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Abstract

Decisions take time, and the time taken to reach a decision is likely to be informa-

tive about the cost of more precise judgments. We formalize this insight in the context

of a dynamic model of optimal evidence accumulation. We provide conditions under

which the resulting belief dynamics resemble either diffusion processes or processes

with large jumps. We then consider a limit under which the state-contingent choice

probabilities predicted by our model are identical to those predicted by a static ratio-

nal inattention model, providing a micro-foundation for such models. In the diffusion

case, our model provides a normative foundation for a variant of the drift-diffusion

model from mathematical psychology.
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1 Introduction

It is common in economic modeling to assume that, when presented with a choice set, a
decision maker (DM) will choose the option that is ranked highest according to a coherent
preference ordering. However, observed choices in experimental settings often appear to
be random, and while this could reflect random variation in preferences, it is often more
sensible to view choice as imprecise. Models of rational inattention (such as Matêjka et al.
[2015]) formalize this idea by assuming that the DM chooses her action based on a signal
that provides only an imperfect indication of the true state. The information structure that
generates this signal is optimal, in the sense of allowing the best possible joint distribution
of states and actions, net of a cost of information. In the terminology of Caplin and Dean
[2015], models of rational inattention make predictions about patterns of state-dependent
stochastic choice. These predictions will depend in part on the nature of the information
cost, and several recent papers have attempted to recover information costs from observed
behavior in laboratory experiments (Caplin and Dean [2015], Dean and Neligh [2019]).

However, in both laboratory experiments and real-world economic settings, decisions
take time, and the time required to make a decision is likely to be informative about the
nature of information costs.1 In this paper, we develop a framework to study rational inat-
tention problems in which decisions take time, providing a means of connecting decision
times to information costs and state-dependent stochastic choice.

There is an extensive literature in mathematical psychology that focuses on these is-
sues. Variants of the drift-diffusion model (DDM, Ratcliff [1985], Ratcliff and Rouder
[1998], Wagenmakers et al. [2007]) also make predictions about stopping times and state-
dependent stochastic choice.2 In particular, these models are designed to match the em-
pirical observation that hasty decisions are likely to be of lower quality.3 However, these
models are not based on optimizing behavior, and this raises a question as to the extent
to which they can be regarded as structural; it is unclear how the parameters of the DDM

1On the usefulness more generally of data on response times for drawing inferences about the nature of
the random error involved in choices, see Alós-Ferrer et al. [2021].

2DDM models were originally developed to explain imprecise perceptual classifications. See Woodford
[2020] for a more general discussion of the usefulness of the analogy between perceptual classification errors
and imprecision in economic decisions.

3The existence of a speed-accuracy trade-off is well-documented in perceptual classification experiments
(e.g., Schouten and Bekker [1967]). Variants of the DDM that have been fit to stochastic choice data include
Busemeyer and Townsend [1993] and more recently Krajbich et al. [2014] and Clithero [2018]; see Fehr
and Rangel [2011] for a review of other early work. Shadlen and Shohamy [2016] provide a neural-process
interpretation of sequential-sampling models of choice.
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model should be expected to change when incentives or the costs of delay change, and this
limits the use of the model for making counter-factual predictions. The framework we de-
velop includes as a special case variants of the DDM model, while at the same time making
predictions about state-dependent stochastic choice that, in some cases, match those of a
static rational inattention (RI) model. Consequently, our framework is able to both speak
to the relationship between stopping times and state-dependent stochastic choice (unlike
standard RI models) and make counter-factual predictions (unlike standard DDM models).

We propose a class of rational inattention models in which the DM’s imprecise percep-
tion of the decision problem evolves over time, and an optimization problem determines
a joint probability distribution over stopping times and choices. We give conditions under
which the dynamics of the belief state prior to stopping will be a pure diffusion (as as-
sumed in the DDM), or alternatively will be a pure jump process (as in the models of Che
and Mierendorff [2019] and Zhong [2019]). The diffusion case requires a limit assumption:
that discounting effects are negligible relative to the opportunity cost of time. Away from
this case, beliefs will follow a pure jump process, as shown by Zhong [2019]. For this
more general case, we give conditions under which beliefs will evolve as a series of jumps,
approximating a diffusion in the aforementioned limit, and conditions under which the DM
will act immediately after the first jump.

Our model is particularly tractable under this limit assumption. In this case, beliefs
follow a Markov process and move in a space whose dimensionality is one less than the
number of actions (e.g. a line in the case of a binary decision problem, as assumed in the
DDM). Our results therefore contribute to the literature on DDM-style models by present-
ing a model with many features of the DDM, but that — because it is developed as an
optimizing model — makes predictions about how decision boundaries and choice proba-
bilities should change in response to changes in incentives.

We also characterize the boundaries of the stopping regions and the predicted ex ante
probabilities of different actions in this limiting case, as functions of model parameters in-
cluding the opportunity cost of time. The key to this characterization is a demonstration that
the resulting state-dependent stochastic choice probabilities of our continuous-time model
are equivalent to those of a static RI model. Thus in addition to providing foundations for
interest in DDM-like models of the decision process, our paper provides novel foundations
for interest in static RI problems. For example, we provide conditions under which the
predictions of our model will be equivalent to those of a static RI model with the mutual-
information cost function proposed by Sims [2010] — and thus equivalent to the model of
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stochastic choice analyzed by Matêjka et al. [2015] — but the foundations that we provide
for this model do not rely on an analogy with rate-distortion theory in communications
engineering (the original motivation for the proposal of Sims).

More generally, as noted above, we show that any cost function for a static RI model
in the uniformly posterior-separable family studied by Caplin et al. [Forthcoming] can be
justified by the process of sequential evidence accumulation that we describe. This includes
the neighborhood-based cost functions discussed in Hébert and Woodford [2021], that lead
to predictions that differ from those of the mutual-information cost function in ways that
arguably better resemble the behavior observed in experiments such as those of Dean and
Neligh [2019]. Our result provides both a justification for using such cost functions in static
RI problems, and an answer (not given by static RI theory alone) to the question of how the
cost function should change as the opportunity cost of time changes.

The connection that we establish between the choice probabilities implied by a dynamic
model of optimal evidence accumulation and those implied by an equivalent static RI model
holds both in the case that the belief dynamics in the dynamic model are described by a pure
diffusion process and in the case that they are described by a jump process; thus we also
show that with regard to these particular predictions, these two types of dynamic models
are equivalent. However, the predictions of the two types of model differ with regard to the
distribution of decision times, so that it is possible in principle to use empirical evidence to
determine which better describes actual decision making.

The key to our analysis is a continuous-time model of optimal evidence accumulation,
in which beliefs are martingales (as implied by Bayes’ rule). The evolution of beliefs in
our model is limited only by a constraint on the rate of information arrival, specified in
terms of a posterior-separable cost function. This flexibility is consistent with the spirit of
the literature on rational inattention, but with some noteworthy differences. Much of the
previous literature considers a static problem, in which a decision is made after a single
noisy signal is obtained by the DM. This allows the set of possible signals to be identified
with the set of possible decisions, which is no longer true in our dynamic setting.

Steiner et al. [2017] also discuss a dynamic model of rational inattention. In their
model, because of the assumed information cost, it is never optimal to acquire information
other than what is required for the current action. As a result, in each period of their
discrete-time model, the set of possible signals can again be identified with the possible
actions at that time. We instead consider situations in which evidence is accumulated over
time before any action is taken, as in the DDM; this requires us to model the stochastic
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evolution of a belief state that is not simply an element of the set of possible actions.4

Our central concerns are to study the conditions under which the resulting continuous-
time model of optimal information sampling gives rise to belief dynamics and stochastic
choices similar to those implied by a DDM-like model, and to study how variations in the
opportunity cost of time or the payoffs of actions should affect stochastic choice.

A number of prior papers have endogenized aspects of a DDM-like process. Moscarini
and Smith [2001] consider both the optimal intensity of information sampling per unit of
time and the optimal stopping problem, when the only possible kind of information is given
by the sample path of a Brownian motion with a drift that depends on the unknown state,
as assumed in the DDM.5 Fudenberg et al. [2018] consider a variant of this problem with
a continuum of possible states, and an exogenously fixed sampling intensity.6 Woodford
[2014] takes as given the kind of stopping rule posited by the DDM, but allows a very
flexible choice of the information sampling process, as in theories of rational inattention.
Our approach differs from these earlier efforts in seeking to endogenize both the nature of
the information that is sampled at each stage of the evidence accumulation process and the
stopping rule that determines how much evidence is collected before a decision is made.7

Section 2 introduces our continuous-time evidence-accumulation problem, and presents
some preliminary results. In section 3, we define two special conditions that information
costs may satisfy: a “preference for gradual learning” or a “preference for discrete learn-
ing.” These properties represent the conditions under which we can show that the optimal
belief dynamics will evolve either as a sequence of bounded jumps (a diffusion in the limit
case) or a single jump. In section 4 we demonstrate that the state-dependent choice proba-
bilities predicted by our model in the limit case are equivalent to those predicted by a static
rational inattention model with a uniformly posterior-separable cost function. In section 5

4Our model differs from the one analyzed by Steiner et al. [2017] in several respects. First, as just noted,
we study a setting in which the DM takes an action only once, and chooses when to stop and take an action.
Second, we consider a much more general class of information costs, as opposed to assuming the mutual
information cost. And third, we assume that the DM has a motive to smooth her information gathering over
time, rather than learn all of the relevant information at a single point in time.

5Moscarini and Smith [2001] allow the instantaneous variance of the observation process to be freely
chosen (subject to a cost), but this is equivalent to changing how much of the sample path of a given Brownian
motion can be observed by the DM within a given amount of clock time.

6See also Tajima et al. [2016] for analysis of a related class of models, and Tajima et al. [2019] for an
extension to the case of more than two alternatives.

7Both Morris and Strack [2019] and Zhong [2019] adopt our approach, and obtain special cases of the
relationship between static and dynamic models of optimal information choice that we present below. Che
and Mierendorff [2019] and Zhong [2019] both differ from our treatment in not considering conditions under
which beliefs will evolve as a diffusion process.
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we discuss how the diffusion and jump cases can nonetheless be distinguished using data
on response times. Section 6 concludes.

2 Dynamic Models of Rational Inattention

Let X be a finite set of possible states of nature. The state of nature is determined ex-ante,
does not change over time, but is not known to the DM. Let qt ∈P(X) denote the DM’s
beliefs at time t ∈ [0,∞), where P(X) is the probability simplex defined on X . We will
represent qt as vector in R|X |+ whose elements sum to one, each of which corresponds to the
likelihood of a particular element of X , and use the notation qt,x to denote the likelihood
under the DM’s beliefs at time t over the true state being x ∈ X .

At each time t, the DM can either stop and choose an action from a finite set A, or
continue to acquire information. Let τ denote the time at which the DM stops and makes a
decision, with τ = 0 corresponding to making a decision without acquiring any information.
The DM receives utility ua,x if she takes action a and the true state of the world is x, and
pays a flow cost of delay per unit time, κ ≥ 0, until an action is taken. Let û(qτ) be the
payoff (not including the cost of delay) of taking an optimal action under beliefs qτ :

û(qτ) = max
a∈A

∑
x∈X

qτ,xua,x.

We assume ua,x is strictly positive, and discuss the implications of this assumption below.
If the DM does not stop and act, she can gather information. We adopt the rational

inattention approach to information acquisition and assume that the DM can choose any
process for beliefs satisfying “Bayes-consistency,” subject to a further constraint (specified
below) on the rate of information acquisition. In a single-period model, Bayes-consistency
requires that the expectation of the posterior beliefs be equal to the prior beliefs. The
continuous-time analog of this requirement is that beliefs must be a martingale.

Let the DM’s initial beliefs be q̄0 ∈P(X), and let Ω = D(R|X |+1) (i.e. the space of
possible paths of a càdlàg R|X |+1-valued process).8 We allow the DM to choose any filtered
probability space on Ω, (Ω,F ,{Ft}t∈R+,P), and stochastic process, q : Ω×R+→P(X),
such that qt is a càdlàg {Ft}-martingale and q0 = q̄0, subject to an additional constraint
specified below in Equation (3).

8Using this space as opposed to D(P(X)) allows us to consider stopping strategies τ that are not measur-
able in beliefs.
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Example. A Markovian diffusion: The DM could choose

dqt = Diag(qt−)σ(qt−) ·dBt (1)

where Diag(qt−) is a diagonal matrix with qt− on the diagonal, σ is an |X | × (|X | − 1)
matrix-valued function and Bt is an (|X | − 1)-dimensional Brownian motion. To ensure
that qt remains in the simplex, we must have qT ·σ(q) =~0 for all q ∈P(X).

Example. K Markovian jump processes: The DM could choose, for some integer K > 0,

dqt =−
K

∑
k=1

ψk(qt−)zk(qt−)dt +
K

∑
k=1

zk(qt−)dJk
t , (2)

where each Jk
t is an independent Poisson process with intensity ψk(qt−). To ensure that

beliefs remain in the simplex and satisfy Bayes-consistency, the functions zk must be such
that, for all q ∈P(X), q+ zk(q) is also in the simplex and absolutely continuous with
respect to q.

In both of these examples, we assume sufficient regularity to ensure the existence and
uniqueness of a solution to the SDE.9 These two examples could also be combined, to
generate a jump-diffusion process. The quantities σt and zk,t could also be allowed to vary
with time in a more complex way, rather than having to be functions of the current belief
qt− as specified above.10

We assume that DM is subject to a constraint on how fast her beliefs can evolve, speci-
fied in terms of a “posterior-separable” constraint on the rate of information flow (as in the
static rational inattention problems considered by Caplin et al. [Forthcoming]). Posterior-
separable constraints are defined in terms of a divergence, D : P(X)×P(X)→R+, which
is defined for all (q′,q) ∈P(X)×P(X) such that q′� q.11 By the definition of a diver-
gence, D(q′||q) is zero if and only if q′ = q, and strictly positive otherwise. We extend
D to R|X |+ × R|X |+ by assuming the function to be homogenous of degree one in each of

9Because P(X) is a compact subset of R|X |, Lipschitz continuity of the σ , ψ , and z functions is sufficient;
see e.g. Pham [1998].

10That is, we do not assume the belief process is Markovian, and whether or not such policies are optimal
is not the focus of our analysis. Our results will in some cases show that Markovian optimal policies exist.

11We assume here that D is finite for q′,q on the boundary of the simplex, provided that q′� q, as is true
for example of the widely-used Kullback-Leibler divergence. But our results could readily be extended to
cover the case in which D is infinite for such values.
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its arguments. We also assume that it is strongly convex in its first argument and twice
continuously-differentiable in both arguments.12

We require the DM’s belief process to satisfy

limsup
h↓0

1
h

EP[D(qt+h||qt−)|Ft−]≤ χ, (3)

where χ > 0 is a finite constant.13 This constraint can be understood as the continuous-time
analog of requiring that Et−[D(qt+h||qt−)]≤ χh in a discrete time model with time interval
h. Note also that in what follows, we will use the notation Et [·] to indicate EP[·|Ft ].

The divergence D that defines this constraint is central to our analysis. Specifically, we
investigate the relationship between properties of this divergence and properties of optimal
beliefs processes chosen by the DM. One of the core questions we consider is whether
it is optimal for the DM to choose a beliefs process that diffuses (as in our first example
above) or jumps (as in our second example above). When considering the constraint in the
context of a diffusion, only the local properties of the divergence D are relevant. These
local properties are summarized by the Hessian matrix that characterizes D(q′||q) up to
second order when q′ is close to q. Define k̄(q) as the |X | × |X | matrix-valued function
defined on the interior of the simplex by

k̄x,x′(q) =
∂ 2D(q′||q)

∂q′x∂q′x′
|q′=q, (4)

and extended to the boundary by continuity. As the following example illustrates, this
matrix-valued function characterizes the constraint (3) for diffusion processes.14

Example. A Markovian diffusion: in the context of the diffusion process (1), the constraint
(3) requires that σ(q) satisfy the additional condition

1
2

tr[σ(q)T Diag(q)k̄(q)Diag(q)σ(q)]≤ χ (5)

for all q ∈ int(P(X)).

12Strong convexity, in this context, implies that D(q′||q) ≥ K|q′ − q|2 for some constant K > 0. The
assumption of homogeneity of degree one allows us to define differentiability in the usual way on R|X |.

13Technical footnote: we require only that (3) hold for all t ∈ R+, P-almost-everywhere. That is, the
process qt is indistinguishable from a process for which the constraint holds everywhere.

14For a proof, see Lemma 7 in the appendix.
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In contrast, the global properties of the divergence D govern the constraint in the context
of a pure jump process.

Example. K Markovian jump processes: in the context of the jump process (2), the con-
straint (3) requires that, for all q ∈P(X),

K

∑
k=1

ψk(q)D(q+ zk(q)||q)≤ χ. (6)

We have specified the set of possible belief processes in this way to emphasize the con-
nection between our approach in continuous time and the standard, discrete-time approach
to rational inattention.15 The constraint (3) implies a tradeoff between more frequent but
less informative movements in beliefs and rarer but larger movements in beliefs. Suppose
that the DM would like her beliefs to follow a jump process of the kind specified in (2).
The DM can choose rare but informative signals (small ψk(q), large D(q+ zk(q)||q)) or
more frequent but less informative signals (larger ψk(q), smaller D(q+ zk(q)||q)). In fact,
there exists a limit in which jumps become very likely and very small (|zk| → 0,ψk→ ∞)
and the stochastic process of beliefs and the information constraint for the jump process
(2) converge to the stochastic process and constraint for a diffusion process. That is, the
constraint (3) ensures continuity between the cost of a continuous belief process and the
cost of a belief process with very small jumps.

Let A denote the set of feasible policies (i.e. filtered probability spaces defined on
Ω, stochastic processes for beliefs consistent with (3), and stopping times), and let ρ ≥ 0
denote the DM’s rate of time preference. We will assume that at least one of ρ or κ is
strictly positive, so that the DM faces some cost of delay.

Definition 1. The DM’s problem given initial belief q̄0 ∈P(X) is

V (q̄0) = sup
((Ω,F ,{Ft},P),q,τ)∈A

E0[e−ρτ û(qτ)−κ

ˆ
τ

0
e−ρsds].

We next discuss in more detail several features of our modeling approach.

15The working paper version of this paper (Hébert and Woodford [2019]) derives a version of our
continuous-time problem by considering the limit of a sequence of discrete-time problems.
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2.1 Remarks on the Model

Generality of the Beliefs Process. Our model allows the DM to choose from large space
of possible beliefs processes, which we view as consistent with the spirit of the rational
inattention paradigm. However, as we will show in our preliminary analysis below, the
DM’s problem can be restricted to a smaller and more tractable set of beliefs processes
without reducing the utility achieved in the DM’s problem.

Strictly Positive Utility. We assume in our model (following Zhong [2019]) that the
utility function is strictly positive. In the ρ = 0, κ > 0 case, this assumption is unnecessary,
and considering negative utilities would not change any results. In the ρ > 0, κ = 0 case,
the value of never making a decision is zero. The economic implication of the assumption
of strictly positive utility is that any action taken in finite time dominates never making a
decision. This condition, which is stronger than necessary, ensures that optimal stopping
times are well-behaved.

Discounting and the No-discounting Limit. Much of our analysis will focus on the case
without discounting (ρ = 0), or on the limiting case in which ρ → 0+. We focus on these
cases because they are more tractable, allowing us to obtain sharper results, and because
we are motivated by settings in which the opportunity cost of time is large relative to the
cost of the effects of discounting.

Consider for example a problem in which the maximum possible reward no more than
$2000. Assume a rate of time preference of 20% annualized (reflecting a very high degree
of impatience) and a $5/hour (less than the current US minimum wage) opportunity cost of
time κ . The hourly cost of receiving the reward one hour later due to discounting is at most
20%
year ×

$2000
8760 hours per year ≈ 0.05 dollars per hour, roughly one hundred times smaller than the

opportunity cost of time under these assumptions. Many decision problems, including in
particular the kind of laboratory experiments we discuss in Section 5, involve even smaller
stakes, and as a result in these problems we expect ρ û(q) to be small relative to κ . We
will show a kind of continuity in the limit as ρ approaches zero, which we discuss in more
detail below, justifying the approach of viewing the ρ = 0 case as an approximation of the
case in which ρ û(q) is small relative to κ .

Information Constraints vs. Information Costs. We have described our model in terms
of a constraint on rate at which information can be acquired. However, we would have
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reached identical results had we instead treated information as having a utility cost. Both
approaches are common in the rational inattention literature, and equivalent for our pur-
poses, although they make different predictions in certain settings (e.g. with respect to the
effect of “scaling up” the utility function u on behavior). In the working paper version of
this paper (Hébert and Woodford [2019]), we discussed both primal (constraints) and dual
(utility costs) problems, and provided some equivalence results.

In the case of no discounting (ρ = 0), whether the information is subject to a utility
cost or constraint is irrelevant: the optimal policies are identical across the two cases. This
property comes from the fact that the cost of delay is constant. In the case with discounting
(ρ > 0), the cost of delay depends in part on the current level of the value function, which
generates variation in the amount of information acquired with costly information, but not
when information acquisition is constrained. Our results, however, are not sensitive to the
differences between the optimal policies in these two cases.

Conditional vs. Unconditional Dynamics. The continuous time problem just described
uses the “unconditional” dynamics for the beliefs qt , meaning that beliefs are martingales.
That is, by the usual Bayesian logic, the DM can never expect to revise her beliefs in any
particular direction. The model can also be described in terms of the conditional dynamics
for beliefs, which is to say how the beliefs evolve conditional on the true state x ∈ X . To
illustrate this point, consider the Markovian diffusion example. In this example, conditional
on the true state being x ∈ X , the DM’s beliefs qt follow a diffusion of the form16

dqt = Diag(qt−)σ(qt−)σ(qt−)
T ex dt + Diag(qt−)σ(qt−)dBt|x, (7)

where ex is a vector equal to one in the element corresponding to x and zero otherwise.
Note that this implies that, if we write µt−|x for the drift rate of qt,x in (7),

µt−|x = eT
x Diag(qt−)σ(qt−)σ(qt−)

T ex ≥ 0.

Thus, the DM will tend to assign more probability to the true state as evidence accumulates.
Likewise, consider the K Markovian jump processes example. In this example, condi-

16This expression follows from Bayes’ rule and the Girsanov’s theorem.
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tional on the true state being x ∈ X ,

dqt =−
K

∑
k=1

ψk(qt−)zk(qt−)dt +
K

∑
k=1

zk(qt−)dJk
t|x,

where Jk
t|x is an independent Poisson process with intensity ψk(qt−)(1+

zk,x(qt−)
qt−,x

).17 Jumps
that increase the likelihood of the true state (zk,x(qt−)> 0) are relatively more likely condi-
tional on x ∈ X , consistent with the idea that the DM will tend to place more weight on the
true state as time passes.

Studying the unconditional dynamics of beliefs is more convenient in most of our anal-
ysis; for this reason, we do not generalize our expressions of the conditional dynamics
beyond the two examples just described. Moreover, these two examples are sufficient for
the purposes of the example considered in Section 5 and to discuss the relationship between
our model and DDM models.

Relation to DDM Models. In DDM models (see, e.g., Fudenberg et al. [2018]), a “deci-
sion variable” zt is assumed to follow a process

dzt = δ|xdt +αdBt|x, (8)

where δ|x is a drift that depends on x ∈ X , and Bt|x is a Brownian motion conditional on x ∈
X . In the classic DDM, the decision variable zt is assumed to be one-dimensional, and the
DM is assumed to stop and choose from a set of two possible actions when zt reaches one
of the two ends of a line segment (each corresponding to one of the available actions). The
classic DDM framework thus generates predictions about the joint distribution of actions,
states, and decision times.

To understand the relationship between our optimizing model and DDM models, sup-
pose that the DM in our model chooses a Markov diffusion process for beliefs, as in (1),
and that this diffusion process travels along a line segment within the simplex. The con-
ditional dynamics for beliefs will follow (7), and the belief process qt in our model will
have properties similar to those posited for the “decision variable” zt in the DDM model.
In particular, it will be diffusion process with a drift that depends on the true state x and an
instantaneous variance that is independent of the state. In this case, discussed in Section
5, our model will generate predictions about the joint distribution of actions, states, and

17Again, this result follows from Bayes’ rule and Girsanov’s theorem.
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decision times that closely resemble those of the DDM model.
Below, we establish conditions under which it will be optimal for the belief process to

be a diffusion of this kind. Moreover, we establish conditions under which, in the case of a
choice between only two possible actions, it is optimal for the DM in our model to choose
a belief process that diffuses on a line until it reaches one of two stopping boundaries, as
posited by the DDM.18 That is, under certain conditions, the predictions of our model and
those of the DDM model will coincide.

2.2 Preliminary Analysis

We first show that an optimal policy exists. This ensures that the questions we hope to
address, such as when optimal policies involve only jumps or diffusions, have answers.

Lemma 1. An optimal policy exists in the DM’s problem.

Proof. See the technical appendix, section C.3.

We next show that the value function for our problem must satisfy a Hamilton-Jacobi-
Bellman (HJB) equation. This is not trivial, because in our context, the value function
need not be twice continuously-differentiable, and consequently the HJB equation cannot
be derived in the usual fashion. We take an alternative approach using viscosity techniques
to show that the value function is once continuously-differentiable, and that it is a solution
to an HJB equation of a simpler problem.

To simplify our notation, we extend the definition of V to the set of positive measures
(R|X |+ ) by assuming homogeneity of degree one, and define the gradient of V , ∇V , in the
usual way. Also, for any belief q ∈P(X), let Q(q) be the subset of P(X) consisting of all
beliefs q′ such that q′ 6= q,q′� q (the set for which D(q′||q) is defined and non-zero).

Proposition 1. Let V (q) be the value function that solves the DM’s problem (Definition 1).

This value function is continuously differentiable on the interior of P(X) and the interior

18It is well known that optimal Bayesian decision making would imply a process of this kind in the special
case that (i) there are only two possible states x, so that the posterior necessarily moves on a line, and
(ii) the only possible kind of information sampling is observation of a particular Brownian motion with
state-contingent drift, so that the DM’s only decision is when to stop observing and choose an action, as in
Fudenberg et al. [2018]. The novelty of our result is that we allow a flexible choice of the kind of information
that is sampled, subject to (3), and that our result applies regardless of the number of states in X .
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of each face of P(X), and satisfies, for all q ∈P(X),

max{ sup
q′∈Q(q)

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

−ρV (q)−κ, û(q)−V (q)} = 0.

