the previous ring). Specifically, given pR and ω, the unconditional
probability of a red ring and the probability of a red ring conditional on the previous ring
being red, respectively, are

P (x = R|pR, ω) = pR, and P (xt+1 = R|xt = R, pR, ω) = pR +
ω

pR
. (6.9)

Implied is the probability of a red ring conditional on the previous ring being green, as
P (xt+1 = R|xt = G, pR, ω) = pR − ω

1−pR
. If ω = 0, the probability of a red ring does not

depend on the color of the previous ring, while if ω ̸= 0, the probability of a red ring following
a red ring is different from the probability of a red ring following a green ring.

We now choose a functional form for the prior, f(pR, ω), on these two parameters. We
assume that the marginal prior on pR is a symmetric Beta distribution with parameter α.
As for ω, we note that the range of permitted values of ω depends on the value of pR. For
each pR, we assume that within this range the prior over ω is proportional to a Gaussian
function, e−ω2/τ , where τ > 0, which we extend to a Dirac delta function, δ(ω), in the case
where τ = 0. In this case, the subject believes that there is no dependency across successive
samples (ω = 0), and the prior is equivalent to the ‘incorrect prior’ examined in Section 1.3.
With a positive parameter τ , the prior assigns a positive probability on structures of the
random draws that feature sequential dependency (ω ̸= 0).

When fitting this model to subjects’ data, we find that its likelihood is maximized when
τ = 0, i.e., when the prior posits that with probability 1 there is no dependency in successive
samples (ω = 0). Looking at the individual data, we find that for all the subjects the
likelihood of this model is also maximized when τ = 0. Thus there does not seem to be
evidence that subjects hold erroneous beliefs about the structure of the random ring draws,
and the model with belief in sequential dependency does not capture subjects’ responses
better than the model of Bayesian inference with incorrect prior of Section 1.3, which we
have rejected. In conclusion, this model-fitting analysis, in addition to the results above
regarding predictions of the model that are not observed in the behavioral data, suggests
that the hypothesis of a belief in sequential dependency does not provide a satisfying account
of subjects’ responses.

Symmetry hypothesis

We examine in the behavioral data the hypothesis that the responses of subjects are sym-
metric around 1/2, i.e., that their average response to a sequence is equal to 1 minus their
average response to the corresponding ‘mirror’ sequence (in which all the observations R
and G are inverted). Specifically, for each of the 31 sequences that start with a red ring, we
conduct a t-test of the equality between the subjects’ response to this sequence and their
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response to the mirror sequence. For all the sequences except one, the equality hypothesis
is not rejected at the 0.01 level. With a p-value of 0.009, the hypothesis is rejected at the
0.01 level for the sequence that contains five rings, all of them red. The average response to
this sequence is 0.8946, which implies under the symmetry hypothesis an average response
to the mirror sequence (five green rings) of 0.1054, but the subjects’ average response is
0.1186, i.e., larger by 0.0132. In other words, the subjects on average seem to have a slight
bias for larger values, or to the right-hand side of the response slider. When running the
same tests individually for each subject, we find that for all the sequences, 10% or less of
the subjects reject the hypothesis; and for 15 sequences (out of 31) no subject rejects the
hypothesis. Overall, we conclude that the symmetry hypothesis holds for most subjects, and
that deviations from this symmetry do not constitute a major feature of the behavioral data.

Block-level priors and sequential effects across blocks

Hierarchical Bayesian inference

In all the Bayesian and quasi-Bayesian models that we have considered, we have assumed
that the subjects’ prior is always the same at the beginning of all the blocks of five trials.
This is consistent with the task (in which the proportion of red rings is chosen from an
unchanging prior, the uniform distribution), and with the instructions given to the subjects.
Here we examine the hypothesis that the subjects are uncertain about the prior, but that
they hold a belief about it, which they update throughout the experiment. In other words,
we consider a hierarchical Bayesian model of learning of the prior across the blocks of trials.

Specifically, we consider a model in which priors are Beta distributions with parameters α
and β, and subjects hold a ‘hyperprior’ belief, h(α, β), about these two parameters. Subjects
update this hyperprior on the basis of the observed ring draws. It is useful to define the
function g(m, t;α, β), as the probability of a sequence of t draws, x1:t, of which m are red,
conditional on the prior specified by the parameters α and β:

g(m, t;α, β) ≡P (x1:t|α, β), for any x1:t such that
∑

x1:t = m

=
t∏

i=1

P (xi|α, β, x1:i−1),
(6.10)

i.e.,

g(m, t;α, β) =

∏m−1
i=0 (α + i)

∏t−m−1
i=0 (β + i)∏t−1

i=0(α + β + i)
. (6.11)

(We use the convention xt = 1 when the ring at trial t is red, and xt = 0 when it is green.)
In our experiment, each block of trials comprised T = 5 ring draws. After the last ring draw
of a given block i, let N

(i)
m be the number of blocks in which the subject has observed m

red rings out of the T draws, for each m ∈ {0, 1, 2, 3, 4, 5}. Applying Bayes’ rule, the model
subject updates its belief about the parameters α and β, and obtains the ‘hyperposterior’
hi, as

hi (α, β) =
1

Z
h(α, β)

T∏
m=0

g(m,T ;α, β)N
(i)
m , (6.12)
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where Z is a normalization constant. This hyperposterior will be the hyperprior at the
beginning of the next block.