Proof. See the appendix, section B.2

This is the HJB equation of a restricted version of our problem in which the DM is
constrained not to diffuse and to jump to only one destination (a process of the form (2)
with K = 1). That is, imposing such a restriction on the belief dynamics does not reduce the
DM’s value function. Note that optimal policies may not exist in this restricted problem, if
it is in fact strictly optimal to diffuse in the original problem; in such a case, a sequence of
“pure jump” policies involving ever-smaller and more frequent jumps achieves the supre-
mum. The useful general characterization of the value function in Proposition 1 allows us
to establish further properties of optimal belief dynamics in a variety of special cases.

3 Preferences for Gradual and Discrete Learning

We next study the relationship between properties of the divergence D and properties of
beliefs under optimal policies. We consider two cases: when there is a “preference for
gradual learning” and when there is a “preference for discrete learning,” terms we define
below. With discounting, these two classes of divergences lead, respectively, to beliefs that
evolve as a series of jumps and beliefs that jump only once. In the case of zero discounting,
a preference for gradual learning leads to beliefs that diffuse, as in the DDM model.

3.1 Gradual Learning

We begin by defining what we call a “preference for gradual learning.” This condition
describes the relative costs of learning via jumps in beliefs vs. continuously diffusing
beliefs, which are governed by the properties of the divergence D.

Definition 2. The divergence D exhibits a “preference for gradual learning” if, for all
q,q′ ∈P(X) with q′� q,

D(q′||q)≥ (q′−q)T · (
ˆ 1

0
(1− s)k̄(sq′+(1− s)q)ds) · (q′−q). (9)
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This preference is “strict” if the inequality is strict for all q′ 6= q, and is “strong” if, for some
δ > 0 and some m > 0,

D(q′||q)≥ (1+m|q′−q|δ )(q′−q)T · (
ˆ 1

0
(1− s)k̄(sq′+(1− s)q)ds) · (q′−q). (10)

Note that, by the definition of k̄, (9) holds with equality up to second order in q′−q. A
preference for gradual learning requires that the difference of the higher-than-second-order
terms be positive, a strict preference requires that they be strictly positive as q′ approaches
q, and a strong preference requires that they be of order |q′−q|2+δ .

One special case of particular interest involves Bregman divergences (such as the Kullback-
Leibler divergence commonly used in the rational inattention literature). A Bregman diver-
gence can be written, using some convex function H : P(X)→ R, as

DH(q′||q) = H(q′)−H(q)− (q′−q)T ·∇H(q), (11)

where ∇H(q) denotes the gradient. For a Bregman divergence, k̄(q) is the Hessian of H(q),
and (9) is an equality for all q,q′ ∈P(X).

Divergences exhibiting a (strict or strong) preference for gradual learning can be easily
constructed from Bregman divergences. Suppose that

D(q′||q) = f (DH(q′||q)),

where f : R+→R+ is a twice continuously-differentiable, strictly increasing, convex func-
tion with f (0)= 0, f ′(0)= 1, and DH is a Bregman divergence. The Hessian of D evaluated
at q′ = q is the same as that of DH , and by convexity

D(q′||q)≥ DH(q′||q),

implying that D also exhibits a preference for gradual learning. This preference is strict if
f (·) and H(·) are strictly convex, and strong if H(·) and f (·) are strongly convex.

Define umax = maxq∈P(X) û(q) and umin = minq∈P(X) û(q). Our first main result is that
when D exhibits a strong preference for gradual learning, under any optimal policy the
probability of a jump of size greater than (ρ(umax−umin)

m(κ+ρumin)
)δ−1

is zero. The result follows from
(10), which in effect says that continuously moving beliefs from q to q′ is less difficult (in
the sense of the constraint (3)) than jumping. When ρ = 0, this is sufficient to show that
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beliefs evolve continuously. When ρ > 0, the cost of delay depends in part on the level
of the current value function, which encourages the DM to choose a belief process that
jumps upwards as opposed to drifting upwards. The upper bound we derive in this case
reflects a balancing of this consideration against the ease of having beliefs evolve gradually
as opposed to discretely.

Proposition 2. Define ∆qt = qt − lims↑t qs. If D exhibits a strong preference for gradual

learning, then under any optimal policy,

Pr{ sup
t∈R+

|∆qt |δ > ρ
(umax−umin)

m(κ +ρumin)
}= 0.

Proof. See the appendix, section B.5.

The tightness of this bound depends in part on the relationship between ρumax and κ .
The former is an upper-bound on the cost of delay due to discounting, while the latter
represents a direct opportunity cost of time. When ρ = 0 and κ > 0, this bound implies
that the optimal belief process is a continuous martingale. More generally, when ρumax

is small relative to κ (with “small” being defined relative to the strength of the preference
for gradual learning as parameterized by m and δ ), the belief process will involve some
combination of a continuous martingale and small jumps. In fact, a remarkable result
from Zhong [2019] shows that with ρ > 0, the optimal policy involves only jumps outside
of a nowhere-dense set. The combination of the Zhong [2019] result and Proposition 2
demonstrates that the optimal belief processes when ρumax is strictly positive but small
relative to κ involve small jumps. There is a kind of continuity between the ρ > 0 but
small and ρ = 0 cases (assuming κ > 0). In the limit as ρ → 0+ holding fixed all of
the other parameters, these jumps will become smaller and smaller, and the optimal belief
process will eventually converge to a continuous martingale.19

In the particular case of no discounting (ρ = 0,κ > 0), we can reach stronger conclu-
sions. An optimal beliefs process is in this case a continuous martingale, irrespective of
the strength of the preference for gradual learning (m and δ ). The following proposition
provides a kind of upper hemi-continuity result in this case, showing that a continuous
martingale belief process (and in fact a diffusion) continues to be optimal in the case of a
(possibly non-strong or non-strict) preference for gradual learning. Recall that the matrix-
valued function k̄(q) is defined in (4).

19We prove this continuity result in the technical appendix, section C.1.
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Proposition 3. If ρ = 0 and D exhibits a preference for gradual learning, then V is a

viscosity solution (see e.g. Crandall et al. [1992]) to the HJB equation

max{ sup
σ∈R|X |×R|X |−1:qT σ=~0

tr[σT Diag(q)(∇2V (q)− κ

χ
k̄(q))Diag(q)σ ], û(q)−V (q)}= 0,

(12)
where ∇2V denotes the Hessian of V , and there exists an optimal policy such that qt is a

diffusion without jumps.

Proof. See the appendix, section B.6.

Under an additional assumption on the matrix-valued function k̄, we show that a prefer-
ence for gradual learning is not only sufficient but necessary for beliefs to follow a diffusion
process when ρ = 0. Specifically, we assume that k̄ is “integrable,” in the sense described
by the following assumption.20

Assumption 1. There exists a twice continuously-differentiable function H :R|X |+ →R such

that, for all q in the interior of the simplex,

k̄(q) = ∇
2H(q), (13)

where ∇2H(q) denotes the Hessian of H evaluated at q and k̄(q) is define as in (4).

Any Bregman divergence has this property; as a result, the class of divergences sat-
isfying this property includes the standard KL divergence and the “neighborhood-based”
function that we introduce in Hébert and Woodford [2021]. Our earlier examples of diver-
gences with a strong preference for gradual learning, which are not Bregman divergences
themselves but were constructed by applying a convex function to a Bregman divergence,
also satisfy this property. In these cases, the H function is the function used to define the
Bregman divergence. This assumption is also automatically satisfied in the two state case,
|X | = 2. However, this assumption imposes some restrictions if |X | > 2. It rules out, for
example, the prior-invariant LLR cost functions of Pomatto et al. [2018] (a hypothetical H

would have asymmetric third-derivative cross-partials). Note that H(q) is convex, by the
positive semi-definiteness of k̄(q), and homogenous of degree one.

20Mathematically, this assumption ensures that the integral
´ 1

0 (q
′− γ(s))T · k̄(γ(s)) · dγ(s)

ds ds is the same for
all differentiable paths of integration γ : [0,1]→P(X) with γ(0) = q and γ(1) = q′. That is, the straight-line
path of integration used to define a preference for gradual learning (Definition 2) is without loss of generality.
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Under this assumption, we demonstrate that a preference for gradual learning is nec-
essary for beliefs to always result in a diffusion process. The key idea is that, if the DM
always prefers diffusing to jumping, ρ = 0, and beliefs travel along a line segment in the
simplex, then along that line segment (9) must hold. Assumption 1, combined with results
we present in Section 4 below, allows us to construct utility functions such that it is optimal
for the DM’s beliefs to travel along any given line segment.21

Proposition 4. Assume ρ = 0. If, given a divergence D, Assumption 1 is satisfied and,

for all strictly positive utility functions ua,x, there exists an optimal policy such that beliefs

follow a diffusion process, then D exhibits a preference for gradual learning.

Proof. See the appendix, section B.7. This is proven using Proposition 7 below.

Summarizing, a preference for gradual learning is sufficient and, under an additional
assumption, necessary to guarantee that an optimal belief process is a diffusion in the ρ = 0
case. A strong preference for gradual learning is sufficient to guarantee that jumps are
bounded, and there is a kind of continuity between the ρ > 0 and ρ = 0 cases.

However, there are also circumstances in which large jumps are optimal. Zhong [2019]
shows, in the particular case of ρ > 0 and Bregman divergence costs (equality in (9)), that
the beliefs jump all the way to stopping points. This is striking in light of Proposition 3,
which shows that with these same costs and ρ = 0, beliefs can follow a diffusion process.
These results can be reconciled using results we will present in the next section: with
Bregman divergence costs and ρ = 0, there are optimal policies that generate both pure
diffusion and pure-jump belief processes.

3.2 Discrete Learning

We next provide conditions under which the DM jumps immediately to stopping beliefs,
as a contrast to our previous gradual learning results. We define what we call a “preference
for discrete learning” if the divergence D satisfies a kind of “chain rule” inequality.22

21The difficulty of extending this result (without our additional assumption, or with ρ > 0) is as follows.
We know in these cases that if beliefs always diffuse or jump in small increments, then such behavior must
be preferable to larger jumps within the continuation region of a given problem. But because we cannot
construct explicit solutions in these cases, we cannot prove that this preference holds on the entire simplex.

22When this inequality holds with equality, the divergence is said to satisfy the chain rule property (Cover
and Thomas [2012]).
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Definition 3. The divergence D exhibits a “preference for discrete learning” if it satisfies,
for all finite sets S, πs ∈P(S) and q,q′,{qs}s∈S ∈P(X) such that ∑s∈S πsqs = q′ and
q′� q,

D(q′||q)+∑
s∈S

πsD(qs||q′)≥∑
s∈S

πsD(qs||q). (14)

Here, S is an arbitrary finite set; it is useful to think of each s ∈ S as a signal realization,
and to interpret {qs} as a set of posteriors consistent with a prior q′. If (14) holds, it is
preferable to jump from q directly to the posteriors {qs} instead to the prior q′.

Bregman divergences satisfy (14) with equality (a result that follows from the definition
(11)). One might expect that other classes of cost functions also exhibit a preference for
discrete learning. However, as the following lemma demonstrates, under our regularity
assumptions,23 only the Bregman divergences exhibit a preference for discrete learning.24

Lemma 2. The divergence D exhibits a preference for discrete learning if and only if D is

a Bregman divergence.

Proof. See the appendix, section B.8. The proof builds on Banerjee et al. [2005].

Consequently, if D exhibits a preference for discrete learning, it also exhibits a (non-
strict) preference for gradual learning. In contrast, many cost functions exhibit a strict or
strong preference for gradual learning and therefore do not exhibit a preference for discrete
learning, and many others fall into neither category.25

If the cost function satisfies a preference for discrete learning, it is cheaper for the DM to
jump to beliefs {qs} rather than visit the beliefs q′. Unsurprisingly, if this holds everywhere,
it leads to optimal policies that stop immediately after jumping. We first show in the case
of ρ = 0 that an optimal policy always involves jumping into the stopping region.

Proposition 5. Define ∆qt = qt − lims↑t qs, and assume ρ = 0. If D exhibits a preference

for discrete learning, then there exists an optimal Markovian pure jump process such that

if |∆qt |> 0, then t = τ (the DM stops immediately after any jump).
23Our regularity assumptions are important here; it is possible that non-differentiable, non-Bregman diver-

gences exhibiting a preference for discrete learning exist.
24It is known in the information geometry literature (see e.g. Amari and Nagaoka [2007]) that if (14)

holds with equality, the divergence must be a Bregman divergence. A related result appears in Frankel and
Kamenica [2019], in the context of their “order invariance” property. Our lemma extends these results by
showing that the inequality in (14) is sufficient.

25For example, any strictly concave transformation of a Bregman divergence (as opposed to the convex
transformations described previously) is not itself a Bregman divergence and does not exhibit a preference
for gradual learning.
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Proof. See the appendix, section B.9. This is proven using Proposition 7 below.

The statement of Proposition 5 shows that if D is a Bregman divergence, is without loss
of generality to assume that the DM stops immediately after a jump in beliefs. But in this
case, there is also an optimal policy that diffuses (Proposition 3). This observation implies
that the solutions to the HJB equations in Propositions 1 and 3 must be identical, despite
one being written as controlling a diffusion process and the other a pure jump process. We
revisit this observation in the next section.

Zhong [2019] (see appendix A.3 of that paper) presents a result that covers the ρ > 0
case.26 With a preference for discrete learning, jumps will increase the value function,
in the absence of a jump the value function will drift downwards, and stopping occurs
immediately after the first jump. The intuition for these results comes from the observation
that with discounting, delay is particularly costly when the value function is high. Zhong
[2019] also shows that optimal policies do not involve diffusion (subject to some technical
caveats).

Moving beyond the results of Zhong [2019], we provide an “only-if” result: if a di-
vergence always results in immediate stopping after the first jump, then it must satisfy a
preference for discrete learning. The intuition is that if it is always optimal to jump outside
the continuation region, it cannot be less costly under the divergence D to jump to an inter-
mediate point. Otherwise, there would be some utility function for which such behavior is
optimal. To formalize this result, we say that the beliefs process qt “does not diffuse” if the
continuous part of the martingale qt has zero quadratic variation.27

Proposition 6. Define ∆qt = qt − lims↑t qs. Suppose the divergence D is such that, for all

action spaces A, strictly positive utility functions ua,x, and priors q̄0 ∈P(X), there exists

an optimal policy that does not diffuse on the interior of the continuation region outside of

a nowhere-dense set and such that |∆qt | > 0 implies t = τ (the DM stops after jumping).

Then D exhibits a preference for discrete learning (i.e. is a Bregman divergence).

Proof. See the appendix, section B.10.

This result demonstrates that the jump-and-immediately-stop results of Proposition 5
and Zhong [2019] hold for all utility functions if and only if D is a Bregman divergence.

26The result from Zhong [2019] applies when κ = 0; but with ρ > 0, the κ > 0 problem is equivalent to a
problem in which the utility function is shifted upwards by κρ−1 and κ is set to zero (by Proposition 1).

27See e.g. theorem 4.18 of chapter I of Jacod and Shiryaev [2013] on the decomposition of martingales
into a continuous martingale and discontinuous martingale.
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Such cases are knife-edge, in that if one uses instead any strongly convex transformation of
the Bregman divergence, then the optimal policy will involve bounded jumps (by Proposi-
tion 2) that converge to continuous processes as ρ becomes close to zero.

3.3 Gradual vs. Discrete Learning

We summarize the differences between gradual and discrete learning before proceeding.
Note again that the technical appendix, section C.1, contains a formal result on the upper
hemi-continuity of policies in the ρ → 0+ limit. With ρ > 0 and a sufficiently strong
preference for gradual learning, the DM will optimally choose to have beliefs that jump in
small increments. In the limit as ρ → 0+, these jumps will become infinitesimal, and in
the ρ = 0 case the DM will optimally choose to have continuous beliefs. In contrast, with
ρ > 0 and a preference for discrete learning, the DM will optimally choose to have beliefs
that jump immediately into the stopping region. In the limit as ρ → 0+, this will continue
to be case; however, when ρ = 0 and the DM has a preference for discrete learning, an
optimal policy involving only diffusions also exists.

We interpret these results as follow. In the ρ → 0+ limit, which should be understood
as assuming that the cost of delay due to discounting is dominated by the opportunity cost
of time and which we view as empirically relevant, beliefs will either jump or diffuse,
depending on whether the divergence D exhibits a strong preference for gradual learning or
a preference for discrete learning. However, the value functions in these two cases will be
identical. These results naturally lead to the question of whether these differences in belief
dynamics lead to different predictions about the DM’s behavior. We explore this question
in the next two sections.

4 Equivalence to a Static RI Model

In this section, we show that a preference for gradual learning has the same implications as a
preference for discrete learning, as far as the models’ predictions regarding state-contingent
choice behavior are concerned, in the limit in which ρ = 0. This is because in either case the
state-contingent choice behavior predicted by our dynamic model of evidence accumulation
is identical to that predicted by a static rational inattention model with a particular type of
information-cost function. Two different dynamic models (defined by different divergences
D) can be equivalent (in the sense of implying the same value function V (q), and hence
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leading to the same choice behavior) to the same static model; in particular, this will be true
when both divergences are derived from the same entropy function H(q), as shown below.
In this case, the two dynamic models imply identical choice behavior. It further follows
from our continuity results that even in the discounted case, predicted state-contingent
choice behavior becomes identical in the two cases in the limit as ρ → 0+.

We first consider the case of a preference for gradual learning. The following result
follows from an analysis of the HJB equation of Proposition 3 (the problem with ρ = 0 and
a diffusion process for beliefs).

Proposition 7. If ρ = 0, D exhibits a preference for gradual learning, and Assumption 1

holds, the value function is given by

V (q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

∑
x∈X

πaqa,xua,x−
κ

χ
∑
a∈A

π(a)DH(qa||q0), (15)

where the maximization is subject to the constraint that ∑a∈A π(a)qa = q0, and DH is the

Bregman divergence associated with the entropy function H that is assumed to exist in

Assumption 1.

This value function can be achieved by a homogenous diffusion process. Moreover,

there exist maximizers π∗ and q∗a such that π∗ indicates the unconditional probability of

choosing the different actions in the continuous time problem, and such that for any a for

which π∗(a)> 0, q∗a is the belief the DM will hold when stopping and choosing that action.

Proof. See the appendix, section B.11.

The problem stated in Proposition 7 is simply a static rational-inattention problem, in
which the cost of the static information structure defined by the joint distribution of states
and action choices is given by a uniformly posterior-separable cost function of the kind pro-
posed by Caplin et al. [Forthcoming]. The mutual information cost function proposed by
Sims is one such cost function. In this case, the entropy function H is the negative of Shan-
non’s entropy, the corresponding Bregman divergence is the Kullback-Leibler divergence,
and the information cost is mutual information. Thus Proposition 7 provides a foundation
for this familiar kind of RI model, and hence for the predictions regarding stochastic choice
obtained by Matêjka et al. [2015]. On the other hand, Proposition 7 also implies that other
cost functions can be justified in a similar way. Indeed, any (twice-differentiable) uni-
formly posterior-separable cost function can be given such a justification, by choosing the
k̄ function defined by equation (13).
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However, the same set of static models can also be justified by a dynamic model with
discrete learning.

Corollary 1. Assume ρ = 0 and that D exhibits a preference for discrete learning (i.e.,

is a Bregman divergence). Then the value function that solves the continuous time prob-

lem is the value function that solves the static rational inattention problem described in

Proposition 7, with D in the place of DH .

Proof. This follows immediately from Lemma 2, Proposition 3, and Proposition 7.

Given any uniformly posterior-separable cost function in a static rational inattention
model, by setting D equal to the Bregman divergence associated with that cost function,
we can justify that static model as the result of a dynamic model with a preference for
discrete learning. We therefore conclude that models with a preference for gradual learning
satisfying our integrability condition and models with a preference for discrete learning are
indistinguishable from the perspective of their predictions about the joint distribution of
states and actions.28 In the next section, however, we show how information about stopping
times can nonetheless be used to distinguish the models.

Finally, we should emphasize that in the case of gradual learning, our results depend
on an additional assumption (Assumption 1); this integrability assumption will not hold
in all cases. Consequently, equivalence with static models holds for all cost functions
with a preference for discrete learning, but for only some cost functions in the case of a
preference for gradual learning. And while all cost functions with a preference for discrete
learning generate the same joint distribution of actions and states as some cost function
with a preference for gradual learning, the reverse need not be true.

5 Implications for Response Times

Because our model is dynamic, it makes predictions not only about the joint distribution
of actions and states, but also about the length of time that should be taken to reach a
decision, and how this may vary depending on the action and the state. In the experimental
literature on the accuracy of perceptual judgments, it is common to record the time taken
for a subject to respond along with the response, as this is considered to give important

28In situations in which the static rational inattention problem does not itself have a unique solution, we
have not ruled out the possibility that the models with discrete and gradual learning will make different
predictions. However, we have no reason to believe this to be the case.
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information about the nature of the decision process (e.g., Ratcliff and Rouder [1998]). In
economic contexts as well, response times provide important information that can be used
to discriminate between models, even when response times themselves are not what the
economic analyst cares about. For example, Clithero [2018] and Alós-Ferrer et al. [2021]
argue that preferences can more accurately be recovered from stochastic choice data when
data on response times are used alongside observed choice frequencies.

Here we propose that data on response times can in principle be used to discriminate be-
tween alternative information-cost specifications. We focus on the zero-discounting limit,
and show that cost functions that are equivalent in the sense of implying the same state-
contingent choice probabilities — and hence the same value function — nevertheless make
different predictions about the stopping time conditional on taking a particular action. Con-
sequently, data on response times can inform us about whether there is a preference for
gradual learning or for learning through discrete jumps.

5.1 A Two-State, Two-Action Example

We consider a simple example, motivated by an experiment reported by Kelly et al. [2021].
In the experiment, a stimulus is presented that is of one of two types, and the subject
must report which of the two types was presented; the goal is to maximize the number of
correct responses. We therefore assume there are two states (X = {`,r}), and two possible
actions (A = {L,R}). Response L is the correct response when x = `, and R is correct
when x = r. Since the DM’s reward depends only on whether the response is correct or not,
uL,` = uR,r = ucor and uL,r = uR,` = uinc, with ucor > uinc.

29

In this setting, we describe the predictions of our model when the divergence D exhibits
a preference for discrete learning (i.e. is a Bregman divergence), and compare these predic-
tions with those derived under the alternative assumption of a strong preference for gradual
learning. We will compare divergences that are equivalent in the sense of the previous sec-
tion: they will lead to the same predictions about the joint distribution of actions and states,
but make different predictions about stopping times.

In either case, we assume that information costs are based on an entropy function
H(q), a homogeneous degree one function of (q`,qr), twice continuously differentiable,
and strongly convex when restricted to the unit simplex. We further assume that the func-
tion is symmetric, in the sense that H(q`,qr) = H(qr,q`). One example of such a function

29Our characterizations of optimal behavior in this section can be generalized to apply to a more flexible
class of multi-state, two-action examples, as shown in the appendix, section A.1.
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is the negative of the Shannon entropy function,

H(q) = q` ln(
q`

ql +qr
) + qr ln(

qr

ql +qr
); (16)

another is the “total information” (TI) cost of Bloedel and Zhong [2020],30

H(q) = (q`−qr)(ln(q`)− ln(qr)). (17)

Any entropy function of this kind defines a Bregman divergence DH , as in (11); we
will call this “the PDL case.”31 On the other hand, if we let D(q′||q) = f (DH(q′||q)),
where f is a twice continuously differentiable, increasing, strongly convex function such
that f (0) = 0 and f ′(0) = 1, the information costs exhibit a strong preference for gradual
learning; we will call this “the PGL case.” We wish to compare the predictions regarding
the distribution of response times in these two cases. We restrict our discussion to the
ρ → 0+ limit, in which case the choice of the function f does not matter.

In this limit, the prediction regarding state-contingent response frequencies are iden-
tical in the two cases, and described by the static rational inattention problem defined in
Proposition 7. The optimal stopping beliefs are easily characterized in the two-state case.
For each action a ∈ A, let q∗a ∈P(X) be the posterior that maximizes

∑
x∈X

qa,xua,x −
κ

χ
H(qa).

The solutions to these equations are uniquely defined, and satisfy 0≤ q∗R,` < 1/2< q∗L,`≤ 1,
and q∗R,` = 1− q∗L,`. Then for any prior such that q∗R,` < q0,` < q∗L,`, the unique solution to
the static problem problem in Proposition 7 is given by32

q̄L = q∗L, q̄R = q∗R, π̄L =
q0,`−q∗R,`
q∗L,`−q∗R,`

.

30Desirable properties of this alternative to the Shannon measure of information costs are also discussed in
Hébert and Woodford [2021].

31Recall that a cost function that satisfies our general regularity assumptions, and that exhibits a preference
for discrete learning, is necessarily a Bregman divergence (Lemma 2). Thus our analysis of the PDL case is
not very restrictive. Here we define the PDL case in terms of a particular entropy function so that we can
define a corresponding PGL case for any PDL case.

32The fact that the stopping posteriors q̄a are independent of the prior q0 (for priors in the stated range)
reflects the property of “locally invariant posteriors” discussed more generally by Caplin et al. [Forthcoming].
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The accuracy rate (the likelihood of a correct response) in this problem is α ≡ q∗L,` = q∗R,r.
While the stopping posteriors are the same in the two cases, the predicted dynamics

of beliefs are different. In the PDL case, the posterior qt will drift deterministically until
(at some random time) it jumps to either q∗L or q∗R (at which time the decision is made).
In the PGL case, instead, the posterior qt diffuses randomly along the line segment that
connects q∗L and q∗R, with the decision being made on the first occasion when one of the
stopping posteriors is reached. These two models of belief dynamics imply different state-
contingent distributions of response times, as we now illustrate with explicit calculations.

5.2 State-Contingent Distributions of Response Times

It is convenient to express the dynamics of beliefs in terms of a scalar state variable πL,t ∈
[0,1],33 which corresponds to the posterior

qt = q(πL,t) ≡ q∗R +πL,t(q∗L−q∗R). (18)

Here πL,t indicates the probability that the DM’s eventual response will be L, conditional
on the beliefs reached at time t; a decision is made when πL,t reaches 0 or 1. We define the
value function V (πL) by substituting (18) into the V (q) defined in Proposition 7, and let πL

be the value of the argument at which V (πL) reaches its minimum. In the symmetric case
assumed here, V (π) =V (1−π), so that πL = 1/2, as shown in the left panel of Figure 1.