Given the hyperprior hi, the optimal response, p∗i (x1:t), to a sequence of draws x1:t, is
the expected value of the proportion p of red rings conditional on the sequence (and given
the hyperprior hi), E[p|x1:t], i.e., the (subjective) probability of observing a red ring in the
next draw (xt+1 = 1), conditional on the sequence x1:t, which we denote by Pi(xt+1 = 1|x1:t).
Thus we have

p∗i (x1:t) ≡ Pi(xt+1 = 1|x1:t)

=
Pi(x1:t, xt+1 = 1)

Pi(x1:t)

=

∫∫
P (x1:t, xt+1 = 1|α, β)hi(α, β)dαdβ∫∫

P (x1:t|α, β)hi(α, β)dαdβ
,

(6.13)

where we have used the definition of conditional probabilities, and marginalized over α and
β. Thus, by definition of the function g,

p∗i (x1:t) =

∫∫
g(α, β;m+ 1, t+ 1)hi(α, β)dαdβ∫∫

g(α, β;m, t)hi(α, β)dαdβ
. (6.14)

Given a hyperprior h, we are thus able to compute the optimal response (Eq. 6.14) to the
sequences presented in the successive blocks of the task, using the function g (Eq. 6.11) and
the hyperprior update rule (Eq. 6.12). Finally, as in several of our other models, we assume
that there is a degree of noise in the subject’s selection of a response, which we model as
a Gaussian variable with standard deviation σ, truncated so that the response falls in the
interval [0, 1].

As for the hyperprior h(α, β), we choose it in the family of bivariate normal distributions
over (α, β), truncated to the first quadrant (i.e., negative α and β have zero probability).
The two components of the non-truncated normal distribution are assumed to have equal
means, denoted by α0. The covariance matrix has two elements on its diagonal, which we also
assume to be equal, and which we denote by σ̃2, and we denote by ρ the Pearson correlation
coefficient between the two components (this determines the off-diagonal elements of the
covariance matrix, as ρσ̃2).

When fitting this model to each subject, we find that the best-fitting values of α0 are
very close to the best-fitting values of the parameter α of the Bayesian model with a (fixed)
incorrect prior of the form Beta(α, α) (line 2 in Table 5; this model is nested by the hierar-
chical Bayesian model). For 52% of subjects, the best-fitting values of these two parameters
differ by less than 1%, and for 90% of subjects they differ by less than 10%. As for the best-
fitting values of σ̃, which can be understood as representing the degree of uncertainty in the
subjects’ hyperpriors, we find that they are relatively small: for 52% of subjects, σ̃ is smaller
than 0.05; for 90% of subjects it is smaller than 0.25; and the ratio σ̃/α0 is lower than 0.17
for 95% of subjects. As a consequence, the responses of this model are very close to that
of the (non-hierarchical) Bayesian model with fixed incorrect prior (Fig. 10, second row),
and thus it does not reproduce the various behavioral patterns we have found in subjects’
data, although it has two more parameters. Consistently, the BIC for this model is higher
than that of the model with fixed incorrect prior (with a difference of 20 if all subjects are
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required to have the same parameters, and of 173 with individual parameters). This suggests
that the hierarchical Bayesian model does not provide a much better fit than the model with
incorrect prior; in any case, it provides a much worse fit than our best-fitting model.

Sequential effect across blocks

Although the hierarchical Bayesian model just examined does not reproduce the behavioral
patterns found in subjects’ responses, it remains possible that the sequence of rings drawn in
one block influences the subjects’ responses in the following block. For instance, a hypothesis
is that a subject starts a new block with a prior that depends on whether the sequence of
rings drawn in the preceding block featured a majority of red rings (i.e., three or more red
rings, out of five draws), or a majority of green rings. This could stem from learning across
blocks (perhaps similar to that in the previous section, but not necessarily Bayesian, or not
necessarily with the kind of prior we have assumed), in which case a red-dominant block
would result in a prior shifted towards higher proportions of red rings. But subjects might
also believe that after a red-dominant block, green rings are ‘due’, as in the well-known
gambler’s fallacy, in which case a red-dominant block would be followed by responses biased
towards smaller red proportions. We thus test whether subjects’ responses differ when they
come after a red- or a green-dominant block. Pooling together the responses of all the
subjects, we run, for each of the 62 possible sequences in the task, a t-test of equality of the
responses to the sequence when they occurred after a red-dominant block, and when they
occurred after a green-dominant block. In only one such test is the null hypothesis of equality
rejected at the .01 level. Under the null hypothesis, the binomial probability of rejecting one
or more test out of 62, at the .01 level, is .13, suggesting that there is no strong evidence
that the hypothesis of equality should be rejected. We also run these tests at the individual
level. We note that for each subject we do not have enough data to run the 62 tests just
mentioned; on average, we are able to run 42 tests per subject. For 81% of subjects, no more
than one of these tests is rejected (for 52%, no test is rejected), and no subject rejects more
than 5 tests. We conclude that there is no strong evidence that the behavior of subjects
significantly changes with the color that dominated the preceding block.

Random block-level priors

In the previous two sections, we have examined the possibility that the subjects start new
blocks of trials with a prior that depends on the outcomes of the preceding block. Here
we consider the hypothesis that the prior is different in each block, but not for reasons
related to the preceding block: instead, we model the block priors as independent and
identically distributed random variables. This stochasticity could originate, for instance,
in the imprecise encoding of the prior. Specifically, we assume here that the prior at the
beginning of a block is a Beta distribution, whose pair of parameters (α, β) is sampled
from a bivariate normal distribution truncated to the first quadrant. The means of the two
components of the non-truncated normal distribution are assumed to be equal, and denoted
by α0. The two elements of the diagonal of its covariance matrix are also assumed equal,
and denoted by σ̃2, and the Pearson correlation coefficient between the two components is
denoted by ρ (this determines the off-diagonal elements of the covariance matrix, as ρσ̃2). In
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Figure 12: Block-level random priors: Autocorrelation in responses.

other words, the prior’s pair of parameters (α, β) is a noisy readout of the pair (α0, α0), with
σ̃ and ρ specifying the structure of the noise. Our model subject performs Bayesian inference,
using this Beta(α, β) prior, and provides as a response the mean of the Bayesian posterior,
with the addition of some response-selection noise, modeled as a centered Gaussian variable
with standard deviation σ, truncated to the [0, 1] interval. As all the responses within one
block depend on the random prior for that block, this model predicts a positive correlation
between successive responses; but we seek to examine whether it reproduces the decreasing
correlation between distant trials of the same block, as observed in subjects’ data (Fig. 5B).

To this end, we run simulations of this model, with the parameter α0 taking the value 1
(which corresponds to the correct prior) or 1.5 (which is approximately the best-fitting
parameter of the Bayesian model with incorrect prior, when the responses of the subjects
are pooled together, and it is close to 1.6, the median of the best-fitting parameters of this
same model when fitting subjects independently). As for the correlation parameter, we run
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simulations with ρ = −0.3 and ρ = 0.3. As for the response-selection noise parameter,
σ, we choose it as a function of σ̃ (which parameterizes the noise in the prior), and such
that the overall variability of the model subject’s responses matches that of the subjects
(i.e., a standard deviation of about .088). We note that aiming at reproducing the subjects’
variability puts an upper bound on the choice of σ̃; the value of this upper bound is about 0.7.
We simulate the model with σ̃ = 0.2 and σ̃ = 0.4, two values chosen to roughly cover the
range [0, 0.7]. In all our simulations, we find that the correlation between the responses in a
block is positive, as expected (Fig. 12). When the prior-noise parameter, σ̃, increases, the
autocorrelation increases (compare first and second rows in Fig. 12), which is readily intuited,
as the noise in the prior is the source of the autocorrelation. The autocorrelation with ρ =
−0.3 is larger than with ρ = 0.3 (compare dashed lines to solid lines in Fig. 12), presumably
because anti-correlated values of α and β yield more skewed priors than correlated values of α
and β, resulting in larger variations in the subsequent responses. Finally, the autocorrelation
in responses does not decrease with the distance between two trials in a block, as it does with
the subjects, and in fact it seems to increase with the distance between two trials. Therefore,
this model of block-level random priors does not seem to be able to reproduce the decreasing
autocorrelation in responses found in subjects’ data.

Bayesian properties: additional tests

Calibrated-responses property

Analysis-of-variance (ANOVA) F-tests of the equality E[p− p̂|p̂ ∈ Ii] = 0 for all in-
tervals Ii For each interval Ii of length .025, we consider the distribution of the differences
between the true probability and the response, p − p̂. Equation 3.3 predicts the difference
to be on average zero for all intervals Ii. We run an ANOVA F-test of whether the means of
these distributions of differences are all equal. (The F-test does not test whether they are
equal to zero, but whether they are all equal to each other. However, if the null hypothesis
is rejected, we can conclude that in at least one occurrence the mean is different from zero.)
When pooling the responses of all the subjects, we obtain a p-value of 4.2e-219, and the test
is rejected at the .01 level for 81% of the subjects (median p-value: 3.5e-8). These results
support the conclusion, in the main text, that the responses of a large majority of subjects
do not satisfy the Bayesian calibrated-responses property.

t-tests We consider a different strategy, based on t-tests, to test Eq. 3.3. For each of the
41 intervals Ii, we run the one-sample t-test of equality between p̂−p, where p̂ ∈ Ii, and zero.
We reject the null hypothesis for 35 tests at the .05 level and for 34 tests at the .01 level
(Fig. 7). Instead of a series of individual tests, we seek to reach a conclusion, instead, about
the one hypothesis that E[p− p̂|p̂ ∈ Ii] = 0 for all intervals Ii. Under this null hypothesis and
for a significance level α, the number of rejections (among the 41 tests) follows a binomial
distribution with parameters 41 and α. Thus we expect, under this hypothesis, to obtain 5%
of 41, i.e., an expectation of 2.05 rejections, at the 0.05 level, and 0.41 rejections at the 0.01
level (we obtain, instead, 35 and 34). We look at the probability of obtaining a number of
rejections equal to, or greater than, the obtained numbers. With α = 0.05, the probability
of 35 or more rejections is 8.5e-42. With α = 0.01, the probability of 34 or more rejections
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is 4.2e-64. These results substantiate our conclusion that the calibrated-responses property
is not verified in subjects’ data.