5.2.1 The PDL case

We first consider belief dynamics in the PDL case. In this case, as emphasized by Zhong
[2019], jumps must always increase the value function, and a deterministic drift of beliefs
must steadily reduce the value function.34 It follows that πL,t drifts toward 1/2 determinis-
tically until a jump to one of the stopping posteriors occurs.

If we start from a prior under which the state ` is more likely, then πL,0 = π̄L > 1/2.

33This representation of the belief dynamics continues to be possible in a more general case with many
states (though only two possible actions), considered in the appendix, section A.1. This is because the DM’s
posterior qt must always be a convex combination of the stopping posteriors q̄R and q̄L, even when those
posteriors lie in a high-dimensional space.

34Zhong [2019] shows in the ρ > 0 case that beliefs drift away from the currently most likely state; we
consider the optimal policy in the ρ = 0 limit that is the limit of a sequence of such policies. The fact that the
drift of beliefs must reduce the value function follows by applying the envelope theorem to the HJB equation
of Proposition 1; see Zhong [2019].
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(See the left panel of Figure 1 for an illustration.) In this case, the optimal policy is to jump
towards πL = 1 with the maximum possible intensity (with no jumps to the more distant
stopping posterior at πL = 0), and drift downwards if no jump occurs, as long as beliefs
continue to satisfy πL,t > 1/2. Constraint (6) implies that the Poisson arrival rate of jumps
to πL = 1 will be given by ψL(πL,t) = χ/DH(q∗L||q(πL,t)). In order for qt to be a martingale,
the rate at which πL,t drifts downward deterministically in the absence of a jump must be

µ(πL,t) = −
χ(1−πL,t)

DH(q∗L||q(πL,t))
. (19)

Integrating the differential equation for πL,t implied by this drift rate (and using the initial
condition πL,0 implied by the prior), we can compute the finite (and deterministic) time
τ̃ > 0 at which πL,τ̃ = πL = 1/2 in the absence of a jump.

Once beliefs reach πL,τ̃ = πL, the DM randomizes between jumping to πL = 0 and
to πL = 1 at equal Poisson rates,35 where the common jump rate is the maximum one
consistent with (6).

We summarize these results in Lemma 3 and Figure 1 below. We present the results in
terms of response time quantiles τ̂ (as opposed to the response times τ). For each τ > 0, we
define the quantile τ̂ ≡ F(τ), where F(·) is the cumulative distribution function of response
times. Since there are no atoms in the response-time distributions in either the PDL or PGL
cases, the distribution of quantiles τ̂ is a uniform distribution on [0,1]. In Figure 1, we
report gx

L(τ̂), which is the conditional likelihood of action L given that the true state is
x ∈ X and that the response time quantile is τ̂.

There are several advantages to expressing our models’ testable predictions in terms of
response-time quantiles rather than response times. First, we obtain quantitative predic-
tions that are independent of time units, and thus independent of the numerical value of
χ. Second, the response time observed in a laboratory experiment should not be identified
with the decision time τ in our theoretical model. Instead, empirical estimation of stochas-
tic models like the DDM always interprets the measured response time as an observation of
t0+τ , where t0 (the “non-decision time,” NDT) is a positive constant to be estimated.36 The

35In the symmetric case considered here, πL = 1/2, and the two kinds of jumps occur at equal rates for
times t > τ̃ . In the appendix, section A.2.2, we show how the characterization of belief dynamics here can be
generalized to asymmetric cases as well, in which πL need not equal 1/2. The rates at which the two kinds
of jumps occur are then no longer equal, but instead have the relative values required in order for πL,t to be a
martingale.

36For example, in Ratcliff and Rouder [1998] and Wagenmakers et al. [2007] this parameter is denoted Ter,
while in Clithero [2018] it is written as ndt.
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NDT may represent an unavoidable time lag between the experimenter’s presentation of a
stimulus to the subject and the beginning of the evidence-accumulation process, or a lag
between the time τ at which the latent decision variable first reaches a stopping region and
the subject’s overt response. Predictions for the distributions of response-time quantiles τ̂

are instead independent of the value of t0. Third, we can derive quantitative predictions for
the response-time quantile distribution in the PDL case that do not depend on the functional
form of H(q), which is not true of the response-time distribution.

Lemma 3. Consider a symmetric two-state/two-action problem of the kind described in

the text, with a preference for discrete learning, and suppose that the prior q0 is such that

1/2 < q0,` < q̄L,` and that the accuracy rate is α . Then conditional on the true state x, the

fraction of trials on which πL(t) reaches the value 1/2 prior to a decision is equal to τ̂x,

where

τ̂
` =

(
α

α−1/2

)(
q0,`−1/2

q0,`

)
, τ̂

r =

(
1−α

α−1/2

)(
q0,`−1/2
1−q0,`

)
. (20)

The response-time quantile density function gx
L(τ̂) is piecewise constant, equal to 1 for all

0 < τ̂ < τ̂x, and equal to q∗L,x for all τ̂x < τ̂ < 1.

Proof. See the appendix, section A.2.1.

Figure 1: Predicted response-time quantile distributions with a preference for discrete
learning. The first panel shows the value function V (πL), and the other two show the
density functions gx

L(τ̂) for the two possible states. Information costs are parameterized so
that the predicted accuracy rate is α = 0.84, and the prior is assumed to be one under which
q0,` = 0.75. The value function in the first panel is derived for a static RI problem in which
H(q) is the negative of the Shannon entropy function.

A complete quantitative description of the g`L and gr
L functions requires the numerical

specification of only two quantities: the prior probability q0,` that the state is ` and the
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accuracy rate α (which completely determines the stopping posteriors, given the symmetry
of the problem). The latter quantity represents the only way in which the specification of
H(q) affects the predictions.

Figure 1 shows this solution in the case of a prior with q0,` = 0.75 and an accuracy rate
α = 0.84, the values that accord with the data from the experiment in Kelly et al. [2021].
The first panel of the figure shows the value function, in the case that the cost function is
the one implied by Shannon entropy (16), and χ/κ is specified so as to imply an accuracy
rate of 0.84.37 The other two panels show the functions gx

L(τ̂) specified by Lemma 3.
If instead we assume a prior such that r is the more likely state (q∗R,` < q0,` < 1/2),

we can obtain symmetric results.38 The density functions shown in Figure 1 are also (with
suitable relabeling) the predicted density functions gr

R and g`R in the case of a prior for
which q0,` = 0.25 (the same degree of prior uncertainty, but state r is more likely).

5.2.2 The PGL case and the DDM

We now consider the dynamics of πL,t under a strict preference for gradual learning. In
this case, πL,t evolves as a diffusion on the line (18), starting from the initial condition
πL,0 = π̄L. Hence the unconditional belief dynamics are of the form

dqt = (q∗L−q∗R)σ̄(πL,t)dBt , (21)

where σ̄(πL) is scalar-valued (and equal to the largest quantity consistent with (5)) and dBt

is a one-dimensional Brownian motion. The belief dynamics conditional on the state x are
also given by a diffusion, as specified in the following lemma.

Lemma 4. Consider a two-action problem,39 with a strong preference for gradual learning.

Conditional on the state x, the univariate belief state πL,t evolves as

dπL,t|x =
q∗L,x−q∗R,x
qx(πL,t)

σ̄(πL,t)
2dt + σ̄(πL,t)dBt|x, (22)

37This is purely for purposes of illustration; while the cost function assumed in the first panel is consistent
with the numerical assumptions in the other two panels, the predictions in the second and third panels, that
we wish to test, do not depend on assuming Shannon entropy.

38See the appendix, section A.2.1, for further discussion. We can also characterize the densities gx
a(τ̂) in

the case of a symmetric prior, but in this case the solution is trivial (the two responses are equally likely at all
quantiles), and there is also no difference between the predictions of the PDL and PGL cases. We accordingly
focus on the asymmetric case.

39This result does not require that |X |= 2; see the appendix, section A.3.1.
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where q(πL) is the function defined in (18), and σ̄(πL) is the same function as in (21).

Proof. See the appendix, section A.3.1. The result follows directly from (7).

This process resembles the internal “decision variable” specified by DDM models in
mathematical psychology in several respects. The state variable πL,t|x diffuses until reach-
ing one of two fixed boundaries (zero or one), which correspond to the two possible deci-
sions. States for which L is relatively more likely (

q∗L,x
q∗R,x

positive) feature upward drift, and
the strength of this drift is stronger in states for which the relatively probability of choosing
L is higher. The only difference between these dynamics and those posited by the DDM is
that in general, neither the drift term nor the variance term in (22) is constant.

However, when X = {l,r} and H(q) is the TI entropy function (17), the belief dynamics
implied by our model with a strict preference for gradual learning are exactly like those
assumed in the standard DDM. Parameterize the belief state qt by the implied log odds zt =

ln(qt,`/qt,r), a smooth nonlinear transformation of πL,t . Then, as shown in the appendix,
section A.3.2, the evolution of the decision variable zt is given by

dzt|G = χdt +
√

2χdBt|G, dzt|B = −χdt +
√

2χdBt|B. (23)

These are exactly the dynamics postulated in the DDM, with the difference between the
drifts associated with the two states determined by the information bound χ. A decision
will be made when the variable zt first reaches one or the other of two stopping values z∗a,

which are just the log-odds transformations of the stopping posteriors q∗a determined by the
solution to the static RI problem associated with the TI cost function.

We turn now to the predicted conditional distributions of response time quantiles in the
PGL case. This amounts to studying the distribution of hitting times for a diffusion of the
form (22), with initial condition πL,0 = π̄L and absorbing boundaries at πL = 0 and πL = 1.
As shown in the appendix, section A.3.3, we can compute these distributions by solving a
partial differential equation subject to suitable boundary conditions. Figure 2 illustrates the
solutions obtained for the response-time quantile density functions (using the same format
as in Figure 1), in the case of the two alternative information cost functions (16) and (17).

In the PGL case (unlike the PDL case), the exact form of the cost function matters;
because the belief state must diffuse from πL,0 to one or the other of the boundaries, the
local properties of the cost function over the entire line segment (18) are relevant, and
not simply the aspects of the cost function that determine the two stopping posteriors.
However, as the figure shows, in the case of our two example H(q) functions, the predicted
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Figure 2: Predicted response-time distributions with a preference for gradual learning. The
format is the same as in Figure 1. Each of the functions is shown for two alternative choices
of the entropy function H(q): negative Shannon entropy (solid lines, as in the first panel
of Figure 1) and the entropy that results in a TI cost function (dashed lines). The accuracy
rate α and the prior q0 are parameterized as in Figure 1.

response-time quantile distributions are not very different, provided that the two models are
parameterized so as to imply the same degree of accuracy. The differences between either
of these PGL cases and the predictions for the PDL case in Figure 1 are more striking. In
particular, when beliefs diffuse (rather than jumping), the relative frequency of L decisions
as opposed to R decisions, conditional on a given state x, varies continuously with the
response-time quantile τ̂ , rather than being piece-wise constant and discontinuous.

As in the PDL case, the symmetry of the problem implies that if we reverse the prior
probabilities of the two states, the predicted density functions gx

a(τ̂) remain the same un-
der a suitable relabeling. Thus Figures 1 and 2 provide the complete set of quantitative
predictions that we wish to compare with the experimental data of [Kelly et al., 2021].

5.3 Empirical Evidence on Discrete vs. Gradual Learning

In the experiment of Kelly et al. [2021], subjects view a visual image of moving dots, and
must decide whether the dominant direction of motion is leftward or rightward. Thus, as
in the situation analyzed above, there are two possible responses L or R (indicating that the
motion is leftward or rightward). Subjects’ rewards in the experiment (and most likely any
“psychic rewards” that they receive as well) depend only on whether a response is correct or
not, and not on what the true direction was; hence the utilities should satisfy the symmetry
property assumed above. In the trials of interest to us here, the subject also observes a color
cue on each trial, before presentation of the visual image, which indicates that one direction
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of motion is more likely than the other. Depending which cue is received on a given trial,
the subject’s prior should be either q0,` = 0.75 or q0,r = 0.75. (The cue is said to have a
“75 percent validity” in either case.) Each cue is presented equally often.

Figure 3: The relative frequency of cue-consistent and cue-inconsistent responses, as a
function of the speed of the response, in the experiment of Kelly et al. [2021]. The curves
shown in the left panels represent empirical versions of the function g`L(τ̂) shown in the
middle column in Figures 1 and 2, while those in the right panel represent empirical ver-
sions of the function gr

L(τ̂) shown in the right columns of the earlier figures. The top row
presents estimates of the two curves obtained by pooling the data of all 20 subjects, while
the bottom row shows the estimated curves for each of the individual subjects.

The data shown in Figure 3 indicate subjects’ responses under what the authors call
the “deadline” condition, which is the one under which subjects are under the greatest
time pressure; this is the condition of most interest for our purposes, because the limited
evidentiary basis for subjects’ decisions is clearest in this case.40 (Under the “deadline”

40Kelly et al. impose time pressure on their subjects by imposing a deadline, with a reward for correct
responses only if they are made before the deadline. This fixed deadline acts as an additional cost of delay
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condition, subjects’ responses are correct only 84 percent of the time; average accuracy is
much higher in the other experimental conditions.) The numerical predictions in Figures 1
and 2 have accordingly assumed a cue validity of 0.75 and an accuracy rate of 0.84.

The symmetry of the decision problem implies that in both the PDL and PGL cases,
the predicted response-time quantile density functions gx

a(τ̂) depend only on whether x is
the state with higher prior probability (in which case the cue is “valid,” in the terminology
of Kelly et al.) and on whether a is the response indicated by the cue as more likely to be
correct (i.e., the response is cue-consistent), and not on which cue was presented. Hence
(as is also done in Kelly et al.) we pool the data from trials with cues of either type, and
classify the trials according to whether the state is cue-inconsistent or cue-inconsistent,
rather than according to whether the true state is ` or r. (This allows us a larger sample
from the response-time distribution for each case.) Thus the left and right columns in
Figure 3 correspond to the distributions for which theoretical predictions are presented in
the middle column and right column, respectively, of Figures 1 and 2. (The vertical axis
of each panel now plots the relative frequency of cue-consistent responses, rather than the
relative frequency of L responses.)

The top row of Figure 3 (reproduced from Figure 3a of Kelly et al. [2021]) shows
the empirical correlates of the two functions g`L(τ̂) and gr

L(τ̂) graphed in Figures 1 and 2,
when we pool the data of all 20 experimental subjects. Even when we pool the data of all
subjects and sort the trials only on the basis of cue-consistency, we still have only a finite
number, each with a specific response time; to estimate the conditional probability of a cue-
consistent response, we must average over sufficiently wide ranges of quantiles. Thus in
Figure 3 we group the responses into seven bins of approximately equal size: the 1/7 fastest
responses, the 1/7 next-fastest, and so on. In the top row, the dot for each bin indicates the
overall fraction of cue-consistent responses in that bin, as an estimate of the probability of
a cue-consistent response; the vertical line indicates a range of estimates corresponding to
this mean estimate plus or minus one standard error of measurement.41

above and beyond the subjects’ opportunity cost of time; our model considers only the latter kind of cost.
However, it is unlikely that subjects are able to estimate very accurately how much time they have left in the
Kelly et al. experiment; this can be seen from the fact that they do not all respond at the same time, just before
the deadline is reached. Thus we conjecture that the deadline has the effect of increasing subjects’ perceived
cost of continuing to deliberate by an amount that is relatively independent of the time already taken. We
leave for future work an analysis of the consequences of a time cost that varies with the elapsed time in a
setting in which subjects have limited awareness of the time elapsed.

41Here (following Kelly et al. [2021]) we treat the fraction of cue-consistent responses for each of the 20
subjects as an independent noisy observation of their common probability of giving a cue-consistent response,
allowing a standard error to be computed for the estimate of that common probability.
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The resulting estimates of the response-time quantile density functions do not look at
all like the step functions shown in Figure 1. In particular, under the parameter values ap-
propriate to the experiment, the discontinuity in the cue-inconsistent case (the right panel
of Figure 3) should fall within the middle range of quantiles: one should observe a constant
probability of cue-consistent responses (100 percent) in each of the first three bins, and
another (much lower) constant probability in each of the last three bins, with an intermedi-
ate average probability in the central bin. Instead one sees what looks more like a steadily
decreasing probability of cue-consistent responses the slower the response, as predicted by
the PGL model and the DDM.

While it is common to fit pooled data of this kind to some version of the DDM, we
cannot necessarily reject the PDL model simply on the basis of the curves shown in the
top row of Figure 3. It is possible that the appearance of a gradually declining curve in the
top right panel of the figure could reflect pooling of the data of individual subjects, each
of whose response-time distribution was a step function of the kind predicted by the PDL
model, but with very different values of the critical quantile τ̂r, because of their differing
information costs. In the second row of the figure, we consider this possibility by separately
plotting the response frequencies by quantile for each of the 20 subjects.

We observe in the lower right panel that there are significant differences across subjects
with regard to the fraction of responses on cue-inconsistent trials that are made too soon
for the subject’s response to be more likely to be correct than incorrect. Nonetheless, even
when we disaggregate the data by subject, and allow for the possibility that the discontinu-
ity in the response probability might occur earlier than the middle range of quantiles, it does
not appear that a subject’s probability of a cue-consistent response is constant once it drops
below some very high value, as predicted by the PDL model. Instead, cue-inconsistent (i.e.,
correct) responses are more frequent in the case of the slowest responses, as predicted by
the PGL model or the DDM.42 Thus the results of Kelly et al. [2021] are more consistent
with the predictions of the PGL model than those of the PDL model.

There are other differences between our model’s predictions for the PDL and PGL cases

42For each subject, we let n be the largest quantity (less than or equal to 4) such that cue-consistent re-
sponses are more frequent than cue-inconsistent choices in each of the bins prior to bin n; thus if the subject’s
relative-frequency curve is a step function, the discontinuity may be inferred to occur in bin n. We find that
for 15 of the subjects, the fraction of cue-consistent choices is lower on average in the last two bins (the slow-
est 2/7 of the subject’s choices) than in bin n+ 1 (the first one in which all choices should be at percentiles
greater than the one at which the discontinuity occurs). There are instead only two subjects for whom the
inequality is reversed, making it unlikely that the difference between earlier and later decisions (among all
those later than bin n) is due merely to random sampling from the same probability distribution in each bin.
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that should in principle be testable. For example, as shown in the appendix, section A.2.2, it
is possible to modify the payoffs in the decision problem in a way that makes no difference
for the solution (π̄L, q̄L, q̄R) of the static RI problem, but that adds a linear term to the value
function V (πL). Because the second derivative of the value function is unchanged, such a
change in the payoffs implies no change in the way that beliefs diffuse in the PGL case;
but because the location of πL changes, the predicted response-time distributions in the
PDL case are different. Thus again it should be possible to discriminate between the PDL
and PGL cases by looking at conditional distributions of response times (though not by
looking at state-contingent response frequencies alone); but because we know of no such
experiments, we leave this for further investigation elsewhere.

6 Discussion and Conclusion

We have proposed a continuous-time model of optimal evidence accumulation, and estab-
lished conditions under which the state-contingent stochastic choices predicted by such a
model coincide with those of a static rational inattention model. Our result provides both
a potential interpretation for the use of certain types of information-cost functions in static
rational inattention models, and a useful approach to solving for the predictions (including
predictions about response times) of the dynamic model.

Our general framework is flexible enough to allow beliefs to evolve either as a continu-
ous diffusion or in discrete jumps. We establish conditions under which beliefs necessarily
evolve in only one of these ways. In particular, we establish conditions under which both
the evolution of beliefs prior to a decision, and the stopping rule that determines the time
taken for a decision and its accuracy, are similar to the assumptions of the drift-diffusion
model in mathematical psychology. In this case, the DM’s belief state can be represented
as a diffusion on a line, the drift of which depends on the external state, and a decision
is made at whatever time the belief state first reaches one of two time-invariant bound-
aries. Whether the conditions under which beliefs should evolve in this way are in fact
characteristic of actual decision situations deserves further study; we show that at least in
principle, it is possible to determine this on the basis of a study of the state-contingent joint
distributions of responses and response times.
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A Response-Time Distributions in Binary-Choice Problems

Here we provide additional details of the calculations reported in section 5. We consider
a problem in which there are two possible actions (A = {L,R}), and suppose that for each
state, one or the other of the two actions is strictly preferable (uL,x 6= uR,x). We can then
partition the state space into two disjoint subsets, XL (the subset of states in which L is the
“correct” response, meaning that it results in higher utility) and XR (the subset for which
R is the correct response). In the main text, we further specialize by assuming that utility
depends only on whether the DM’s response a is “correct” or not for the state x (as is true
of the reward function in the experiment of Kelly et al. [2021]); but this hypothesis is not
needed for the more general results here.

As in the main text, we consider information costs based on a strongly convex entropy
function H(q) (though here we do not impose a symmetry assumption). In the case of
either PDL or PGL information costs, it follows from Proposition 7 that the predicted state-
contingent response probabilities are the ones corresponding to the solution to the static RI
problem stated in (15). For any prior q̄, there will be a pair of optimal posteriors q̄L and q̄R

given by the solution to this problem. (In general, these will depend on the prior. In the two-
state case discussed in the main text, instead, they are independent of q̄, for all priors that
are not too extreme; but that is a special feature of the two-state case.) We shall assume that
some information is acquired, which is to say that under the DM’s actual prior q0, q̄L 6= q̄R 6=
q0, and that all of these posteriors are on the interior of the simplex (to avoid technicalities).
Under the optimal policy, beliefs will move (either diffusing or jumping/drifting) on the line
segment connecting q̄L and q̄R in the simplex, which necessarily runs through q0. Given
this, it is possible, as in the main text, to parameterize beliefs at each point in time by a
scalar variable πLt ; the beliefs corresponding to a given value of πLt are again given by
a function q(πLt) defined in (18).43 In terms of this notation, the prior corresponds to
πL,0 = π̄L, the probability of an L response in the solution to the static problem (15). At any
subsequent time, πLt indicates the conditional probability of an eventual L response, given
the state reached at time t; accordingly, the variable πLt must evolve as a martingale.

It further follows from Proposition 7 that the value function (in terms of the state vari-

43In the more general case discussed here, the stopping posteriors q∗L,q
∗
R referred to in (18) are understood

to refer to the stopping posteriors q̄L, q̄R that are optimal for a particular prior q0.
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able πL,t) can be written as

V (πL,t) = πL,tVL +(1−πL,t)VR +
κ

χ
H(q(πL,t)),

with VL =∑x∈X q̄L,xuL,x− κ

χ
H(q̄L) and VR =∑x∈X q̄R,xuR,x− κ

χ
H(q̄R). It follows by the strict

convexity of H(q) and the linearity of q(πL) that V (πL,t) is strictly convex on πL,t ∈ [0,1].
As a consequence of this convexity, there are three possible shapes of the value function
V (πL,t): it could be increasing on [0,1], decreasing on [0,1], or decreasing on [0,πL) and
increasing on (πL,1] for some πL ∈ (0,1). In the first two of these cases, we will say πL = 0
and πL = 1, respectively; thus in each case, πL is the value of πL at which V (πL) reaches its
minimum. Alternative possible shapes for this function are illustrated in the first column
of Figure 4. We show below that the shape of the value function is closely related to the
properties of the stopping time distribution in the case of a preference for discrete learning.

A.1 General Results for the PDL Case

We first consider the PDL case, and as in the discussion in the main text, we first state
our results for the case in which the minimum of the value function on the line segment,
V (πL), occurs at some πL < π̄L, as illustrated in Figure 4. As noted in the main text, the
results of Zhong [2019] imply that jumps must always increase the value function, while
the value function must steadily decrease while beliefs drift (i.e., in the absence of a jump).
Thus for any πL,t > πL, the optimal policy is to jump towards πL,t = 1 with the maximum
possible intensity and drift downwards. Eventually, πL,t will drift downwards and equal
πL, at which point the DM will randomize between jumping to πL,t = 1 and πL,t = 0 with
unconditional probabilities πL and (1−πL). In the particular case of an upward-sloping
value function (πL = 0), shown in the bottom row of Figure 4, the DM will choose R with
certainty, immediately after reaching πL.

We first solve explicitly for the dynamics of beliefs during the first phase, while πLt

remains in the interval πL < πLt < π̄L. The fact that πLt must be a martingale implies that
the drift rate µt in the absence of a jump is determined by the instantaneous rate ψLt at
which jumps to q̄L (i.e., to πLt = 1) occur: µt =−ψLt(1−πLt). The convexity of the value
function implies that it is optimal to make the variability of the evolution as great as pos-
sible, consistent with the constraint on the rate of evidence accumulation; hence constraint
(6) must hold with equality at each point in time. Since only one kind of jump occurs dur-
ing this phase of the decision process, the constraint implies that the instantaneous rate at
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which jumps of this kind occur is given by ψL(πLt) = χ/DH(q̄L||q(πLt)), as stated in the
main text. This in turn implies the solution for the drift rate µt = µ(πLt) given by (19).

We can integrate the differential equation

π̇Lt = µ(πLt), (24)

starting from the initial condition πL,0 = π̄L, to determine the time t = τ̃ at which the
dynamics predict that πL,t = πL, conditional on no jump having occurred before that time.
If we let Pearly be the unconditional probability of a jump occurring before time τ̃, then the
fact that qt must be a martingale, together with the fact that the posterior reached at the end
of the first phase must be q̄L if a jump has occurred and q(πL) otherwise, requires that

Pearly · q̄L + (1−Pearly) ·q(πL) = q0.

This is a vector equation that must hold element-wise. In particular, we must have

Pearly · q̄L,y + (1−Pearly) ·qy(πL) = q0,y, (25)

for each of the values y ∈ {`,r}, if we define

q̄L,` = ∑
x∈XL

q̄L,x, q`(πL) = ∑
x∈XL

qx(πL), q0,` = ∑
x∈XL

q0,x,

and correspondingly use the subscript r to denote sums over the states in XR. This can be
solved for the value of Pearly that is consistent with given values for q0,q(πL), and q̄L.

Let Pearly
` correspondingly denote the probability of a jump before time τ̃, conditional

on the state belonging to set XL, and Pearly
r the probability conditional on the state belonging

to XR. Bayes’ rule requires that in order for q̄L to be the posterior in the event of a jump
before time τ̃, it must be the case that

q̄L,y =
q0,yPearly

y

Pearly

for either of the y ∈ {`,r}. Substituting the solution to (25) for Pearly in this equation, and
solving for the implied value of Pearly

y , we obtain

Pearly
y =

(
q̄L,y

q0,y

)(
q0,y−qy(πL)

q̄L,y−qy(πL)

)
. (26)
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If time τ̃ is reached with no jump, then from then on πLt remains unchanged at the value
πL, until a jump occurs. In this second phase of the dynamics, jumps can occur to either
q̄L or q̄R, and the constant rates ψL,ψR at which the two types of jumps occur must be such
that πLt is a martingale despite the absence of any drift. This requires that

ψL(q̄L−q(πL)) + ψR(q̄R−q(πL)) = 0,

which holds if and only if
ψL

ψR
=

πL
1−πL

.

(Note that πL < 1 in the cases considered here.) This determines the relative rates at which
the two kinds of jumps must occur, but not the absolute rates. However, the convexity of
the value function again implies that these rates must be as large as possible, consistent
with the constraint (6). Hence (6) must hold with equality, which requires that the total rate
ψ ≡ ψL +ψR at which jumps occur must be

ψ =
χ

πLDH(q̄L||q(πL))+(1−πL)DH(q̄R||q(πL))
.

Given this constant rate at which jumps occur at all times greater than τ̃, the unconditional
cumulative distribution function F(τ) for response times will be of the form

F(τ) = 1 − (1−Pearly)e−ψ(τ−τ̃)

for all τ ≥ τ̃.

The jump rates just calculated are unconditional ones; we can similarly compute a total
jump rate ψy conditional on the class y to which the state belongs (i.e., on whether the
correct response is L or R), and decompose the total jump rate ψy into a rate ψ

y
L of jumps to

the response L and ψ
y
R of jumps to the response R. (All of these rates are constant jump rates

for times after τ̃.) Bayes’ Rule requires that in order for the posterior to be q̄∗a following a
jump to response a, for either class of states y we must have

q̄a,y =
qy(πL)ψ

y
a

ψa
.

This implies that

ψ
y
a = ψa

q̄a,y

qy(πL)
=

πaq̄a,y

qy(πL)
·ψ (27)
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for y ∈ {`,r} and a ∈ {L,R}, where πR means 1− πL (the unconditional probability of
response R if there is no decision before time τ̃). This allows us to compute the relative
frequency with which different combinations of actual response a and correct response y

should be observed, if the decision occurs after time τ̃.

Now suppose that we separately compute distributions of response times for classes
of trials that are classified (i) according to whether the state belongs to XL or XR (that is,
according to what the correct response is on that trial), and (ii) according to the DM’s
response, as with the data presented in Figure 3. For each of the two possible sets of
states (labeled by y ∈ {`,r}), we can compute a theoretical distribution of response times,
which will have a cumulative distribution function Fy(τ). For either class of states y,
this function can be decomposed into two parts, Fy

L (τ) and Fy
R(τ), where Fy

a (τ) indicates
the probability of a jump to the response a before time τ . These are continuous, non-
decreasing functions of τ , satisfying Fy

L (τ),F
y
R(τ) ≥ 0 and Fy

L (τ)+Fy
R(τ) = Fy(τ) for all

τ. Computing predictions for these functions requires an exact specification of the function
H (and hence the divergence DH). However, the predictions depend only on a finite number
of parameters, rather than the complete details of the entropy function assumed, if we write
them in terms of response-time quantile distributions instead of response times.

For either choice of the class of states y, we can define a response-time quantile τ̂ asso-
ciated with any response time τ, using the mapping τ̂ =Fy(τ). A generalized inverse (quan-
tile) function can be defined by F̂y(τ̂) = inf{τ ≥ 0 : Fy(τ) ≥ τ̂}. Then for any pair (y,a),
we can define Gy

a(τ̂)≡ Fy
a (F̂y(τ̂)). This function is defined for all quantiles 0 < τ̂ < 1, and

identifies the cumulative number of a responses among the first τ̂ responses, conditional on
the state belonging to the class y. (By definition, for any τ̂ we must have Gy

L(τ̂),G
y
R(τ̂)≥ 0

and Gy
L(τ̂)+Gy

R(τ̂)≥ τ̂, with equality wherever F̂y(τ̂) is strictly increasing.)
For either choice of the class of states y, let τ̂y ≡ Fy(τ̃) = Pearly

y be the response-time
quantile at which the first phase ends, conditional on the state belonging to class y. Our
results above then imply that for all quantiles 0 ≤ τ̂ ≤ τ̂y, Gy

R(τ̂) = 0 and Gy
L(τ̂) = τ̂. For

all quantiles τ̂y ≤ τ̂ ≤ 1, instead, we obtain

Gy
R = py

R · (τ̂− τ̂
y), Gy

L = τ̂
y + py

L · (τ̂− τ̂
y), (28)

using the notation py
a ≡ ψ

y
a/ψ for the probability of response a if the state belongs to the

set y and no choice is made before time τ̃. These functions are completely described by the
quantities Pearly

y given by (26) and ψ
y
a/ψ given by (27), regardless of any other properties
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of the H function. Since we must have (ψy
L/ψ)+(ψy

R/ψ) = 1, there are only four degrees
of freedom in the possible appearance of the functions.

Similar results can be obtained if we instead assume that πL > π̄L. In this case, the
same kind of reasoning as above implies that for any πL,t < πL, the optimal policy is to
jump towards πL,t = 0 (i.e., toward response R) with the maximum possible intensity, and
otherwise to drift upwards. At a finite time τ̃, πL,t will have risen enough to equal πL,
after which point the DM will randomize between jumping to πL,t = 1 and πL,t = 0 with
unconditional probabilities πL and (1−πL). Analogs of all of the above formulas can be
derived in the same way, simply reversing the roles of responses L and R and the classes of
states ` and r. For example, instead of (26) we obtain

Pearly
y =

(
q̄R,y

q0,y

)(
q0,y−qy(πL)

q̄R,y−qy(πL)

)
, (29)

and instead of (28), we obtain

Gy
L = py

L · (τ̂− τ̂
y), Gy

R = τ̂
y + py

R · (τ̂− τ̂
y)

in this alternative case.
Finally, in the special case in which πL = π̄L exactly, there will be no “first phase” of

the belief dynamics. (Equation (26) reduces to Pearly
y = 0.) The optimal policy will imme-

diately involve randomization between jumping to πL,t = 1 and πL,t = 0 with unconditional
probabilities πL and (1− πL). The conclusions obtained above concerning dynamics in
“phase two” continue to hold in this limiting case, setting τ̃ equal to zero. Thus for exam-
ple (28 reduces to Gy

a = py
a · τ̂ for a = L,R, and the equation holds for all 0≤ τ̂ ≤ 1.

A.2 Specialization to the Two-State Case

In the special case considered in the main text, there are only two states, one (state `) in
which L is the correct response, and another (state r) in which R is the correct response.
In addition, motivated by the experimental design in Kelly et al. [2021], we assume cer-
tain symmetries that allow us to simplify the results obtained in the previous subsection.
As explained in the text, these assumptions allow us to define the stopping posteriors q̄a

independently of the choice of prior, for any prior that is not too extreme.44 In this special

44The prior must be some convex combination of the two stopping posteriors q∗L and q∗R that solve the
maximization problem stated in the main text. In the case that there are only two states, the probability
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case, the optimal stopping posteriors are denoted q∗a. In addition, the symmetry assump-
tions imply that q∗L,` = q∗R,r = α , for some 1/2 < α < 1. It follows that for any non-extreme
prior (i.e., such that q∗R,` ≤ q0,` ≤ q∗L,`), the overall accuracy rate (the fraction of correct
responses) will be equal to α . Finally, the symmetry assumptions imply that V (πL) will
have the symmetry V (πL) = V (1− πL), with the consequence that this convex function
must reach its unique minimum at πL = 1/2, as shown in the left panel of Figure 1. This
means that the posterior q(πL) will be one that assigns equal probability to the two states.

A.2.1 Proof of Lemma 3

Under these additional assumptions, the results derived in the previous subsection can be
stated more simply. Substituting the values q̄L,` = α, and q`(πL) = 1/2, equation (26)
reduces to equation (20) in the main text for the values of τ̂`, τ̂r. Similarly, substituting
the values πL = 1/2 and q`(πL) = 1/2 into (27), we obtain py

a = q̄a,y. Hence py
a = α for

(y,a) = (`,L) or (r,R), while it is equal to (1−α) for (r,L) or (`,R).
The response-time quantile distributions are described in Lemma 3 (and similarly Fig-

ures 1 and 2, as well as Figure 4 below) in terms of density functions gy
a(τ̂) rather than the

cumulative distribution functions Gy
a(τ̂) defined in the previous subsection. The density

function is given by

gy
a(τ̂) ≡

∂Gy
a(τ̂)

∂ τ̂

at those values of τ̂ where the distribution function is differentiable.45 Thus in the symmet-
ric case, we have g`L(τ̂) = 1 for all 0 < τ̂ < τ̂`, and g`L(τ̂) = α for all τ̂` < τ̂ < 1, where τ̂`

is given in (20). Similarly, we have gr
L(τ̂) = 1 for all 0 < τ̂ < τ̂r, and gr

L(τ̂) = 1−α for all
τ̂r < τ̂ < 1, where τ̂r is also given in (20). This establishes the results stated in Lemma 3.

Similar methods can be applied if instead we assume a prior such that r is the more

simplex is simply a line segment, so that any prior must lie on the line that passes through the points q∗L and
q∗R; the only special requirement is then that q0 not be too extreme, in the sense that it lies between the two
stopping posteriors. In the case that there are more than two states, instead, the set of priors that are convex
combinations of any two stopping posteriors will be non-generic.

45These density functions can be interpreted as the conditional likelihood of action a given y ∈ {l,r} and
that the response time quantile is τ̂ . These likelihoods are well-defined in the context of Lemma 3, because
there are no atoms in the response times. More generally, if Fy is strictly increasing, the Gy

a functions are
Lipschitz continuous, and hence the density functions are defined almost everywhere on the interval [0,1],
which is sufficient for our purposes. The relevant predictions of the model relate to integrals of these densities
over intervals; we cannot expect to experimentally test a prediction about the value of the density at a single
point. For example, in Figure 3, we compare the theoretical predictions (shown in Figure 1 in terms of density
functions) with data on the number of observations in each of several response-time bins; each of these bins
corresponds to 1/7 of the interval [0,1].
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likely state (q∗R,` < q0,` < 1/2). In this case, equation (29) implies that

τ̂
r =

(
α

α−1/2

)(
1/2−q0,`

1−q0,`

)
, τ̂

` =

(
1−α

α−1/2

)(
1/2−q0,`

q0,`

)
,

instead of the formulas given in (20). The response-time quantile density functions are
given in this case by gr

R(τ̂) = 1 for all 0 < τ̂ < τ̂r, and gr
R(τ̂) = α for all τ̂r < τ̂ < 1, and

similarly g`R(τ̂) = 1 for all 0 < τ̂ < τ̂`, and g`R(τ̂) = 1−α for all τ̂` < τ̂ < 1.
We observe that the predicted density function gr

R(τ̂) when q0,` = 1− v is mathemat-
ically identical to the predicted density function g`L(τ̂) when q0,` = v, for any measure
1/2 < v < 1 of the “validity” of the cues (i.e., of the informativeness of the priors). Sim-
ilarly, the predicted density function g`R(τ̂) when q0,` = 1− v is mathematically identical
to the predicted density function gr

L(τ̂) when q0,` = v. Thus when testing these predictions
in a symmetric case, we can pool the distribution of L responses conditional on a state of
type ` when the prior is q0,` = v and the distribution of R responses conditional on a state
of type r when the prior is q0,` = 1− v (so that q0,r = v), calling all of these the distribu-
tion of “cue-consistent responses” in the case of a “cue-consistent state.” (The theoretical
prediction for this distribution is shown by the graph of g`L(τ̂) in Figure 1.) Similarly, we
can pool the distribution of L responses conditional on a state of type r when the prior is
q0,` = v and the distribution of R responses conditional on a state of type ` when the prior
is q0,` = 1−v, calling all of these the distribution of “cue-consistent responses” in the case
of a “cue-inconsistent state.” (The theoretical prediction for this distribution is shown by
the graph of g`L(τ̂) in Figure 1.) This is the method used to compare the experimental data
with our theoretical predictions in Figure 3.

A.2.2 Asymmetric Rewards in the PDL Case: Examples

In asymmetric cases, we continue to have qualitatively similar predictions. For example,
when the prior implies that state ` is more likely, then g`L(τ̂) = 1 for all 0 < τ̂ < τ̂`, and
g`L(τ̂) = p`L < 1 for all τ̂` < τ̂ < 1; it is only the formulas determining the values of τ̂` and
p`L that differ.

Figure 4 illustrates how asymmetric rewards modify the predictions shown in Figure
1 of the main text. We continue to assume that there are only two states (`,r), such that
uL,` > uR,` and uR,r > uL,r. However, we now consider the possibility that uL,` 6= uR,r and
uL,r 6= uR,`. As in Figure 1, we assume that H(q) is given by Shannon entropy. In all rows
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of the new figure, we also continue to assume that the utility differential between correct
and incorrect responses is the same in both states:

uL,` − uR,` = uR,r − uL,r = ∆ > 0,

where the value of ∆ is the one assumed in Figure 1. Since the maximization problems
defining q∗a for each of the possible actions depend only on these return differentials, the
optimal stopping posteriors (q∗L,q

∗
R) are the same in all three rows of the figure, and remain

the same as in Figure 1. Finally, in all three rows of the new figure, we continue to assume
the same prior (with 1/2 < q0,` < q∗L,`) as in Figure 1. This means that the value of π̄L in
the solution to the static RI problem defined in (15) is the same in all three rows, and the
same as in Figure 1.
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Figure 4: Predicted response-time distributions with a preference for discrete learning,
under three different possible assumptions about the degree of asymmetry of payoffs. Each
row shows the value function V (πL), the function gx

L(τ̂) for states x in which L is the correct
response (“` states”), and the function gx

L(τ̂) for states x in which R is the correct response
(“r states”), under a particular assumption about the relative payoffs in ` and r states. In
the first row (Case I), the rewards for correct or incorrect responses are the same in ` and
r states; in the lower rows, the utilities associated with r states are made progressively
lower relative those associated with ` states. In all numerical calculations shown, H(q) is
assumed to be the negative of the Shannon entropy function, and parameters are chosen as
in Figures 1 and 2 of the main text. (Figure 1 in the main text corresponds to the first row
of this figure.)

The top row of the figure (which corresponds to Figure 1 in the main text) makes the
further assumption that the DM’s reward depends only on whether the response is correct
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for the state, so that uL,` = uR,r > uR,` = uL,r. In this case, as discussed above, the value
function is symmetric around the value πL = 1

2 . In the other two rows, we continue to
assume the same utility differential between the correct and incorrect responses in each
state, but we no longer assume that the reward for a correct response is the same in states
` and r. If we let u(L, `)−u(R,r) = u(R, `)−u(L,r) = δ , then δ = 0 corresponds to Case
I, shown in the top row. If instead 0 < δ < ∆, we have an asymmetric value function
and 0 < πL < 1/2 (Case II), as shown in the second row of the figure. (The numerical
solution shown in the second row is for the case δ = ∆/2.) Finally, if δ ≥ ∆, the value
function is monotonically increasing and πL = 0 (Case III), as shown in the bottom row.
(The numerical solution shown is for the case in which δ = ∆ exactly.) We obtain similarly
asymmetric solutions if δ < 0, but with the roles of states ` and r reversed.

Each row of the figure shows the value function V (πL) and the response-time quantile
density functions gy

L(τ̂) for a particular value of δ . Increasing the utility of state ` relative
to the utility of being in state r, while preserving unchanged the utility differential be-
tween correct and incorrect responses in both states, is of no consequence for the solution
(q∗L,q

∗
R, π̄L) to the static RI problem associated with a given prior; but it does change the

expected utility V (q0) implied by that prior. Hence the value function V (q), and corre-
spondingly the transformed value function V (πL), depend on the value of the parameter δ .

Specifically, we have
V (πL) = V0(πL) + δπL,

where V0(πL) is the symmetric value function shown in the first row of the figure. For
arbitrary δ , this continues to be a strictly convex function, with its unique local minimum
at the point πL implicitly defined by the first-order condition

V ′0(πL) = −δ .

Because of the convexity of V0(πL), the solution for πL is a monotonically decreasing
function of δ (for all δ < −V ′0(0)), with πL < 1/2 for all δ > 0, as shown for Case II
in the figure. When δ ≥ −V ′0(0), the value function is monotonically increasing over the
entire interval [0,1], as shown for Case III in the figure; in this case, πL = 0. Under the
assumption of Shannon entropy, as assumed in the figure, V ′0(0) = −∆, so that Case III is
reached when δ ≥ ∆.

Because the optimal stopping posteriors are independent of the value of δ , we continue
to have q∗L,` = α,q∗R,` = 1−α, regardless of the value of δ (and α continues to measure the
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predicted overall accuracy rate). Equation (26) therefore implies that

τ̂
` =

(
α

α−q
`

)(q0,`−q
`

q0,`

)
, τ̂

r =

(
1−α

α−q
`

)(q0,`−q
`

1−q0,`

)
,

using the shorthand q
`
≡ q`(πL) = πLα +(1−πL)(1−α). This generalizes (20), which

corresponds to the case q
`
= 1/2 (i.e., πL = 0). Similarly, equation (27) implies that

p`L =
πLα

πLα +(1−πL)(1−α)
, pr

L =
πL(1−α)

πL(1−α)+(1−πL)α
,

generalizing the expressions given in Lemma 3 for the case q
`
= 1/2.

Figure 4 illustrates how the predicted response-time quantile density functions change
as we vary the size of δ (i.e., the degree of asymmetry of the rewards available in the two
different states). As δ increases, πL and hence q

`
monotonically decrease; in the limit as

δ approaches ∆ (Case III is reached), πL approaches zero and hence q
`

approaches a lower
bound of 1−α . As a result, both τ̂` and τ̂r increase monotonically, though they remain
less than 1 even when πL = 0 (Case III). And both p`L and pr

L decrease monotonically, each
approaching zero as πL→ 0. Hence as Case III is approached, the response-time quantile
density functions approach limiting distributions (shown in the bottom row of the figure)
in which all responses before quantile τ̂y are L responses and all responses thereafter are R

responses.46

Thus varying δ changes the predicted distribution of response times (and response-
time quantiles) in the case of a preference for discrete learning, even though it has no effect
on the solution to the static RI problem, and thus no effect on predicted state-contingent
response probabilities. The conclusion is different in the case of a strict preference for
gradual learning, as we now discuss.

46In the case that πL = 0 (Case III), we can’t actually describe the response-time quantile distribution
using a density function, since the distribution of response times has an atom at τ̃ . However, quantiles remain
well-defined, and the quantile distribution functions Gx

a(τ̂) remain continuous (and differentiable everywhere
except at τ̂ = τ̂y) for all values πL > 0. Moreover, there are well-defined limiting density functions as πL→ 0.
These limiting density functions are the ones shown for “Case III” in the bottom row of the figure.
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A.3 Response Times in the PGL Case

A.3.1 Proof of Lemma 4

We now consider the dynamics of the belief state πL,t , conditional on the true state being
x ∈ X , under a strict preference for gradual learning. In this subsection, as in subsection
A.1, we do not restrict ourselves to the case |X | = 2, assumed in the main text; nor do we
impose the symmetry assumptions made there.

We note first that the information constraint for a diffusion process, (5), will bind in
any solution to the HJB equation (12). Because diffusion takes place on a line (18), the
unconditional belief dynamics must be of the form47

dqt = (q̄L− q̄R)σ̄(πL,t)dBt ,

where σ̄(πL) is scalar-valued and dBt is a one-dimensional Brownian motion. This is a
diffusion of the kind assumed in (1), where the matrix σ(qt) in that expression is now an
|X |-vector, with an element corresponding to each state x ∈ X given by

σx(q(πL,t)) =
(q̄L,x− q̄R,x)

qx(πL,t)
(30)

at any point on the line segment between q̄R and q̄L. Substituting this expression for σ(q(πL,t)),

we see that the constraint (5) holds with equality if and only if

σ̄(πL,t)
2 =

2χ

(q̄L− q̄R)T ∇2H(q(πL,t))(q̄L− q̄R)
.

We can similarly use (7) to obtain a diffusion that describes the conditional dynamics
of beliefs. If we use dqt|x to denote the evolution of the posterior qt conditional on the true
state being x, and dqt,x′|x for the evolution of qt,x′ (the posterior probability of some state
x′) conditional on the true state being x, then substitution of (30) into (7) yields

dqt,x′|x = qt−,x′σx′(qt−)σx(qt−)dt + qt−,x′σx′(qt−)dBt|x

= (q̄L,x′− q̄R,x′)
(q̄L,x− q̄R,x)

qt,x
σ̄(πL,t)

2dt + (q̄L,x′− q̄R,x′)σ̄(πL,t)dBt|x.

47Here, as in subsection A.1, we use the more general notation q̄L, q̄R to refer to the stopping posteriors
that are optimal for a given prior q0, rather than assuming that these must coincide with the posteriors q∗L,q

∗
R

defined for the two-state case in the main text.
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These dynamics for qt|x imply that the posterior remains always on the line segment con-
necting q̄R to q̄L. In fact, one observes that they can be written in the form

dqt|x = (q̄L− q̄R)dπL,t|x,

where the state-contingent dynamics of the coordinate πL,t conditional on true state x follow
the diffusion specified in (22). This establishes Lemma 4.

A.3.2 DDM Dynamics as a Special Case

We have noted in the main text that under a particular assumption about information costs,
the belief dynamics implied by our model with a strict preference for gradual learning are
exactly like those assumed in the standard DDM. Let us suppose again that there are only
two states, X = {`,r}, as in the main text, and that utility depends only on whether the
response is correct for the state or not, also as in the main text. We further assume in this
subsection that H(q) is the “total information” (TI) cost function specified in (17). Note
that in this special case we have

Diag(q)∇2H(q)Diag(q) =

[
1 −1
−1 1

]

at any posterior q in the interior of the probability simplex.
In the two-state case, the posterior can be represented by a single number, qt,`, and the

unconditional belief dynamics (until a decision is made) can be written in the form

dqt,` = σ̃(qt,`)dBt ,

where σ̃(q`) is a scalar-valued function. This is a diffusion of the general form (1), where
σ(q) is a vector with elements σ`(q) = σ̃(q`)/q`, σr(q) = −σ̃(q`)/qr. It follows that the
maximum rate of information accumulation consistent with (5) is given by

σ̃(q`) =
√

2χq`(1−q`).

From this it follows, using (7), that the state-contingent belief dynamics are of the form

dqt,`|x = µx(qt−,`)dt + σ̃(qt−,`)dBt|x (31)
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for x ∈ {`,r}, where

µ`(q`) = 2χq`(1−q`)2, µr(q`) = −2χq2
`(1−q`).

Since πL,t is an affine transformation of qt,`, the dynamics of the belief state πL,t still
have a non-constant drift and instantaneous variance in this case. But suppose that we
instead parameterize the belief state by the posterior log odds, zt ≡ ln(qt,`/qt,r). The is just
a smooth nonlinear transformation zt = Z(qt,`) of the posterior probability of state `. We
can then use Ito’s lemma together with (31) to show that the state-contingent dynamics of
this variable are given by equation (23) in the main text.

A.3.3 Conditional Response-Time Distributions: Numerical Approach

We next consider the implications of a strict preference for gradual learning for the pre-
dicted distribution of stopping times. These can be derived via standard dynamic program-
ming arguments. In the numerical results reported in the text, we assume that there are
only two states (`,r), and that utility depends only on whether the response is correct for
the state. We present results for two possible information cost functions (associated with
different specifications of the entropy function H(q)), the Shannon entropy (16) and the
TI entropy (17), both of which satisfy the symmetry property assumed in the main text.
Finally, in Figure 2 as in Figure 1, we present the response-time quantile distributions for
a case in which 1/2 < q0,` < q∗L,`. We therefore maintain this assumption in the discussion
below.

As in subsection (A.3.1), we describe the dynamics of beliefs conditional on true state
x in terms of the evolution of the coordinate πL,t|x, specified in (22). For either state x,
let φ x

L(πL,s) be the probability of hitting the boundary πL,t = 1 or at or before time s (and
before reaching the other decision boundary), if at time t no decision has been made and
πL,0 = πL. This function has the same form regardless of the time t, owing to the Markovian
property of the optimal belief dynamics, and must satisfy the partial differential equation

1
σ̄(πL)2 φ

x
L,s(πL,s) =

q∗L,x−q∗R,x
qx(πL)

φ
x
L,π(πL,s) +

1
2

φ
x
L,ππ(πL,s), (32)

where φ x
L,s, φ x

L,π , and φ x
L,ππ

are the first and second-order partial derivatives with respect to
s, π , and π-twice. The associated boundary conditions are φ x

L(1,s) = 1, φ x
L(0,s) = 0, and

φ x
L(πL,0) = 0 for all π ∈ (0,1).
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By definition, Fx
L (τ)= φ x

L(π̄L,τ). Consequently, solving the PDE (32) allows us to com-
pute Fx

L . The same PDE, with different boundary conditions, can also be used to compute
Fx

R . From these two functions, we can compute the corresponding cumulative distribution
functions Gx

a(τ̂) as a function of the quantile τ̂ = Fx(τ). Finally, (numerical) differentiation
of the cumulative distribution functions allows us to compute the corresponding density
functions gx

a(τ̂). The numerical solutions for the two functions gx
L(τ̂) are shown in Figure

2 in the main text, for each of the two entropy functions that we consider.
Note that our results for the PGL case differ from those in the PDL case in that the

predictions for the PGL case depend on the specific entropy function that is assumed (as
illustrated by the two different cases considered in the figure), even given our calibrated
values for q0,` and α. Because of this dependence of the precise predictions for the PGL
case on the entropy function, we do not consider in the text how well the observed response-
time distributions match specific numerical predictions for that case. We content ourselves
with the observation that the model prediction for the PGL case is a smoothly decreasing
density function rather than a step function, and (at least qualitatively) the experimental
data seem more consistent with this prediction.

B Proofs of Main Results

B.1 Useful Lemmas

B.1.1 Dynamic Programming Principle

We begin by pointing out that a standard dynamic programming principle holds in our
environment.