Consistent-updates property

We run two series of t-tests of the consistent-updates property in subjects’ data (Eqs. 3.9 and
3.10). First, for each possible sequence of ring draws, we pool the obtained responses and
run a t-test of Eq. 3.9 (Fig. 8A). The p-values of the t-tests of equality are all below 1e-3,
except for the sequences in which the red and green numbers are balanced (Table 9). We
run the tests for each subject, and find that for nine sequences the null hypothesis (Eq. 3.9)
is rejected at the .01 level for more than half of the subjects, and for four sequences it is
rejected by more than 80% of the subjects (Table 9, last column). Second, we test whether
the relation predicted by Eq. 3.10 is verified on average for each response interval Ii (Fig. 8B).
The null hypothesis is rejected at the .05 level for 76% of subjects, and at the .01 level for
73% of subjects. The binomial probabilities of obtaining proportions equal or higher than
these, under the null hypothesis (see previous section), are 5.2e-34 and 1e-53. We conclude,
as in the main text, that the Bayesian consistent-updates property is not verified in subjects’
data.

Quasi-Bayesian models

This section provides more details on the results regarding the quasi-Bayesian models. In
this class of model, the response, pαρλ, is determined by the sequence of rings presented and
by the parameters α, ρ, and λ (see Eqs. 4.6 and 4.7; note also that with ρ = 1 it is immediate
that pαρλ equals pαλ given in Eq. 4.5).

Average response to sequences of length t with nR red rings

Given a number of red rings, nR, and a number of green rings, nG, we find that the average
response of a quasi-Bayesian observer — averaged over all the sequences that contain nR red
rings and nG green rings — is

p̄αρλ =
1

2
+

λ

2

(nR − nG)
1
t

∑t−1
i=0 ρ

i

λ
∑t−1

i=0 ρ
i + 2ρt(α− 1) + 2

, (6.15)

where t = nR+nG. Alternatively this can be expressed as a function of the optimal estimate,
p∗, as

p̄αρλ = p∗ + (2p∗ − 1)
λ1

t

∑t−1
i=0 ρ

i − ρt(α− 1)− 1

λ
∑t−1

i=0 ρ
i + 2ρt(α− 1) + 2

. (6.16)

Noting the equality
t−1∑
i=0

ρi = t+ (ρ− 1)
t−1∑
i=0

iρt−1−i, (6.17)

we can also write the average response as

p̄αρλ = p∗ + (2p∗ − 1)
λ− 1 + λ(ρ− 1)1

t

∑t−1
i=0 iρ

t−1−i − ρt(α− 1)

λ
∑t−1

i=0 ρ
i + 2ρt(α− 1) + 2

. (6.18)
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Sequence p-value NR NG % < .01
0 5.3e-51 *** 712 1388 .71
1 1.4e-31 *** 1366 685 .52
00 4.9e-64 *** 317 1071 .86
01 .99 332 380 .19
10 .074 * 333 352 .10
11 8.5e-68 *** 1017 349 .86
000 7.9e-59 *** 231 840 .81
001 .00056 *** 127 190 .24
010 6.9e-10 *** 146 234 .38
011 7.5e-18 *** 202 130 .57
100 3.2e-15 *** 147 205 .33
101 2.6e-08 *** 203 130 .33
110 3.7e-05 *** 218 131 .38
111 2.9e-62 *** 784 233 .86
0000 1.3e-29 *** 134 706 .62
0001 5e-10 *** 62 169 .33
0010 3e-08 *** 52 138 .10
0011 .76 62 65 .05
0100 1.1e-14 *** 77 157 .33
0101 .82 75 71 .00
0110 .037 ** 60 70 .00
0111 3.3e-13 *** 135 67 .33
1000 1.1e-09 *** 67 138 .24
1001 .12 75 72 .00
1010 .3 68 62 .00
1011 7.9e-16 *** 129 74 .33
1100 .61 73 58 .05
1101 8.7e-12 *** 155 63 .14
1110 8.3e-05 *** 155 78 .19
1111 9.5e-32 *** 660 124 .67

Table 9: Bayesian update property: t-tests of Eq. 3.9 for each sequence of
observations.

If the prior is correct (α = 1), the likelihood is correctly weighted (λ = 1), and only the
prior is misweighted (ρ ̸= 1), then the average response is

p̄ρ = p∗ + (2p∗ − 1)(ρ− 1)
1

t

∑t−1
i=0 iρ

t−1−i∑t−1
i=0 ρ

i + 2
. (6.19)

The ratio of sums, in the right-hand-side of this equation, is zero for t = 1 and positive for
t > 1. Thus after one ring (t = 1) the model subject’s estimate is the optimal estimate p∗,
and after more than one ring (t > 1), the model subject either overreacts, on average, to the
evidence if ρ > 1, or underreacts (conservatism), if ρ < 1; but the model cannot reproduce
the subjects’ conservatism followed by its reversal.
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If the prior is correct (α = 1) but both the prior and the likelihood are allowed to be
assigned incorrect weights (ρ ̸= 1 and λ ̸= 1), then the average estimate in response to the
sequences of t rings among which nR are red is

p̄ρλ = p∗ + (2p∗ − 1)
λ− 1 + λ(ρ− 1)1

t

∑t−1
i=0 iρ

t−1−i

λ
∑t−1

i=0 ρ
i + 2

. (6.20)

Whether the responses of the model subject are under- or over-reactions to the evidence,
as compared to the optimal estimates, is determined by the sign of the numerator in the
right-hand-side of this equation (e.g., if it is positive, the subject provides an estimate larger
than optimal if the optimal estimate is greater than .5). With t = 1, the numerator is equal
to λ − 1, thus the model reproduces the conservatism of subjects at the first trial only if
λ < 1. For t > 1, if λ < 1 and ρ < 1 then the numerator is negative and the model predicts
conservatism at all trials. Only with λ < 1 and ρ > 1 can the numerator start negative
(for t = 1) and become positive (at some t > 1). In this case after a few ring draws the
model subject underreacts to the evidence, while after longer sequences it overreacts to the
evidence.