Lemma 5. (Dynamic Programming Principle) Under any feasible policy ((Ω,F̃ ,{F̃t}, P̃), q̃, τ̃)∈
A , for any t ∈ R+ and ω ∈Ω with t < τ̃(ω), and any stopping time τ1 ∈ [t, τ̃],

V (q̃t(ω))≥ E P̃[e−ρ(τ1−t)V (q̃τ1)−κ

ˆ
τ1

t
e−ρ(s−t)ds|F̃t ](ω).

If this policy is an optimal policy, equality must hold.

Proof. By contradiction: suppose that for some ω , t, policy, and stopping time τ1, and
ε > 0,

V (q̃t)+ ε = E P̃[e−ρ(τ1−t)V (q̃τ1)−κ

ˆ
τ1

t
e−ρ(s−t)ds|F̃t ].
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By Definition 1 (redefining the time variable), this policy must satisfy

E P̃[e−ρ(τ̃−t)û(q̃τ̃)−κ

ˆ
τ̃

t
e−ρ(s−t)ds|F̃t ]≤V (q̃t),

and therefore

ε ≤ E P̃[e−ρ(τ1−t){e−ρ(τ̃−τ1)û(q̃τ̃)−V (q̃τ1))−κ

ˆ
τ̃

τ1

e−ρ(s−τ1)ds|F̃t ].

By iterated expectations, there must exist some ω ∈Ω such that

V (q̃τ1)+ εeρ(τ1−t) ≤ E P̃[e−ρ(τ̃−τ1)û(q̃τ̃)−κ

ˆ
τ̃

τ1

e−ρ(s−τ1)ds|F̃τ1 ].

Redefining the time variables generates a contradiction of Definition 1.
Now suppose the policy is optimal but equality does not hold. There must be some

ω ∈Ω such that

E P̃[e−ρ(τ̃−τ1)û(q̃τ̃)−V (q̃τ1))−κ

ˆ
τ̃

τ1

e−ρ(s−τ1)ds|F̃τ1(ω)](ω)> 0,

contradicting Definition 1.

B.1.2 A Convexity Lemma

As preparation for the proof of Proposition 1, we first derive a lemma that is useful in
simplifying the optimization problem stated in Definition 1. Starting from any belief q ∈
P(X), consider a deviation from the optimal policy that involves either jumping in one
direction or in exactly the opposite direction, with the intensities of the two possible jumps
balanced so as to imply that beliefs will be a martingale even if they do not change in the
absence of a jump; the policy is maintained until a jump occurs, or some fixed amount of
time passes. (Suppose that the jumps in each direction are small enough to be feasible, and
that the intensities with which they occur are chosen so that (6) binds. Then this represents
a feasible policy.) If no jump has occurred by the fixed time, one then follows the optimal
policy starting from beliefs q from then onward. Such a deviation from the optimal policy
cannot possibly increase the value function relative to the one achieved by the optimal
policy. This allows us to establish the following result.
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Lemma 6. For any q∈P(X), α ∈ (0,1), and z∈R|X | such that q±z∈P(X) and q±z�
q,

χ
−1(ρV (q)+κ)(αD(q+(1−α)z||q)+(1−α)D(q−αz||q))≥

αV (q+(1−α)z)+(1−α)V (q−αz)−V (q).

Proof. The result holds trivially for z =~0. Suppose z 6=~0.
Consider a K = 2 Poisson process, with jump directions z1 = (1−α)z and z2 = −αz

and intensities ψ1 = αψ̄ and ψ2 = (1−α)ψ̄ , where

ψ̄ =
χ

αD(q+(1−α)z||q)+(1−α)D(q−αz||q)
.

By assumption, ψ̄ is strictly positive and finite. Observe by construction under this policy
that qt does not drift and this this policy is feasible.

Suppose the DM chooses this policy starting from beliefs q until h units of time have
passed or a jump occurs. If a jump occurs before h time has passed, suppose the DM
gathers no information until h time has passed, and that after time h the DM resumes her
optimal policies.

By Lemma 5, the discounted expected utility of such a strategy must be less than the
utility achieve by an optimal strategy, which yields

V (q)≥ e−ρh{αV (q+(1−α)z)(1− e−ψ̄h)+(1−α)V (q−αz)(1− e−ψ̄h)+ e−ψ̄hV (q)}

−κ

ˆ h

0
e−ρsds.

We can rewrite this as

(
κ

ρ
+V (q))(eρh−1)eψ̄h ≥ (exp(ψ̄h)−1)(αV (q+(1−α)z)+(1−α)V (q−αz)−V (q)).

Taking the limit as h→ 0+,

(κ +ρV (q))
1
ψ̄
≥ αV (q+(1−α)z)+(1−α)V (q−αz)−V (q).
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We can write the expression as

χ
−1(κ +ρV (q))(αD(q+(1−α)z||q)+(1−α)D(q−αz||q))≥

αV (q+(1−α)z)+(1−α)V (q−αz)−V (q),

which is the result.

B.1.3 A Characterization of the Constraint

In the proof of Lemma 10 below, we rely on the following lemma, which translates the
constraint (3) into a constraint on the characteristics of the martingale.

Lemma 7. Suppose a beliefs process is a quasi-left-continuous martingale. Then the pro-

cess is a semi-martingale with characteristics (B,C,ν), where Bt = 0,

Ct =

ˆ t

0
σsσ

T
s ds

and

ν(ω;dt,dz) = ψt(dz;ω)dt,

where σsσ
T
s is a predictable, symmetric positive-definite matrix-valued process and ψt(dz;ω)

is a predictable positive measure on R|X | for each (ω, t) ∈ Ω×R+. If the beliefs process

satisfies (3), then the process is indistinguishable from one for which, for all ω ∈ Ω and

s ∈ R+,
1
2

tr[σsσ
T
s k̄(qs−)]+

ˆ
R|X |\{0}

D(qs−+ z||qs−)ψs(dz)≤ χ. (33)

Proof. See the appendix, section C.2.

B.2 Proof of Proposition 1

We begin by proving, using Lemma 6, that the value function is locally Lipschitz-continuous.

Lemma 8. The value function V (q) is locally Lipschitz-continuous on the interior of the

simplex and the interior of each face of the simplex.

Proof. See the technical appendix, section C.7.
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We next prove that V (q) is continuously differentiable on the interior of the simplex.
The argument adapts lemma 1 of Benveniste and Scheinkman [1979] to the Lipschitz-
continuous setting using the generalized derivatives approach of Clarke [1990].

Lemma 9. The value function V (q) is continuously differentiable on the interior of the

simplex and the interior of each face of the simplex.

Proof. See the technical appendix, section C.8.

Armed with this differentiability result, let us revisit Lemma 6. Defining z = 1
1−α

z̄ and
ε = α

1−α
,

χ
−1(ρV (q)+κ)(D(q+ z̄||q)+ ε

−1D(q− ε z̄||q))≥

V (q+ z̄)−V (q)+ ε
−1(V (q− ε z̄)−V (q)).

Note that this holds for all q in the interior of the simplex, z̄ ∈ R|X |, and ε > 0 such that
q+ z̄� q and q−ε z̄� q. Considering the limit as ε→ 0+, and assuming z̄ 6=~0 and hence
that D(q+ z̄||q)> 0,

χ
−1(ρV (q)+κ)≥ V (q+ z̄)−V (q)− z̄T ·∇V (q)

D(q+ z̄||q)
.

This result can be rephrased as: for all q in the interior of the simplex,

sup
q′∈P(X)\{q}:q′�q

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

≤ χ
−1(ρV (q)+κ). (34)

We next argue, via a viscosity solution approach, that

sup
q′∈P(X)\{q}:q′�q

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

= χ
−1(ρV (q)+κ) (35)

on the intersection of the interior of the simplex and the continuation region. We begin by
proving that V is a viscosity sub-solution of the HJB associated with the original problem.
The proof adapts the approach of Pham [2009] to our setting; that textbook is also a useful
reference on viscosity solutions in an HJB context. Let S|X |,(|X |−1) be the set of |X |×(|X |−
1) matrices and M+(R|X |) be the space of positive measures on R|X |.

58



Lemma 10. Let φ : R|X |+ → R be a function that is homogenous of degree one, twice

continuously-differentiable on the interior of the simplex, and satisfies φ(q) ≥ V (q) for

all q ∈P(X) and φ(q0) =V (q0) for some q0 on the interior of the simplex. Then

max{ sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q0 + z)−φ(q0)− zT ·∇φ(q0))ψ0(dz)

−ρV (q0)−κ, û(q0)−V (q0)} ≥ 0,
(36)

where A(q0) is the set of (σ ,ψ) ∈ S|X |,(|X |−1)×M+(R|X |) satisfying

1
2

tr[σ0σ
T
0 k̄(q0)]+

ˆ
R|X |\{0}

D(q0 + z||q0)ψ0(dz)≤ χ

and such that q0 + z ∈P(X) for all z ∈ supp(ψ0).

Proof. See the technical appendix, section C.9. Analogous results can be derived for each
face of the simplex.

Now define the test function

φ(q;q0,α) = αD(q||q0)+V (q0)+(q−q0)
T ·∇V (q0)

for some α ∈ (0,χ−1(ρV (q0) + κ), given any q0 on the relative interior of the simplex
such that V (q0)> û(q0). By the twice continuously-differentiability of D, this test function
is twice continuously-differentiable in q, and by construction, it satisfies φ(q0;q0,α) =

V (q0). Noting, by the homogeneity of degree one of V and of D in its first argument, that
V (q0) = qT

0 ·∇V (q0), this function is homogenous of degree one.
It also satisfies

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q+ z)−φ(q)−∇φ(q))dψ0(z) =

α

2
tr[σ0σ

T
0 k̄(q)]+α

ˆ
R|X |\{0}

D(q+ z||q)dψ0(z),

and therefore

sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q+ z)−φ(q)−∇φ(q))dψ0(z) = αχ
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and thus (36) cannot hold as
αχ < ρV (q0)+κ.

We therefore conclude that there exists some qα ∈P(X) \ {q0} with qα � q (because q,
being in the interior, has full support) such that

αD(qα ||q0)+V (q0)+(q−q0)
T ·∇V (q0)<V (qα).

Considering a sequence of α converging to χ−1ρV (q0)+κ from below yields

sup
q′∈P(X)\{q}:q′�q

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

≥ χ
−1(ρV (q)+κ).

Combining this with (34) proves that (35) holds for all q0 in the interior of the simplex such
that V (q0)> û(q0).

Repeating the argument for each face extends the result to the interior of each face of
the simplex. At the extreme points of the simplex, V (q) = û(q) (as it is impossible for
beliefs to move away from the extreme points, and hence stopping is optimal), and the
result extends vacuously. It follows that for all q ∈P(X) , either V (q0) = û(q0) or (35)
holds, proving the result.

B.3 Additional Lemma

The following lemma shows that the value function’s curvature is limited by the possibility
of diffusing along a line.

Lemma 11. For all q,q′ ∈P(X) such that q′� q and q′ 6= q,

V (q′)−V (q)− (q′−q) ·∇V (q)≤

(q′−q)T · (
ˆ 1

0
(1− s)χ−1(ρV (sq′+(1− s)q)+κ)(k̄(sq′+(1− s)q)ds) · (q′−q).

Proof. Assume q and q′ are in the interior of the simplex.
By Proposition 1,

V (q2)−V (q1)− (q2−q1)
T ·∇V (q1)≤ χ

−1(ρV (q1)+κ)D(q2||q1)
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for any q1,q2 on the line segment connecting q and q′. Applying this in reverse,

(q2−q1)
T ·(∇V (q2)−∇V (q1))≤ χ

−1(ρV (q1)+κ)D(q2||q1)+χ
−1(ρV (q2)+κ)D(q1||q2).

Let q1 = q+ m
n s(q′−q) and q2 = q+ m+1

n s(q′−q) for some integers m,n such that 0≤m< n

and s ∈ [0,1]. It follows that

s(q′−q)T · (∇V (q+ s(q′−q))−∇V (q)) =

s(q′−q)T ·
n−1

∑
m=0

(∇V (q+
m+1

n
s(q′−q))−∇V (q+

m
n

s(q′−q)))≤

nχ
−1

n−1

∑
m=0
{(ρV (q+

m
n

s(q′−q))+κ)D(q+
m+1

n
s(q′−q)||q+ m

n
s(q′−q))}+

nχ
−1

n−1

∑
m=0
{(ρV (q+

m+1
n

s(q′−q))+κ)D(q+
m
n

s(q′−q)||q+ m+1
n

s(q′−q))}.

Apply Taylor’s theorem (a first-order Taylor expansion, using the Lagrange form of the
remainder):

(n)2D(q+
m+1

n
s(q′−q)||q+ m

n
s(q′−q)) =

1
2

s2(q′−q)T ·∇2
1D(q+

m+ cm,n,s

n
s(q′−q)||q+ m

n
s(q′−q)) · (q′−q)

for some cm,n,s ∈ [0,1], where ∇2
1 denotes the Hessian with respect to the first argument.

Define, for r ∈ [0,1),

fn(r,s) =
χ−1

2
(ρV (q+

bnrc
n

s(q′−q))+κ)s2

×(q′−q)T · (∇1)
2D(q+

bnrc+ cbnrc,n,s
n

s(q′−q)||q+ bnrc
n

s(q′−q)) · (q′−q).

Note that fn(r,s) is constant on any interval [m
n ,

m+1
n ) with integer m,n such that 0≤m < n.
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Consequently,

n
n−1

∑
m=0
{(ρV (q+

m
n

s(q′−q))+κ)D(q+
m+1

n
s(q′−q)||q+ m

n
s(q′−q))}=

n−1
n−1

∑
m=0

fn(
m
n
,s) =

ˆ 1

0
fn(r,s)dr.

By the continuity of the second derivative of D, and the boundedness of the value function,
fn(r,s) is bounded uniformly on (n,r).

By the dominated convergence theorem,

lim inf
n→∞

n
n−1

∑
m=0
{(ρV (q+

m
n

s(q′−q))+κ)D(q+
m+1

n
s(q′−q)||q+ m

n
s(q′−q))}=

lim inf
n→∞

ˆ 1

0
fn(r,s)dr =

χ−1

2
(q′−q)T · {

ˆ 1

0
s2(ρV (q+ rs(q′−q))+κ)k̄(q+ rs(q′−q))dr} · (q′−q).

Similarly, define, for r ∈ [0,1),

gn(r,s) =
χ−1

2
(ρV (q+

bnrc+1
n

s(q′−q))+κ)s2

×(q′−q)T · (∇1)
2D(q+

bnrc+ ĉbnrc,n,s
n

s(q′−q)||q+ bnrc+1
n

s(q′−q)) · (q′−q)

for some ĉm,n,s ∈ [0,1].
By an identical argument,

lim inf
n→∞

ˆ 1

0
gn(r,s)dr =

χ−1

2
(q′−q)T ·{

ˆ 1

0
s2(ρV (q+rs(q′−q))+κ)k̄(q+rs(q′−q))dr}·(q′−q).

It follows that

(q′−q)T · (∇V (q+ s(q′−q))−∇V (q))≤

χ
−1(q′−q)T · {

ˆ 1

0
s(ρV (q+ rs(q′−q))+κ)k̄(q+ rs(q′−q))dr} · (q′−q).
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Integrating,

V (q′)−V (q)− (q′−q)T ·∇V (q) = (q′−q)T ·
ˆ 1

0
(∇V (q+ s(q′−q))−∇V (q))ds.

≤ (q′−q)T · {
ˆ 1

0

ˆ 1

0
sχ
−1(ρV (q+ rs(q′−q))+κ)k̄(q+ rs(q′−q))drds} · (q′−q)

and

ˆ 1

0

ˆ 1

0
s(ρV (q+ rs(q′−q))+κ)k̄(q+ rs(q′−q))drds =

ˆ 1

0

ˆ s

0
(ρV (q+ l(q′−q))+κ)k̄(q+ l(q′−q))dlds =

ˆ 1

0
(1− l)(ρV (q+ l(q′−q))+κ)k̄(q+ l(q′−q))dl,

which is the result.
This result extends immediately to q′ on the boundary of the simplex by continuity, and

to each face of the simplex by repeating the argument on each face.

B.4 Additional Lemma

Lemma 12. Let umax = maxq∈P(X) û(q) and umin = minq∈P(X) û(q). If D exhibits a strong

preference for gradual learning, then

V (q′)−V (q)− (q′−q)T ·∇V (q)
D(q′||q)

< χ
−1(ρV (q)+κ) (37)

for all q,q′ ∈P(X) such that q′� q, q′ 6= q, and

|q′−q|δ >
ρ(umax−umin)

m(κ +ρumin)
.

Proof. By contradiction: suppose the reverse inequality holds for some q′ satisfying this
condition. Then by Lemma 11 and the definition of a strong preference for gradual learning,

D(q′||q)
1+m|q′−q|δ

(ρumax+κ)χ−1≥V (q′)−V (q)−(q′−q)·∇V (q)≥ χ
−1(ρumin+κ)D(q′||q),
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which yields ρ(umax−umin)
κ+ρumin

≥ m|q′−q|δ , a contradiction.

B.5 Proof of Proposition 2

Define the function

φ(q;q0) = χ
−1(ρV (q0)+κ)D(q||q0)+V (q0)+(q−q0)

T ·∇V (q0).

By the HJB equation (Proposition 1),

φ(q;q0)≥V (q),

with equality if q = q0.
By the Lemma 12, for any ε > 0, there exists a δε > 0 such that

φ(q;q0)≥V (q)+δε

for all q such that

|q−q0| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1

.

Take as given the times t ≥ 0 and t + h for some h ∈ h > 0. Define τh = min{τ, t + h} as
the minimum of the optimal stopping time and t +h.

In what follows, let Ec
t−[X ] denote the Ft− conditional expectation of 1{τ ≥ t}X under

P. By the bounds above,

1
h

Ec
t−[e

−ρ(τh−t)
φ(qτh;qt−)−κ

ˆ
τh

t
e−ρ(s−t)ds−V (qt−)]≥

1
h

Ec
t−[e

−ρ(τh−t)V (qτh)−κ

ˆ
τh

t
e−ρ(s−t)ds−V (qt−)]+

δε

h
Ec

t−[1{|qτh−qt−| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}].

By the dynamic programming principle (Lemma 5), under an optimal policy (which
exists by Lemma 1),

Ec
t−[e

−ρ(τh−t)V (qτh)−κ

ˆ
τh

t
e−ρ(s−t)ds−V (qt−)] = 0.
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Likewise, by the martingale property of qt ,

Ec
t−[(qτh−qt−)

T ·∇V (qt−)] = 0.

Both of these should be understood as holding P-a.e. on the strict continuation region, and
everywhere outside this region, qualifications that also apply to the equations that follow.

Consequently, we must have

1
h

Ec
t−[e

−ρ(τh−t)
φ(qτh;qt−)−κ

ˆ
τh

t
e−ρ(s−t)ds−V (qt−)]≥

δε

h
Ec

t−[1{|qτh−qt−| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}].

Note that,

κ

h
Ec

t−[

ˆ
τh

t
e−ρ(s−t)ds]≥ κ

h
(

ˆ t+h

t
e−ρ(s−t)ds)Ec

t−[1{τh ≥ t +h}],

which yields, by h−1 ´ t+h
t e−ρ(s−t)ds≥ e−ρh,

κ

h
Ec

t−[

ˆ
τh

t
e−ρ(s−t)ds]≥ κe−ρhEc

t−[1{τ ≥ t +h}].

We adopt the convention that qs = qτ for all s≥ τ . It follows that

1
h

Ec
t−[e

−ρ(τh−t)(φ(qτ+h;qt−)−V (qt−))−κe−ρh1{τ ≥ t +h}− (1− e−ρ(τh−t))V (qt−)]≥

δε

h
Ec

t−[1{|qt+h−qt−| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}].

By φ(q;q0)≥V (q)> 0 and 1≥ e−ρ(τh−t),

1
h

Ec
t−[φ(qτ+h;qt−)−V (qt−)−κe−ρh1{τ ≥ t +h}− (1− e−ρ(τh−t))V (qt−)]≥

δε

h
Ec

t−[1{|qt+h−qt−| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}].
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By the definition of φ and the martingale property of qt ,

1
h

Ec
t−[φ(qτ+h;qt−)−V (qt−)−κe−ρh1{τ ≥ t +h}− (1− e−ρ(τh−t))V (qt−)] =

1
χh

(ρV (qt−)+κ)Ec
t−[e

−ρ(τh−t)D(qt+h||qt−)]−

1
h
(1−Ec

t−[e
−ρ(τh−t)])V (qt−)−κe−ρhEc

t−[1{τ ≥ t +h}].

By the non-negativity of D,

1
χh

(ρV (qt−)+κ)Ec
t−[e

−ρ(τh−t)D(qt+h||qt−)]≤
1

χh
(ρV (qt−)+κ)Ec

t−[D(qt+h||qt−)]

and by the non-negativity of V and 1≥ e−ρh +ρhe−ρh,

1
h
(1−Ec

t−[e
−ρ(τh−t)])V (qt−)≥ Ec

t−[1{τ ≥ t +h}]e−ρh
ρV (qt−).

Therefore

1
χ
(ρV (qt−)+κ)Ec

t−[
1
h

D(qt+h||qt−)+χe−ρh1{τ ≥ t +h}]≥

δε

h
Ec

t−[1{|qt+h−qt−| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}].

By the definition of the constraint (3), for any ω such that τ(ω)≥ t,

limsup
h↓0

1
h

Et−[D(qt+h||qt−)](ω)≤ χ,

from which it follows (by δε > 0) that

limsup
h↓0

fh(ω, t) = 0,

where
fh(ω, t) =

1
h

Et−[1{|qt+h−qt−| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}](ω).

Note by convention that qt+h = qt− if τ < t, and consequently this limit result holds irre-
spective of whether τ(ω)≥ t.
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Observe that, by the Markov and Burkholder-Davis-Gundy inequalities,

fh(ω, t)≤ 1
h

Et−[|qt+h−qt−|2](ω)

(ε +(ρ(umax−umin)
m(κ+ρumin)

)δ−1
)2
≤ 4

1
h

Et−[< q,q >t+h −< q,q >t−](ω)

(ε +(ρ(umax−umin)
m(κ+ρumin)

)δ−1
)2

,

where < q,q > denotes the quadratic variation. As a consequence of the constraint and the
strong convexity of D (with associated constant K > 0), < q,q >t+h −< q,q >t−≤

χh
K , and

consequently

fh(ω, t)≤ 4χ

K(ε +(ρ(umax−umin)
m(κ+ρumin)

)δ−1
)2
.

Observe that

E0[
n−1

∑
k=0

hn fhn(ω,khn)] = E0[
n−1

∑
k=0

1{|qhn(k+1)−q(hnk)−| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}]

≥ E0[ max
k∈{0,...,n−1}

hn fhn(ω,khn)].

Fix some T > 0, and define the sequence hn = n−1T . Define µn(r) as a collection of
point masses with mass hn on r = k

nT for each k ∈ {0, . . . ,n−1}. By definition,

ˆ T

0
fhn(ω,r)dµn(r) =

n−1

∑
k=0

hn fhn(ω,khn).

By the reverse Fatou’s lemma with varying measures,

lim sup
n→∞

E0[

ˆ T

0
fhn(ω,r)dµn(r)]≤ E0[

ˆ T

0
(lim sup

n→∞

fhn(ω,r))dr] = 0.

Likewise, we can write

max
k∈{0,...,n−1}

hn fhn(ω,khn) = sup
r∈[0,T )

hn fhn(ω,b r
T

nchn)

and observe by the dominated convergence theorem that

0 = lim
n→∞

E0[ sup
r∈[0,T )

hn fhn(ω,b r
T

nchn)] = E0[ lim
n→∞

sup
r∈[0,T )

hn fhn(ω,b r
T

nchn)]
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and

E0[ lim
n→∞

sup
r∈[0,T )

hn fhn(ω,b r
T

nchn)]≥ E0[ sup
r∈[0,T )

lim
n→∞

hn fhn(ω,b r
T

nchn)]≥ 0,

which yields

E0[ sup
r∈[0,T )

1{|qt(ω)−qt−(ω)| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}] = 0,

as qt− is left-continuous and qt is right-continuous. Since this must hold for all T > 0,
P-a.e.,

sup
t∈R+

1{|qt(ω)−qt−(ω)| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}= 0,

and therefore

Pr{ sup
t∈R+

|qt(ω)−qt−(ω)| ≥ ε +(
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}= 0.

Because this holds for all ε > 0,

Pr{ sup
t∈R+

|qt(ω)−qt−(ω)|> (
ρ(umax−umin)

m(κ +ρumin)
)δ−1
}= 0,

which is the result.

B.6 Proof of Proposition 3

We first prove the claim concerning the HJB equation (which involves proving the viscosity
sub- and super- solution properties) and then argue for the existence of an optimal diffusion
process.

Viscosity Sub-Solution By Proposition 1, anywhere V (q0)> û(q0) there exists a vector
{v ∈ R|X | : |v| = 1 & vT q0 = 0} such that either, for some ε > 0 with q0 + εDiag(q0)v ∈
P(X),

V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0)

D(q0 + εDiag(q0)v||q0)
= χ

−1
κ,
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or

lim
ε→0+

sup
V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0)

D(q0 + εDiag(q0)v||q0)
= χ

−1
κ.

We begin by proving that the latter must in fact hold under a preference for gradual learning.
Suppose not; then for some δ > 0, ε̄ > 0 and all α ∈ (0, ε̄),

α(V (q0 + εDiag(q0)v)−V (q0))−αχ
−1

κD(q0 + εDiag(q0)v||q0)≥

(V (q0 +αεDiag(q0)v)−V (q0))−χ
−1

κD(q0 +αεDiag(q0)v||q0)+δ

This can be written as

V (q0 + εDiag(q0)v)−V (q0)−
1
α
(V (q0 +αεDiag(q0)v)−V (q0))≥

χ
−1

κD(q0 + εDiag(q0)v||q0)−
1
α

χ
−1

κD(q0 +αεDiag(q0)v||q0)+δ .