If the weight on the likelihood is correct (λ = 1) but the prior and the weight on the
prior are allowed to be incorrect (α ̸= 1 and ρ ̸= 1), then the average estimate is

p̄αρ = p∗ + (2p∗ − 1)
1
t

∑t−1
i=0 ρ

i − ρt(α− 1)− 1∑t−1
i=0 ρ

i + 2ρt(α− 1) + 2
. (6.21)

The subject exhibits conservatism if the sign of the factor to (2p∗−1), in the right-hand-side
of this equation, is negative, and they exhibit overreaction if it is positive. With t = 1, this
factor is −ρ(α−1)/(3+2ρ(α−1)). It is negative if α > 1, or if α < 1 and ρ > 3

2(1−α)
, and thus

only in these two cases does the model subject exhibits conservatism after the first ring, as
do the subjects. If α < 1 and ρ > 3

2(1−α)
, then, noting that ρ > 3

2
, it is easy to show that the

numerator in the equation above is positive, for any t, and the denominator is negative, for
any t, and thus the factor is negative for any t, i.e., the model subject exhibits conservatism
at all trials, contrary to the subjects. In the other case, α > 1, it is immediate to see that
the denominator is positive for any t. As for the numerator, we find, using the equality in
Eq. 6.17, that it is positive if α < 1 + 1

t
ρ−1
ρ

∑t−1
i=0 iρ

−i. This provides an upper bound on
α, in order for the model subject to exhibit overreaction at some trial. We note that with
the constraint α > 1, this inequality implies that ρ should be greater than 1. In sum, this
inequality and the condition α > 1 constitute necessary and sufficient conditions for the
model subject to exhibit conservatism at the first trial and the opposite of conservatism at
some later trial. An implied pair of necessary conditions is α > 1 and ρ > 1; these are
not sufficient conditions, and in fact the subjects’ best-fitting values of these parameters,
α = 1.47 and ρ = 1.07, verify this pair of conditions, but not the bound on α just presented,
for t ≤ 5; thus this model with these parameters results in conservatism at all five trials
(Fig. 13, third row).

Finally, in the general case (in which all three parameters are allowed to differ from 1),
we note that if ρ is close to 1, then

∑t−1
i=0 ρ

i is approximately t, and ρt ≈ 1+ t(ρ− 1). Hence
we approximate the average response p̄αρλ as

p̄αρλ ≈ 1

2
+

1

4
λ

nR − nG

α + t[1
2
λ+ (α− 1)(ρ− 1)]

. (6.22)
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Figure 13: Behavior of the quasi-Bayesian models. As in Figure 10, with the quasi-
Bayesian models with ρ ̸= 1, and α = λ = 1 (pρ, first row, best-fitting ρ = 0.986); α = 1 (pρλ,
second row, best-fitting ρ = 1.19, λ = 0.56); λ = 1 (pαρ, third row, best-fitting α = 1.47,
ρ = 1.07); and with the three parameters allowed to differ from 1 (pαρλ, last row, best-fitting
α = 0.067, ρ = 1.011, λ = 0.022).

Keeping nR − nG constant, variations in t have a small impact on the average estimate if∣∣∣λ
2
+ (α− 1)(ρ− 1)

∣∣∣≪ α. (6.23)

With the values best-fitted to subjects’ data, the left-hand-side of the equation above is
0.0003, which indeed is well below the right-hand-side α = 0.067 (justifying the approxima-
tion in Eq. 4.8). This suggests that the subjects’ average responses vary strongly with the
net difference between red and green rings, nR − nG, but weakly with the total evidence, t.
The behaviors of the quasi-Bayesian models are shown in Fig. 13.
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nR t % pval < .01 median pval
1 2 .29 .14
1 3 .33 .19
2 3 .29 .05
1 4 .19 .11
2 4 .24 .29
3 4 .29 .08
1 5 .05 .44
2 5 .19 .15
3 5 .24 .38
4 5 .24 .20

Table 10: ANOVA F -tests of the equality of the mean responses to sequences
featuring different orders of red and green rings. A low p-value suggests that one
should reject the hypothesis that the mean response does not depend on the sequence order.

Order effects

Equations 4.6 and 4.7 with ρ ̸= 1 suggest that responses may depend not only on the
number of rings drawn, t, and on the number of red rings among them, nR, but also on
the order in which the red and green rings appear in the sequence. To examine whether
this is the case in the responses of subjects, we run, for each pair (nR, t) for which exist
several sequences that differ only by their order, an ANOVA F -test of the null hypothesis
that the mean responses to each of these sequences are all equal. We find that in most cases
(characterized by nR and t), this hypothesis is rejected for less than one third of subjects.
In other words, for a majority of subjects we do not find that the order of the red and
green rings in a sequence has a significant effect on the response (Table 10). In comparison,
most of the effects that we exhibit in the paper are found in the responses of more than
70% of the subjects (e.g., the positive autocorrelation in responses is significant for 100%
of the subjects). We note, in addition, that as the sequence length increases, so does the
number of the possible orders of the red and green rings in it; as a result, the sample size
available for each sequence decreases, and in many cases a subject sees a given sequence only
once or twice. Small samples, in ANOVA F -tests, tend to inflate the rate of ‘Type I’ errors
(i.e., erroneous rejections of the null hypothesis) if the variances of each population are not
equal (Brown and Forsythe, 1974; Büning, 1997). We run Bartlett’s tests of equality of
variances for each of the groups of samples corresponding to the ten ANOVA F -tests shown
in Table 10. An average of 34% of subjects reject the null hypothesis of equal variances at
the 0.01 level (with a minimum, across these ten cases, of 19% of subjects). Therefore, the
fractions of significant tests reported in Table 10 are likely to be overestimated.

As some subjects, although a minority, exhibit significant order effects, we examine the
influence, on the responses of subjects, of the order of the rings in a sequence. For a given
sequence, s, containing t samples among which nR are red, we consider the average difference
between the response to this sequence and the average response to the t-long sequences that
contain nR red rings, ⟨p̂(s)− p̄(nR, t)⟩. We look at this quantity as a function of the average
position of the red rings in the sequence (if there is only one red ring, this is simply the
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position of this ring). So as to compare sequences containing different number of red rings,
we rescale this average position to a relative average position that ranges from -1 to 1 (if this
relative position is -1, all the red rings in the sequence are at the beginning of the sequence,
while if it is 1, they are all at the end). Pooling all the subjects’ responses together, we find
that for most lengths t and numbers of red rings nR, the order of these red rings has no
significant effect (Fig. 14, first row, dotted lines). When it has a significant effect (Fig. 14,
first row, solid lines), the subjects’ responses seem to exhibit a primacy effect, i.e., when
the red rings in a sequence occur towards the beginning of the sequence, the responses are
larger, on average, than when the red rings occur towards the end of the sequence.

Pooling together the responses of all the subjects, however, masks the heterogeneity in
subjects’ behaviors. First, for a majority of subjects there are no significant effects. Second,
we find both primacy effects and recency effects in subjects’ data. Indeed, among the 29%
of subjects who exhibit a significant effect after two rings (Table 10), half exhibit a primacy
effect (Fig. 14, middle row), while the other half exhibit a recency effect (i.e., the responses
are larger when the red rings occur towards the end of the sequence; Fig. 14, last row).

One might conjecture that when fitting the quasi-Bayesian model with incorrect initial
prior to the responses of each subject, the parameters best fitting the subjects that exhibit
a recency effect or a primacy effect should result in model subjects that correspondingly
exhibit a recency effect or a primacy effect. In particular, one might expect subjects with a
recency effect to be best fitted by a prior weight ρ lower than 1. However, the best-fitting
parameter ρ is greater than 1 for all the subjects, except one, whose best-fitting ρ is lower
than 1 but who has no significant order effects. The model simulations corresponding to the
other subjects (with ρ > 1) yield no significant order effects, or a primacy effect. Besides,
76% of subjects have best-fitting parameters such that 1 < ρ < 1.06 and the ratio of the left-
to the right-hand-side of Eq. 6.23 is lower than 0.12, i.e., parameters that, similarly to those
that best fit the pooled population, imply responses that depend mostly on the difference
nR−nG, and more weakly on the total evidence, t. Thus although the quasi-Bayesian model
is able to capture both recency and primacy effects, it is not this aspect of data that seems
the most important to capture in order to closely reproduce subjects’ behavior, even for the
subjects for which these effects are significant. Instead, a more important aspect of data
seems to be the way that responses depend on the net count of red vs. green rings.

Behavior of the second- and third-best models

The second- and third-best-fitting models are the one with log-normal noise in the updates of
the cognitive states and truncated Gaussian noise in the choice of a response, and the one in
which the two types of noise are Gaussian (Table 5, lines 10 and 11). In addition, if we allow
for different models for the subjects, the sizes of the cohorts of subjects whose responses
are best-fitted by each of these two models are, respectively, the second and third largest
(see last column of Table 5). Figure 15 shows that the five behavioral patterns identified in
subjects’ data are also captured by these two models.
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Figure 14: Order effects. Difference between the response to a sequence, p̂(s), and the
average response to the sequences of the same length and featuring the same number of red
rings, p̄(nR, t), as a function of the relative average position of the red rings in the sequence;
for sequences of length 2 (left column) to 5 (right column); and for all the subjects (first
row), the 14.5% subjects who exhibit a significant primacy effect after two rings (middle
row), and the 14.5% subjects who exhibit a significant recency effect after two rings (last
row). Lines are solid when the corresponding F -test is significant to the .01 level. In some
cases, sequences of the same length t and same number of red rings nR have their red rings
in a different order, but nevertheless have the same average position of red rings (and thus
the same abscissa, here): in these cases, the average response to each different sequence is
shown with a circle.

Calibrated-response property in models

In Figure 16, we look at whether the responses of the models, fitted to subjects’ data, verify
the Bayesian calibrated-response property (Eq. 3.2). To emphasize any departure from this
property, we consider the empirical average of the difference between the true proportion
and the response, p − p̂, as a function of the response, p̂ (instead of the true proportion p
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as a function of p̂, as in Fig. 7). We find that none of the models we consider verify the
property, and all the models differ from the prediction of the property in ways qualitatively
similar to that of the subjects.

Indeed, for extreme values of the response p̂, the model subjects exhibit ‘over-confidence’
(for responses close to 1, the average true proportion is below the response, and conversely for
responses close to 0), while the opposite is found for responses close to the middle value: e.g.,
for responses just above .5 the true proportion is on average larger than the response. The
latter effect, however, is quantitatively small in the case of the model in which responses are
the correct Bayesian estimates, but with response error added (Fig. 16, top middle panel).
It is larger (and closer to the effect found in subjects’ data) with the model of Bayesian
estimation starting from an incorrect prior (and truncated Gaussian noise in responses;
Fig. 16, top right panel), and it is the most similar to subjects’ data in the case of the
best-fitting model (which includes Gaussian updates of the cognitive state and truncated
log-normal responses; Fig. 16, bottom right panel).