Considering the limit as α → 0+, and applying Lemma 11 and a preference for gradual
learning,

χ
−1

κD(q0 + εDiag(q0)v||q0)≥V (q0 + εDiag(q0)v)−V (q0)− εvT Diag(q0)∇V (q0)

≥ χ
−1

κD(q0 + εDiag(q0)v||q0)+δ

a contradiction. We must therefore have

lim
ε→0+

supε
−2(V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0)) =

1
2

κ

χ
vT Diag(q0)k̄(q0)Diag(q0)v.

for some v ∈ R|X | : |v|= 1 & vT q = 0. Consequently, any twice continuously-differentiable
test function satisfying

φ(q0) =V (q0)

and φ(q)≥V (q) must satisfy ∇φ(q0) =V (q0) and

vT Diag(q0)(∇
2
φ(q0)−

κ

χ
k̄(q0))Diag(q0)v≥ 0
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which is the viscosity sub-solution property, as we must have

max{ max
{v∈R|X |:|v|=1 & vT q=0}

vT Diag(q0)(∇
2
φ(q0)−

κ

χ
k̄(q0))Diag(q0)v, û(q0)−φ(q0)} ≥ 0.

Viscosity Super-Solution By Proposition 1, for any vector {v ∈ R|X | : |v| = 1 & vT q0 =

0},

lim
ε→0+

V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0)

D(q0 + εDiag(q0)v||q0)
≤ χ

−1
κ,

and therefore for all such v,

lim
ε→0+

ε
−2(V (q0 + εDiag(q0)v)−V (q0)− εvT ·Diag(q0) ·∇V (q0))≤

1
2

κ

χ
vT Diag(q0)k̄(q0)Diag(q0)v.

Consequently, any twice continuously-differentiable test function satisfying

φ(q0) =V (q0)

and φ(q)≤V (q) must satisfy

vT Diag(q0)(∇
2
φ(q0)−

κ

χ
k̄(q0))Diag(q0)v≤ 0,

and by V (q0)≥ û(q0) we must have

max{ max
{v∈R|X |:|v|=1 & vT q=0}

vT Diag(q0)(∇
2
φ(q0)−

κ

χ
k̄(q0))Diag(q0)v, û(q0)−φ(q0)} ≤ 0.

Diffusion Process Consider a version of the DM’s problem in which the DM is restricted
to choose processes of the form

dqt = Diag(qt)σtdBt ,

subject to the constraint

1
2

tr[σT
t Diag(qt)k̄(qt)Diag(qt)σt ]≤ χ,
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and the requirement that a solution to the resulting SDE exist, as in the example given in the
text. Call the associated value function V R. By standard arguments (see, e.g., Pham [2009]),
V R is the unique viscosity solution to the HJB equation described in this proposition, and
hence V R =V and the optimal policies implementing V R also implement V .

B.7 Proof of Corollary 4

We begin by observing that Proposition 7 characterizes the solution to the HJB equation of
Proposition 3 (irrespective of whether D exhibits a preference for gradual learning or not).
The only place gradual learning is used in the proof of Proposition 7 is to show that

lim
h→0+

h−1Et−[H(qt+h)−H(qt−)]≤ lim
h→0+

h−1Et−[D(qt+h||qt−)]

for any feasible policy; but if policies are restricted to continuous martingales, this equation
holds (with equality) by Ito’s lemma and Assumption 1.

Now consider in particular utility functions with only two actions, L and R (all other
action in A are dominated by those two and hence will never occur with positive proba-
bility). Using the first-order conditions for the static problem, we have, assuming interior
solutions,

uL−
κ

χ
∇H(q∗L(q0)) = uR−

κ

χ
∇H(q∗R(q0))

and
π
∗
L(q0)q∗L(q0)+(1−π

∗
L(q0))q∗R(q0) = q0.

Now pick any q0,qL,qR such that q0 = πqL +(1−π)qR for some π ∈ (0,1). Set

uL =
κ

χ
∇H(qL))−

κ

χ
∇H(q0)+Kι

and
uR =

κ

χ
Hq(qR))−

κ

χ
Hq(q0)+Kι

for some K such that both uL and uR are strictly positive, where ι is a vector of ones.
Observe that if the solution is interior, qL, qR, and π are optimal policies.

71



If the solution is not interior, stopping must be optimal. By the convexity of H,

qT
L ·uL−

κ

χ
H(qL)+

κ

χ
H(q0)+

κ

χ
(qL−q0)

T Hq(q0))−qT
0 ·uL =

κ

χ
(qL−q0)

T Hq(qL)−
κ

χ
H(qL)+

κ

χ
H(q0)≥ 0,

and likewise for qR. It follows that the q0 is in the continuation region, and therefore that
(qL,qR,π) are indeed optimal policies in the static problem.

By the “locally invariant posteriors” property described by Caplin et al. [Forthcoming],
it follows that for any q = αqL +(1−α)qR with α ∈ [0,1], (qL,qR,α) are optimal policies
given initial prior q0.

As in the proof of Theorem 7, this implies that the value function is twice-differentiable
on the line segment between qL and qR, with

(qL−q0)
T ·∇2V (q) · (qL−q0) =

κ

χ
(qL−q0)

T k̄(q)(qL−q0)

for all q on that line segment (this is a slight abuse of notation, as V (q) may not be twice-
differentiable in all directions, but is guaranteed to be twice-differentiable in the relevant
direction). Integrating,

V (qL)−V (q0)− (qL−q0)
T ·∇V (q0) =

κ

χ
(qL−q0)

T · (
ˆ 1

0
(1− s)k̄(sqL +(1− s)q0)ds) · (qL−q0) =

κ

χ
H(qL)−

κ

χ
H(q0)−

κ

χ
(qL−q0)

T ·∇H(q0)).

By the sub-optimality of jumping directly from q0 to qL, it must be the case that

V (qL)−V (q0)− (qL−q0)
T ·∇V (q0)≤

κ

χ
D(qL||q0)

and therefore a preference for gradual learning holds between the points q0 and qL.
This argument can be repeated for all (q0,qL) in the relative interior of the simplex.

By the convexity of D and H, we can extend the result to the entirety of the simplex by
continuity, proving that a preference for gradual learning must hold.
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B.8 Proof of Lemma 2

Recall the definition of a preference for discrete learning: for all q,q′,{qs}s∈S with q′� q

and ∑s∈S πsqs = q′,

D(q′||q)+∑
s∈S

πsD(qs||q′)≥∑
s∈S

πsD(qs||q)

Therefore, for all z ∈ R|X | with support on the support of q′ and ε sufficiently small,

D(q′||q′+ εz)+∑
s∈S

πsD(qs||q′)≥∑
s∈S

πsD(qs||q′+ εz).

At ε = 0, this inequality is satisfied by construction. Differentiating the left-hand side
(using the assumption that D is differentiable),

∂

∂ε
[D(q′||q′+ εz)+∑

s∈S
πsD(qs||q′)]|ε=0 = 0,

because D(q′||q′+ εz) is minimized at ε = 0. It follows that the inequality requires that

∑
s∈S

πs
∂

∂ε
D(qs||q′+ εz)|ε=0 = 0,

as otherwise the inequality would be violated for some sufficiently small ε .
By step 1 in the proof of theorem 4 of Banerjee et al. [2005], it follows immediately

that
D(q′||q) = H(q′)−H(q)− (q′−q)T ·∇H(q)

for some convex function H, where ∇H denotes the gradient. Note that theorem 4 of
Banerjee et al. [2005] is stated as requiring that

∑
s∈S

πsD(qs||q′+ εz)

be minimized at ε = 0 for all z, but step 1 of the proof in fact only requires that ε = 0
correspond to a critical value for all z. Step 2 of that proof relaxes slightly the regularity
conditions, but we have simply assumed these. Minimization is only required to establish
the last step of the proof, step 3, which proves strict convexity of H. Strict convexity of
H(q) on the support of q follows in our setting immediately from our assumptions on D.
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B.9 Proof of Proposition 5

Because D is a Bregman divergence, it satisfies a preference for gradual learning, and the
value function described in Proposition 7 is the value function for the DM’s problem.

That value function can be implemented in the following way. Let π∗ ∈P(A) and
{q∗i ∈P(X)}|A|i=1 be optimal policies in the static problem described in Proposition 7, given
some arbitrary assignment of the actions to the numbers {1,2, . . . , |A|}. Consider the dy-
namic K jumps example policy, with K = |A|, zk = q∗k−q0, and

ψk = π
∗
k

χ

−H(q0)+∑
|A|
i=1 π∗i H(q∗i )

.

Observing that ∑
K
k=1 zkψk = 0, under such a policy beliefs do not drift, and that the policy

is feasible, as
k

∑
k=1

ψkD(q∗i ||q0) = χ

and the resulting stochastic process statisfies standard existence conditions (as its coeffi-
cients are constant). Assume the DM immediately stops after the first jump. The utility
achieved is

E0[û(qτ)−κτ] =
K

∑
k=1

π
∗
k û(q∗k)−κ

ˆ
∞

0
e−s∑

K
k=1 ψkds

=
K

∑
k=1

π
∗
k û(q∗k)−

κ

χ
(−H(q0)+

|A|

∑
i=1

π
∗
i H(q∗i )),

which is the value function of Proposition 7. It follows that this policy is an optimal policy.

B.10 Proof of Proposition 6

We divide this proof into three steps. First, we establish necessary optimality conditions.
Second, we construct a utility function for which a particular set of policies is optimal.
Third, we show that the optimality of this set of policies implies a preference for discrete
learning.

Step 1: Necessary Optimality Conditions Under the assumption that there is no
continuous martingale component of qt (note that qt is equivalent to a purely discontinuous
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martingale by the assumption that it does not diffuse outside of a nowhere-dense set), by
Lemma 7, we can characterize the martingale qt entirely by the predictable compensator

ν(ω;dt,dz) = ψt(dz;ω)dt

such that ˆ
R|X |\{~0}

D(qt−+ z||qt−))ψt(dz)≤ χ.

Because the martingale qt is of finite variation, we have, for any stopping time τ ,

Et [e−ρτV (qτ)]− e−ρtV (qt) = Et [

ˆ
τ

t

ˆ
R|X |\{~0}

e−ρl(V (ql−+ z)−V (ql−)− zT ·∇V (ql−))ψl(dz)dl]

−Et [

ˆ
τ

t
e−ρl

ρV (ql−)dl]

= Et [κ

ˆ
τ

t
e−ρldl]

and consequently by Proposition 1,

ˆ
R|X |\{~0}

(V (ql−+z)−V (ql−)−zT ·∇V (ql−)−χ
−1(ρV (ql−)+κ)D(ql−+z||ql−))ψl(dz)= 0.

By assumption, this must hold from any initial qt in the continuation region.
It follows that there must exist some z∗(ql−) ∈ R|X | \{~0} such that

V (ql−+z∗(ql−))−V (ql−)−z∗(ql−)
T ·∇V (ql−) = χ

−1(ρV (ql−)+κ)D(ql−+z∗(ql−)||ql−),

(38)
and moreover that by the immediate stopping result that

V (ql−+ z∗(ql−)) = û(ql−+ z∗(ql−)),

and for all feasible z,

V (ql−+ z)−V (ql−)− zT ·∇V (ql−)≤ χ
−1(ρV (ql−)+κ)D(ql−+ z||ql−). (39)

To facilitate what follows, we write these conditions in the following manner, akin to a
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static rational inattention problem:

0 = sup
µ∈int(P({1,2,3})),{qi∈P(X)}i∈{1,2,3}:∑

3
i=1 µiqi=ql−

(40)

µ1û(q1)+µ2V (q2)+µ3V (q3)−V (ql−)−χ−1(ρV (ql−)+κ)∑
3
i=1 µiD(qi||ql−)

µ1
.

Choosing µ3 = µ2 = 1
2(1− µ1) and q3 = q2 = ql− −

µ1
1−µ1

z∗(ql−) is feasible for π1 suffi-
ciently small and achieves (38) in the limit as µ1→ 0+. The numerator is always weakly
negative by (39), and hence (40) must hold.

Step 2: Construct a utility function with certain optimal policies Let us take as
given any interior q,q′,q1,q2 ∈P(X) and π ∈ (0,1) such that

πq1 +(1−π)q2 = q′,

and construct a utility function such that z = q1−q and z = q2−q are both optimal policies
from q, meaning that

û(q1)−V (q)− (q1−q)T ·∇V (q) = χ
−1(ρV (q)+κ)D(q1||q),

û(q2)−V (q)− (q2−q)T ·∇V (q) = χ
−1(ρV (q)+κ)D(q2||q),

and for which V (q)> û(q) and
V (q′)≤V (q).

The basic idea behind this proof is to construct the utility function in such a way as to
ensure that the value function is the solution to a static rational inattention problem, in that
the optimal policy is to jump to one of three beliefs with intensities such that beliefs do not
drift.

Define, for some ξ = (0,1), an interior q3 ∈P(X) such that

ξ q3 +(1−ξ )q′ = q.

Note that such a q3 exists by the assumption that q is in the interior of the simplex.
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Let v ∈ R|X | be a vector and let k1,k2,k3,K be constants. Define

θ = χ
−1(ρK +κ).

Suppose there are three actions, and let their utilities satisfy, for a ∈ A = {1,2,3},

ua = θ∇1D(qa||q)+ v+ |X |−1
ιka,

where ua ∈ R|X | are the payoffs associated with action a, ∇1D(qa||q) is the gradient with
respect to the first argument and ι ∈ R|X | is a vector of ones. This gradient exists by the
differentiability of D in its first argument and the assumption that qa is interior. Define

ka = θD(qa||q)−θqT
a ·∇1D(qa||q)+K−qT v

so that
θD(qa||q) = qT

a ·ua−K− (qa−q)T v.

Note that, to satisfy the requirement that ua,x be positive, we will require that K be suffi-
ciently large given v (we provide an explicit expression below).

Observe that, for any a,a′, that

qT
a (ua−ua′) = θD(qa||q)+K− (q−qa)

T v

−θD(qa′ ||q)−K +(q−qa′)
T v

− (qa−qa′)
T ·ua′,

and by the convexity of D that
qT

a (ua−ua′)≥ 0,

and therefore û(qa) = qT
a ua.

By the convexity of D, for any q′′� q and any a ∈ {1,2,3},

θD(q′′||q)≥ θD(qa||q)+(q′′−qa)
T ·θ∇1D(qa||q),

which is
θD(q′′||q)≥ max

a∈{1,2,3}
(q′′)T ua− (q′′−q)T · v−K. (41)

By the strict convexity of D, this inequality must be strict for all q′′ ∈ {q1,q2,q3}, and must
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be an equality for q′′ ∈ {q1,q2,q3}. Note that this implies K > û(q).
Let us now consider the “static rational inattention problem”

max
µ∈P(A),{q̂i∈P(X)}i∈A

∑
i∈A

µi{û(q̂i)−θD(q̂i||q)}

subject to ∑i∈A µiq̂i = q. By the “Lagrangian lemma” of Caplin et al. [Forthcoming] applied
to the vector v, the above conditions show that µ∗ = (π(1− ξ ),(1− π)(1− ξ ),ξ ) and
q̂∗i = qa are optimal, noting by construction that

π(1−ξ )q1 +(1−π)(1−ξ )q2 +ξ q3 = q.

Note by construction that the maximized value is K = ∑a∈A µ∗a{û(qa)−θD(qa||q)}. Note
also that the optimal policy is unique (up to a permutation of the assignment of i to A) by
the strictness of (41) for q′′ /∈ {q1,q2,q3} and the uniqueness of the weights µ∗ satisfying

∑i∈A µ∗i qa = q.
Consider the value function associated with this utility function, V (q′′;v,K). We must

have, by sub-optimality, for any q′′� q,

V (q′′)−V (q;v,K)− (q′′−q)T ·∇V (q;v,K)≤ χ
−1(ρV (q;v,K)+κ)D(q′′||q). (42)

Applying this to q′′ ∈ {q1,q2,q3} and using V (q′′)≥ û(q′′),

K−V (q;v,K)− (qa−q)T · (∇V (q;v,K)− v)≤ χ
−1

ρ(V (q;v,K)−K)D(qa||q). (43)

Summing by µ∗, we find that V (q;v,K)≥ K, and consequently V (q;v,K)> û(q).
Now consider any policy in the static problem, (µ ∈ int(P(A)),{q̂i ∈P(X)}i∈A).

Observe that, by (41) and (42),

∑
i∈A

µi(V (q̂i)− û(q̂i))+K−V (q;v,K)≤∑
i∈A

µiχ
−1

ρ(V (q;v,K)−K)D(q̂i||q).

strictly if q̂i /∈ {q1,q2,q3} for any i ∈ A.
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Using this equation and û(q̂1)≤V (q̂1), we have

µ1û(q̂1)+µ2V (q̂2;v,K)+µ3V (q̂3;v,K)−V (q;v,K)−χ−1(ρV (q)+κ)∑
3
i=1 µiD(q̂i||q)

µ1
≤

∑
3
i=1 µi{V (q̂i;v,K)− û(q̂i)+K−V (q;v,K)−χ−1ρ(V (q;v,K)−K)D(q̂i||q)}

µ1
+

−K +∑
3
i=1 µi{û(q̂i)−θD(q̂i||q)}

µ1
,

and therefore by µ1 ∈ (0,1] and −K +∑
3
i=1 µi{û(q̂i)−θD(q̂i||q)} ≤ 0,

µ1û(q̂1)+µ2V (q̂2;v,K)+µ3V (q̂3;v,K)−V (q;v,K)−χ−1(ρV (q)+κ)∑
3
i=1 µiD(q̂i||q)

µ1
≤

−K +
3

∑
i=1

µi{û(q̂i)−θD(q̂i||q)} ≤ 0.

Consequently, the sequence of policies (µn ∈ int(P(A)),{q̂i,n ∈P(X)}i∈A) achieving

lim
n→∞

µ1,nû(q̂1,n)+µ2,nV (q̂2,n;v,K)+µ3,nV (q̂3,n;v,K)−V (q;v,K)

µ1
−

χ−1(ρV (q;v,K)+κ)∑
3
i=1 µi,nD(q̂i,n||q)

µ1
= 0

(which exists by (40)) must achieve

lim
n→∞
−K +

3

∑
i=1

µi,n{û(q̂i,n)−θD(q̂i,n||q)}= 0.

By the boundedness of the simplex, this sequence has a convergent subsequence, and by
the uniqueness (up to a permutation) of the optimal policy in the “static problem,” this
convergent subsequence must converge to some permutation of µ∗,{q1,q2,q3}. Supposing
without loss of generality that limn→∞ q̂1,n = q1,

µ1û(q1)+µ2V (q2;v,K)+µ3V (q3;v,K)−V (q;v,K)−χ
−1(ρV (q;v,K)+κ)

3

∑
i=1

µ
∗
i D(qi||q)= 0

and that û(q1) = V (q1;v,K). It follows immediately that jumping to za = qa − q with
probability µ∗a is an optimal policy of the dynamic problem, and by the uniqueness of
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the optimal policy in the “static problem,” this must be the only optimal policy. By the
assumption of immediate stopping, û(q2) =V (q2;v,K) and û(q3) =V (q3;v,K).

Therefore,

K−V (q;v,K)−χ
−1

ρ(V (q;v,K)−K)
3

∑
i=1

µ
∗
i D(qi||q) = 0,

which yields V (q;v,K) = K. Plugging this into (43),

(qa−q)T · (∇V (q;v,K)− v)≥ 0,

implying that q is a local minima of V (q;v,K)− vT ·q over the set

{q̃ ∈P(X) : ∃π̂ ∈P(A) s.t. ∑
a∈A

π̂aqa = q̃},

and thus that (qa−q)T · (∇V (q;v,K)− v) = 0.
This result holds regardless of the values of v,K. Choose

v =−θ∇1D(q′||q),

and by sub-optimality of jumping to q′ from q we have

V (q′;v,K)≤V (q;v,K)+(π1q1 +(1−π)q2−q)T ·∇V (q;v,K)+θD(q′||q),

recalling that π1q1 +(1−π)q2. Using (qa−q)T · (∇V (q;v,K)− v) = 0, this is

V (q′;v,K)≤V (q;v,K)−θ(q′−q)∇1D(q′||q)+θD(q′||q).

By the convexity of D,
V (q′;v,K)≤V (q;v,K),

as required.
To establish positive utilities, choose for some ε > 0

−K = min
x∈X ,a∈{1,2,3}

eT
x · (θ∇1D(qa||q)−θ∇1D(q′||q))+θD(qa||q)

−θqT
a ·∇1D(qa||q)−θqT ·∇1D(q′||q)− ε,
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which ensures that
min

x∈X ,a∈A
ua,x = ε.

Step 3: Prove the inequality We begin by proving that a preference for discrete
learning exists for two-signal alphabets, and assuming that all of the relevant elements of
the simplex are interior. We then extend the result to prove the full preference for discrete
learning.

Proof by contradiction: suppose there exists an interior q,q′,q1,q2 ∈P(X) and π ∈
(0,1) such that

πq1 +(1−π)q2 = q′

and
D(q′|q)+πD(q1|q′)+(1−π)D(q2||q′)< πD(q1|q)+(1−π)D(q2||q).

By the results of the previous step, there exists an action space A and utility function u

such that z = q1−q and z = q2−q are both optimal policies from q, and for which

V (q′)≤V (q),

where V denotes the value function given those utilities (i.e. the V (q;v,K) in step 2 above,
for the particular values of v,K chosen above).

Then we must have, for a ∈ {1,2},

V (qa)−V (q)− (qa−q)T ·∇V (q) = (ρV (q)+κ)D(qa||q),

V (q′)−V (q)− (q′−q)T ·∇V (q)≤ (ρV (q)+κ)D(q′||q),

V (qa)−V (q′)− (qa−q′)T ·∇V (q′)≤ (ρV (q′)+κ)D(qa||q′)≤ θ(ρV (q)+κ)D(qa||q′),

Putting these together,

(ρV (q)+κ)(D(q′||q)+D(qa||q′)−D(qa||q))≥−(qa−q′)T · [∇V (q′)−∇V (q)].

Summing over a ∈ {1,2} weighted by π and (1−π), and using (ρV (q)+κ)> 0,

D(q′|q)+πD(q1|q′)+(1−π)D(q2||q′)≥ πD(q1|q)+(1−π)D(q2||q),

a contradiction.
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We conclude that for all interior q,q′,q1,q2 ∈P(X) and π ∈ (0,1),

D(q′|q)+πD(q1|q′)+(1−π)D(q2||q′)≥ πD(q1|q)+(1−π)D(q2||q).

The result extends immediately to more than two {qs} by adding this expression for differ-
ent pairs. The result extends to the boundary of the simplex by continuity.

B.11 Proof of Proposition 7

Define φ(qt) as the static value function in the statement of the theorem (we will prove
that it is equal to V (qt), the value function of the dynamic problem). We first show that
any strategy for the DM achieves weakly less utility than φ(q0). We then show that φ(qt)

satisfies the HJB equation of Proposition 3 (at least in a viscosity sense), and construct a
diffusion strategy with the properties described that achieves the value φ(q0).

Step 1: Show that all other feasible policies achieve a lower utility First, we verify that
alternative policies achieve less utility than φ(q0). Observe that for any feasible process,
by the definition of gradual learning and Assumption 1, we must have

lim
h→0+

h−1Et−[H(qt+h)−H(qt−)]≤ lim
h→0+

h−1Et−[D(qt+h||qt−)]≤ χ,

and consequently

E0[û(qτ)−κτ]≤ E0[û(qτ)−
κ

χ
H(qτ)+

κ

χ
H(q0)].

Let a∗(q) be a selection from argmaxa∈A ∑x∈X ua,xqx. We can write this as

E0[û(qτ)−κτ]≤ ∑
a∈A

πaE0[qT
τ ·ua−

κ

χ
H(qτ)+

κ

χ
H(q0)|a∗(qτ) = a],

where πa = E0[1{a∗(qτ) = a}]. By the convexity of H,

E0[qT
τ ·ua−

κ

χ
H(qτ)+

κ

χ
H(q0)|a∗(qτ) = a]≤ qT

a ·ua−
κ

χ
H(qa)+

κ

χ
H(q0),

where
qa = E0[qτ |a∗(qτ) = a].
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By the martingale property of beliefs, we must have ∑a∈A πaqa = q0. We conclude that

E0[û(qτ)−κτ]≤ max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

πa{qT
a ·ua−

κ

χ
H(qa)+

κ

χ
H(q0)},

which is the result.

Step 2: φ(qt) satisfies the HJB equation in a viscosity sense We begin by observing,
by the homogeneity of degree one of D in its first argument, that

(q′)T ·∇2
1D(q′||q) =~0,

and consequently
qT ·∇2H(q) = qT · k̄(q) =~0,

and therefore converse of Euler’s homogenous function theorem applies. That is, ∇H(qt)

is homogenous of degree zero, and H(qt) is homogeneous of degree one.
We start by showing that the function φ(qt) is twice-differentiable in certain directions.

Substituting the definition of a Bregman divergence into the statement of theorem,

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

∑
x∈X

π(a)ua,xqa,x +
κ

χ
H(q0)−

κ

χ
∑
a∈A

π(a)H(qa),

subject to the constraint (∑a∈A πaqa = q0). Define a new choice variable, q̂a = π(a)qa. By
definition, q̂a ∈ R|X |+ , and the constraint is ∑a∈A q̂a = q0. By the homogeneity of H, the
objective is

∑
a∈A

uT
a · q̂a +

κ

χ
H(q0)−

κ

χ
∑
a∈A

H(q̂a),

where ua ∈ R|X | is the vector of {ua,x}x∈X . Any choice of q̂a satisfying the constraint can
be implemented by some choice of π and qa in the following way: set π(a) = ιT q̂a, and (if
π(a)> 0) set

qa =
q̂a

π(a)
.

If π(a) = 0, set qa = q0. By construction, the constraint will require that π(a) ≤ 1,

∑a∈A π(a)= 1, and the fact that the elements of qa are weakly positive will ensure π(a)≥ 0.
Similarly, ιT qa = 1 for all a ∈ A, and the elements of qa are weakly greater than zero.
Therefore, we can implement any set of q̂a satisfying the constraint ∑a∈A q̂a = q0.
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Rewriting the problem in Lagrangian form,

φ(q0) = max
{q̂a∈R|X |}a∈A

min
ξ∈R|X |,{νa∈R

|X |
+ }a∈A

∑
a∈A

uT
a · q̂a +

κ

χ
H(q0)

− κ

χ
∑
a∈A

H(q̂a)+ξ
T (q0−∑

a∈A
q̂a)+ ∑

a∈A
ν

T
a q̂a.