Experiment variant with geometrically-distributed sequence lengths

In our experiment, the subjects know that five draws will be shown in each block of trials.
We run a control experiment, in which the subjects do not know in advance how many
samples they will observe in a block of trials: instead, after each presentation of a new ring
there is a 20% probability that the sequence ends, and an 80% probability that the sequence
continues (i.e., that an additional ring is drawn). In other words, the sequence length is a
geometric random variable with parameter 0.2. All other aspects of the experiment have
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Figure 15: Behavior of the models with log-normal or Gaussian cognitive states,
and truncated Gaussian response noise. As in Figure 10, with the model with Gaussian
states and truncated Gaussian responses (third-best model, first row) and the model with
log-normal states and truncated Gaussian responses (second-best model, second row).
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Figure 16: Subjects’ and model subjects’ responses do not verify the calibrated-
response property. Empirical average of the difference between the true proportion and
the estimate, p− p̂, conditional on the estimate p̂, for the subjects and for five models with
the parameters best-fitting subjects’ data. Top left: subjects’ data. Top middle: model
in which the responses derive from optimal, Bayesian inference, with in addition Gaussian
truncated noise. Top right: model with Bayesian inference on the basis of an incorrect prior,
and Gaussian truncated noise. Bottom left: model with a cognitive state that is a precise,
deterministic count of the net excess of red over green rings, and with truncated Gaussian
response error. Bottom middle: noisy counting model, with no response error. Bottom right:
best-fitting model, with Gaussian updates of the cognitive states, and log-normal noise in
responses.

been maintained identical. Seventeen subjects, aged 18 to 37 (average 21.9), participated in
this variant of the experiment, in the same conditions as those of the main experiment (see
details above). As with the main experiment, we excluded from our analyses four subjects
whose average absolute error (0.226, standard deviation: 0.021) was significantly higher than
that of the other subjects (0.168, standard deviation: 0.018). The analyses below are thus
based on the responses of 13 subjects.

So as to be able to compare the behavior of subjects in the main experiment and in
the variant, we look, first, at their responses to the sequences of up to five observations.
We find that the subjects’ responses are not a monotonic function of the optimal, Bayesian
estimates (Fig. 17A, blue line): as in the main experiment, the average response when the
optimal estimate is 5/7 is higher than when it is 3/4 (although 5/7 < 3/4), and similarly for
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Figure 17: Subjects’ behavior in the experiment variant with geometrically-
distributed sequence lengths. (A) Subjects’ responses as a function of the optimal
estimate, with sequences of up to five observations (blue line; compare with Fig. 3), and up
to 20 observations (orange line). The filled dots indicate where the p-value of a t-test of
equality with p∗ is below .05. (B) Consistent-updates Bayesian property: left-hand side vs.
right-hand side of Eq. 3.9. Filled points indicate where the t-test of equality is rejected at the
.01 level. The dashed crosses show the data from the main experiment (same as in Fig. 8A).
(C) Average responses after observing the sequence x1:t and a green ring (xt+1 = G), vs.
average responses after observing the same sequence (x1:t) and a red ring (xt+1 = R). For
comparison, the small dots show the data obtained in the main experiment (same as in Fig. 6,
bottom right). (D) Averages (blue) and standard deviations (orange) of the adjustments in
responses following a red ring, p̂Rt+1 − p̂t, as a function of the preceding responses, p̂t. The
bars show the standard error of the mean and of the standard deviation. The dotted lines
show the data obtained in the main experiment (same as in Fig. 9B). (E) Coefficients of
correlation between subjects’ excursions at trial t and subjects’ excursions at a preceding
trial t− l, with t ranging from 2 to 5 (compare with Fig. 5B), and with all trials t > l pooled
together. Error bars indicate the 90% confidence interval.

the symmetrical estimates 1/4 and 2/7. The curves obtained in the main experiment and
in the variant have very similar shapes (compare the blue lines in Fig. 3 and in Fig. 17A).
A difference, however, is that in the main experiment the average responses are sometimes
more extreme (closer to 0 and 1) than the optimal estimates, and sometimes less extreme
(closer to .5), while in the variant the average responses (for sequences up to length 5) are
never more extreme than the optimal estimates.

The similar but less-extreme responses suggest that the decision-making processes of the
subjects, in the main experiment and in the variant, are identical, with the exception that in
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the variant the subjects choose to make adjustments of smaller sizes. And indeed, turning to
the other behavioral patterns that we have examined in this study, we find that qualitatively,
they all look similar (between the main experiment and the variant), while the quantitative
differences all seem to mainly result from the smaller adjustments adopted by the subjects,
in the variant. For instance, the consistent-update property, i.e., the equality between the
probability-weighted adjustments after a green ring, δG = −(1−p̂t)(p̂

G
t+1−p̂t), and after a red

ring, δG = p̂t(p̂
R
t+1− p̂t), is violated in the same way in the main experiment and in its variant

(Fig. 17B). But in the variant, the probability-weighted adjustments are smaller (resulting
in points closer to the origin in Fig. 17B). Smaller adjustments also imply that the responses
after a red ring and those after a green ring are closer to each other in the variant than
they are in the main experiment (resulting in points closer to the identity line in Fig. 17C).
And a direct look at the subjects’ adjustments, p̂Rt+1 − p̂t, shows that they depend weakly
on the preceding responses, in both the variant and the main experiment, but in the variant
they are smaller (Fig. 17D). (We note that the standard deviations are similar, suggesting
(unsurprisingly) similar degrees of cognitive noise in the two experiments.) Finally, we find
in the data of the variant experiment the same autocorrelation in responses that we find in
the main one (Fig. 17E).

From the comparison of the behavior of subjects in the main experiment and in the
variant, we conclude, first, that the subjects process the observations and make their decisions
in the same way, in the two experimental settings; and second, that they choose to make
smaller adjustments in the variant than in the main experiment. As for this difference in
the adjustment sizes, the analysis presented in the Discussion suggests that it results from
an efficient adaptation to the different statistics of the sequence lengths in the two cases (see
Fig. 11).

In the main experiment, the adjustment size chosen by the subjects results in their con-
servatism after a few observations, followed by their overreaction to the evidence after, for
instance, five draws. The smaller adjustments, in the variant experiment, result in conser-
vatism even after five draws (Fig. 18, solid lines). But as evidence accumulates, the Bayesian
observer makes smaller and smaller adjustments to its estimate (Eq. 5.1), such that the ad-
justment size chosen by the subjects in the variant experiment, although small, may after a
number of observations be too large, and result in overreaction to the evidence. Although
for comparison purposes we first limited our analysis to sequences of up to five draws, we
now examine subjects’ responses after longer sequences, in order to investigate whether they
eventually exhibit overreaction to the evidence. We find that the behavioral data indeed
exhibits a reversal of the conservatism bias after long sequences: after 12 observations and
more, there is a clear pattern of overreaction to the evidence, i.e., subjects’ responses are
more extreme than the optimal estimates (Fig. 18). Thus here also, we obtain in the variant
experiment a behavior very similar to that obtained in the main experiment (Fig. 4), but the
reversal of the conservatism bias occurs after longer sequences, because of subjects’ smaller
adjustments.

We note also that the pattern of decreasing autocorrelation continues after five draws
(Fig. 17E). The correlation between a response at some trial and the response 9 trials later
is significantly positive (Pearson correlation coefficient: 0.087, p-value: 0.001).

Finally, we look again, in Fig. 17A, at the subjects’ average responses as a function of the
optimal estimates, but this time including the sequences of up to 20 draws (this represents
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Figure 18: Bias reversal in the experiment variant with geometrically-
distributed sequence lengths. (A) Subjects’ response p̂, and (B) difference p̂ − p∗ with
optimal estimate, as a function of the optimal estimate, for different numbers t of rings
shown. Compare to Fig. 4. As the amount of available data decreases with the sequence
length, from length 7 we pool together the responses to sequences of similar lengths. In (B),
the filled dots indicate where the p-value of a t-test of equality with zero is below .05.

more than 98% of the blocks of trials). The responses of subjects seem to oscillate above
and below the value of the optimal estimate (Fig. 17A, orange line). These oscillations do
not result from sampling noise: for many optimal estimates, the responses are significantly
different from the optimal estimate (sometimes greater, sometimes lower). This emphasizes
the importance of examining carefully the responses to different sequences of observations,
instead of pooling together the responses to sequences that are very different but that imply
optimal estimates which are close in value, as in Fig. 1B. Still, an overall view of subjects’
responses, in Fig. 17A, seems to suggest that they are well aligned with the optimal estimates.
We note that in the main experiment, the average responses of subjects also seemed to
be oscillating around the optimal estimates, with significant differences, but on the whole
following the identity line (Fig. 3). These results substantiate the idea that the subjects, in
the two versions of the task, efficiently adapt their otherwise suboptimal decision process to
the different statistics of the sequence lengths.

Noisy-counting model with log-normal response selection: simula-
tions and individual best-fitting parameters

The best-fitting model for most subjects, which features log-normal response selection (line
12 in Table 5), has three parameters: µ and σ the mean and the standard deviation of
the cognitive-state updates; and ν, the noise parameter of the log-normal distribution of
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slider adjustments. For each subject, we find the three parameters that maximize the log-
likelihood of the subject’s responses. The mean value of µ across subjects is 0.082 (median:
0.077, standard deviation (SD): 0.019); mean value of σ: 0.041 (median: 0.034, SD: 0.019);
mean value of ν: 1.43 (median: 0.19, SD: 3.67).

Given µ, σ and ν, we compute as follows the MSE of the estimates of a model subject:
for each of the 101 values of the true probability ranging from 0 to 1 by increment of 0.01, we
sample M blocks of five rings, drawn with the given probability, and simulate, for a model
subject parameterized by µ, σ and ν, the stochastic responses to these draws. The average
of the squared errors of all these responses provides a numerical approximation to the MSE.
Finally, to obtain the MSE as a function of µ in Figure 11, we repeat this procedure with an
array of values of µ ranging from 0 to 0.25, and with each subject’s best-fitting values of σ
and ν. The resolution of the values of µ where the MSE is evaluated is higher (increments of
0.001) close to the optimum. Similarly, M ranges from 200 to 1000 or more near the optimal
choice of µ.

Data availability
Requests for the data can be sent via email to the corresponding author.

Code availability
Requests for the code used for all analyses can be sent via email to the corresponding author.
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