Observe that φ(q0) is convex in q0. Suppose not: for some q = λq0 + (1− λ )q1, with
λ ∈ (0,1), φ(q) < λφ(q0)+ (1−λ )φ(q1). Consider a relaxed version of the problem in
which the DM is allowed to choose two different q̂a for each a. Because of the convexity of
H, even with this option, the DM will set both of the q̂a to the same value, and therefore the
relaxed problem reaches the same value as the original problem. However, in the relaxed
problem, choosing the optimal policies for q0 and q1 in the original problem, scaled by
λ and (1− λ ) respectively, is feasible. It follows that φ(q) ≥ λφ(q0) + (1− λ )φ(q1).

Note also that φ(q0) is bounded on the interior of the simplex. It follows by Alexandrov’s
theorem that is is twice-differentiable almost everywhere on the interior of the simplex.

By the convexity of H, the objective function is concave, and the constraints are affine
and a feasible point exists. Therefore, the KKT conditions are necessary. The objective
function is continuously differentiable in the choice variables and in q0, and therefore the
envelope theorem applies. We have, by the envelope theorem,

∇φ(q0) =
κ

χ
∇H(q0)+ξ ,

and the first-order conditions (for all a ∈ A with q̂a 6=~0),

ua−
κ

χ
∇H(q̂a)−ξ +νa = 0. (44)

If q̂a =~0, we must have qT (ua− ξ ) ≤ κ

χ
H(q) for all q, meaning that ua− κ is a sub-

gradient of H(q) at q = 0. In this case, we can define νa =~0 and observe that the first-order
condition holds. Define q̂a(q0), ξ (q0), and νa(q0) as functions that are solutions to the
first-order conditions and constraints.

We next prove the “locally invariant posteriors” property described by Caplin et al.
[Forthcoming]. Consider an alternative prior, q̃0 ∈P(X), such that

q̃0 = ∑
a∈A

α(a)q̂a(q0)
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for some α(a) ≥ 0. Conjecture that q̂a(q̃0) = α(a)q̂a(q0), ξ (q̃0) = ξ (q0), and νa(q̃0) =

νa(q0). By the homogeneity property,

∇H(α(a)q̂a(q0)) = ∇H(q̂a(q0)),

and therefore the first-order conditions are satisfied. By construction, the constraint is
satisfied, the complementary slackness conditions are satisfied, and q̂a and νa are weakly
positive. Therefore, all necessary conditions are satisfied, and by the concavity of the
problem, this is sufficient. It follows that the locally invariant posteriors property is verified.

Consider a perturbation
q0(ε;z) = q0 + εz,

with z ∈ R|X |, such that q0(ε;z) remains in P(X) for some ε > 0. If z is in the span of
q̂a(q0), then there exists a sufficiently small ε > 0 such that the above conjecture applies. In
this case that ξ is constant, and therefore ∇φ(q0(ε;z)) is directionally differentiable with
respect to ε . If q0(−ε;z) ∈P(X) for some ε > 0, then ∇φ is differentiable (let ∇z denote
the gradient with respect to z), with

∇z∇φ(q0) =
κ

χ
∇

2H(q0) · z,

proving twice-differentiability in this direction. This perturbation exists anywhere the span
of q̂a(q0) is strictly larger than the line segment connecting zero and q0 (in other words, all
q̂a(q0) are not proportional to q0). Within this region, the strict convexity of H(q0) in all
directions orthogonal to q0 implies that, as required of the continuation region,

φ(q0)> max
a∈A

uT
a ·q0.

Outside of this region, all q̂a(q0) are proportional to q0, implying that

φ(q0) = max
a∈A

uT
a ·q0,

as required for the stopping region.
Now consider an arbitrary perturbation z such that q0(ε;z) ∈ R|X |+ and q0(−ε;z) ∈ R|X |+
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for some ε > 0. Observe that, by the constraint,

εz = ∑
a∈A

(q̂a(ε;z)− q̂a(q0)).

It follows that

(ξ T (q0(ε;z))−ξ
T (q0))εz = ∑

a∈A
(ξ T (q0(ε;z))−ξ

T (q0))(q̂a(ε;z)− q̂a(q0)).

By the first-order condition,

(ξ T (q0(ε;z))−ξ
T (q0))(q̂a(ε;z)− q̂a(q0)) =

[
κ

χ
∇H(q̂a(q0))−

κ

χ
∇H(q̂a(ε;z))+ν

T
a (q0(ε;z))−ν

T
a (q0)](q̂a(ε;z)− q̂a(q0)).

Consider the term

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0))= ∑

x∈X
(νT

a (q0(ε;z))−ν
T
a (q0))exeT

x (q̂a(ε;z)− q̂a(q0)).

By the complementary slackness condition,

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0)) =−ν

T
a (q0(ε;z))q̂a(q0)−ν

T
a (q0)q̂a(ε;z)≤ 0.

By the convexity of H,

κ

χ
(∇H(q̂a(q0))−∇H(q̂a(ε;z)))(q̂a(ε;z)− q̂a(q0))≤ 0.

Therefore,
(ξ T (q0(ε;z))−ξ

T (q0))εz≤ 0.

Thus, anywhere φ is twice differentiable (almost everywhere on the interior of the simplex),

∇
2
φ(q)� κ

χ
∇

2H(q) = k̄(q),

with equality in certain directions. Therefore, it satisfies the HJB equation almost every-

86



where in the continuation region. Moreover, by the convexity of φ ,

κ

χ
(∇H(q0(ε;z))−∇H(q0))

T
εz≥ (∇φ(q0(ε;z))−∇φ(q0))

T
εz≥ 0,

implying that the “Hessian measure” (see Villani [2003]) associated with ∇2φ has no pure
point component. This implies that φ is continuously differentiable.

Step 3: Show this value function can be achieved Next, we show that there is a strategy
for the DM in the dynamic problem which can implement this value function. Suppose
the DM starts with beliefs q0, and generates some q̂a(q0) as described above. As shown
previously, this can be mapped into a policy π(a,q0) and qa(q0), with the property that

∑
a∈A

π(a,q0)qa(q0) = q0.

Claim: it is without loss of generality to assume that the set A∗ = {a∈ A : π(a,q0)> 0}
satisfies |A∗| ≤ |X |. To see this, note that if |A∗|> |X |, there must exist some a0 ∈ A∗ such
that, for some weights wa ∈ R|A∗|−1,

(qa0−q0) = ∑
a∈A∗\{a0}

wa(qa−q0),

as either {qa− q0}a∈A∗\{a0} forms a basis on the tangent space of the simplex or itself
contains a redundant basis vector. By optimality, we must have

uT
a0

qa0−
κ

χ
H(qa0) = ∑

a∈A∗\{a0}
wa{uT

a qa−
κ

χ
H(qa)}.

If qa0 = q0, the policy

π̃(a,q0}=

0 a /∈ A∗ \{a0}
π(a,q0)

1−π(a0,q0)
a ∈ A∗ \{a0}

is also optimal (with the same choices of {qa}a∈A}). If not, we must have w 6=~0.
We will construct a policy such that, for all times t,

qt = ∑
a∈A∗

πt(a)qa(q0)
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for some πt(a) ∈P(A∗). Let C (which will be the continuation region) be the set of qt

such that a πt ∈P(A∗) satisfying the above property exists and πt(a) < 1 for all a ∈ A∗.
The associated stopping rule will be the stop whenever πt(a) = 1 for some a ∈ A∗.

For all qt ∈ C , there is a linear map from P(A∗) to C , which we will denote Q(q0):

Q(q0)πt = qt .

Let us suppose the DM chooses a process satisfying this equation and such that

dπt = σπ(πt)σ̄πdBt ,

where σπ,t(πt) is a bounded and continuous function (specified below) and σ̄π is a full rank
|A∗|×|X |matrix. Note that a weak solution to this SDE with initial condition π0 = π(a,q0)

exists,48 and consequently this policy is feasible provided that the constraint (3) is satisfied.
We must have

Q(q0)dπt = Diag(qt)σtdBt ,

which implies that
Q(q0)σπ(πt)σ̄π = Diag(Q(q0)πt)σt

Define φ̃(πt) = φ(Q(q0)πt). As shown above,

QT (q0)∇
2
φ(qt)Q(q0)

exists everywhere in Ω, and therefore

φ̃(πt)−
κ

χ
H(Q(q0)πt)

is a martingale. We specify σπ(πt) to respect the constraint,

1
2

tr[σtσ
T
t Diag(qt)k̄(qt)Diag(qt)] = χ > 0.

This can be rewritten as

σπ(πt) = (
χ

1
2tr[σ̄π σ̄πQT (q0)k̄(Q(q0)πt))Q(q0)]

)
1
2 .

48See e.g. theorem 2.34 of chapter III of Jacod and Shiryaev [2013].
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This function is continuous by the twice continuous-differentiability of D, and bounded
above by the strong convexity of D.

Under the stopping rule described previously, the boundary will be hit a.s. as the hori-
zon goes to infinity. As a result, by the martingale property described above, initializing
π0(a) = π(a,q0),

φ̃(π0) = E0[φ̃(πτ)−
κ

χ
H(Q(q0)πτ)+

κ

χ
H(Q(q0)π0)].

By Ito’s lemma,

κ

χ
H(Q(q0)πτ)−

κ

χ
H(Q(q0)π0) =

ˆ
τ

0
κdt = κτ.

By the value-matching property of φ , φ̃(πτ) = û(Q(q0)πτ). It follows that, as required,

φ(q0) = φ̃(π0) = E0[û(qτ)−κτ].
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C Technical Appendix

C.1 Upper Hemi-Continuity of Policies

In this subsection, we show a form of upper hemi-continuity for optimal policies with
respect to the limit as ρ → 0+.

Lemma 13. Fix a utility function u, divergence D, constant χ > 0, and cost of delay

κ > 0. Consider a sequence of rates of time preference converging to zero, ρn → 0, and

let ((Ω,Fn,{Fn,t},Pn),qn,τn) be an associated sequence of optimal policies for each ρn.

There exists a policy ((Ω,F ∗,{F ∗
t },P∗),q∗,τ∗) that is optimal when ρ = 0 such that a

subsequence of (qn,τn) converges in law to (q∗,τ∗).

Proof. See the appendix, section C.6.

C.2 Proof of Lemma 7

The beliefs process qt is a semi-martingale; therefore, there exists characteristics (B,C,ν)

such that
Bt =

ˆ t

0
bsdAs,

Ct =

ˆ t

0
σ̂sσ̂

T
s dAs

and
ν(ω;dt,dz) = Kt(dz;ω)dAt ,

for predictable processes bs,σs and a transition kernel K, and an increasing, predictable
process A that is continuous with respect to the Lebesgue measure on R+.49 Because A is
continuous with respect to the Lebesgue measure, we can define

σsσ
T
s = σ̂sσ̂

T
s

dAs

ds

and
ψt(dz;ω) = Kt(dz;ω)

dAt

ds
.

Because qt−q0 is a martingale, B = 0.50

49See proposition 2.9 of chapter II of Jacod and Shiryaev [2013].
50Informally, the characteristic B can be thought of as the drift of the semi-martingale; see definition 2.6

of chapter II of Jacod and Shiryaev [2013].
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Lastly, let us prove that the stated constraint is satisfied if and only if (3) is satisfied
(both up to an evanesce). Define the non-negative (by the convexity of D) family of stochas-
tic processes

ft,s(ω) =ˆ
R|X |\{~0}

(D(qt−(ω)+z||qs−(ω))−D(qt−(ω)||qs−(ω))−zT ·∇1D(qt−(ω)||qs−(ω)))ψt(dz;ω)

+
1
2

tr[σt(ω)σT
t (ω)∇2

1D(qt−(ω)||qs−(ω))].

To simplify notation, we treat σt,xσt,x′∇
2
1,x,x′D(qt−||qs−) as zero for any x or x′ with qt−,x = 0

or qt−,x′ = 0 (as σs will never be such that beliefs move off the boundary of the simplex),
and likewise define the integral over R|X | \ {~0} as zero outside of the support of ψt (as
beliefs will never jump off the boundary of the simplex). These conventions allow the
formula above to be applied regardless of whether beliefs are on the interior or edge of the
simplex.

Note, by the definition of k̄ and the divergence,

D(qt−||qt−) = zT ·∇1D(qt−||qt−) = 0

and
∇

2
1D(qt−||qt−) = k̄(qt−),

and thus

ft,t(ω) =

ˆ
R|X |\{~0}

D(qt−(ω)+ z||qt−(ω))ψt(dz;ω)

+
1
2

tr[σt(ω)σT
t (ω)k̄(qt−(ω)].

By the twice continuous differentiability of D, the function

D(qt−(ω)+ z||qs−(ω))−D(qt−(ω)||qs−(ω))− zT ·∇1D(qt−(ω)||qs−(ω))

is bounded uniformly on z such that q−t (ω)+ z� q−t (ω) (i.e. the support of ψt) and s

such that |qs−(ω)− qt−(ω)| ≤ 1
2 minx∈X qt−,x(ω) (i.e. such that qs does not lie near the

boundary of the simplex). By the left-continuity of qt− , such a condition must hold for all
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s sufficiently close to t; consequently, by the dominated convergence theorem,

lim
s↑t

ft,s(ω) = ft,t(ω).

Applying Ito’s lemma for semi-martingales,51 the process

Mt,s(ω) =

ˆ t

s
fr,s(ω)dr−D(qt(ω)||qs−(ω))

is a local martingale for any s ∈ R+ and satisfies Ms,s = 0 P-a.s.
Suppose (3) holds. We first use the following lemma to show that 1

hEt1 [D(qt+h||qt−)] is
bounded uniformly in t.

Lemma 14. Fix some h̄ > 0 and suppose (3) holds. For any t1, t2 ∈ R+ with t2 > t1 , there

exists a constant B > 0 such that, for all t ∈ [t1, t2],

sup
h∈(0,h̄]

1
h

Et−1
[D(qt+h||qt−)]≤ B, P−a.e.

Proof. By contradiction: if this lemma does not hold, there must exist some t1, t ∈R+ with
t ≥ t1 and P-positive measure subset of Ω such that, for all ω in this subset,

sup
h∈(0,h̄]

1
h

Et−1
[D(qt+h||qt−)](ω) = ∞.

By the boundedness of D (D(q′||q)≤ D̄ for all q,q′ ∈P(X) with q′� q), for any ε > 0,

sup
h∈(ε,h̄]

1
h

Et−1
[D(qt+h||qt−)](ω)≤ D̄

ε
.

Consequently, we must have, for some sequence εn→ 0+,

lim
n→∞

sup
h∈(0,εn]

1
h

Et−1
[D(qt+h||qt−)](ω) = ∞,

contradicting (3).

It follows by the reverse Fatou lemma that (P-a.s., a caveat that applies to everything

51See e.g. theorem 2.42 of chapter II of Jacod and Shiryaev [2013].
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that follows)

1
h

ˆ t2

t1
limsup

h↓0
Et−1

[D(qt+h||qt−)]dt ≥ limsup
h↓0

1
h

ˆ t2

t1
Et−1

[D(qt+h||qt−)]dt.

By the martingale property of Mt,s,

ˆ t2

t1
Et−1

[D(qt+h||qt−)]dt =
ˆ t2

t1
Et−1

[

ˆ t+h

t
fs,tds]dt.

By Tonelli’s theorem and the non-negativity of f , interchanging the integrals,

ˆ t2

t1
Et−1

[

ˆ t+h

t
fs,tds]dt = Et−1

[
1
h

ˆ t2+h

t1

ˆ s

max{s−h,t1}
fs,rdrds].

By the non-negativity of f ,

Et−1
[
1
h

ˆ t2+h

t1

ˆ s

max{s−h,t1}
fs,rdrds]≥ Et−1

[
1
h

ˆ t2

t1

ˆ s

max{s−h,t1}
fs,rdrds].

Observe that, for all s > t1, and h ∈ (0,s− t1),

1
h

ˆ s

max{s−h,t1}
fs,rdr ≥ inf

r∈[s−h,s)
fs,r.

Therefore,

liminf
h↓0

1
h

ˆ s

max{s−h,t1}
fs,rdr ≥ fs,s.

Consequently, by Fatou’s lemma,

liminf
h↓0

Et−1
[
1
h

ˆ t2+h

t1

ˆ s

max{s−h,t1}
fs,rdrds]≥ Et−1

[
1
h

ˆ t2

t1
fs,sds].

Combining these results yields

χ(t2− t1)≥ Et−1
[

ˆ t2

t1
fs,sds].

By the Lebesgue differentiation theorem and iterated expectations, for almost all t1 ∈ (0,∞)
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and all t0 < t1,
χ ≥ Et0[ ft1,t1].

Considering the limit as t0 ↑ t1, χ ≥ Et−1
[ ft1,t1]. By the predictability of the characteristics,

ft,t is Ft−-measurable, and therefore, for almost all t ∈ (0,∞), P-a.s.,

ft,t(ω)≤ χ.

There is a version of (σ ,ψ) for which this holds everywhere (such a (σ ,ψ) generates
indistinguishable characteristics).

C.3 Proof of Lemma 1

Let us suppose we are given a sequence achieving the supremum. For all n ∈ N, let qt,n be
a martingale and τn be a stopping time defined on (Ω,Fn,{Ft,n},Pn), such that q0,n = q̄0

and the constraint (3) is satisfied, and suppose that

V (q̄0) = lim
n→∞

EPn[e−ρτn û(qn,τn)−κ

ˆ
τn

0
e−ρsds|F0,n],

where V (q̄0) is the value function of the DM’s problem.
Our proof will consider separately the ρ > 0,κ ≥ 0 and ρ = 0,κ > 0 cases. In what

follows, we will adopt the convention that beliefs remain constant after the DM chooses to
stop. Both cases will use the following three lemmas.

Lemma 15. Let ((Ω,Fn,{Ft,n},Pn),qn,τn) ∈A be a sequence of feasible policies. Then

the sequence {qn} is tight.52

Proof. See the technical appendix, section C.4.

Lemma 16. Let ((Ω,Fn,{Ft,n},Pn),qn,τn) ∈ A be a sequence of feasible policies, and

suppose that the sequence {(qn,yn)} is tight, where yn,t(ω) = 1{t ≤ τ(ω)}. Then there

exists a feasible policy ((Ω,F ∗,{F ∗
t },P∗),q∗,τ∗)∈A such that a subsequence of (qn,yn)

converges in law to (q∗,y∗), where y∗t (ω) = 1{t ≤ τ∗(ω)}.

Proof. See the technical appendix, section C.5.

52Tightness, in this context, means that the laws of qn are relatively compact in the weak* topology associ-
ated with D(P(X)) (the space of all càdlàg functions R+→P(X), endowed with the Skorokhod topology).
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By Lemma C.4, the sequence {qn} is tight. The sequence of step functions yn,t(ω) =

1{t ≤ τn(ω)} is càdlàg and trivially tight, and consequently the sequence {(qn,yn)} is
tight.53 Consequently, by Lemma 16, a candidate optimal policy ((Ω,F ∗,{F ∗

t },P∗),q∗,τ∗)∈
A exists; consider only the subsequence that converges to this optimal policy in the sense
of Lemma 16.

Define the process vn = (qn,2|X |
1
2 yn)∈D(R|X |+1) and v∗ = (q∗,2|X | 12 y∗)∈D(R|X |+1).

Note that vn converges in law to v∗. By the boundedness of the simplex, |∆qn,t |< |X |
1
2 , and

consequently |∆vn,t(ω)|> |X | 12 if and only if τn(ω) = t, and likewise for v∗. It follows that
τn(ω) = inf{t ∈R+ : |∆vn,t(ω)|> |X | 12} and likewise for τ∗, and that |∆vn,t(ω)| 6= |X | 12 for
all (ω, t), and likewise for v∗.

The mapping from α ∈D(R|X |+1) to τα = inf{t ∈R+ : |∆α(ω)|> |X | 12} is continuous
in the Skorohod topology, and the mapping from α to ατα

∈R|X |+1 is continuous wherever
τα < ∞.54 Applying these continuity results for the processes vn and v∗, we show that the
value function is achieved by showing that (τn,qτn) converges in law to (τ∗,q∗

τ∗), which
sufficient to prove the result. We first consider the ρ > 0 case, then the ρ = 0,κ > 0 case.

C.3.1 The ρ > 0 case

In this case, the result follows immediately from the convergence in law of vn to v∗ and this
continuity. Specifically, by proposition 3.15 of chapter VI of Jacod and Shiryaev [2013],
the function

g(τn,qτn) = e−ρτn û(qτn)+κ
e−ρτn

ρ

converges in law to the function g(τ∗,qτ∗). This function is bounded and continuous, and
consequently

V (q0) = lim
n→∞

EPn [g(τn,qτn)−
κ

ρ
|F0,n] = EP∗[g(τ∗,q∗τ∗)−

κ

ρ
|F ∗

0 ],

which is the result.
53See theorem 3.21 of chapter VI of Jacod and Shiryaev [2013] for the necessary and sufficient conditions

for tightness in this context.
54See e.g. proposition 2.7 of chapter VI of Jacod and Shiryaev [2013].
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C.3.2 The ρ = 0,κ > 0 case

In this case, the function
g(τn,qτn) = û(qτn)−κτn

is unbounded below, and we must therefore demonstrate that the stopping time is never
infinite.

We observe that τn is bounded in expectation. Because the sequence of policies achieves
the supremum, for any ε > 0, there exists an nε ∈ N such that, for all n≥ nε ,

EPn[û(qτn,n)−κτn|F0,n]>V (q0)− ε.

Consequently, we must have, for all n≥ nε , by V (q0)≥ umin,

EPn[τn|F0,n]<
umax−umin + ε

κ
.

From this bound, it follows that, for any T > 0,

umax−umin + ε

κT
> EPn[1{τn > T}|F0,n],

From this, it follows that the laws of τn are tight; by the convergence in law of τn to τ∗, we
have

umax−umin + ε

κT
> EP∗[1{τ∗ > T}|F0,n].

Note as well that Pr{τn = ∞}= Pr{τ∗ = ∞}= 0, and consequently vτn converges in law to
v∗τ , and hence that (τn,qτn) converges in law to (τ∗,qτ∗).

The function g is continuous and bounded above; consequently, by this convergence in
law,

V (q0) = lim sup
n→∞

EPn[g(τn,qτn)|F0,n]≤ EP∗ [g(τ∗,qτ∗)],

which is the result.

C.4 Proof of Lemma 15

To demonstrate tightness, it is sufficient to show that the predictable quadratic variation
of qn,t,x (for some x ∈ {1, . . . , |X |}, < qn,x,qn,x >t), is C-tight (tightness as defined for a
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continuous process).55 By the constraint (3) and the strong convexity of D, we must have,
for some K > 0,

lim
h→0+

Kh−1EPn[|qn,t−+h−qn,t−|2|Ft−,n]≤ χ,

which implies
K−1

χt−∑
x∈X

< qn,x,qn,x >t

is an increasing process. Trivially, the sequence of processes yn,t = K−1χt is C-tight, and
therefore ∑

|X |+1
j=1 < qn, j,qn, j >t is C-tight,56 and consequently qt,n is tight.

C.5 Proof of Lemma 16

By the definition of tightness, the laws of (qn,yn) lie in a relatively compact subset of
P(D(R|X |+1)), where D(R|X |+1) is endowed with the Skorohod topology and P(D(R|X |+1))

with the weak* topology. Consequently, a convergent subsequence of the laws exist. Let
L n be the law of (qn,yn), and let P∗ be the limit of a convergent subsequence. In what
follows, consider only this convergent subsequence.

Our goal is to construct a feasible policy under which the law of (q∗,y∗) is P∗. This
requires constructing the appropriate filtered probability space and then showing that the
constraint (3) is satisfied.

We have defined Ω = D(R|X |+1); let (q,y) denote the canonical process on this space,
let F ∗

t be the natural filtration associated with the canonical process, and let F ∗= limt→∞ F ∗
t .

In what follows, consider the probability spaces (Ω,F ∗,{F ∗
t },L n) and (Ω,F ∗,{F ∗

t },P∗).
Note that, by construction, the laws of (qn,yn) under (Ω,F n,{F n

t },Pn) are identical to the
laws of the canonical process under (Ω,F ∗,{F ∗

t },L n).
Construct τ∗ from the canonical process (q,y) by τ∗(ω) = inf{t ∈R+ : yt(ω)≥ 1}. The

canonical process is adapted to {F ∗
t }, and consequently τ∗, as constructed, is a stopping

time. Identify the process (q∗,y∗) with the canonical process.
Because they satisfy the constraint (3), the processes qn are quasi-left-continuous.57 By

the continuity of the functions ga,t(qn) = max{|∆qn,t |− a,0} for any a > 0 and t ∈ R+,58

55See theorem 4.13 of chapter VI of Jacod and Shiryaev [2013] for the sufficiency claim, and definition
3.25 of chapter VI of Jacod and Shiryaev [2013] for a definition of C-tightness.

56See Proposition 3.35 of chapter VI of Jacod and Shiryaev [2013].
57This follows essentially immediately from the fact that D(q′||q) is strictly positive for any q′ 6= q. For a

definition of quasi-left-continuity, see e.g. definition 2.25 of chapter I of Jacod and Shiryaev [2013].
58That such functions are continuous in the Skorohod topology is shown in e.g. corollary 2.8 of chapter VI

of Jacod and Shiryaev [2013].
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and the convergence in law of the qn to q∗,

EP∗[max{|∆qt |−a,0}] = 0

for all t ∈ R+ and a > 0, from which it follows that q is also quasi-left-continuous under
P∗.

Because the processes qn satisfies the constraint (3) under (Ω,F n,{F n
t },Pn), and

(qn
t ,y

n
t ) is F n

t -measurable, the canonical process q satisfies (3) under (Ω,F ∗,{F ∗
t },L n)

(i.e. the constraint can be conditioned down from F n
t to the natural filtration of (qn

t ,y
n
t )).

By Lemma 7, the process q under L n is characterized by the functions σn,t and ψn,t

described in that lemma. Define the function

fn,t,s(ω) =
1
2

tr[σn,t(ω)σT
n,t(ω)∇2

1D(qn,t−(ω)||qn,s−(ω))]+ˆ
R|X |\{~0}

(D(qn,t−(ω)+z||qn,s−(ω))−D(qn,t−(ω)||qn,s−(ω))−zT ·∇1D(qn,t−(ω)||qn,s−(ω)))ψn,t(dz;ω)

and the special case

fn,t,t(ω) =
1
2

tr[σn,t(ω)σT
n,t(ω)k̄(qn,t−(ω))]

+

ˆ
R|X |\{~0}

D(qn,t−(ω)+ z||qn,t−(ω))ψn,t(dz;ω).

As shown in Lemma 7 (by Ito’s lemma), for any s ∈ R+, n ∈ N, and h > 0,

EL n

s− [D(qs+h||qs−)] = EL n

s− [

ˆ s+h

s
fn,t,sdt],

and fn,t,t ≤ χ .

Claim. fn,t,s is uniformly bounded P∗−a.s. and satisfies, P∗−a.s., for any c ∈ [0,1]

lim sup
m→∞,ω ′→ω

fn̂m,s+chm,s(ω
′)≤ χ.

Proof. See below.

Using this claim, we prove by contradiction that (3) must hold. Suppose not: for some
s∈R+, limsuph↓0

1
hEP∗

s− [D(qs+h||qs−)]> χ . In this case, by definition there must exist some
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ε > 0 and sequence of strictly positive hm→ 0 such that

lim
m→∞

1
hm

EP∗
s− [D(qs+hm ||qs−)]≥ χ +2ε.

By the convergence of L n to P∗ in the weak* topology, and the continuity and boundedness
of D,59 for each hm, there exists an nm such that, for all n≥ nm,

|EP∗
s− [D(qs+hm||qs−)]−EL n

s− [D(qs+hm||qs−)]|< εhm.

Define n̂m = max{nm,m}. We conclude that if limsuph↓0
1
hEP∗

s− [D(qs+h||qs−)]> χ , we must
have

lim
m→∞

1
hm

EL n̂m

s− [D(qs+hm||qs−)]≥ χ + ε.

Using the claim above, it follows by the reverse Fatou’s lemma with weakly converging
measures (Feinberg et al. [2014]) that

lim
m→∞

EL n̂m

s− [

ˆ 1

0
fn̂m,s+chm,sdc]≤ χ.

Observing by a change of variable that

ˆ 1

0
fn̂m,s+chm,s(ω)dc =

1
hm

ˆ s+hm

s
fn̂m,t,s(ω)dt,

it follows that
lim

m→∞

1
hm

EL n̂m

s− [D(qs+hm||qs−)]≤ χ,

and consequently that (3) must hold.
To conclude the proof, we prove the claim by showing that fn,t,s is uniformly bounded

(P∗−a.s.) and that the limit condition is satisfied.
For any q ∈P(X), let A(q) be the set of v ∈ R|X | and a ∈ (0, |X | 12 ] such that q+av ∈

P(X) and q+av� q.
Define the function

F(a,v;q0,q1) =
D(q1 +av||q0)−D(q1||q0)−avT ·∇1D(q1||q0)

D(q1 +av||q1)

59Note that qs+hm � qs− for all s ∈ R+ and hm ≥ 0.
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for (a,v)∈ A(q1) and q1� q0. Extend the definition of this function to a = 0 by continuity:

F(0,v;q0,q1) = lim
a↓0

F(a,v;q0,q1) =
vT ·∇2

1D(q1||q0) · v
vT · k̄(q1) · v

.

Note that the closure of A(q), Ā(q), is a compact set, by the compactness of the simplex.
Moreover, by the twice-continuous differentiability of D on the simplex and its faces,

F(·) is continuous on the set (q0,q1,a,v)∈P(X)×P(X)× [0, |X | 12 ]×R|X | such that q1�
q0 and (a,v) ∈ Ā(q1). This set is compact, and consequently F(·) is uniformly bounded.

Fix any s > 0. By the quasi-left-continuity of q∗, qs(ω) = qs−(ω) holds P∗-a.s. In
what follows, consider any ω ∈ Ω such that this holds. By the right-continuity with left-
limits property of q(ω) and the assumption that qs−(ω) = qs(ω), there exists an hω > 0
such that q(ω) is continuous on t ∈ [s− hω ,s+ hω ]. Because q(ω) is continuous on this
interval, if q(ω ′)→ q(ω) in the Skorohod topology, q(ω ′) converges to q(ω) uniformly
on this interval.60 As a consequence of this convergence and the continuity of F , for any
(a,v) ∈ A(qn,s−(ω)),

lim
m→∞,ω ′→ω

F(a,v;qs−(ω
′),q(s+hm)−(ω

′)) = 1. (45)

Using this result, we will show that the claim holds. To do this, we consider the character-
istics (σn,ψn) defined from qn via Lemma 7.

The characteristics σn̂m satisfy

1
2

tr[σn̂m,s+hm(ω
′)σT

n̂m,s+hm
(ω ′)k̄(q(s+hm)−(ω

′))]≤ χ.

By the strong convexity of D (implying k̄�KI, where I is the identity matrix), the sequence
σn̂m,s+hm(ω

′)σT
n̂m,s+hm

(ω ′) is uniformly bounded in the matrix norm. It therefore has a
convergent subsequence; let l index this subsequence, and define Σ∗s (ω) as its limit.

Observe, by the twice continuous differentiability of D, that

lim
l→∞,ω ′→ω

1
2

tr[σn̂l ,s+hl(ω
′)σT

n̂l ,s+hl
(ω ′)∇2

1D(q(s+hl)−(ω
′)||qs−(ω

′))] =

1
2

tr[Σ∗s (ω)k̄(qs−(ω))].

60See e.g. proposition 1.17 of chapter VI of Jacod and Shiryaev [2013].
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Now consider the measures on R|X | defined by vn,t(dz;ω)=D(qn,t−(ω)+z||qn,t−(ω))ψn,t(dz;ω),
observing that, by assumption,

ˆ
R|X |

vn,t(dz;ω)≤ χ.

Let µn,t(da,dv;ω) be the measure on Ā(qt−(ω))⊂R|X |+1 induced from vn,t by z→ (|z|, z
|z|).

The measures µt are tight, and consequently there is a convergent subsequence of hl such
that µn,s+hl(·;ω) converges in the weak* topology to some µ∗s (·;ω). Pass to this subse-
quence, which we continue to index by l.

By the definition of F(·),
ˆ
R|X |\{~0}

{D(q(s+hl)−(ω)+ z||qs−(ω))−D(q(s+hl)−(ω)||qs−(ω))− zT ·∇1D(q(s+hl)−(ω)||qs−(ω)))}×

ψn̂l ,s+hl(dz;ω) =ˆ
R|X |+1

F(a,v;qs−(ω),q(s+hl)−(ω))µn̂l ,s+hl(da,dv;ω).

By the uniform boundedness of F and the reverse Fatou’s lemma with weakly converg-
ing measures (Feinberg et al. [2014]), using (45),

lim sup
l→∞,ω ′→ω

ˆ
R|X |+1

F(a,v;qs−(ω
′),q(s+hl)−(ω

′))µn̂l ,s+hl(da,dv;ω
′)≤

ˆ
R|X |+1

µ
∗
s (da,dv;ω).

By Lemma 7,

1
2

tr[σn̂l ,s+hl(ω
′)σT

n̂l ,s+hl
(ω ′)k̄(q(s+hl)−(ω

′))]+ˆ
R|X |+1

µn̂l ,s+hl(da,dv;ω
′)≤ χ

for all l, and consequently taking limits yields

1
2

tr[Σ∗s (ω)k̄(qs−(ω))]+

ˆ
R|X |+1

µ
∗
s (da,dv;ω)≤ χ.
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It follows immediately that

lim sup
l→∞,ω ′→ω

fn̂l ,s+hl ,s(ω
′)≤ χ.

Since this must hold for any convergent subsequence, it follows that

lim sup
m→∞,ω ′→ω

fn̂m,s+hm,s(ω
′)≤ χ.

By the uniform boundedness of F (call the uniform upper bound F̄)

fn,t,s(ω)≤ F̄
ˆ
R|X |+1

µn,t(da,dv;ω)

+ F̄
1
2

tr[σn,t(ω)σT
n,t(ω)k̄(qt−(ω))],

which yields fn,t,s(ω)≤ F̄χ , proving the result.

C.6 Proof of Lemma 13

This structure of this proof is similar to the proof of the existence of optimal policies (
Lemma 1), and will refer to lemmas used in that proof (see the technical appendix, sec-
tion C.3).

We will construct a limit policy, ((Ω,F ∗,{F ∗
t },P∗),q∗,τ∗) ∈A , from a subsequence

of the optimal policies associated with each value of ρn > 0, and then show that this limit
policy achieves the value function when ρ = 0. We begin by showing that the value function
V ∗(q0) associated with this limit policy when ρ = 0 satisfies, for this given subsequence,

lim sup
n→∞

V (q0;ρn)≤V ∗(q0),

where V (q0;ρn) denotes the value function under the optimal policy associated with ρn.
By Lemma C.4, the sequence {qn} is tight. The sequence of step functions yn,t(ω) =

1{t ≤ τn(ω)} is càdlàg and trivially tight, and consequently the sequence {(qn,yn)} is
tight.61 Consequently, by Lemma 16, a candidate limit policy (Ω,F ∗,{F ∗

t },P∗),q∗,τ∗)∈
A exists; consider only the subsequence that converges to this limit policy in the sense of

61See theorem 3.21 of chapter VI of Jacod and Shiryaev [2013] for the necessary and sufficient conditions
for tightness in this context.
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Lemma 16.
Define the process vn = (qn,2|X |

1
2 yn)∈D(R|X |+1) and v∗ = (q∗,2|X | 12 y∗)∈D(R|X |+1).

Note that vn converges in law to v∗. By the boundedness of the simplex, |∆qn,t |< |X |
1
2 , and

consequently |∆vn,t(ω)|> |X | 12 if and only if τn(ω) = t, and likewise for v∗. It follows that
τn(ω) = inf{t ∈R+ : |∆vn,t(ω)|> |X | 12} and likewise for τ∗, and that |∆vn,t(ω)| 6= |X | 12 for
all (ω, t), and likewise for v∗.

The mapping from α ∈D(R|X |+1) to τα = inf{t ∈R+ : |∆α(ω)|> |X | 12} is continuous
in the Skorohod topology, and the mapping from α to ατα

∈R|X |+1 is continuous wherever
τα < ∞.62 Applying these continuity results for the processes vn and v∗, we show that the
value function V ∗(q0) is achieved by showing that (τn,qτn) converges in law to (τ∗,q∗

τ∗).
Let us first observe that, under an optimal policy, Pr{τn = ∞} = 0. Suppose not, and

there exists some ε > 0 such that Pr{τn = ∞} = ε . Then there exists some time Tn such
that Pr{τn ≥ Tn} ≤ ε(1+ umin

umax
), and consequently

EPn [e−ρ(τn−Tn)û(qτn)−κ

ˆ
τn

Tn

e−ρnsds|FTn,n,τn > Tn]≤ ε
umin

umax
umax− ε

κ

ρn
< umin,

contradicting V (q;ρn)≥ umin. It follows that Pr{τn = ∞}= 0.
Now observe that we must have

EPn[e−ρτn û(qτn)−κ

ˆ
τn

0
e−ρnsds|F0,n]≥ umin,

and consequently
umax−umin

κ
≥ 1

ρn
EPn[1− e−ρnτn |F0,n].

By Markov’s inequality,

Pr{τn ≥ T} ≤
1
ρn

EPn[1− e−ρnτn|F0,n]

1
ρn
(1− e−ρnT )

≤
umax−umin

κ

1
ρn
(1− e−ρnT )

.

By the weak convergence of τn to τ∗,

lim inf
n→∞

Pr{τn > T} ≥ Pr{τ∗ > T},

62See e.g. proposition 2.7 of chapter VI of Jacod and Shiryaev [2013].
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from which it follows that
Pr{τ∗ > T} ≤ umax−umin

κT
.

Therefore, Pr{τ∗ = ∞} = 0. It follows by the aforementioned results that (τn,qτn) con-
verges in law to (τ∗,q∗

τ∗).
The function

g(τn,qτn) = û(qn)−κτn

is continuous and bounded above. Consequently, by this convergence in law,

lim sup
n→∞

V (q0;ρn) = lim sup
n→∞

EPn[g(τn,qτn)|F0,n]≤ EP∗[g(τ∗,qτ∗)] =V ∗(q0).

By Lemma (1), an optimal policy exists for ρ = 0. Let (Ω,F+,{F+
t },P+),q+,τ+) ∈

A be such an optimal policy. This policy feasible when ρ > 0; consequently, we must have

V (q0;ρn)≥ EP+
[e−ρnτ+ û(qτ+)−κ

ˆ
τ+

0
e−ρnsds|F+

0 ]

≥ EP+
[(1−ρnτ

+)û(qτ+)−κτ
+|F+

0 ].

Observing that

EP+
[τ+û(qτ∗)|F+

0 ]≤ umax

κ
(EP+

[û(qτ+)|F+
0 ]−V (q0;0))

≤ umax

κ
(umax−umin),

we have
V (q0;ρn)≥V (q0;0)−ρn

umax

κ
(umax−umin).

It follows that
V ∗(q0) = lim sup

n→∞

V (q0;ρn)≥V (q0;0),

and consequently the candidate limit policy is an optimal policy.

C.7 Proof of Lemma 8

Let qt be any point on the interior of P(X), and let Bδ = {q′ ∈P(X) : |q′− qt | ≤ δ}
a δ > 0 ball around qt . Choose some δ̄ > 0 such that B3δ̄

is contained in interior of the
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simplex. We will prove that V is Lipschitz-continuous on B
δ̄

.
Choose z̄ ∈ R|X | \ {~0} such that |z̄| ≤ δ̄ , and apply Lemma 6, defining z = 1

α
z̄ and

ε = 1−α

α
,

χ
−1(ρV (qt)+κ)(ε−1D(qt + ε z̄||qt)+D(qt− z̄||qt))≥

ε
−1(V (qt + ε z̄)−V (qt))+V (qt− z̄)−V (qt). (46)

for all ε ∈ (0,1).
Define ū = maxa∈A,x∈X ua,x and note that 0 < V (q) ≤ ū for all q. Note also that D is

(twice) continuously-differentiable in its first argument and D(q||q) = 0. Taking limits,

lim sup
ε→0+

ε
−1(V (qt + ε z̄)−V (qt))≤ ū+χ

−1(ρ ū+κ)D(qt− z̄||qt).

Now apply Lemma 6 at q = qt + ε z̄, defining z =− 1
α

z̄ and ε = 1−α

α
,

χ
−1(κ +ρV (qt + ε z̄))(ε−1D(qt ||qt + ε z̄)+D(qt +(1+ ε)z̄||qt + ε z̄))≥

ε
−1(V (qt)−V (qt + ε z̄))+V (qt +(1+ ε)z̄)−V (qt + ε z̄),

for all ε ∈ (0,1). By the convexity of D,

ε
−1D(qt ||qt + ε z̄)+ z̄ ·∇1D(qt ||qt + ε z̄)≤ ε

−1D(qt + ε z̄||qt + ε z̄),

where ∇1 denotes the gradient with respect to the first argument, and the inequality can be
written as

χ
−1(κ +ρV (qt− ε z̄))(D(qt +(1+ ε)z̄||qt + ε z̄)− z̄ ·∇1D(qt ||qt + ε z̄))≥

ε
−1(V (qt)−V (qt + ε z̄))+V (qt +(1+ ε)z̄)−V (qt + ε z̄),

By the continuity of the gradient and the arguments above,

lim inf
ε→0+

ε
−1(V (qt + ε z̄)−V (qt))≥−ū−χ

−1(ρ ū+κ)D(qt + z̄||qt).

Define
K = max

q′∈B
δ̄

ū+χ
−1(ρ ū+κ)D(q′||qt),
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noting that D is finite on the interior of the simplex and hence by the compactness of B
δ̄

, a
finite maximum exists. We conclude that the Dini derivatives in the direction z̄ are bounded
by K. It follows (see, e.g., Royden and Fitzpatrick [2010] section 6.2) that V is locally
Lipschitz continuous on B

δ̄
.

Repeating the argument for each face of the simplex, using balls defined only the sup-
port of qt , extends the result to all non-extreme points of the simplex.

C.8 Proof of Lemma 9

Note: this proof refers heavily to results from Clarke [1990].
By Lemma 8, V is locally Lipschitz on the interior of the simplex and on the interior of

each face.
Let qt be any point on the interior of P(X), and let Bδ = {q′ ∈P(X) : |q′−qt | ≤ δ}

a δ > 0 ball around qt . Choose some δ̄ > 0 such that B4δ̄
is contained in interior of the

simplex. We will prove that V is continuously differentiable on B
δ̄

.
Choose z̄ ∈ R|X | \ {~0} such that |z̄| ≤ δ̄ , and apply Lemma 6, defining z = ν

α
z̄ and

ε = 1−α

α
, to q = qt + ẑ for some ẑ ∈ R|X | such that |ẑ|< δ̄ ,

χ
−1(ρV (qt)+κ)(ε−1D(qt + ẑ+ ε z̄||qt + ẑ)+D(qt + ẑ− z̄||qt + ẑ))≥

ε
−1(V (qt + ẑ+ ε z̄)−V (qt + ẑ))+V (qt + ẑ− z̄)−V (qt + ẑ).

for all ε ∈ (0,1) (which ensures that qt + ẑ+ ε z̄ ∈ B3δ̄
).

By the convexity of D,

ε
−1D(qt + ẑ+ ε z̄||qt + ẑ)− z̄ ·∇1D(qt + ẑ+ ε z̄||qt + ẑ)≤ ε

−1D(qt + ẑ||qt + ẑ),

where ∇1 denotes the gradient with respect to the first argument, and the inequality can be
written as

χ
−1(ρV (qt)+κ)(z̄ ·∇1D(qt + ẑ+ ε z̄||qt + ẑ)+D(qt + ẑ− z̄||qt + ẑ))≥

ε
−1(V (qt + ẑ+ ε z̄)−V (qt + ẑ))+V (qt + ẑ− z̄)−V (qt + ẑ).
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Considering the limits

lim
ν→0+

sup
ẑ∈R|X |:|ẑ|<ν ,ε∈(0,ν)

χ
−1(ρV (qt)+κ)(z̄ ·∇1D(qt + ẑ+ ε z̄||qt + ẑ)+

D(qt + ẑ− z̄||qt + ẑ))− ε
−1(V (qt + ẑ+ ε z̄)−V (qt + ẑ))−V (qt + ẑ− z̄)+V (qt + ẑ)≥ 0,

we have
χ
−1(ρV (qt)+κ)D(qt− z̄||qt)≥V (qt− z̄)−V (qt)+V ◦(qt ; z̄),

where
V ◦(qt ; z̄) = lim

ν→0+
sup

ẑ∈R|X |:|ẑ|<ν ,ε∈(0,ν)
ε
−1(V (qt + ẑ+ ε z̄)−V (qt + ẑ))

is the Clarke generalized derivative in the direction z̄, which exists by proposition 2.1.1 of
Clarke [1990] and the local Lipschitz property.

By proposition 2.1.2 of Clarke [1990], a generalized gradient exists; let x(q)∈ ∂V (q)⊆
R|X | denote a selection of such gradients with the property that

|x(q)− x(qt)| ≤ K|q−qt |

for some K > 0 and all q ∈ B
δ̄

, which is possible by proposition 2.1.5 of Clarke [1990]. By
proposition 2.1.2 of Clarke [1990],

V ◦(qt ; z̄)≥ z̄T · x(qt),

and therefore

χ
−1(ρV (qt)+κ)D(qt− z̄||qt)≥V (qt− z̄)−V (qt)+ z̄T · x(qt).

Apply this equation in the opposite direction of z̄, scaled by some ε ∈ (0,1), for some
point qt + ẑ, again for some ẑ ∈ R|X | such that |ẑ|< δ̄ . We have

χ
−1(ρV (qt)+κ)ε−1D(qt + ẑ+ε z̄||qt + ẑ)+ z̄T x(qt + ẑ)≥ ε

−1(V (qt + ẑ+ε z̄)−V (qt + ẑ)),

and by the convexity of D as above,

χ
−1(ρV (qt)+κ)z̄T ·∇1D(qt + ẑ+ε z̄||qt + ẑ)+ z̄T x(qt + ẑ)≥ ε

−1(V (qt + ẑ+ε z̄)−V (qt + ẑ))
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It follows, taking the limit superior as above, that

z̄T x(qt)≥V ◦(qt ; z̄).

This can only hold if V ◦(qt ; z̄) = z̄T x(qt), and as this must hold for all z̄, ∂V (qt) is a single-
ton. Applying this argument to all q ∈ B

δ̄
, it follows by proposition 2.2.4 of Clarke [1990]

and the unnumbered corollary following that proposition that V is continuously differen-
tiable on B

δ̄
. Repeating this argument for all qt on the interior of the simplex, it follows

that V is continuously differentiable on the interior of the simplex. By identical arguments,
V is continuously differentiable on each face of the simplex.

C.9 Proof of Lemma 10

Proof by contradiction: suppose

sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q0+z)−φ(q0)−zT ·∇φ(q0))ψ0(dz)< ρφ(q0)+κ

and V (q0)> û(q0).

Step 1: Prove this inequality must hold in some neighborhood around q0. We must
have, for some ε > 0,

sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q0 + z)−φ(q0)− zT ·∇φ(q0))ψ0(dz)≤

ρφ(q0)+κ− ε

and
V (q0)≥ û(q0)+ ε.

Consider diffusion-only policies of the form

σ0σ
T
0 =

vvT

χ−1 1
2vT k̄(q0)v
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for some vector v ∈ R|X | with |v|= 1. We must have

max
v∈R|X |:|v|=1

vT ∇2φ(q0)v
vT k̄(q)v

≤ χ
−1(ρφ(q0)+κ− ε).

Now consider policies without diffusion and for which ψ0 is a point mass on av, where
v ∈ R|X | with |v| = 1 and a ∈ (0, |X | 12 ]. Note that |q′−q0| ≤ |X |

1
2 for any q′ ∈P(X). For

such policies,

sup
a,v∈(0,|X |

1
2 ]×R|X |: |v|=1 & q0+av∈P(X)

F(q0,a,v)≤ χ
−1(ρφ(q0)+κ− ε)

where
F(q0,a,v) =

φ(q0 +av)−φ(q0)−av ·∇φ(q0)

D(q0 +av||q0)
.

Define

F(q0,0,v) = lim
a→0+

F(q0,a,v) =
vT ∇2φ(q0)v

vT k̄(q)v

to combine these two conditions, which yields

max
a,v∈[0,|X |

1
2 ]×R|X |: |v|=1 & q0+av∈P(X)

F(q0,a,v)≤ χ
−1(ρφ(q0)+κ− ε).

Now observe that F(q0,a,v) is continuous in its arguments, and that the correspondence

Γ(q0) = {a,v ∈ [0, |X |
1
2 ]×R|X | : |v|= 1 & q0 +av ∈P(X)}

is a closed and bounded subset of R|X |+1 (and hence compact-valued), and is upper hemi-
continuous.

It follows by the theorem of the maximum that

F∗(q0) = max
a,v∈[0,|X |

1
2 ]×R|X |: |v|=1 & q0+av∈P(X)

F(q0,a,v)

is continuous in q0.
Hence, there exists some δ > 0 such that for all q ∈P(X) with |q−q0|< δ ,

F∗(q)≤ χ
−1(ρφ(q0)+κ− ε

2
).
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It follows that for all such q and all (σ0,ψ0) ∈A (q),

1
2

tr[σ0σ
T
0 ∇

2
φ(q)]+ˆ

R|X |\{0}
(φ(q+ z)−φ(q)− zT ·∇φ(q))ψ0(dz)≤

−χ
−1(ρφ(q)+κ− ε

2
)(

1
2

tr[σ0σ
T
0 k̄(q)]+

ˆ
R|X |\{0}

D(q+ z||q)ψ0(dz))≤ ρφ(q)+κ− ε

2
.

By the continuity of V and û, there exists a δ2 > 0 such that for all |q−q0|< δ2,

V (q)− û(q)≥ ε

2
.

Consequently, for |q−q0|< min{δ ,δ2}, both inequalities hold.

Step 2: Apply Ito’s Lemma Suppose the DM initially holds beliefs qt = q0. Let τh =

min{{infs∈[t,t+h] : |qs−q0| ≥min{δ ,δ2}},h}, which is to say the stopping time associated
with h > 0 units of time passing or exiting the region just described, whichever comes
first. Note that this region lies within the continuation region under the optimal policy, by
construction.

Under the optimal policy (by Lemma 5),

V (qt) = Et [e−ρ(τh−t)V (qτh)−κ

ˆ
τh

t
e−ρ(s−t)ds],

and therefore by φ(q)≥V (q) and φ(q0) =V (q0),

φ(q0)≤ Et [e−ρ(τh−t)
φ(qτh)−κ

ˆ
τh

t
e−ρ(s−t)ds].

Recall by Lemma 7 that for any feasible beliefs process (and hence for any optimal
policy), the beliefs process is a (semi-)martingale described by the σs and ψt defined in
that lemma.

By Ito’s lemma for semi-martingales63,

63See e.g. theorem 2.42 of chapter II of Jacod and Shiryaev [2013].
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φ̂s = e−ρs
φ(qs)− e−ρt

φ(qt)+
1
2

ˆ s

t
e−ρl{ρφ(ql−)−

1
2

tr[σlσ
T
l ∇

2
φ(ql−)]}dl

−
ˆ s

t
e−ρl
ˆ
R|X |\{~0}

(φ(ql−+ z)−φ(ql−)− zT ·∇φ(ql−))ψl(dz)dl

is a local martingale.
Note by the quasi-left-continuity of qt that beliefs cannot jump by |z|> δ with positive

probability at any time t, and hence Pr{τh > t}> 0. By the martingale property of φ̂s,

Et [e−ρτhφ(qτh)]− e−ρt
φ(qt) = Et [

1
2

ˆ
τh

t
e−ρltr[σlσ

T
l ∇

2
φ(ql−)]dl]

+Et [

ˆ
τh

t
e−ρl
ˆ
R|X |\{~0}

(φ(ql−+ z)−φ(ql−)− zT ·∇φ(ql−))ψl(dz)dl]

−Et [

ˆ
τh

t
e−ρl

ρφ(ql−)dl],

which yields, by the fact that |qs−q0|< δ for all l ∈ [t,τh),

κEt [

ˆ
τh

t
e−ρ(s−t)ds]≤ Et [e−ρτhφ(qτh)]− e−ρt

φ(qt)≤ (κ− ε

2
)Et [

ˆ
τh

t
e−ρ(s−t)ds],

a contradiction by the observation that Pr{τh > t}> 0.
We conclude that

sup
σ0,ψ0∈A (q0)

1
2

tr[σ0σ
T
0 ∇

2
φ(q0)]+

ˆ
R|X |\{0}

(φ(q0+z)−φ(q0)−zT ·∇φ(q0))ψ0(dz)≥ ρφ(q0)+κ.
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